drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / xfs / xfs_buf_item.c
blob663810e6cd5997df58a678e24b68b50794c0ab3b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_trace.h"
18 #include "xfs_log.h"
21 kmem_zone_t *xfs_buf_item_zone;
23 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
25 return container_of(lip, struct xfs_buf_log_item, bli_item);
28 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
30 /* Is this log iovec plausibly large enough to contain the buffer log format? */
31 bool
32 xfs_buf_log_check_iovec(
33 struct xfs_log_iovec *iovec)
35 struct xfs_buf_log_format *blfp = iovec->i_addr;
36 char *bmp_end;
37 char *item_end;
39 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
40 return false;
42 item_end = (char *)iovec->i_addr + iovec->i_len;
43 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
44 return bmp_end <= item_end;
47 static inline int
48 xfs_buf_log_format_size(
49 struct xfs_buf_log_format *blfp)
51 return offsetof(struct xfs_buf_log_format, blf_data_map) +
52 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
56 * This returns the number of log iovecs needed to log the
57 * given buf log item.
59 * It calculates this as 1 iovec for the buf log format structure
60 * and 1 for each stretch of non-contiguous chunks to be logged.
61 * Contiguous chunks are logged in a single iovec.
63 * If the XFS_BLI_STALE flag has been set, then log nothing.
65 STATIC void
66 xfs_buf_item_size_segment(
67 struct xfs_buf_log_item *bip,
68 struct xfs_buf_log_format *blfp,
69 int *nvecs,
70 int *nbytes)
72 struct xfs_buf *bp = bip->bli_buf;
73 int next_bit;
74 int last_bit;
76 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
77 if (last_bit == -1)
78 return;
81 * initial count for a dirty buffer is 2 vectors - the format structure
82 * and the first dirty region.
84 *nvecs += 2;
85 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
87 while (last_bit != -1) {
89 * This takes the bit number to start looking from and
90 * returns the next set bit from there. It returns -1
91 * if there are no more bits set or the start bit is
92 * beyond the end of the bitmap.
94 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
95 last_bit + 1);
97 * If we run out of bits, leave the loop,
98 * else if we find a new set of bits bump the number of vecs,
99 * else keep scanning the current set of bits.
101 if (next_bit == -1) {
102 break;
103 } else if (next_bit != last_bit + 1) {
104 last_bit = next_bit;
105 (*nvecs)++;
106 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
107 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
108 XFS_BLF_CHUNK)) {
109 last_bit = next_bit;
110 (*nvecs)++;
111 } else {
112 last_bit++;
114 *nbytes += XFS_BLF_CHUNK;
119 * This returns the number of log iovecs needed to log the given buf log item.
121 * It calculates this as 1 iovec for the buf log format structure and 1 for each
122 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
123 * in a single iovec.
125 * Discontiguous buffers need a format structure per region that that is being
126 * logged. This makes the changes in the buffer appear to log recovery as though
127 * they came from separate buffers, just like would occur if multiple buffers
128 * were used instead of a single discontiguous buffer. This enables
129 * discontiguous buffers to be in-memory constructs, completely transparent to
130 * what ends up on disk.
132 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
133 * format structures.
135 STATIC void
136 xfs_buf_item_size(
137 struct xfs_log_item *lip,
138 int *nvecs,
139 int *nbytes)
141 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
142 int i;
144 ASSERT(atomic_read(&bip->bli_refcount) > 0);
145 if (bip->bli_flags & XFS_BLI_STALE) {
147 * The buffer is stale, so all we need to log
148 * is the buf log format structure with the
149 * cancel flag in it.
151 trace_xfs_buf_item_size_stale(bip);
152 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
153 *nvecs += bip->bli_format_count;
154 for (i = 0; i < bip->bli_format_count; i++) {
155 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
157 return;
160 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
162 if (bip->bli_flags & XFS_BLI_ORDERED) {
164 * The buffer has been logged just to order it.
165 * It is not being included in the transaction
166 * commit, so no vectors are used at all.
168 trace_xfs_buf_item_size_ordered(bip);
169 *nvecs = XFS_LOG_VEC_ORDERED;
170 return;
174 * the vector count is based on the number of buffer vectors we have
175 * dirty bits in. This will only be greater than one when we have a
176 * compound buffer with more than one segment dirty. Hence for compound
177 * buffers we need to track which segment the dirty bits correspond to,
178 * and when we move from one segment to the next increment the vector
179 * count for the extra buf log format structure that will need to be
180 * written.
