drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / xfs / xfs_buf.c
blob217e4f82a44a2601351c8e46f7503512b9a5cc31
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
20 static kmem_zone_t *xfs_buf_zone;
22 #define xb_to_gfp(flags) \
23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
26 * Locking orders
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
52 static inline int
53 xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
57 * Return true if the buffer is vmapped.
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
63 return bp->b_addr && bp->b_page_count > 1;
66 static inline int
67 xfs_buf_vmap_len(
68 struct xfs_buf *bp)
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
86 static inline void
87 xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
90 if (bp->b_flags & XBF_NO_IOACCT)
91 return;
93 ASSERT(bp->b_flags & XBF_ASYNC);
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
99 spin_unlock(&bp->b_lock);
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
106 static inline void
107 __xfs_buf_ioacct_dec(
108 struct xfs_buf *bp)
110 lockdep_assert_held(&bp->b_lock);
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
118 static inline void
119 xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
133 * This prevents build-up of stale buffers on the LRU.
135 void
136 xfs_buf_stale(
137 struct xfs_buf *bp)
139 ASSERT(xfs_buf_islocked(bp));
141 bp->b_flags |= XBF_STALE;
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
148 bp->b_flags &= ~_XBF_DELWRI_Q;
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
156 spin_lock(&bp->b_lock);
157 __xfs_buf_ioacct_dec(bp);
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165 spin_unlock(&bp->b_lock);
168 static int
169 xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
176 if (map_count == 1) {
177 bp->b_maps = &bp->__b_map;
178 return 0;
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
184 return -ENOMEM;
185 return 0;
189 * Frees b_pages if it was allocated.
191 static void
192 xfs_buf_free_maps(
193 struct xfs_buf *bp)
195 if (bp->b_maps != &bp->__b_map) {
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
201 static int
202 _xfs_buf_alloc(
203 struct xfs_buftarg *target,
204 struct xfs_buf_map *map,
205 int nmaps,
206 xfs_buf_flags_t flags,
207 struct xfs_buf **bpp)
209 struct xfs_buf *bp;
210 int error;
211 int i;
213 *bpp = NULL;
214 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
215 if (unlikely(!bp))
216 return -ENOMEM;
219 * We don't want certain flags to appear in b_flags unless they are
220 * specifically set by later operations on the buffer.
222 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
224 atomic_set(&bp->b_hold, 1);
225 atomic_set(&bp->b_lru_ref, 1);
226 init_completion(&bp->b_iowait);
227 INIT_LIST_HEAD(&bp->b_lru);
228 INIT_LIST_HEAD(&bp->b_list);
229 INIT_LIST_HEAD(&bp->b_li_list);
230 sema_init(&bp->b_sema, 0); /* held, no waiters */
231 spin_lock_init(&bp->b_lock);
232 bp->b_target = target;
233 bp->b_mount = target->bt_mount;
234 bp->b_flags = flags;
237 * Set length and io_length to the same value initially.
238 * I/O routines should use io_length, which will be the same in
239 * most cases but may be reset (e.g. XFS recovery).
241 error = xfs_buf_get_maps(bp, nmaps);
242 if (error) {
243 kmem_cache_free(xfs_buf_zone, bp);
244 return error;
247 bp->b_bn = map[0].bm_bn;
248 bp->b_length = 0;
249 for (i = 0; i < nmaps; i++) {
250 bp->b_maps[i].bm_bn = map[i].bm_bn;
251 bp->b_maps[i].bm_len = map[i].bm_len;
252 bp->b_length += map[i].bm_len;
255 atomic_set(&bp->b_pin_count, 0);
256 init_waitqueue_head(&bp->b_waiters);
258 XFS_STATS_INC(bp->b_mount, xb_create);
259 trace_xfs_buf_init(bp, _RET_IP_);
261 *bpp = bp;
262 return 0;
266 * Allocate a page array capable of holding a specified number
267 * of pages, and point the page buf at it.
269 STATIC int
270 _xfs_buf_get_pages(
271 xfs_buf_t *bp,
272 int page_count)
274 /* Make sure that we have a page list */
275 if (bp->b_pages == NULL) {
276 bp->b_page_count = page_count;
277 if (page_count <= XB_PAGES) {
278 bp->b_pages = bp->b_page_array;
279 } else {
280 bp->b_pages = kmem_alloc(sizeof(struct page *) *
281 page_count, KM_NOFS);
282 if (bp->b_pages == NULL)
283 return -ENOMEM;
285 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
287 return 0;
291 * Frees b_pages if it was allocated.
293 STATIC void
294 _xfs_buf_free_pages(
295 xfs_buf_t *bp)
297 if (bp->b_pages != bp->b_page_array) {
298 kmem_free(bp->b_pages);
299 bp->b_pages = NULL;
304 * Releases the specified buffer.
306 * The modification state of any associated pages is left unchanged.
307 * The buffer must not be on any hash - use xfs_buf_rele instead for
308 * hashed and refcounted buffers
310 static void
311 xfs_buf_free(
312 xfs_buf_t *bp)
314 trace_xfs_buf_free(bp, _RET_IP_);
316 ASSERT(list_empty(&bp->b_lru));
318 if (bp->b_flags & _XBF_PAGES) {
319 uint i;
321 if (xfs_buf_is_vmapped(bp))
322 vm_unmap_ram(bp->b_addr - bp->b_offset,
323 bp->b_page_count);
325 for (i = 0; i < bp->b_page_count; i++) {
326 struct page *page = bp->b_pages[i];
328 __free_page(page);
330 } else if (bp->b_flags & _XBF_KMEM)
331 kmem_free(bp->b_addr);
332 _xfs_buf_free_pages(bp);
333 xfs_buf_free_maps(bp);
334 kmem_cache_free(xfs_buf_zone, bp);
338 * Allocates all the pages for buffer in question and builds it's page list.
340 STATIC int
341 xfs_buf_allocate_memory(
342 xfs_buf_t *bp,
343 uint flags)
345 size_t size;
346 size_t nbytes, offset;
347 gfp_t gfp_mask = xb_to_gfp(flags);
348 unsigned short page_count, i;
349 xfs_off_t start, end;
350 int error;
351 xfs_km_flags_t kmflag_mask = 0;
354 * assure zeroed buffer for non-read cases.
356 if (!(flags & XBF_READ)) {
357 kmflag_mask |= KM_ZERO;
358 gfp_mask |= __GFP_ZERO;
362 * for buffers that are contained within a single page, just allocate
363 * the memory from the heap - there's no need for the complexity of
364 * page arrays to keep allocation down to order 0.
