1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7 #include <linux/backing-dev.h>
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
20 static kmem_zone_t
*xfs_buf_zone
;
22 #define xb_to_gfp(flags) \
23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
30 * b_sema (caller holds)
34 * b_sema (caller holds)
43 * xfs_buftarg_wait_rele
45 * b_lock (trylock due to inversion)
49 * b_lock (trylock due to inversion)
57 * Return true if the buffer is vmapped.
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
63 return bp
->b_addr
&& bp
->b_page_count
> 1;
70 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
90 if (bp
->b_flags
& XBF_NO_IOACCT
)
93 ASSERT(bp
->b_flags
& XBF_ASYNC
);
94 spin_lock(&bp
->b_lock
);
95 if (!(bp
->b_state
& XFS_BSTATE_IN_FLIGHT
)) {
96 bp
->b_state
|= XFS_BSTATE_IN_FLIGHT
;
97 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
99 spin_unlock(&bp
->b_lock
);
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
107 __xfs_buf_ioacct_dec(
110 lockdep_assert_held(&bp
->b_lock
);
112 if (bp
->b_state
& XFS_BSTATE_IN_FLIGHT
) {
113 bp
->b_state
&= ~XFS_BSTATE_IN_FLIGHT
;
114 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
122 spin_lock(&bp
->b_lock
);
123 __xfs_buf_ioacct_dec(bp
);
124 spin_unlock(&bp
->b_lock
);
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
133 * This prevents build-up of stale buffers on the LRU.
139 ASSERT(xfs_buf_islocked(bp
));
141 bp
->b_flags
|= XBF_STALE
;
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
148 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
156 spin_lock(&bp
->b_lock
);
157 __xfs_buf_ioacct_dec(bp
);
159 atomic_set(&bp
->b_lru_ref
, 0);
160 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
161 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
162 atomic_dec(&bp
->b_hold
);
164 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
165 spin_unlock(&bp
->b_lock
);
173 ASSERT(bp
->b_maps
== NULL
);
174 bp
->b_map_count
= map_count
;
176 if (map_count
== 1) {
177 bp
->b_maps
= &bp
->__b_map
;
181 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
189 * Frees b_pages if it was allocated.
195 if (bp
->b_maps
!= &bp
->__b_map
) {
196 kmem_free(bp
->b_maps
);
203 struct xfs_buftarg
*target
,
204 struct xfs_buf_map
*map
,
206 xfs_buf_flags_t flags
,
207 struct xfs_buf
**bpp
)
214 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
219 * We don't want certain flags to appear in b_flags unless they are
220 * specifically set by later operations on the buffer.
222 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
224 atomic_set(&bp
->b_hold
, 1);
225 atomic_set(&bp
->b_lru_ref
, 1);
226 init_completion(&bp
->b_iowait
);
227 INIT_LIST_HEAD(&bp
->b_lru
);
228 INIT_LIST_HEAD(&bp
->b_list
);
229 INIT_LIST_HEAD(&bp
->b_li_list
);
230 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
231 spin_lock_init(&bp
->b_lock
);
232 bp
->b_target
= target
;
233 bp
->b_mount
= target
->bt_mount
;
237 * Set length and io_length to the same value initially.
238 * I/O routines should use io_length, which will be the same in
239 * most cases but may be reset (e.g. XFS recovery).
241 error
= xfs_buf_get_maps(bp
, nmaps
);
243 kmem_cache_free(xfs_buf_zone
, bp
);
247 bp
->b_bn
= map
[0].bm_bn
;
249 for (i
= 0; i
< nmaps
; i
++) {
250 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
251 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
252 bp
->b_length
+= map
[i
].bm_len
;
255 atomic_set(&bp
->b_pin_count
, 0);
256 init_waitqueue_head(&bp
->b_waiters
);
258 XFS_STATS_INC(bp
->b_mount
, xb_create
);
259 trace_xfs_buf_init(bp
, _RET_IP_
);
266 * Allocate a page array capable of holding a specified number
267 * of pages, and point the page buf at it.
274 /* Make sure that we have a page list */
275 if (bp
->b_pages
== NULL
) {
276 bp
->b_page_count
= page_count
;
277 if (page_count
<= XB_PAGES
) {
278 bp
->b_pages
= bp
->b_page_array
;
280 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
281 page_count
, KM_NOFS
);
282 if (bp
->b_pages
== NULL
)
285 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
291 * Frees b_pages if it was allocated.
297 if (bp
->b_pages
!= bp
->b_page_array
) {
298 kmem_free(bp
->b_pages
);
304 * Releases the specified buffer.
306 * The modification state of any associated pages is left unchanged.
307 * The buffer must not be on any hash - use xfs_buf_rele instead for
308 * hashed and refcounted buffers
314 trace_xfs_buf_free(bp
, _RET_IP_
);
316 ASSERT(list_empty(&bp
->b_lru
));
318 if (bp
->b_flags
& _XBF_PAGES
) {
321 if (xfs_buf_is_vmapped(bp
))
322 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
325 for (i
= 0; i
< bp
->b_page_count
; i
++) {
326 struct page
*page
= bp
->b_pages
[i
];
330 } else if (bp
->b_flags
& _XBF_KMEM
)
331 kmem_free(bp
->b_addr
);
332 _xfs_buf_free_pages(bp
);
333 xfs_buf_free_maps(bp
);
334 kmem_cache_free(xfs_buf_zone
, bp
);
338 * Allocates all the pages for buffer in question and builds it's page list.
341 xfs_buf_allocate_memory(
346 size_t nbytes
, offset
;
347 gfp_t gfp_mask
= xb_to_gfp(flags
);
348 unsigned short page_count
, i
;
349 xfs_off_t start
, end
;
351 xfs_km_flags_t kmflag_mask
= 0;
354 * assure zeroed buffer for non-read cases.