182 for (i = 0; i < bip->bli_format_count; i++) {
183 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
184 nvecs, nbytes);
186 trace_xfs_buf_item_size(bip);
189 static inline void
190 xfs_buf_item_copy_iovec(
191 struct xfs_log_vec *lv,
192 struct xfs_log_iovec **vecp,
193 struct xfs_buf *bp,
194 uint offset,
195 int first_bit,
196 uint nbits)
198 offset += first_bit * XFS_BLF_CHUNK;
199 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
200 xfs_buf_offset(bp, offset),
201 nbits * XFS_BLF_CHUNK);
204 static inline bool
205 xfs_buf_item_straddle(
206 struct xfs_buf *bp,
207 uint offset,
208 int next_bit,
209 int last_bit)
211 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
212 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
213 XFS_BLF_CHUNK);
216 static void
217 xfs_buf_item_format_segment(
218 struct xfs_buf_log_item *bip,
219 struct xfs_log_vec *lv,
220 struct xfs_log_iovec **vecp,
221 uint offset,
222 struct xfs_buf_log_format *blfp)
224 struct xfs_buf *bp = bip->bli_buf;
225 uint base_size;
226 int first_bit;
227 int last_bit;
228 int next_bit;
229 uint nbits;
231 /* copy the flags across from the base format item */
232 blfp->blf_flags = bip->__bli_format.blf_flags;
235 * Base size is the actual size of the ondisk structure - it reflects
236 * the actual size of the dirty bitmap rather than the size of the in
237 * memory structure.
239 base_size = xfs_buf_log_format_size(blfp);
241 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
242 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
244 * If the map is not be dirty in the transaction, mark
245 * the size as zero and do not advance the vector pointer.
247 return;
250 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
251 blfp->blf_size = 1;
253 if (bip->bli_flags & XFS_BLI_STALE) {
255 * The buffer is stale, so all we need to log
256 * is the buf log format structure with the
257 * cancel flag in it.
259 trace_xfs_buf_item_format_stale(bip);
260 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
261 return;
266 * Fill in an iovec for each set of contiguous chunks.
268 last_bit = first_bit;
269 nbits = 1;
270 for (;;) {
272 * This takes the bit number to start looking from and
273 * returns the next set bit from there. It returns -1
274 * if there are no more bits set or the start bit is
275 * beyond the end of the bitmap.
277 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
278 (uint)last_bit + 1);
280 * If we run out of bits fill in the last iovec and get out of
281 * the loop. Else if we start a new set of bits then fill in
282 * the iovec for the series we were looking at and start
283 * counting the bits in the new one. Else we're still in the
284 * same set of bits so just keep counting and scanning.
286 if (next_bit == -1) {
287 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
288 first_bit, nbits);
289 blfp->blf_size++;
290 break;
291 } else if (next_bit != last_bit + 1 ||
292 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
293 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
294 first_bit, nbits);
295 blfp->blf_size++;
296 first_bit = next_bit;
297 last_bit = next_bit;
298 nbits = 1;
299 } else {
300 last_bit++;
301 nbits++;
307 * This is called to fill in the vector of log iovecs for the
308 * given log buf item. It fills the first entry with a buf log
309 * format structure, and the rest point to contiguous chunks
310 * within the buffer.
312 STATIC void
313 xfs_buf_item_format(
314 struct xfs_log_item *lip,
315 struct xfs_log_vec *lv)
317 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
318 struct xfs_buf *bp = bip->bli_buf;
319 struct xfs_log_iovec *vecp = NULL;
320 uint offset = 0;
321 int i;
323 ASSERT(atomic_read(&bip->bli_refcount) > 0);
324 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
325 (bip->bli_flags & XFS_BLI_STALE));
326 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
327 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
328 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
329 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
330 (bip->bli_flags & XFS_BLI_STALE));
334 * If it is an inode buffer, transfer the in-memory state to the
335 * format flags and clear the in-memory state.
337 * For buffer based inode allocation, we do not transfer
338 * this state if the inode buffer allocation has not yet been committed
339 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
340 * correct replay of the inode allocation.
342 * For icreate item based inode allocation, the buffers aren't written
343 * to the journal during allocation, and hence we should always tag the
344 * buffer as an inode buffer so that the correct unlinked list replay
345 * occurs during recovery.