366 size = BBTOB(bp->b_length);
367 if (size < PAGE_SIZE) {
368 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
369 bp->b_addr = kmem_alloc_io(size, align_mask,
370 KM_NOFS | kmflag_mask);
371 if (!bp->b_addr) {
372 /* low memory - use alloc_page loop instead */
373 goto use_alloc_page;
376 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
377 ((unsigned long)bp->b_addr & PAGE_MASK)) {
378 /* b_addr spans two pages - use alloc_page instead */
379 kmem_free(bp->b_addr);
380 bp->b_addr = NULL;
381 goto use_alloc_page;
383 bp->b_offset = offset_in_page(bp->b_addr);
384 bp->b_pages = bp->b_page_array;
385 bp->b_pages[0] = kmem_to_page(bp->b_addr);
386 bp->b_page_count = 1;
387 bp->b_flags |= _XBF_KMEM;
388 return 0;
391 use_alloc_page:
392 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
393 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
394 >> PAGE_SHIFT;
395 page_count = end - start;
396 error = _xfs_buf_get_pages(bp, page_count);
397 if (unlikely(error))
398 return error;
400 offset = bp->b_offset;
401 bp->b_flags |= _XBF_PAGES;
403 for (i = 0; i < bp->b_page_count; i++) {
404 struct page *page;
405 uint retries = 0;
406 retry:
407 page = alloc_page(gfp_mask);
408 if (unlikely(page == NULL)) {
409 if (flags & XBF_READ_AHEAD) {
410 bp->b_page_count = i;
411 error = -ENOMEM;
412 goto out_free_pages;
416 * This could deadlock.
418 * But until all the XFS lowlevel code is revamped to
419 * handle buffer allocation failures we can't do much.
421 if (!(++retries % 100))
422 xfs_err(NULL,
423 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
424 current->comm, current->pid,
425 __func__, gfp_mask);
427 XFS_STATS_INC(bp->b_mount, xb_page_retries);
428 congestion_wait(BLK_RW_ASYNC, HZ/50);
429 goto retry;
432 XFS_STATS_INC(bp->b_mount, xb_page_found);
434 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
435 size -= nbytes;
436 bp->b_pages[i] = page;
437 offset = 0;
439 return 0;
441 out_free_pages:
442 for (i = 0; i < bp->b_page_count; i++)
443 __free_page(bp->b_pages[i]);
444 bp->b_flags &= ~_XBF_PAGES;
445 return error;
449 * Map buffer into kernel address-space if necessary.
451 STATIC int
452 _xfs_buf_map_pages(
453 xfs_buf_t *bp,
454 uint flags)
456 ASSERT(bp->b_flags & _XBF_PAGES);
457 if (bp->b_page_count == 1) {
458 /* A single page buffer is always mappable */
459 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
460 } else if (flags & XBF_UNMAPPED) {
461 bp->b_addr = NULL;
462 } else {
463 int retried = 0;
464 unsigned nofs_flag;
467 * vm_map_ram() will allocate auxiliary structures (e.g.
468 * pagetables) with GFP_KERNEL, yet we are likely to be under
469 * GFP_NOFS context here. Hence we need to tell memory reclaim
470 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
471 * memory reclaim re-entering the filesystem here and
472 * potentially deadlocking.
474 nofs_flag = memalloc_nofs_save();
475 do {
476 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
477 -1, PAGE_KERNEL);
478 if (bp->b_addr)
479 break;
480 vm_unmap_aliases();
481 } while (retried++ <= 1);
482 memalloc_nofs_restore(nofs_flag);
484 if (!bp->b_addr)
485 return -ENOMEM;
486 bp->b_addr += bp->b_offset;
489 return 0;
493 * Finding and Reading Buffers
495 static int
496 _xfs_buf_obj_cmp(
497 struct rhashtable_compare_arg *arg,
498 const void *obj)
500 const struct xfs_buf_map *map = arg->key;
501 const struct xfs_buf *bp = obj;
504 * The key hashing in the lookup path depends on the key being the
505 * first element of the compare_arg, make sure to assert this.
507 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
509 if (bp->b_bn != map->bm_bn)
510 return 1;
512 if (unlikely(bp->b_length != map->bm_len)) {
514 * found a block number match. If the range doesn't
515 * match, the only way this is allowed is if the buffer
516 * in the cache is stale and the transaction that made
517 * it stale has not yet committed. i.e. we are
518 * reallocating a busy extent. Skip this buffer and
519 * continue searching for an exact match.
521 ASSERT(bp->b_flags & XBF_STALE);
522 return 1;
524 return 0;
527 static const struct rhashtable_params xfs_buf_hash_params = {
528 .min_size = 32, /* empty AGs have minimal footprint */
529 .nelem_hint = 16,
530 .key_len = sizeof(xfs_daddr_t),
531 .key_offset = offsetof(struct xfs_buf, b_bn),
532 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
533 .automatic_shrinking = true,
534 .obj_cmpfn = _xfs_buf_obj_cmp,
538 xfs_buf_hash_init(
539 struct xfs_perag *pag)
541 spin_lock_init(&pag->pag_buf_lock);
542 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
545 void
546 xfs_buf_hash_destroy(
547 struct xfs_perag *pag)
549 rhashtable_destroy(&pag->pag_buf_hash);
553 * Look up a buffer in the buffer cache and return it referenced and locked
554 * in @found_bp.
556 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
557 * cache.
559 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
560 * -EAGAIN if we fail to lock it.
562 * Return values are:
563 * -EFSCORRUPTED if have been supplied with an invalid address
564 * -EAGAIN on trylock failure
565 * -ENOENT if we fail to find a match and @new_bp was NULL
566 * 0, with @found_bp:
567 * - @new_bp if we inserted it into the cache
568 * - the buffer we found and locked.
570 static int
571 xfs_buf_find(
572 struct xfs_buftarg *btp,
573 struct xfs_buf_map *map,
574 int nmaps,
575 xfs_buf_flags_t flags,
576 struct xfs_buf *new_bp,
577 struct xfs_buf **found_bp)
579 struct xfs_perag *pag;
580 xfs_buf_t *bp;
581 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
582 xfs_daddr_t eofs;
583 int i;
585 *found_bp = NULL;
587 for (i = 0; i < nmaps; i++)
588 cmap.bm_len += map[i].bm_len;
590 /* Check for IOs smaller than the sector size / not sector aligned */
591 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
592 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
595 * Corrupted block numbers can get through to here, unfortunately, so we
596 * have to check that the buffer falls within the filesystem bounds.