356 if (!(flags
& XBF_READ
)) {
357 kmflag_mask
|= KM_ZERO
;
358 gfp_mask
|= __GFP_ZERO
;
362 * for buffers that are contained within a single page, just allocate
363 * the memory from the heap - there's no need for the complexity of
364 * page arrays to keep allocation down to order 0.
366 size
= BBTOB(bp
->b_length
);
367 if (size
< PAGE_SIZE
) {
368 int align_mask
= xfs_buftarg_dma_alignment(bp
->b_target
);
369 bp
->b_addr
= kmem_alloc_io(size
, align_mask
,
370 KM_NOFS
| kmflag_mask
);
372 /* low memory - use alloc_page loop instead */
376 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
377 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
378 /* b_addr spans two pages - use alloc_page instead */
379 kmem_free(bp
->b_addr
);
383 bp
->b_offset
= offset_in_page(bp
->b_addr
);
384 bp
->b_pages
= bp
->b_page_array
;
385 bp
->b_pages
[0] = kmem_to_page(bp
->b_addr
);
386 bp
->b_page_count
= 1;
387 bp
->b_flags
|= _XBF_KMEM
;
392 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
393 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
395 page_count
= end
- start
;
396 error
= _xfs_buf_get_pages(bp
, page_count
);
400 offset
= bp
->b_offset
;
401 bp
->b_flags
|= _XBF_PAGES
;
403 for (i
= 0; i
< bp
->b_page_count
; i
++) {
407 page
= alloc_page(gfp_mask
);
408 if (unlikely(page
== NULL
)) {
409 if (flags
& XBF_READ_AHEAD
) {
410 bp
->b_page_count
= i
;
416 * This could deadlock.
418 * But until all the XFS lowlevel code is revamped to
419 * handle buffer allocation failures we can't do much.
421 if (!(++retries
% 100))
423 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
424 current
->comm
, current
->pid
,
427 XFS_STATS_INC(bp
->b_mount
, xb_page_retries
);
428 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
432 XFS_STATS_INC(bp
->b_mount
, xb_page_found
);
434 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
436 bp
->b_pages
[i
] = page
;
442 for (i
= 0; i
< bp
->b_page_count
; i
++)
443 __free_page(bp
->b_pages
[i
]);
444 bp
->b_flags
&= ~_XBF_PAGES
;
449 * Map buffer into kernel address-space if necessary.
456 ASSERT(bp
->b_flags
& _XBF_PAGES
);
457 if (bp
->b_page_count
== 1) {
458 /* A single page buffer is always mappable */
459 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
460 } else if (flags
& XBF_UNMAPPED
) {
467 * vm_map_ram() will allocate auxiliary structures (e.g.
468 * pagetables) with GFP_KERNEL, yet we are likely to be under
469 * GFP_NOFS context here. Hence we need to tell memory reclaim
470 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
471 * memory reclaim re-entering the filesystem here and
472 * potentially deadlocking.
474 nofs_flag
= memalloc_nofs_save();
476 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
481 } while (retried
++ <= 1);
482 memalloc_nofs_restore(nofs_flag
);
486 bp
->b_addr
+= bp
->b_offset
;
493 * Finding and Reading Buffers
497 struct rhashtable_compare_arg
*arg
,
500 const struct xfs_buf_map
*map
= arg
->key
;
501 const struct xfs_buf
*bp
= obj
;
504 * The key hashing in the lookup path depends on the key being the
505 * first element of the compare_arg, make sure to assert this.
507 BUILD_BUG_ON(offsetof(struct xfs_buf_map
, bm_bn
) != 0);
509 if (bp
->b_bn
!= map
->bm_bn
)
512 if (unlikely(bp
->b_length
!= map
->bm_len
)) {
514 * found a block number match. If the range doesn't
515 * match, the only way this is allowed is if the buffer
516 * in the cache is stale and the transaction that made
517 * it stale has not yet committed. i.e. we are
518 * reallocating a busy extent. Skip this buffer and
519 * continue searching for an exact match.
521 ASSERT(bp
->b_flags
& XBF_STALE
);
527 static const struct rhashtable_params xfs_buf_hash_params
= {
528 .min_size
= 32, /* empty AGs have minimal footprint */
530 .key_len
= sizeof(xfs_daddr_t
),
531 .key_offset
= offsetof(struct xfs_buf
, b_bn
),
532 .head_offset
= offsetof(struct xfs_buf
, b_rhash_head
),
533 .automatic_shrinking
= true,
534 .obj_cmpfn
= _xfs_buf_obj_cmp
,
539 struct xfs_perag
*pag
)
541 spin_lock_init(&pag
->pag_buf_lock
);
542 return rhashtable_init(&pag
->pag_buf_hash
, &xfs_buf_hash_params
);
546 xfs_buf_hash_destroy(
547 struct xfs_perag
*pag
)
549 rhashtable_destroy(&pag
->pag_buf_hash
);
553 * Look up a buffer in the buffer cache and return it referenced and locked
556 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
559 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
560 * -EAGAIN if we fail to lock it.
563 * -EFSCORRUPTED if have been supplied with an invalid address
564 * -EAGAIN on trylock failure
565 * -ENOENT if we fail to find a match and @new_bp was NULL
567 * - @new_bp if we inserted it into the cache
568 * - the buffer we found and locked.