347 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
348 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
349 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
350 xfs_log_item_in_current_chkpt(lip)))
351 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
352 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
355 for (i = 0; i < bip->bli_format_count; i++) {
356 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
357 &bip->bli_formats[i]);
358 offset += BBTOB(bp->b_maps[i].bm_len);
362 * Check to make sure everything is consistent.
364 trace_xfs_buf_item_format(bip);
368 * This is called to pin the buffer associated with the buf log item in memory
369 * so it cannot be written out.
371 * We also always take a reference to the buffer log item here so that the bli
372 * is held while the item is pinned in memory. This means that we can
373 * unconditionally drop the reference count a transaction holds when the
374 * transaction is completed.
376 STATIC void
377 xfs_buf_item_pin(
378 struct xfs_log_item *lip)
380 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
382 ASSERT(atomic_read(&bip->bli_refcount) > 0);
383 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
384 (bip->bli_flags & XFS_BLI_ORDERED) ||
385 (bip->bli_flags & XFS_BLI_STALE));
387 trace_xfs_buf_item_pin(bip);
389 atomic_inc(&bip->bli_refcount);
390 atomic_inc(&bip->bli_buf->b_pin_count);
394 * This is called to unpin the buffer associated with the buf log
395 * item which was previously pinned with a call to xfs_buf_item_pin().
397 * Also drop the reference to the buf item for the current transaction.
398 * If the XFS_BLI_STALE flag is set and we are the last reference,
399 * then free up the buf log item and unlock the buffer.
401 * If the remove flag is set we are called from uncommit in the
402 * forced-shutdown path. If that is true and the reference count on
403 * the log item is going to drop to zero we need to free the item's
404 * descriptor in the transaction.
406 STATIC void
407 xfs_buf_item_unpin(
408 struct xfs_log_item *lip,
409 int remove)
411 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
412 xfs_buf_t *bp = bip->bli_buf;
413 struct xfs_ail *ailp = lip->li_ailp;
414 int stale = bip->bli_flags & XFS_BLI_STALE;
415 int freed;
417 ASSERT(bp->b_log_item == bip);
418 ASSERT(atomic_read(&bip->bli_refcount) > 0);
420 trace_xfs_buf_item_unpin(bip);
422 freed = atomic_dec_and_test(&bip->bli_refcount);
424 if (atomic_dec_and_test(&bp->b_pin_count))
425 wake_up_all(&bp->b_waiters);
427 if (freed && stale) {
428 ASSERT(bip->bli_flags & XFS_BLI_STALE);
429 ASSERT(xfs_buf_islocked(bp));
430 ASSERT(bp->b_flags & XBF_STALE);
431 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
433 trace_xfs_buf_item_unpin_stale(bip);
435 if (remove) {
437 * If we are in a transaction context, we have to
438 * remove the log item from the transaction as we are
439 * about to release our reference to the buffer. If we
440 * don't, the unlock that occurs later in
441 * xfs_trans_uncommit() will try to reference the
442 * buffer which we no longer have a hold on.
444 if (!list_empty(&lip->li_trans))
445 xfs_trans_del_item(lip);
448 * Since the transaction no longer refers to the buffer,
449 * the buffer should no longer refer to the transaction.
451 bp->b_transp = NULL;
455 * If we get called here because of an IO error, we may
456 * or may not have the item on the AIL. xfs_trans_ail_delete()
457 * will take care of that situation.
458 * xfs_trans_ail_delete() drops the AIL lock.
460 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
461 xfs_buf_do_callbacks(bp);
462 bp->b_log_item = NULL;
463 list_del_init(&bp->b_li_list);
464 bp->b_iodone = NULL;
465 } else {
466 spin_lock(&ailp->ail_lock);
467 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
468 xfs_buf_item_relse(bp);
469 ASSERT(bp->b_log_item == NULL);
471 xfs_buf_relse(bp);
472 } else if (freed && remove) {
474 * There are currently two references to the buffer - the active
475 * LRU reference and the buf log item. What we are about to do
476 * here - simulate a failed IO completion - requires 3
477 * references.
479 * The LRU reference is removed by the xfs_buf_stale() call. The
480 * buf item reference is removed by the xfs_buf_iodone()
481 * callback that is run by xfs_buf_do_callbacks() during ioend
482 * processing (via the bp->b_iodone callback), and then finally
483 * the ioend processing will drop the IO reference if the buffer
484 * is marked XBF_ASYNC.