598 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
599 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
600 xfs_alert(btp->bt_mount,
601 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
602 __func__, cmap.bm_bn, eofs);
603 WARN_ON(1);
604 return -EFSCORRUPTED;
607 pag = xfs_perag_get(btp->bt_mount,
608 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
610 spin_lock(&pag->pag_buf_lock);
611 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
612 xfs_buf_hash_params);
613 if (bp) {
614 atomic_inc(&bp->b_hold);
615 goto found;
618 /* No match found */
619 if (!new_bp) {
620 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
621 spin_unlock(&pag->pag_buf_lock);
622 xfs_perag_put(pag);
623 return -ENOENT;
626 /* the buffer keeps the perag reference until it is freed */
627 new_bp->b_pag = pag;
628 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
629 xfs_buf_hash_params);
630 spin_unlock(&pag->pag_buf_lock);
631 *found_bp = new_bp;
632 return 0;
634 found:
635 spin_unlock(&pag->pag_buf_lock);
636 xfs_perag_put(pag);
638 if (!xfs_buf_trylock(bp)) {
639 if (flags & XBF_TRYLOCK) {
640 xfs_buf_rele(bp);
641 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
642 return -EAGAIN;
644 xfs_buf_lock(bp);
645 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
649 * if the buffer is stale, clear all the external state associated with
650 * it. We need to keep flags such as how we allocated the buffer memory
651 * intact here.
653 if (bp->b_flags & XBF_STALE) {
654 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
655 ASSERT(bp->b_iodone == NULL);
656 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
657 bp->b_ops = NULL;
660 trace_xfs_buf_find(bp, flags, _RET_IP_);
661 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
662 *found_bp = bp;
663 return 0;
666 struct xfs_buf *
667 xfs_buf_incore(
668 struct xfs_buftarg *target,
669 xfs_daddr_t blkno,
670 size_t numblks,
671 xfs_buf_flags_t flags)
673 struct xfs_buf *bp;
674 int error;
675 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
677 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
678 if (error)
679 return NULL;
680 return bp;
684 * Assembles a buffer covering the specified range. The code is optimised for
685 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
686 * more hits than misses.
689 xfs_buf_get_map(
690 struct xfs_buftarg *target,
691 struct xfs_buf_map *map,
692 int nmaps,
693 xfs_buf_flags_t flags,
694 struct xfs_buf **bpp)
696 struct xfs_buf *bp;
697 struct xfs_buf *new_bp;
698 int error = 0;
700 *bpp = NULL;
701 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
702 if (!error)
703 goto found;
704 if (error != -ENOENT)
705 return error;
707 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
708 if (error)
709 return error;
711 error = xfs_buf_allocate_memory(new_bp, flags);
712 if (error) {
713 xfs_buf_free(new_bp);
714 return error;
717 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
718 if (error) {
719 xfs_buf_free(new_bp);
720 return error;
723 if (bp != new_bp)
724 xfs_buf_free(new_bp);
726 found:
727 if (!bp->b_addr) {
728 error = _xfs_buf_map_pages(bp, flags);
729 if (unlikely(error)) {
730 xfs_warn(target->bt_mount,
731 "%s: failed to map pagesn", __func__);
732 xfs_buf_relse(bp);
733 return error;
738 * Clear b_error if this is a lookup from a caller that doesn't expect
739 * valid data to be found in the buffer.
741 if (!(flags & XBF_READ))
742 xfs_buf_ioerror(bp, 0);
744 XFS_STATS_INC(target->bt_mount, xb_get);
745 trace_xfs_buf_get(bp, flags, _RET_IP_);
746 *bpp = bp;
747 return 0;
750 STATIC int
751 _xfs_buf_read(
752 xfs_buf_t *bp,
753 xfs_buf_flags_t flags)
755 ASSERT(!(flags & XBF_WRITE));
756 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
758 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
759 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
761 return xfs_buf_submit(bp);
765 * Reverify a buffer found in cache without an attached ->b_ops.
767 * If the caller passed an ops structure and the buffer doesn't have ops
768 * assigned, set the ops and use it to verify the contents. If verification
769 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
770 * already in XBF_DONE state on entry.
772 * Under normal operations, every in-core buffer is verified on read I/O
773 * completion. There are two scenarios that can lead to in-core buffers without
774 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
775 * filesystem, though these buffers are purged at the end of recovery. The
776 * other is online repair, which intentionally reads with a NULL buffer ops to
777 * run several verifiers across an in-core buffer in order to establish buffer
778 * type. If repair can't establish that, the buffer will be left in memory
779 * with NULL buffer ops.
782 xfs_buf_reverify(
783 struct xfs_buf *bp,
784 const struct xfs_buf_ops *ops)
786 ASSERT(bp->b_flags & XBF_DONE);
787 ASSERT(bp->b_error == 0);
789 if (!ops || bp->b_ops)
790 return 0;
792 bp->b_ops = ops;
793 bp->b_ops->verify_read(bp);
794 if (bp->b_error)
795 bp->b_flags &= ~XBF_DONE;
796 return bp->b_error;
800 xfs_buf_read_map(
801 struct xfs_buftarg *target,
802 struct xfs_buf_map *map,
803 int nmaps,
804 xfs_buf_flags_t flags,
805 struct xfs_buf **bpp,
806 const struct xfs_buf_ops *ops,
807 xfs_failaddr_t fa)
809 struct xfs_buf *bp;
810 int error;
812 flags |= XBF_READ;
813 *bpp = NULL;
815 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
816 if (error)
817 return error;
819 trace_xfs_buf_read(bp, flags, _RET_IP_);
821 if (!(bp->b_flags & XBF_DONE)) {
822 /* Initiate the buffer read and wait. */
823 XFS_STATS_INC(target->bt_mount, xb_get_read);
824 bp->b_ops = ops;
825 error = _xfs_buf_read(bp, flags);
827 /* Readahead iodone already dropped the buffer, so exit. */
828 if (flags & XBF_ASYNC)
829 return 0;
830 } else {
831 /* Buffer already read; all we need to do is check it. */
832 error = xfs_buf_reverify(bp, ops);
834 /* Readahead already finished; drop the buffer and exit. */
835 if (flags & XBF_ASYNC) {
836 xfs_buf_relse(bp);
837 return 0;
840 /* We do not want read in the flags */
841 bp->b_flags &= ~XBF_READ;
842 ASSERT(bp->b_ops != NULL || ops == NULL);
846 * If we've had a read error, then the contents of the buffer are
847 * invalid and should not be used. To ensure that a followup read tries
848 * to pull the buffer from disk again, we clear the XBF_DONE flag and
849 * mark the buffer stale. This ensures that anyone who has a current
850 * reference to the buffer will interpret it's contents correctly and
851 * future cache lookups will also treat it as an empty, uninitialised
852 * buffer.
854 if (error) {
855 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
856 xfs_buf_ioerror_alert(bp, fa);
858 bp->b_flags &= ~XBF_DONE;
859 xfs_buf_stale(bp);
860 xfs_buf_relse(bp);
862 /* bad CRC means corrupted metadata */
863 if (error == -EFSBADCRC)
864 error = -EFSCORRUPTED;
865 return error;
868 *bpp = bp;
869 return 0;
873 * If we are not low on memory then do the readahead in a deadlock
874 * safe manner.