572 struct xfs_buftarg
*btp
,
573 struct xfs_buf_map
*map
,
575 xfs_buf_flags_t flags
,
576 struct xfs_buf
*new_bp
,
577 struct xfs_buf
**found_bp
)
579 struct xfs_perag
*pag
;
581 struct xfs_buf_map cmap
= { .bm_bn
= map
[0].bm_bn
};
587 for (i
= 0; i
< nmaps
; i
++)
588 cmap
.bm_len
+= map
[i
].bm_len
;
590 /* Check for IOs smaller than the sector size / not sector aligned */
591 ASSERT(!(BBTOB(cmap
.bm_len
) < btp
->bt_meta_sectorsize
));
592 ASSERT(!(BBTOB(cmap
.bm_bn
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
595 * Corrupted block numbers can get through to here, unfortunately, so we
596 * have to check that the buffer falls within the filesystem bounds.
598 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
599 if (cmap
.bm_bn
< 0 || cmap
.bm_bn
>= eofs
) {
600 xfs_alert(btp
->bt_mount
,
601 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
602 __func__
, cmap
.bm_bn
, eofs
);
604 return -EFSCORRUPTED
;
607 pag
= xfs_perag_get(btp
->bt_mount
,
608 xfs_daddr_to_agno(btp
->bt_mount
, cmap
.bm_bn
));
610 spin_lock(&pag
->pag_buf_lock
);
611 bp
= rhashtable_lookup_fast(&pag
->pag_buf_hash
, &cmap
,
612 xfs_buf_hash_params
);
614 atomic_inc(&bp
->b_hold
);
620 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
621 spin_unlock(&pag
->pag_buf_lock
);
626 /* the buffer keeps the perag reference until it is freed */
628 rhashtable_insert_fast(&pag
->pag_buf_hash
, &new_bp
->b_rhash_head
,
629 xfs_buf_hash_params
);
630 spin_unlock(&pag
->pag_buf_lock
);
635 spin_unlock(&pag
->pag_buf_lock
);
638 if (!xfs_buf_trylock(bp
)) {
639 if (flags
& XBF_TRYLOCK
) {
641 XFS_STATS_INC(btp
->bt_mount
, xb_busy_locked
);
645 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked_waited
);
649 * if the buffer is stale, clear all the external state associated with
650 * it. We need to keep flags such as how we allocated the buffer memory
653 if (bp
->b_flags
& XBF_STALE
) {
654 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
655 ASSERT(bp
->b_iodone
== NULL
);
656 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
660 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
661 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
668 struct xfs_buftarg
*target
,
671 xfs_buf_flags_t flags
)
675 DEFINE_SINGLE_BUF_MAP(map
, blkno
, numblks
);
677 error
= xfs_buf_find(target
, &map
, 1, flags
, NULL
, &bp
);
684 * Assembles a buffer covering the specified range. The code is optimised for
685 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
686 * more hits than misses.
690 struct xfs_buftarg
*target
,
691 struct xfs_buf_map
*map
,
693 xfs_buf_flags_t flags
,
694 struct xfs_buf
**bpp
)
697 struct xfs_buf
*new_bp
;
701 error
= xfs_buf_find(target
, map
, nmaps
, flags
, NULL
, &bp
);
704 if (error
!= -ENOENT
)
707 error
= _xfs_buf_alloc(target
, map
, nmaps
, flags
, &new_bp
);
711 error
= xfs_buf_allocate_memory(new_bp
, flags
);
713 xfs_buf_free(new_bp
);
717 error
= xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
, &bp
);
719 xfs_buf_free(new_bp
);
724 xfs_buf_free(new_bp
);
728 error
= _xfs_buf_map_pages(bp
, flags
);
729 if (unlikely(error
)) {
730 xfs_warn(target
->bt_mount
,
731 "%s: failed to map pagesn", __func__
);
738 * Clear b_error if this is a lookup from a caller that doesn't expect
739 * valid data to be found in the buffer.
741 if (!(flags
& XBF_READ
))
742 xfs_buf_ioerror(bp
, 0);
744 XFS_STATS_INC(target
->bt_mount
, xb_get
);
745 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
753 xfs_buf_flags_t flags
)
755 ASSERT(!(flags
& XBF_WRITE
));
756 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
758 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
759 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
761 return xfs_buf_submit(bp
);
765 * Reverify a buffer found in cache without an attached ->b_ops.
767 * If the caller passed an ops structure and the buffer doesn't have ops
768 * assigned, set the ops and use it to verify the contents. If verification
769 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
770 * already in XBF_DONE state on entry.
772 * Under normal operations, every in-core buffer is verified on read I/O
773 * completion. There are two scenarios that can lead to in-core buffers without
774 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
775 * filesystem, though these buffers are purged at the end of recovery. The
776 * other is online repair, which intentionally reads with a NULL buffer ops to
777 * run several verifiers across an in-core buffer in order to establish buffer
778 * type. If repair can't establish that, the buffer will be left in memory
779 * with NULL buffer ops.