486 * Hence we need to take an additional reference here so that IO
487 * completion processing doesn't free the buffer prematurely.
489 xfs_buf_lock(bp);
490 xfs_buf_hold(bp);
491 bp->b_flags |= XBF_ASYNC;
492 xfs_buf_ioerror(bp, -EIO);
493 bp->b_flags &= ~XBF_DONE;
494 xfs_buf_stale(bp);
495 xfs_buf_ioend(bp);
500 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
501 * seconds so as to not spam logs too much on repeated detection of the same
502 * buffer being bad..
505 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
507 STATIC uint
508 xfs_buf_item_push(
509 struct xfs_log_item *lip,
510 struct list_head *buffer_list)
512 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
513 struct xfs_buf *bp = bip->bli_buf;
514 uint rval = XFS_ITEM_SUCCESS;
516 if (xfs_buf_ispinned(bp))
517 return XFS_ITEM_PINNED;
518 if (!xfs_buf_trylock(bp)) {
520 * If we have just raced with a buffer being pinned and it has
521 * been marked stale, we could end up stalling until someone else
522 * issues a log force to unpin the stale buffer. Check for the
523 * race condition here so xfsaild recognizes the buffer is pinned
524 * and queues a log force to move it along.
526 if (xfs_buf_ispinned(bp))
527 return XFS_ITEM_PINNED;
528 return XFS_ITEM_LOCKED;
531 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
533 trace_xfs_buf_item_push(bip);
535 /* has a previous flush failed due to IO errors? */
536 if ((bp->b_flags & XBF_WRITE_FAIL) &&
537 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
538 xfs_warn(bp->b_mount,
539 "Failing async write on buffer block 0x%llx. Retrying async write.",
540 (long long)bp->b_bn);
543 if (!xfs_buf_delwri_queue(bp, buffer_list))
544 rval = XFS_ITEM_FLUSHING;
545 xfs_buf_unlock(bp);
546 return rval;
550 * Drop the buffer log item refcount and take appropriate action. This helper
551 * determines whether the bli must be freed or not, since a decrement to zero
552 * does not necessarily mean the bli is unused.
554 * Return true if the bli is freed, false otherwise.
556 bool
557 xfs_buf_item_put(
558 struct xfs_buf_log_item *bip)
560 struct xfs_log_item *lip = &bip->bli_item;
561 bool aborted;
562 bool dirty;
564 /* drop the bli ref and return if it wasn't the last one */
565 if (!atomic_dec_and_test(&bip->bli_refcount))
566 return false;
569 * We dropped the last ref and must free the item if clean or aborted.
570 * If the bli is dirty and non-aborted, the buffer was clean in the
571 * transaction but still awaiting writeback from previous changes. In
572 * that case, the bli is freed on buffer writeback completion.
574 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
575 XFS_FORCED_SHUTDOWN(lip->li_mountp);
576 dirty = bip->bli_flags & XFS_BLI_DIRTY;
577 if (dirty && !aborted)
578 return false;
581 * The bli is aborted or clean. An aborted item may be in the AIL
582 * regardless of dirty state. For example, consider an aborted
583 * transaction that invalidated a dirty bli and cleared the dirty
584 * state.
586 if (aborted)
587 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
588 xfs_buf_item_relse(bip->bli_buf);
589 return true;
593 * Release the buffer associated with the buf log item. If there is no dirty
594 * logged data associated with the buffer recorded in the buf log item, then
595 * free the buf log item and remove the reference to it in the buffer.
597 * This call ignores the recursion count. It is only called when the buffer
598 * should REALLY be unlocked, regardless of the recursion count.
600 * We unconditionally drop the transaction's reference to the log item. If the
601 * item was logged, then another reference was taken when it was pinned, so we
602 * can safely drop the transaction reference now. This also allows us to avoid
603 * potential races with the unpin code freeing the bli by not referencing the
604 * bli after we've dropped the reference count.
606 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
607 * if necessary but do not unlock the buffer. This is for support of
608 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
609 * free the item.