876 void
877 xfs_buf_readahead_map(
878 struct xfs_buftarg *target,
879 struct xfs_buf_map *map,
880 int nmaps,
881 const struct xfs_buf_ops *ops)
883 struct xfs_buf *bp;
885 if (bdi_read_congested(target->bt_bdev->bd_bdi))
886 return;
888 xfs_buf_read_map(target, map, nmaps,
889 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
890 __this_address);
894 * Read an uncached buffer from disk. Allocates and returns a locked
895 * buffer containing the disk contents or nothing.
898 xfs_buf_read_uncached(
899 struct xfs_buftarg *target,
900 xfs_daddr_t daddr,
901 size_t numblks,
902 int flags,
903 struct xfs_buf **bpp,
904 const struct xfs_buf_ops *ops)
906 struct xfs_buf *bp;
907 int error;
909 *bpp = NULL;
911 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
912 if (error)
913 return error;
915 /* set up the buffer for a read IO */
916 ASSERT(bp->b_map_count == 1);
917 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
918 bp->b_maps[0].bm_bn = daddr;
919 bp->b_flags |= XBF_READ;
920 bp->b_ops = ops;
922 xfs_buf_submit(bp);
923 if (bp->b_error) {
924 error = bp->b_error;
925 xfs_buf_relse(bp);
926 return error;
929 *bpp = bp;
930 return 0;
934 xfs_buf_get_uncached(
935 struct xfs_buftarg *target,
936 size_t numblks,
937 int flags,
938 struct xfs_buf **bpp)
940 unsigned long page_count;
941 int error, i;
942 struct xfs_buf *bp;
943 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
945 *bpp = NULL;
947 /* flags might contain irrelevant bits, pass only what we care about */
948 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
949 if (error)
950 goto fail;
952 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
953 error = _xfs_buf_get_pages(bp, page_count);
954 if (error)
955 goto fail_free_buf;
957 for (i = 0; i < page_count; i++) {
958 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
959 if (!bp->b_pages[i]) {
960 error = -ENOMEM;
961 goto fail_free_mem;
964 bp->b_flags |= _XBF_PAGES;
966 error = _xfs_buf_map_pages(bp, 0);
967 if (unlikely(error)) {
968 xfs_warn(target->bt_mount,
969 "%s: failed to map pages", __func__);
970 goto fail_free_mem;
973 trace_xfs_buf_get_uncached(bp, _RET_IP_);
974 *bpp = bp;
975 return 0;
977 fail_free_mem:
978 while (--i >= 0)
979 __free_page(bp->b_pages[i]);
980 _xfs_buf_free_pages(bp);
981 fail_free_buf:
982 xfs_buf_free_maps(bp);
983 kmem_cache_free(xfs_buf_zone, bp);
984 fail:
985 return error;
989 * Increment reference count on buffer, to hold the buffer concurrently
990 * with another thread which may release (free) the buffer asynchronously.
991 * Must hold the buffer already to call this function.
993 void
994 xfs_buf_hold(
995 xfs_buf_t *bp)
997 trace_xfs_buf_hold(bp, _RET_IP_);
998 atomic_inc(&bp->b_hold);
1002 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1003 * placed on LRU or freed (depending on b_lru_ref).
1005 void
1006 xfs_buf_rele(
1007 xfs_buf_t *bp)
1009 struct xfs_perag *pag = bp->b_pag;
1010 bool release;
1011 bool freebuf = false;
1013 trace_xfs_buf_rele(bp, _RET_IP_);
1015 if (!pag) {
1016 ASSERT(list_empty(&bp->b_lru));
1017 if (atomic_dec_and_test(&bp->b_hold)) {
1018 xfs_buf_ioacct_dec(bp);
1019 xfs_buf_free(bp);
1021 return;
1024 ASSERT(atomic_read(&bp->b_hold) > 0);
1027 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1028 * calls. The pag_buf_lock being taken on the last reference only
1029 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1030 * to last reference we drop here is not serialised against the last
1031 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1032 * first, the last "release" reference can win the race to the lock and
1033 * free the buffer before the second-to-last reference is processed,
1034 * leading to a use-after-free scenario.
1036 spin_lock(&bp->b_lock);
1037 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1038 if (!release) {
1040 * Drop the in-flight state if the buffer is already on the LRU
1041 * and it holds the only reference. This is racy because we
1042 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1043 * ensures the decrement occurs only once per-buf.
1045 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1046 __xfs_buf_ioacct_dec(bp);
1047 goto out_unlock;
1050 /* the last reference has been dropped ... */
1051 __xfs_buf_ioacct_dec(bp);
1052 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1054 * If the buffer is added to the LRU take a new reference to the
1055 * buffer for the LRU and clear the (now stale) dispose list
1056 * state flag
1058 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1059 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1060 atomic_inc(&bp->b_hold);
1062 spin_unlock(&pag->pag_buf_lock);
1063 } else {
1065 * most of the time buffers will already be removed from the
1066 * LRU, so optimise that case by checking for the
1067 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1068 * was on was the disposal list
1070 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1071 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1072 } else {
1073 ASSERT(list_empty(&bp->b_lru));
1076 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1077 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1078 xfs_buf_hash_params);
1079 spin_unlock(&pag->pag_buf_lock);
1080 xfs_perag_put(pag);
1081 freebuf = true;
1084 out_unlock:
1085 spin_unlock(&bp->b_lock);
1087 if (freebuf)
1088 xfs_buf_free(bp);
1093 * Lock a buffer object, if it is not already locked.
1095 * If we come across a stale, pinned, locked buffer, we know that we are
1096 * being asked to lock a buffer that has been reallocated. Because it is
1097 * pinned, we know that the log has not been pushed to disk and hence it
1098 * will still be locked. Rather than continuing to have trylock attempts
1099 * fail until someone else pushes the log, push it ourselves before
1100 * returning. This means that the xfsaild will not get stuck trying
1101 * to push on stale inode buffers.
1104 xfs_buf_trylock(
1105 struct xfs_buf *bp)
1107 int locked;
1109 locked = down_trylock(&bp->b_sema) == 0;
1110 if (locked)
1111 trace_xfs_buf_trylock(bp, _RET_IP_);
1112 else
1113 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1114 return locked;
1118 * Lock a buffer object.
1120 * If we come across a stale, pinned, locked buffer, we know that we
1121 * are being asked to lock a buffer that has been reallocated. Because
1122 * it is pinned, we know that the log has not been pushed to disk and
1123 * hence it will still be locked. Rather than sleeping until someone
1124 * else pushes the log, push it ourselves before trying to get the lock.