784 const struct xfs_buf_ops
*ops
)
786 ASSERT(bp
->b_flags
& XBF_DONE
);
787 ASSERT(bp
->b_error
== 0);
789 if (!ops
|| bp
->b_ops
)
793 bp
->b_ops
->verify_read(bp
);
795 bp
->b_flags
&= ~XBF_DONE
;
801 struct xfs_buftarg
*target
,
802 struct xfs_buf_map
*map
,
804 xfs_buf_flags_t flags
,
805 struct xfs_buf
**bpp
,
806 const struct xfs_buf_ops
*ops
,
815 error
= xfs_buf_get_map(target
, map
, nmaps
, flags
, &bp
);
819 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
821 if (!(bp
->b_flags
& XBF_DONE
)) {
822 /* Initiate the buffer read and wait. */
823 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
825 error
= _xfs_buf_read(bp
, flags
);
827 /* Readahead iodone already dropped the buffer, so exit. */
828 if (flags
& XBF_ASYNC
)
831 /* Buffer already read; all we need to do is check it. */
832 error
= xfs_buf_reverify(bp
, ops
);
834 /* Readahead already finished; drop the buffer and exit. */
835 if (flags
& XBF_ASYNC
) {
840 /* We do not want read in the flags */
841 bp
->b_flags
&= ~XBF_READ
;
842 ASSERT(bp
->b_ops
!= NULL
|| ops
== NULL
);
846 * If we've had a read error, then the contents of the buffer are
847 * invalid and should not be used. To ensure that a followup read tries
848 * to pull the buffer from disk again, we clear the XBF_DONE flag and
849 * mark the buffer stale. This ensures that anyone who has a current
850 * reference to the buffer will interpret it's contents correctly and
851 * future cache lookups will also treat it as an empty, uninitialised
855 if (!XFS_FORCED_SHUTDOWN(target
->bt_mount
))
856 xfs_buf_ioerror_alert(bp
, fa
);
858 bp
->b_flags
&= ~XBF_DONE
;
862 /* bad CRC means corrupted metadata */
863 if (error
== -EFSBADCRC
)
864 error
= -EFSCORRUPTED
;
873 * If we are not low on memory then do the readahead in a deadlock
877 xfs_buf_readahead_map(
878 struct xfs_buftarg
*target
,
879 struct xfs_buf_map
*map
,
881 const struct xfs_buf_ops
*ops
)
885 if (bdi_read_congested(target
->bt_bdev
->bd_bdi
))
888 xfs_buf_read_map(target
, map
, nmaps
,
889 XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
, &bp
, ops
,
894 * Read an uncached buffer from disk. Allocates and returns a locked
895 * buffer containing the disk contents or nothing.
898 xfs_buf_read_uncached(
899 struct xfs_buftarg
*target
,
903 struct xfs_buf
**bpp
,
904 const struct xfs_buf_ops
*ops
)
911 error
= xfs_buf_get_uncached(target
, numblks
, flags
, &bp
);
915 /* set up the buffer for a read IO */
916 ASSERT(bp
->b_map_count
== 1);
917 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
918 bp
->b_maps
[0].bm_bn
= daddr
;
919 bp
->b_flags
|= XBF_READ
;
934 xfs_buf_get_uncached(
935 struct xfs_buftarg
*target
,
938 struct xfs_buf
**bpp
)
940 unsigned long page_count
;
943 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
947 /* flags might contain irrelevant bits, pass only what we care about */
948 error
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
, &bp
);
952 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
953 error
= _xfs_buf_get_pages(bp
, page_count
);
957 for (i
= 0; i
< page_count
; i
++) {
958 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
959 if (!bp
->b_pages
[i
]) {
964 bp
->b_flags
|= _XBF_PAGES
;
966 error
= _xfs_buf_map_pages(bp
, 0);
967 if (unlikely(error
)) {
968 xfs_warn(target
->bt_mount
,
969 "%s: failed to map pages", __func__
);
973 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
979 __free_page(bp
->b_pages
[i
]);
980 _xfs_buf_free_pages(bp
);
982 xfs_buf_free_maps(bp
);
983 kmem_cache_free(xfs_buf_zone
, bp
);
989 * Increment reference count on buffer, to hold the buffer concurrently
990 * with another thread which may release (free) the buffer asynchronously.
991 * Must hold the buffer already to call this function.
997 trace_xfs_buf_hold(bp
, _RET_IP_
);
998 atomic_inc(&bp
->b_hold
);
1002 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1003 * placed on LRU or freed (depending on b_lru_ref).
1009 struct xfs_perag
*pag
= bp
->b_pag
;
1011 bool freebuf
= false;
1013 trace_xfs_buf_rele(bp
, _RET_IP_
);
1016 ASSERT(list_empty(&bp
->b_lru
));
1017 if (atomic_dec_and_test(&bp
->b_hold
)) {
1018 xfs_buf_ioacct_dec(bp
);
1024 ASSERT(atomic_read(&bp
->b_hold
) > 0);
1027 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1028 * calls. The pag_buf_lock being taken on the last reference only
1029 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1030 * to last reference we drop here is not serialised against the last
1031 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1032 * first, the last "release" reference can win the race to the lock and
1033 * free the buffer before the second-to-last reference is processed,
1034 * leading to a use-after-free scenario.
1036 spin_lock(&bp
->b_lock
);
1037 release
= atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
);
1040 * Drop the in-flight state if the buffer is already on the LRU
1041 * and it holds the only reference. This is racy because we
1042 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1043 * ensures the decrement occurs only once per-buf.
1045 if ((atomic_read(&bp
->b_hold
) == 1) && !list_empty(&bp
->b_lru
))
1046 __xfs_buf_ioacct_dec(bp
);
1050 /* the last reference has been dropped ... */
1051 __xfs_buf_ioacct_dec(bp
);
1052 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
1054 * If the buffer is added to the LRU take a new reference to the
1055 * buffer for the LRU and clear the (now stale) dispose list
1058 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
1059 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
1060 atomic_inc(&bp
->b_hold
);
1062 spin_unlock(&pag
->pag_buf_lock
);
1065 * most of the time buffers will already be removed from the
1066 * LRU, so optimise that case by checking for the
1067 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1068 * was on was the disposal list
1070 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
1071 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
1073 ASSERT(list_empty(&bp
->b_lru
));
1076 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1077 rhashtable_remove_fast(&pag
->pag_buf_hash
, &bp
->b_rhash_head
,
1078 xfs_buf_hash_params
);
1079 spin_unlock(&pag
->pag_buf_lock
);
1085 spin_unlock(&bp
->b_lock
);
1093 * Lock a buffer object, if it is not already locked.