611 STATIC void
612 xfs_buf_item_release(
613 struct xfs_log_item *lip)
615 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
616 struct xfs_buf *bp = bip->bli_buf;
617 bool released;
618 bool hold = bip->bli_flags & XFS_BLI_HOLD;
619 bool stale = bip->bli_flags & XFS_BLI_STALE;
620 #if defined(DEBUG) || defined(XFS_WARN)
621 bool ordered = bip->bli_flags & XFS_BLI_ORDERED;
622 bool dirty = bip->bli_flags & XFS_BLI_DIRTY;
623 bool aborted = test_bit(XFS_LI_ABORTED,
624 &lip->li_flags);
625 #endif
627 trace_xfs_buf_item_release(bip);
630 * The bli dirty state should match whether the blf has logged segments
631 * except for ordered buffers, where only the bli should be dirty.
633 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
634 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
635 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
638 * Clear the buffer's association with this transaction and
639 * per-transaction state from the bli, which has been copied above.
641 bp->b_transp = NULL;
642 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
645 * Unref the item and unlock the buffer unless held or stale. Stale
646 * buffers remain locked until final unpin unless the bli is freed by
647 * the unref call. The latter implies shutdown because buffer
648 * invalidation dirties the bli and transaction.
650 released = xfs_buf_item_put(bip);
651 if (hold || (stale && !released))
652 return;
653 ASSERT(!stale || aborted);
654 xfs_buf_relse(bp);
657 STATIC void
658 xfs_buf_item_committing(
659 struct xfs_log_item *lip,
660 xfs_lsn_t commit_lsn)
662 return xfs_buf_item_release(lip);
666 * This is called to find out where the oldest active copy of the
667 * buf log item in the on disk log resides now that the last log
668 * write of it completed at the given lsn.
669 * We always re-log all the dirty data in a buffer, so usually the
670 * latest copy in the on disk log is the only one that matters. For
671 * those cases we simply return the given lsn.
673 * The one exception to this is for buffers full of newly allocated
674 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
675 * flag set, indicating that only the di_next_unlinked fields from the
676 * inodes in the buffers will be replayed during recovery. If the
677 * original newly allocated inode images have not yet been flushed
678 * when the buffer is so relogged, then we need to make sure that we
679 * keep the old images in the 'active' portion of the log. We do this
680 * by returning the original lsn of that transaction here rather than
681 * the current one.
683 STATIC xfs_lsn_t
684 xfs_buf_item_committed(
685 struct xfs_log_item *lip,
686 xfs_lsn_t lsn)
688 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
690 trace_xfs_buf_item_committed(bip);
692 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
693 return lip->li_lsn;
694 return lsn;
697 static const struct xfs_item_ops xfs_buf_item_ops = {
698 .iop_size = xfs_buf_item_size,
699 .iop_format = xfs_buf_item_format,
700 .iop_pin = xfs_buf_item_pin,
701 .iop_unpin = xfs_buf_item_unpin,
702 .iop_release = xfs_buf_item_release,
703 .iop_committing = xfs_buf_item_committing,
704 .iop_committed = xfs_buf_item_committed,
705 .iop_push = xfs_buf_item_push,
708 STATIC void
709 xfs_buf_item_get_format(
710 struct xfs_buf_log_item *bip,
711 int count)
713 ASSERT(bip->bli_formats == NULL);
714 bip->bli_format_count = count;
716 if (count == 1) {
717 bip->bli_formats = &bip->__bli_format;
718 return;
721 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
725 STATIC void
726 xfs_buf_item_free_format(
727 struct xfs_buf_log_item *bip)
729 if (bip->bli_formats != &bip->__bli_format) {
730 kmem_free(bip->bli_formats);
731 bip->bli_formats = NULL;
736 * Allocate a new buf log item to go with the given buffer.
737 * Set the buffer's b_log_item field to point to the new
738 * buf log item.
741 xfs_buf_item_init(
742 struct xfs_buf *bp,
743 struct xfs_mount *mp)
745 struct xfs_buf_log_item *bip = bp->b_log_item;
746 int chunks;
747 int map_size;
748 int i;
751 * Check to see if there is already a buf log item for
752 * this buffer. If we do already have one, there is
753 * nothing to do here so return.
755 ASSERT(bp->b_mount == mp);
756 if (bip) {
757 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
758 ASSERT(!bp->b_transp);
759 ASSERT(bip->bli_buf == bp);
760 return 0;
763 bip = kmem_zone_zalloc(xfs_buf_item_zone, 0);
764 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
765 bip->bli_buf = bp;
768 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
769 * can be divided into. Make sure not to truncate any pieces.
770 * map_size is the size of the bitmap needed to describe the
771 * chunks of the buffer.
773 * Discontiguous buffer support follows the layout of the underlying
774 * buffer. This makes the implementation as simple as possible.