1126 void
1127 xfs_buf_lock(
1128 struct xfs_buf *bp)
1130 trace_xfs_buf_lock(bp, _RET_IP_);
1132 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1133 xfs_log_force(bp->b_mount, 0);
1134 down(&bp->b_sema);
1136 trace_xfs_buf_lock_done(bp, _RET_IP_);
1139 void
1140 xfs_buf_unlock(
1141 struct xfs_buf *bp)
1143 ASSERT(xfs_buf_islocked(bp));
1145 up(&bp->b_sema);
1146 trace_xfs_buf_unlock(bp, _RET_IP_);
1149 STATIC void
1150 xfs_buf_wait_unpin(
1151 xfs_buf_t *bp)
1153 DECLARE_WAITQUEUE (wait, current);
1155 if (atomic_read(&bp->b_pin_count) == 0)
1156 return;
1158 add_wait_queue(&bp->b_waiters, &wait);
1159 for (;;) {
1160 set_current_state(TASK_UNINTERRUPTIBLE);
1161 if (atomic_read(&bp->b_pin_count) == 0)
1162 break;
1163 io_schedule();
1165 remove_wait_queue(&bp->b_waiters, &wait);
1166 set_current_state(TASK_RUNNING);
1170 * Buffer Utility Routines
1173 void
1174 xfs_buf_ioend(
1175 struct xfs_buf *bp)
1177 bool read = bp->b_flags & XBF_READ;
1179 trace_xfs_buf_iodone(bp, _RET_IP_);
1181 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1184 * Pull in IO completion errors now. We are guaranteed to be running
1185 * single threaded, so we don't need the lock to read b_io_error.
1187 if (!bp->b_error && bp->b_io_error)
1188 xfs_buf_ioerror(bp, bp->b_io_error);
1190 /* Only validate buffers that were read without errors */
1191 if (read && !bp->b_error && bp->b_ops) {
1192 ASSERT(!bp->b_iodone);
1193 bp->b_ops->verify_read(bp);
1196 if (!bp->b_error)
1197 bp->b_flags |= XBF_DONE;
1199 if (bp->b_iodone)
1200 (*(bp->b_iodone))(bp);
1201 else if (bp->b_flags & XBF_ASYNC)
1202 xfs_buf_relse(bp);
1203 else
1204 complete(&bp->b_iowait);
1207 static void
1208 xfs_buf_ioend_work(
1209 struct work_struct *work)
1211 struct xfs_buf *bp =
1212 container_of(work, xfs_buf_t, b_ioend_work);
1214 xfs_buf_ioend(bp);
1217 static void
1218 xfs_buf_ioend_async(
1219 struct xfs_buf *bp)
1221 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1222 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1225 void
1226 __xfs_buf_ioerror(
1227 xfs_buf_t *bp,
1228 int error,
1229 xfs_failaddr_t failaddr)
1231 ASSERT(error <= 0 && error >= -1000);
1232 bp->b_error = error;
1233 trace_xfs_buf_ioerror(bp, error, failaddr);
1236 void
1237 xfs_buf_ioerror_alert(
1238 struct xfs_buf *bp,
1239 xfs_failaddr_t func)
1241 xfs_alert(bp->b_mount,
1242 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1243 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1244 -bp->b_error);
1248 xfs_bwrite(
1249 struct xfs_buf *bp)
1251 int error;
1253 ASSERT(xfs_buf_islocked(bp));
1255 bp->b_flags |= XBF_WRITE;
1256 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1257 XBF_WRITE_FAIL | XBF_DONE);
1259 error = xfs_buf_submit(bp);
1260 if (error)
1261 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1262 return error;
1265 static void
1266 xfs_buf_bio_end_io(
1267 struct bio *bio)
1269 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1272 * don't overwrite existing errors - otherwise we can lose errors on
1273 * buffers that require multiple bios to complete.
1275 if (bio->bi_status) {
1276 int error = blk_status_to_errno(bio->bi_status);
1278 cmpxchg(&bp->b_io_error, 0, error);
1281 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1282 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1284 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1285 xfs_buf_ioend_async(bp);
1286 bio_put(bio);
1289 static void
1290 xfs_buf_ioapply_map(
1291 struct xfs_buf *bp,
1292 int map,
1293 int *buf_offset,
1294 int *count,
1295 int op)
1297 int page_index;
1298 int total_nr_pages = bp->b_page_count;
1299 int nr_pages;
1300 struct bio *bio;
1301 sector_t sector = bp->b_maps[map].bm_bn;
1302 int size;
1303 int offset;
1305 /* skip the pages in the buffer before the start offset */
1306 page_index = 0;
1307 offset = *buf_offset;
1308 while (offset >= PAGE_SIZE) {
1309 page_index++;
1310 offset -= PAGE_SIZE;
1314 * Limit the IO size to the length of the current vector, and update the
1315 * remaining IO count for the next time around.
1317 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1318 *count -= size;
1319 *buf_offset += size;
1321 next_chunk:
1322 atomic_inc(&bp->b_io_remaining);
1323 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1325 bio = bio_alloc(GFP_NOIO, nr_pages);
1326 bio_set_dev(bio, bp->b_target->bt_bdev);
1327 bio->bi_iter.bi_sector = sector;
1328 bio->bi_end_io = xfs_buf_bio_end_io;
1329 bio->bi_private = bp;
1330 bio->bi_opf = op;
1332 for (; size && nr_pages; nr_pages--, page_index++) {
1333 int rbytes, nbytes = PAGE_SIZE - offset;
1335 if (nbytes > size)
1336 nbytes = size;
1338 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1339 offset);
1340 if (rbytes < nbytes)
1341 break;
1343 offset = 0;
1344 sector += BTOBB(nbytes);
1345 size -= nbytes;
1346 total_nr_pages--;
1349 if (likely(bio->bi_iter.bi_size)) {
1350 if (xfs_buf_is_vmapped(bp)) {
1351 flush_kernel_vmap_range(bp->b_addr,
1352 xfs_buf_vmap_len(bp));
1354 submit_bio(bio);
1355 if (size)
1356 goto next_chunk;
1357 } else {
1359 * This is guaranteed not to be the last io reference count
1360 * because the caller (xfs_buf_submit) holds a count itself.
1362 atomic_dec(&bp->b_io_remaining);
1363 xfs_buf_ioerror(bp, -EIO);
1364 bio_put(bio);
1369 STATIC void
1370 _xfs_buf_ioapply(
1371 struct xfs_buf *bp)
1373 struct blk_plug plug;
1374 int op;
1375 int offset;
1376 int size;
1377 int i;
1380 * Make sure we capture only current IO errors rather than stale errors
1381 * left over from previous use of the buffer (e.g. failed readahead).
1383 bp->b_error = 0;
1385 if (bp->b_flags & XBF_WRITE) {
1386 op = REQ_OP_WRITE;
1389 * Run the write verifier callback function if it exists. If
1390 * this function fails it will mark the buffer with an error and
1391 * the IO should not be dispatched.
1393 if (bp->b_ops) {
1394 bp->b_ops->verify_write(bp);
1395 if (bp->b_error) {
1396 xfs_force_shutdown(bp->b_mount,
1397 SHUTDOWN_CORRUPT_INCORE);
1398 return;
1400 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1401 struct xfs_mount *mp = bp->b_mount;
1404 * non-crc filesystems don't attach verifiers during
1405 * log recovery, so don't warn for such filesystems.