1095 * If we come across a stale, pinned, locked buffer, we know that we are
1096 * being asked to lock a buffer that has been reallocated. Because it is
1097 * pinned, we know that the log has not been pushed to disk and hence it
1098 * will still be locked. Rather than continuing to have trylock attempts
1099 * fail until someone else pushes the log, push it ourselves before
1100 * returning. This means that the xfsaild will not get stuck trying
1101 * to push on stale inode buffers.
1109 locked
= down_trylock(&bp
->b_sema
) == 0;
1111 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1113 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1118 * Lock a buffer object.
1120 * If we come across a stale, pinned, locked buffer, we know that we
1121 * are being asked to lock a buffer that has been reallocated. Because
1122 * it is pinned, we know that the log has not been pushed to disk and
1123 * hence it will still be locked. Rather than sleeping until someone
1124 * else pushes the log, push it ourselves before trying to get the lock.
1130 trace_xfs_buf_lock(bp
, _RET_IP_
);
1132 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1133 xfs_log_force(bp
->b_mount
, 0);
1136 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1143 ASSERT(xfs_buf_islocked(bp
));
1146 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1153 DECLARE_WAITQUEUE (wait
, current
);
1155 if (atomic_read(&bp
->b_pin_count
) == 0)
1158 add_wait_queue(&bp
->b_waiters
, &wait
);
1160 set_current_state(TASK_UNINTERRUPTIBLE
);
1161 if (atomic_read(&bp
->b_pin_count
) == 0)
1165 remove_wait_queue(&bp
->b_waiters
, &wait
);
1166 set_current_state(TASK_RUNNING
);
1170 * Buffer Utility Routines
1177 bool read
= bp
->b_flags
& XBF_READ
;
1179 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1181 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1184 * Pull in IO completion errors now. We are guaranteed to be running
1185 * single threaded, so we don't need the lock to read b_io_error.
1187 if (!bp
->b_error
&& bp
->b_io_error
)
1188 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1190 /* Only validate buffers that were read without errors */
1191 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1192 ASSERT(!bp
->b_iodone
);
1193 bp
->b_ops
->verify_read(bp
);
1197 bp
->b_flags
|= XBF_DONE
;
1200 (*(bp
->b_iodone
))(bp
);
1201 else if (bp
->b_flags
& XBF_ASYNC
)
1204 complete(&bp
->b_iowait
);
1209 struct work_struct
*work
)
1211 struct xfs_buf
*bp
=
1212 container_of(work
, xfs_buf_t
, b_ioend_work
);
1218 xfs_buf_ioend_async(
1221 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1222 queue_work(bp
->b_mount
->m_buf_workqueue
, &bp
->b_ioend_work
);
1229 xfs_failaddr_t failaddr
)
1231 ASSERT(error
<= 0 && error
>= -1000);
1232 bp
->b_error
= error
;
1233 trace_xfs_buf_ioerror(bp
, error
, failaddr
);
1237 xfs_buf_ioerror_alert(
1239 xfs_failaddr_t func
)
1241 xfs_alert(bp
->b_mount
,
1242 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1243 func
, (uint64_t)XFS_BUF_ADDR(bp
), bp
->b_length
,
1253 ASSERT(xfs_buf_islocked(bp
));
1255 bp
->b_flags
|= XBF_WRITE
;
1256 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1257 XBF_WRITE_FAIL
| XBF_DONE
);
1259 error
= xfs_buf_submit(bp
);
1261 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_META_IO_ERROR
);
1269 struct xfs_buf
*bp
= (struct xfs_buf
*)bio
->bi_private
;
1272 * don't overwrite existing errors - otherwise we can lose errors on
1273 * buffers that require multiple bios to complete.
1275 if (bio
->bi_status
) {
1276 int error
= blk_status_to_errno(bio
->bi_status
);
1278 cmpxchg(&bp
->b_io_error
, 0, error
);
1281 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1282 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1284 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1285 xfs_buf_ioend_async(bp
);
1290 xfs_buf_ioapply_map(
1298 int total_nr_pages
= bp
->b_page_count
;
1301 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1305 /* skip the pages in the buffer before the start offset */
1307 offset
= *buf_offset
;
1308 while (offset
>= PAGE_SIZE
) {
1310 offset
-= PAGE_SIZE
;
1314 * Limit the IO size to the length of the current vector, and update the
1315 * remaining IO count for the next time around.
1317 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1319 *buf_offset
+= size
;
1322 atomic_inc(&bp
->b_io_remaining
);
1323 nr_pages
= min(total_nr_pages
, BIO_MAX_PAGES
);
1325 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1326 bio_set_dev(bio
, bp
->b_target
->bt_bdev
);
1327 bio
->bi_iter
.bi_sector
= sector
;
1328 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1329 bio
->bi_private
= bp
;
1332 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1333 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1338 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1340 if (rbytes
< nbytes
)
1344 sector
+= BTOBB(nbytes
);
1349 if (likely(bio
->bi_iter
.bi_size
)) {
1350 if (xfs_buf_is_vmapped(bp
)) {
1351 flush_kernel_vmap_range(bp
->b_addr
,
1352 xfs_buf_vmap_len(bp
));
1359 * This is guaranteed not to be the last io reference count
1360 * because the caller (xfs_buf_submit) holds a count itself.
1362 atomic_dec(&bp
->b_io_remaining
);
1363 xfs_buf_ioerror(bp
, -EIO
);
1373 struct blk_plug plug
;
1380 * Make sure we capture only current IO errors rather than stale errors
1381 * left over from previous use of the buffer (e.g. failed readahead).
1385 if (bp
->b_flags
& XBF_WRITE
) {
1389 * Run the write verifier callback function if it exists. If
1390 * this function fails it will mark the buffer with an error and
1391 * the IO should not be dispatched.