1407 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1408 xfs_warn(mp,
1409 "%s: no buf ops on daddr 0x%llx len %d",
1410 __func__, bp->b_bn, bp->b_length);
1411 xfs_hex_dump(bp->b_addr,
1412 XFS_CORRUPTION_DUMP_LEN);
1413 dump_stack();
1416 } else {
1417 op = REQ_OP_READ;
1418 if (bp->b_flags & XBF_READ_AHEAD)
1419 op |= REQ_RAHEAD;
1422 /* we only use the buffer cache for meta-data */
1423 op |= REQ_META;
1426 * Walk all the vectors issuing IO on them. Set up the initial offset
1427 * into the buffer and the desired IO size before we start -
1428 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1429 * subsequent call.
1431 offset = bp->b_offset;
1432 size = BBTOB(bp->b_length);
1433 blk_start_plug(&plug);
1434 for (i = 0; i < bp->b_map_count; i++) {
1435 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1436 if (bp->b_error)
1437 break;
1438 if (size <= 0)
1439 break; /* all done */
1441 blk_finish_plug(&plug);
1445 * Wait for I/O completion of a sync buffer and return the I/O error code.
1447 static int
1448 xfs_buf_iowait(
1449 struct xfs_buf *bp)
1451 ASSERT(!(bp->b_flags & XBF_ASYNC));
1453 trace_xfs_buf_iowait(bp, _RET_IP_);
1454 wait_for_completion(&bp->b_iowait);
1455 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1457 return bp->b_error;
1461 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1462 * the buffer lock ownership and the current reference to the IO. It is not
1463 * safe to reference the buffer after a call to this function unless the caller
1464 * holds an additional reference itself.
1467 __xfs_buf_submit(
1468 struct xfs_buf *bp,
1469 bool wait)
1471 int error = 0;
1473 trace_xfs_buf_submit(bp, _RET_IP_);
1475 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1477 /* on shutdown we stale and complete the buffer immediately */
1478 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1479 xfs_buf_ioerror(bp, -EIO);
1480 bp->b_flags &= ~XBF_DONE;
1481 xfs_buf_stale(bp);
1482 xfs_buf_ioend(bp);
1483 return -EIO;
1487 * Grab a reference so the buffer does not go away underneath us. For
1488 * async buffers, I/O completion drops the callers reference, which
1489 * could occur before submission returns.
1491 xfs_buf_hold(bp);
1493 if (bp->b_flags & XBF_WRITE)
1494 xfs_buf_wait_unpin(bp);
1496 /* clear the internal error state to avoid spurious errors */
1497 bp->b_io_error = 0;
1500 * Set the count to 1 initially, this will stop an I/O completion
1501 * callout which happens before we have started all the I/O from calling
1502 * xfs_buf_ioend too early.
1504 atomic_set(&bp->b_io_remaining, 1);
1505 if (bp->b_flags & XBF_ASYNC)
1506 xfs_buf_ioacct_inc(bp);
1507 _xfs_buf_ioapply(bp);
1510 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1511 * reference we took above. If we drop it to zero, run completion so
1512 * that we don't return to the caller with completion still pending.
1514 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1515 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1516 xfs_buf_ioend(bp);
1517 else
1518 xfs_buf_ioend_async(bp);
1521 if (wait)
1522 error = xfs_buf_iowait(bp);
1525 * Release the hold that keeps the buffer referenced for the entire
1526 * I/O. Note that if the buffer is async, it is not safe to reference
1527 * after this release.
1529 xfs_buf_rele(bp);
1530 return error;
1533 void *
1534 xfs_buf_offset(
1535 struct xfs_buf *bp,
1536 size_t offset)
1538 struct page *page;
1540 if (bp->b_addr)
1541 return bp->b_addr + offset;
1543 offset += bp->b_offset;
1544 page = bp->b_pages[offset >> PAGE_SHIFT];
1545 return page_address(page) + (offset & (PAGE_SIZE-1));
1548 void
1549 xfs_buf_zero(
1550 struct xfs_buf *bp,
1551 size_t boff,
1552 size_t bsize)
1554 size_t bend;
1556 bend = boff + bsize;
1557 while (boff < bend) {
1558 struct page *page;
1559 int page_index, page_offset, csize;
1561 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1562 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1563 page = bp->b_pages[page_index];
1564 csize = min_t(size_t, PAGE_SIZE - page_offset,
1565 BBTOB(bp->b_length) - boff);
1567 ASSERT((csize + page_offset) <= PAGE_SIZE);
1569 memset(page_address(page) + page_offset, 0, csize);
1571 boff += csize;
1576 * Handling of buffer targets (buftargs).
1580 * Wait for any bufs with callbacks that have been submitted but have not yet
1581 * returned. These buffers will have an elevated hold count, so wait on those
1582 * while freeing all the buffers only held by the LRU.
1584 static enum lru_status
1585 xfs_buftarg_wait_rele(
1586 struct list_head *item,
1587 struct list_lru_one *lru,
1588 spinlock_t *lru_lock,
1589 void *arg)
1592 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1593 struct list_head *dispose = arg;
1595 if (atomic_read(&bp->b_hold) > 1) {
1596 /* need to wait, so skip it this pass */
1597 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1598 return LRU_SKIP;
1600 if (!spin_trylock(&bp->b_lock))
1601 return LRU_SKIP;
1604 * clear the LRU reference count so the buffer doesn't get
1605 * ignored in xfs_buf_rele().
1607 atomic_set(&bp->b_lru_ref, 0);
1608 bp->b_state |= XFS_BSTATE_DISPOSE;
1609 list_lru_isolate_move(lru, item, dispose);
1610 spin_unlock(&bp->b_lock);
1611 return LRU_REMOVED;
1614 void
1615 xfs_wait_buftarg(
1616 struct xfs_buftarg *btp)
1618 LIST_HEAD(dispose);
1619 int loop = 0;
1622 * First wait on the buftarg I/O count for all in-flight buffers to be
1623 * released. This is critical as new buffers do not make the LRU until
1624 * they are released.
1626 * Next, flush the buffer workqueue to ensure all completion processing
1627 * has finished. Just waiting on buffer locks is not sufficient for
1628 * async IO as the reference count held over IO is not released until
1629 * after the buffer lock is dropped. Hence we need to ensure here that
1630 * all reference counts have been dropped before we start walking the
1631 * LRU list.
1633 while (percpu_counter_sum(&btp->bt_io_count))
1634 delay(100);
1635 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1637 /* loop until there is nothing left on the lru list. */
1638 while (list_lru_count(&btp->bt_lru)) {
1639 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1640 &dispose, LONG_MAX);
1642 while (!list_empty(&dispose)) {
1643 struct xfs_buf *bp;
1644 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1645 list_del_init(&bp->b_lru);
1646 if (bp->b_flags & XBF_WRITE_FAIL) {
1647 xfs_alert(btp->bt_mount,
1648 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1649 (long long)bp->b_bn);
1650 xfs_alert(btp->bt_mount,
1651 "Please run xfs_repair to determine the extent of the problem.");
1653 xfs_buf_rele(bp);
1655 if (loop++ != 0)
1656 delay(100);
1660 static enum lru_status
1661 xfs_buftarg_isolate(
1662 struct list_head *item,
1663 struct list_lru_one *lru,
1664 spinlock_t *lru_lock,
1665 void *arg)
1667 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1668 struct list_head *dispose = arg;
1671 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1672 * If we fail to get the lock, just skip it.
1674 if (!spin_trylock(&bp->b_lock))
1675 return LRU_SKIP;
1677 * Decrement the b_lru_ref count unless the value is already
1678 * zero. If the value is already zero, we need to reclaim the
1679 * buffer, otherwise it gets another trip through the LRU.
1681 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1682 spin_unlock(&bp->b_lock);
1683 return LRU_ROTATE;
1686 bp->b_state |= XFS_BSTATE_DISPOSE;
1687 list_lru_isolate_move(lru, item, dispose);
1688 spin_unlock(&bp->b_lock);
1689 return LRU_REMOVED;
1692 static unsigned long
1693 xfs_buftarg_shrink_scan(
1694 struct shrinker *shrink,
1695 struct shrink_control *sc)
1697 struct xfs_buftarg *btp = container_of(shrink,
1698 struct xfs_buftarg, bt_shrinker);
1699 LIST_HEAD(dispose);
1700 unsigned long freed;
1702 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1703 xfs_buftarg_isolate, &dispose);
1705 while (!list_empty(&dispose)) {
1706 struct xfs_buf *bp;
1707 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1708 list_del_init(&bp->b_lru);
1709 xfs_buf_rele(bp);
1712 return freed;
1715 static unsigned long
1716 xfs_buftarg_shrink_count(
1717 struct shrinker *shrink,
1718 struct shrink_control *sc)
1720 struct xfs_buftarg *btp = container_of(shrink,
1721 struct xfs_buftarg, bt_shrinker);
1722 return list_lru_shrink_count(&btp->bt_lru, sc);
1725 void
1726 xfs_free_buftarg(
1727 struct xfs_buftarg *btp)
1729 unregister_shrinker(&btp->bt_shrinker);
1730 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1731 percpu_counter_destroy(&btp->bt_io_count);
1732 list_lru_destroy(&btp->bt_lru);
1734 xfs_blkdev_issue_flush(btp);
1736 kmem_free(btp);
1740 xfs_setsize_buftarg(
1741 xfs_buftarg_t *btp,
1742 unsigned int sectorsize)
1744 /* Set up metadata sector size info */
1745 btp->bt_meta_sectorsize = sectorsize;
1746 btp->bt_meta_sectormask = sectorsize - 1;
1748 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1749 xfs_warn(btp->bt_mount,
1750 "Cannot set_blocksize to %u on device %pg",
1751 sectorsize, btp->bt_bdev);
1752 return -EINVAL;
1755 /* Set up device logical sector size mask */
1756 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1757 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1759 return 0;
1763 * When allocating the initial buffer target we have not yet
1764 * read in the superblock, so don't know what sized sectors
1765 * are being used at this early stage. Play safe.
1767 STATIC int
1768 xfs_setsize_buftarg_early(
1769 xfs_buftarg_t *btp,
1770 struct block_device *bdev)
1772 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1775 xfs_buftarg_t *
1776 xfs_alloc_buftarg(
1777 struct xfs_mount *mp,
1778 struct block_device *bdev,
1779 struct dax_device *dax_dev)
1781 xfs_buftarg_t *btp;
1783 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1785 btp->bt_mount = mp;
1786 btp->bt_dev = bdev->bd_dev;
1787 btp->bt_bdev = bdev;
1788 btp->bt_daxdev = dax_dev;
1790 if (xfs_setsize_buftarg_early(btp, bdev))
1791 goto error_free;
1793 if (list_lru_init(&btp->bt_lru))
1794 goto error_free;
1796 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1797 goto error_lru;
1799 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1800 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1801 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1802 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1803 if (register_shrinker(&btp->bt_shrinker))
1804 goto error_pcpu;
1805 return btp;
1807 error_pcpu:
1808 percpu_counter_destroy(&btp->bt_io_count);
1809 error_lru:
1810 list_lru_destroy(&btp->bt_lru);
1811 error_free:
1812 kmem_free(btp);
1813 return NULL;
1817 * Cancel a delayed write list.
1819 * Remove each buffer from the list, clear the delwri queue flag and drop the
1820 * associated buffer reference.
1822 void
1823 xfs_buf_delwri_cancel(
1824 struct list_head *list)
1826 struct xfs_buf *bp;
1828 while (!list_empty(list)) {
1829 bp = list_first_entry(list, struct xfs_buf, b_list);
1831 xfs_buf_lock(bp);
1832 bp->b_flags &= ~_XBF_DELWRI_Q;
1833 list_del_init(&bp->b_list);
1834 xfs_buf_relse(bp);
1839 * Add a buffer to the delayed write list.
1841 * This queues a buffer for writeout if it hasn't already been. Note that
1842 * neither this routine nor the buffer list submission functions perform
1843 * any internal synchronization. It is expected that the lists are thread-local
1844 * to the callers.
1846 * Returns true if we queued up the buffer, or false if it already had
1847 * been on the buffer list.
1849 bool
1850 xfs_buf_delwri_queue(
1851 struct xfs_buf *bp,
1852 struct list_head *list)
1854 ASSERT(xfs_buf_islocked(bp));
1855 ASSERT(!(bp->b_flags & XBF_READ));
1858 * If the buffer is already marked delwri it already is queued up
1859 * by someone else for imediate writeout. Just ignore it in that
1860 * case.
1862 if (bp->b_flags & _XBF_DELWRI_Q) {
1863 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1864 return false;
1867 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1870 * If a buffer gets written out synchronously or marked stale while it
1871 * is on a delwri list we lazily remove it. To do this, the other party
1872 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1873 * It remains referenced and on the list. In a rare corner case it
1874 * might get readded to a delwri list after the synchronous writeout, in
1875 * which case we need just need to re-add the flag here.
1877 bp->b_flags |= _XBF_DELWRI_Q;
1878 if (list_empty(&bp->b_list)) {
1879 atomic_inc(&bp->b_hold);
1880 list_add_tail(&bp->b_list, list);
1883 return true;
1887 * Compare function is more complex than it needs to be because
1888 * the return value is only 32 bits and we are doing comparisons
1889 * on 64 bit values
1891 static int
1892 xfs_buf_cmp(
1893 void *priv,
1894 struct list_head *a,
1895 struct list_head *b)
1897 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1898 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1899 xfs_daddr_t diff;
1901 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1902 if (diff < 0)
1903 return -1;
1904 if (diff > 0)
1905 return 1;
1906 return 0;
1910 * Submit buffers for write. If wait_list is specified, the buffers are
1911 * submitted using sync I/O and placed on the wait list such that the caller can
1912 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1913 * at I/O completion time. In either case, buffers remain locked until I/O
1914 * completes and the buffer is released from the queue.