1394 bp
->b_ops
->verify_write(bp
);
1396 xfs_force_shutdown(bp
->b_mount
,
1397 SHUTDOWN_CORRUPT_INCORE
);
1400 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1401 struct xfs_mount
*mp
= bp
->b_mount
;
1404 * non-crc filesystems don't attach verifiers during
1405 * log recovery, so don't warn for such filesystems.
1407 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1409 "%s: no buf ops on daddr 0x%llx len %d",
1410 __func__
, bp
->b_bn
, bp
->b_length
);
1411 xfs_hex_dump(bp
->b_addr
,
1412 XFS_CORRUPTION_DUMP_LEN
);
1418 if (bp
->b_flags
& XBF_READ_AHEAD
)
1422 /* we only use the buffer cache for meta-data */
1426 * Walk all the vectors issuing IO on them. Set up the initial offset
1427 * into the buffer and the desired IO size before we start -
1428 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1431 offset
= bp
->b_offset
;
1432 size
= BBTOB(bp
->b_length
);
1433 blk_start_plug(&plug
);
1434 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1435 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, op
);
1439 break; /* all done */
1441 blk_finish_plug(&plug
);
1445 * Wait for I/O completion of a sync buffer and return the I/O error code.
1451 ASSERT(!(bp
->b_flags
& XBF_ASYNC
));
1453 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1454 wait_for_completion(&bp
->b_iowait
);
1455 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1461 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1462 * the buffer lock ownership and the current reference to the IO. It is not
1463 * safe to reference the buffer after a call to this function unless the caller
1464 * holds an additional reference itself.
1473 trace_xfs_buf_submit(bp
, _RET_IP_
);
1475 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1477 /* on shutdown we stale and complete the buffer immediately */
1478 if (XFS_FORCED_SHUTDOWN(bp
->b_mount
)) {
1479 xfs_buf_ioerror(bp
, -EIO
);
1480 bp
->b_flags
&= ~XBF_DONE
;
1487 * Grab a reference so the buffer does not go away underneath us. For
1488 * async buffers, I/O completion drops the callers reference, which
1489 * could occur before submission returns.
1493 if (bp
->b_flags
& XBF_WRITE
)
1494 xfs_buf_wait_unpin(bp
);
1496 /* clear the internal error state to avoid spurious errors */
1500 * Set the count to 1 initially, this will stop an I/O completion
1501 * callout which happens before we have started all the I/O from calling
1502 * xfs_buf_ioend too early.
1504 atomic_set(&bp
->b_io_remaining
, 1);
1505 if (bp
->b_flags
& XBF_ASYNC
)
1506 xfs_buf_ioacct_inc(bp
);
1507 _xfs_buf_ioapply(bp
);
1510 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1511 * reference we took above. If we drop it to zero, run completion so
1512 * that we don't return to the caller with completion still pending.
1514 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1515 if (bp
->b_error
|| !(bp
->b_flags
& XBF_ASYNC
))
1518 xfs_buf_ioend_async(bp
);
1522 error
= xfs_buf_iowait(bp
);
1525 * Release the hold that keeps the buffer referenced for the entire
1526 * I/O. Note that if the buffer is async, it is not safe to reference
1527 * after this release.
1541 return bp
->b_addr
+ offset
;
1543 offset
+= bp
->b_offset
;
1544 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1545 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1556 bend
= boff
+ bsize
;
1557 while (boff
< bend
) {
1559 int page_index
, page_offset
, csize
;
1561 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1562 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1563 page
= bp
->b_pages
[page_index
];
1564 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1565 BBTOB(bp
->b_length
) - boff
);
1567 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1569 memset(page_address(page
) + page_offset
, 0, csize
);
1576 * Handling of buffer targets (buftargs).
1580 * Wait for any bufs with callbacks that have been submitted but have not yet
1581 * returned. These buffers will have an elevated hold count, so wait on those
1582 * while freeing all the buffers only held by the LRU.
1584 static enum lru_status
1585 xfs_buftarg_wait_rele(
1586 struct list_head
*item
,
1587 struct list_lru_one
*lru
,
1588 spinlock_t
*lru_lock
,
1592 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1593 struct list_head
*dispose
= arg
;
1595 if (atomic_read(&bp
->b_hold
) > 1) {
1596 /* need to wait, so skip it this pass */
1597 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1600 if (!spin_trylock(&bp
->b_lock
))
1604 * clear the LRU reference count so the buffer doesn't get
1605 * ignored in xfs_buf_rele().
1607 atomic_set(&bp
->b_lru_ref
, 0);
1608 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1609 list_lru_isolate_move(lru
, item
, dispose
);
1610 spin_unlock(&bp
->b_lock
);
1616 struct xfs_buftarg
*btp
)
1622 * First wait on the buftarg I/O count for all in-flight buffers to be
1623 * released. This is critical as new buffers do not make the LRU until
1624 * they are released.
1626 * Next, flush the buffer workqueue to ensure all completion processing
1627 * has finished. Just waiting on buffer locks is not sufficient for
1628 * async IO as the reference count held over IO is not released until
1629 * after the buffer lock is dropped. Hence we need to ensure here that
1630 * all reference counts have been dropped before we start walking the
1633 while (percpu_counter_sum(&btp
->bt_io_count
))
1635 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1637 /* loop until there is nothing left on the lru list. */
1638 while (list_lru_count(&btp
->bt_lru
)) {
1639 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1640 &dispose
, LONG_MAX
);
1642 while (!list_empty(&dispose
)) {
1644 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1645 list_del_init(&bp
->b_lru
);
1646 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1647 xfs_alert(btp
->bt_mount
,
1648 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1649 (long long)bp
->b_bn
);
1650 xfs_alert(btp
->bt_mount
,
1651 "Please run xfs_repair to determine the extent of the problem.");
1660 static enum lru_status
1661 xfs_buftarg_isolate(
1662 struct list_head
*item
,
1663 struct list_lru_one
*lru
,
1664 spinlock_t
*lru_lock
,
1667 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1668 struct list_head
*dispose
= arg
;
1671 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1672 * If we fail to get the lock, just skip it.
1674 if (!spin_trylock(&bp
->b_lock
))
1677 * Decrement the b_lru_ref count unless the value is already
1678 * zero. If the value is already zero, we need to reclaim the
1679 * buffer, otherwise it gets another trip through the LRU.
1681 if (atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1682 spin_unlock(&bp
->b_lock
);
1686 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1687 list_lru_isolate_move(lru
, item
, dispose
);
1688 spin_unlock(&bp
->b_lock
);
1692 static unsigned long
1693 xfs_buftarg_shrink_scan(
1694 struct shrinker
*shrink
,
1695 struct shrink_control
*sc
)
1697 struct xfs_buftarg
*btp
= container_of(shrink
,
1698 struct xfs_buftarg
, bt_shrinker
);
1700 unsigned long freed
;
1702 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1703 xfs_buftarg_isolate
, &dispose
);
1705 while (!list_empty(&dispose
)) {
1707 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1708 list_del_init(&bp
->b_lru
);
1715 static unsigned long
1716 xfs_buftarg_shrink_count(
1717 struct shrinker
*shrink
,
1718 struct shrink_control
*sc
)
1720 struct xfs_buftarg
*btp
= container_of(shrink
,
1721 struct xfs_buftarg
, bt_shrinker
);
1722 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1727 struct xfs_buftarg
*btp
)
1729 unregister_shrinker(&btp
->bt_shrinker
);
1730 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
1731 percpu_counter_destroy(&btp
->bt_io_count
);
1732 list_lru_destroy(&btp
->bt_lru
);
1734 xfs_blkdev_issue_flush(btp
);
1740 xfs_setsize_buftarg(
1742 unsigned int sectorsize
)
1744 /* Set up metadata sector size info */
1745 btp
->bt_meta_sectorsize
= sectorsize
;
1746 btp
->bt_meta_sectormask
= sectorsize
- 1;
1748 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1749 xfs_warn(btp
->bt_mount
,
1750 "Cannot set_blocksize to %u on device %pg",
1751 sectorsize
, btp
->bt_bdev
);
1755 /* Set up device logical sector size mask */
1756 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1757 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1763 * When allocating the initial buffer target we have not yet
1764 * read in the superblock, so don't know what sized sectors
1765 * are being used at this early stage. Play safe.
1768 xfs_setsize_buftarg_early(
1770 struct block_device
*bdev
)
1772 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1777 struct xfs_mount
*mp
,
1778 struct block_device
*bdev
,
1779 struct dax_device
*dax_dev
)
1783 btp
= kmem_zalloc(sizeof(*btp
), KM_NOFS
);
1786 btp
->bt_dev
= bdev
->bd_dev
;
1787 btp
->bt_bdev
= bdev
;
1788 btp
->bt_daxdev
= dax_dev
;
1790 if (xfs_setsize_buftarg_early(btp
, bdev
))
1793 if (list_lru_init(&btp
->bt_lru
))
1796 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
1799 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1800 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1801 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1802 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1803 if (register_shrinker(&btp
->bt_shrinker
))
1808 percpu_counter_destroy(&btp
->bt_io_count
);
1810 list_lru_destroy(&btp
->bt_lru
);
1817 * Cancel a delayed write list.
1819 * Remove each buffer from the list, clear the delwri queue flag and drop the
1820 * associated buffer reference.
1823 xfs_buf_delwri_cancel(
1824 struct list_head
*list
)
1828 while (!list_empty(list
)) {
1829 bp
= list_first_entry(list
, struct xfs_buf
, b_list
);
1832 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
1833 list_del_init(&bp
->b_list
);
1839 * Add a buffer to the delayed write list.
1841 * This queues a buffer for writeout if it hasn't already been. Note that
1842 * neither this routine nor the buffer list submission functions perform
1843 * any internal synchronization. It is expected that the lists are thread-local
1846 * Returns true if we queued up the buffer, or false if it already had
1847 * been on the buffer list.
1850 xfs_buf_delwri_queue(
1852 struct list_head
*list
)
1854 ASSERT(xfs_buf_islocked(bp
));
1855 ASSERT(!(bp
->b_flags
& XBF_READ
));
1858 * If the buffer is already marked delwri it already is queued up
1859 * by someone else for imediate writeout. Just ignore it in that
1862 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1863 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1867 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1870 * If a buffer gets written out synchronously or marked stale while it
1871 * is on a delwri list we lazily remove it. To do this, the other party
1872 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1873 * It remains referenced and on the list. In a rare corner case it
1874 * might get readded to a delwri list after the synchronous writeout, in
1875 * which case we need just need to re-add the flag here.
1877 bp
->b_flags
|= _XBF_DELWRI_Q
;
1878 if (list_empty(&bp
->b_list
)) {
1879 atomic_inc(&bp
->b_hold
);
1880 list_add_tail(&bp
->b_list
, list
);
1887 * Compare function is more complex than it needs to be because
1888 * the return value is only 32 bits and we are doing comparisons
1894 struct list_head
*a
,
1895 struct list_head
*b
)
1897 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1898 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1901 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1910 * Submit buffers for write. If wait_list is specified, the buffers are
1911 * submitted using sync I/O and placed on the wait list such that the caller can
1912 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1913 * at I/O completion time. In either case, buffers remain locked until I/O
1914 * completes and the buffer is released from the queue.