1916 static int
1917 xfs_buf_delwri_submit_buffers(
1918 struct list_head *buffer_list,
1919 struct list_head *wait_list)
1921 struct xfs_buf *bp, *n;
1922 int pinned = 0;
1923 struct blk_plug plug;
1925 list_sort(NULL, buffer_list, xfs_buf_cmp);
1927 blk_start_plug(&plug);
1928 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1929 if (!wait_list) {
1930 if (xfs_buf_ispinned(bp)) {
1931 pinned++;
1932 continue;
1934 if (!xfs_buf_trylock(bp))
1935 continue;
1936 } else {
1937 xfs_buf_lock(bp);
1941 * Someone else might have written the buffer synchronously or
1942 * marked it stale in the meantime. In that case only the
1943 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1944 * reference and remove it from the list here.
1946 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1947 list_del_init(&bp->b_list);
1948 xfs_buf_relse(bp);
1949 continue;
1952 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1955 * If we have a wait list, each buffer (and associated delwri
1956 * queue reference) transfers to it and is submitted
1957 * synchronously. Otherwise, drop the buffer from the delwri
1958 * queue and submit async.
1960 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1961 bp->b_flags |= XBF_WRITE;
1962 if (wait_list) {
1963 bp->b_flags &= ~XBF_ASYNC;
1964 list_move_tail(&bp->b_list, wait_list);
1965 } else {
1966 bp->b_flags |= XBF_ASYNC;
1967 list_del_init(&bp->b_list);
1969 __xfs_buf_submit(bp, false);
1971 blk_finish_plug(&plug);
1973 return pinned;
1977 * Write out a buffer list asynchronously.
1979 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1980 * out and not wait for I/O completion on any of the buffers. This interface
1981 * is only safely useable for callers that can track I/O completion by higher
1982 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1983 * function.
1985 * Note: this function will skip buffers it would block on, and in doing so
1986 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1987 * it is up to the caller to ensure that the buffer list is fully submitted or
1988 * cancelled appropriately when they are finished with the list. Failure to
1989 * cancel or resubmit the list until it is empty will result in leaked buffers
1990 * at unmount time.
1993 xfs_buf_delwri_submit_nowait(
1994 struct list_head *buffer_list)
1996 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2000 * Write out a buffer list synchronously.
2002 * This will take the @buffer_list, write all buffers out and wait for I/O
2003 * completion on all of the buffers. @buffer_list is consumed by the function,
2004 * so callers must have some other way of tracking buffers if they require such
2005 * functionality.
2008 xfs_buf_delwri_submit(
2009 struct list_head *buffer_list)
2011 LIST_HEAD (wait_list);
2012 int error = 0, error2;
2013 struct xfs_buf *bp;
2015 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2017 /* Wait for IO to complete. */
2018 while (!list_empty(&wait_list)) {
2019 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2021 list_del_init(&bp->b_list);
2024 * Wait on the locked buffer, check for errors and unlock and
2025 * release the delwri queue reference.
2027 error2 = xfs_buf_iowait(bp);
2028 xfs_buf_relse(bp);
2029 if (!error)
2030 error = error2;
2033 return error;
2037 * Push a single buffer on a delwri queue.
2039 * The purpose of this function is to submit a single buffer of a delwri queue
2040 * and return with the buffer still on the original queue. The waiting delwri
2041 * buffer submission infrastructure guarantees transfer of the delwri queue
2042 * buffer reference to a temporary wait list. We reuse this infrastructure to
2043 * transfer the buffer back to the original queue.
2045 * Note the buffer transitions from the queued state, to the submitted and wait
2046 * listed state and back to the queued state during this call. The buffer
2047 * locking and queue management logic between _delwri_pushbuf() and
2048 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2049 * before returning.
2052 xfs_buf_delwri_pushbuf(
2053 struct xfs_buf *bp,
2054 struct list_head *buffer_list)
2056 LIST_HEAD (submit_list);
2057 int error;
2059 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2061 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2064 * Isolate the buffer to a new local list so we can submit it for I/O
2065 * independently from the rest of the original list.
2067 xfs_buf_lock(bp);
2068 list_move(&bp->b_list, &submit_list);
2069 xfs_buf_unlock(bp);
2072 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2073 * the buffer on the wait list with the original reference. Rather than
2074 * bounce the buffer from a local wait list back to the original list
2075 * after I/O completion, reuse the original list as the wait list.
2077 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2080 * The buffer is now locked, under I/O and wait listed on the original
2081 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2082 * return with the buffer unlocked and on the original queue.
2084 error = xfs_buf_iowait(bp);
2085 bp->b_flags |= _XBF_DELWRI_Q;
2086 xfs_buf_unlock(bp);
2088 return error;
2091 int __init
2092 xfs_buf_init(void)
2094 xfs_buf_zone = kmem_cache_create("xfs_buf",
2095 sizeof(struct xfs_buf), 0,
2096 SLAB_HWCACHE_ALIGN, NULL);
2097 if (!xfs_buf_zone)
2098 goto out;
2100 return 0;
2102 out:
2103 return -ENOMEM;
2106 void
2107 xfs_buf_terminate(void)
2109 kmem_cache_destroy(xfs_buf_zone);
2112 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2115 * Set the lru reference count to 0 based on the error injection tag.
2116 * This allows userspace to disrupt buffer caching for debug/testing
2117 * purposes.
2119 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2120 lru_ref = 0;
2122 atomic_set(&bp->b_lru_ref, lru_ref);
2126 * Verify an on-disk magic value against the magic value specified in the
2127 * verifier structure. The verifier magic is in disk byte order so the caller is
2128 * expected to pass the value directly from disk.
2130 bool
2131 xfs_verify_magic(
2132 struct xfs_buf *bp,
2133 __be32 dmagic)
2135 struct xfs_mount *mp = bp->b_mount;
2136 int idx;
2138 idx = xfs_sb_version_hascrc(&mp->m_sb);
2139 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2140 return false;
2141 return dmagic == bp->b_ops->magic[idx];
2144 * Verify an on-disk magic value against the magic value specified in the
2145 * verifier structure. The verifier magic is in disk byte order so the caller is
2146 * expected to pass the value directly from disk.
2148 bool
2149 xfs_verify_magic16(
2150 struct xfs_buf *bp,
2151 __be16 dmagic)
2153 struct xfs_mount *mp = bp->b_mount;
2154 int idx;
2156 idx = xfs_sb_version_hascrc(&mp->m_sb);
2157 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2158 return false;
2159 return dmagic == bp->b_ops->magic16[idx];