1917 xfs_buf_delwri_submit_buffers(
1918 struct list_head
*buffer_list
,
1919 struct list_head
*wait_list
)
1921 struct xfs_buf
*bp
, *n
;
1923 struct blk_plug plug
;
1925 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
1927 blk_start_plug(&plug
);
1928 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1930 if (xfs_buf_ispinned(bp
)) {
1934 if (!xfs_buf_trylock(bp
))
1941 * Someone else might have written the buffer synchronously or
1942 * marked it stale in the meantime. In that case only the
1943 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1944 * reference and remove it from the list here.
1946 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1947 list_del_init(&bp
->b_list
);
1952 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1955 * If we have a wait list, each buffer (and associated delwri
1956 * queue reference) transfers to it and is submitted
1957 * synchronously. Otherwise, drop the buffer from the delwri
1958 * queue and submit async.
1960 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_WRITE_FAIL
);
1961 bp
->b_flags
|= XBF_WRITE
;
1963 bp
->b_flags
&= ~XBF_ASYNC
;
1964 list_move_tail(&bp
->b_list
, wait_list
);
1966 bp
->b_flags
|= XBF_ASYNC
;
1967 list_del_init(&bp
->b_list
);
1969 __xfs_buf_submit(bp
, false);
1971 blk_finish_plug(&plug
);
1977 * Write out a buffer list asynchronously.
1979 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1980 * out and not wait for I/O completion on any of the buffers. This interface
1981 * is only safely useable for callers that can track I/O completion by higher
1982 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1985 * Note: this function will skip buffers it would block on, and in doing so
1986 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1987 * it is up to the caller to ensure that the buffer list is fully submitted or
1988 * cancelled appropriately when they are finished with the list. Failure to
1989 * cancel or resubmit the list until it is empty will result in leaked buffers
1993 xfs_buf_delwri_submit_nowait(
1994 struct list_head
*buffer_list
)
1996 return xfs_buf_delwri_submit_buffers(buffer_list
, NULL
);
2000 * Write out a buffer list synchronously.
2002 * This will take the @buffer_list, write all buffers out and wait for I/O
2003 * completion on all of the buffers. @buffer_list is consumed by the function,
2004 * so callers must have some other way of tracking buffers if they require such
2008 xfs_buf_delwri_submit(
2009 struct list_head
*buffer_list
)
2011 LIST_HEAD (wait_list
);
2012 int error
= 0, error2
;
2015 xfs_buf_delwri_submit_buffers(buffer_list
, &wait_list
);
2017 /* Wait for IO to complete. */
2018 while (!list_empty(&wait_list
)) {
2019 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
2021 list_del_init(&bp
->b_list
);
2024 * Wait on the locked buffer, check for errors and unlock and
2025 * release the delwri queue reference.
2027 error2
= xfs_buf_iowait(bp
);
2037 * Push a single buffer on a delwri queue.
2039 * The purpose of this function is to submit a single buffer of a delwri queue
2040 * and return with the buffer still on the original queue. The waiting delwri
2041 * buffer submission infrastructure guarantees transfer of the delwri queue
2042 * buffer reference to a temporary wait list. We reuse this infrastructure to
2043 * transfer the buffer back to the original queue.
2045 * Note the buffer transitions from the queued state, to the submitted and wait
2046 * listed state and back to the queued state during this call. The buffer
2047 * locking and queue management logic between _delwri_pushbuf() and
2048 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2052 xfs_buf_delwri_pushbuf(
2054 struct list_head
*buffer_list
)
2056 LIST_HEAD (submit_list
);
2059 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
2061 trace_xfs_buf_delwri_pushbuf(bp
, _RET_IP_
);
2064 * Isolate the buffer to a new local list so we can submit it for I/O
2065 * independently from the rest of the original list.
2068 list_move(&bp
->b_list
, &submit_list
);
2072 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2073 * the buffer on the wait list with the original reference. Rather than
2074 * bounce the buffer from a local wait list back to the original list
2075 * after I/O completion, reuse the original list as the wait list.
2077 xfs_buf_delwri_submit_buffers(&submit_list
, buffer_list
);
2080 * The buffer is now locked, under I/O and wait listed on the original
2081 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2082 * return with the buffer unlocked and on the original queue.
2084 error
= xfs_buf_iowait(bp
);
2085 bp
->b_flags
|= _XBF_DELWRI_Q
;
2094 xfs_buf_zone
= kmem_cache_create("xfs_buf",
2095 sizeof(struct xfs_buf
), 0,
2096 SLAB_HWCACHE_ALIGN
, NULL
);
2107 xfs_buf_terminate(void)
2109 kmem_cache_destroy(xfs_buf_zone
);
2112 void xfs_buf_set_ref(struct xfs_buf
*bp
, int lru_ref
)
2115 * Set the lru reference count to 0 based on the error injection tag.
2116 * This allows userspace to disrupt buffer caching for debug/testing
2119 if (XFS_TEST_ERROR(false, bp
->b_mount
, XFS_ERRTAG_BUF_LRU_REF
))
2122 atomic_set(&bp
->b_lru_ref
, lru_ref
);
2126 * Verify an on-disk magic value against the magic value specified in the
2127 * verifier structure. The verifier magic is in disk byte order so the caller is
2128 * expected to pass the value directly from disk.
2135 struct xfs_mount
*mp
= bp
->b_mount
;
2138 idx
= xfs_sb_version_hascrc(&mp
->m_sb
);
2139 if (WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic
[idx
]))
2141 return dmagic
== bp
->b_ops
->magic
[idx
];
2144 * Verify an on-disk magic value against the magic value specified in the
2145 * verifier structure. The verifier magic is in disk byte order so the caller is
2146 * expected to pass the value directly from disk.
2153 struct xfs_mount
*mp
= bp
->b_mount
;
2156 idx
= xfs_sb_version_hascrc(&mp
->m_sb
);
2157 if (WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic16
[idx
]))
2159 return dmagic
== bp
->b_ops
->magic16
[idx
];