776 xfs_buf_item_get_format(bip, bp->b_map_count);
778 for (i = 0; i < bip->bli_format_count; i++) {
779 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
780 XFS_BLF_CHUNK);
781 map_size = DIV_ROUND_UP(chunks, NBWORD);
783 if (map_size > XFS_BLF_DATAMAP_SIZE) {
784 kmem_cache_free(xfs_buf_item_zone, bip);
785 xfs_err(mp,
786 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
787 map_size,
788 BBTOB(bp->b_maps[i].bm_len));
789 return -EFSCORRUPTED;
792 bip->bli_formats[i].blf_type = XFS_LI_BUF;
793 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
794 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
795 bip->bli_formats[i].blf_map_size = map_size;
798 bp->b_log_item = bip;
799 xfs_buf_hold(bp);
800 return 0;
805 * Mark bytes first through last inclusive as dirty in the buf
806 * item's bitmap.
808 static void
809 xfs_buf_item_log_segment(
810 uint first,
811 uint last,
812 uint *map)
814 uint first_bit;
815 uint last_bit;
816 uint bits_to_set;
817 uint bits_set;
818 uint word_num;
819 uint *wordp;
820 uint bit;
821 uint end_bit;
822 uint mask;
824 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
825 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
828 * Convert byte offsets to bit numbers.
830 first_bit = first >> XFS_BLF_SHIFT;
831 last_bit = last >> XFS_BLF_SHIFT;
834 * Calculate the total number of bits to be set.
836 bits_to_set = last_bit - first_bit + 1;
839 * Get a pointer to the first word in the bitmap
840 * to set a bit in.
842 word_num = first_bit >> BIT_TO_WORD_SHIFT;
843 wordp = &map[word_num];
846 * Calculate the starting bit in the first word.
848 bit = first_bit & (uint)(NBWORD - 1);
851 * First set any bits in the first word of our range.
852 * If it starts at bit 0 of the word, it will be
853 * set below rather than here. That is what the variable
854 * bit tells us. The variable bits_set tracks the number
855 * of bits that have been set so far. End_bit is the number
856 * of the last bit to be set in this word plus one.
858 if (bit) {
859 end_bit = min(bit + bits_to_set, (uint)NBWORD);
860 mask = ((1U << (end_bit - bit)) - 1) << bit;
861 *wordp |= mask;
862 wordp++;
863 bits_set = end_bit - bit;
864 } else {
865 bits_set = 0;
869 * Now set bits a whole word at a time that are between
870 * first_bit and last_bit.
872 while ((bits_to_set - bits_set) >= NBWORD) {
873 *wordp = 0xffffffff;
874 bits_set += NBWORD;
875 wordp++;
879 * Finally, set any bits left to be set in one last partial word.
881 end_bit = bits_to_set - bits_set;
882 if (end_bit) {
883 mask = (1U << end_bit) - 1;
884 *wordp |= mask;
889 * Mark bytes first through last inclusive as dirty in the buf
890 * item's bitmap.
892 void
893 xfs_buf_item_log(
894 struct xfs_buf_log_item *bip,
895 uint first,
896 uint last)
898 int i;
899 uint start;
900 uint end;
901 struct xfs_buf *bp = bip->bli_buf;
904 * walk each buffer segment and mark them dirty appropriately.
906 start = 0;
907 for (i = 0; i < bip->bli_format_count; i++) {
908 if (start > last)
909 break;
910 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
912 /* skip to the map that includes the first byte to log */
913 if (first > end) {
914 start += BBTOB(bp->b_maps[i].bm_len);
915 continue;
919 * Trim the range to this segment and mark it in the bitmap.
920 * Note that we must convert buffer offsets to segment relative
921 * offsets (e.g., the first byte of each segment is byte 0 of
922 * that segment).
924 if (first < start)
925 first = start;
926 if (end > last)
927 end = last;
928 xfs_buf_item_log_segment(first - start, end - start,
929 &bip->bli_formats[i].blf_data_map[0]);
931 start += BBTOB(bp->b_maps[i].bm_len);
937 * Return true if the buffer has any ranges logged/dirtied by a transaction,
938 * false otherwise.
940 bool
941 xfs_buf_item_dirty_format(
942 struct xfs_buf_log_item *bip)
944 int i;
946 for (i = 0; i < bip->bli_format_count; i++) {
947 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
948 bip->bli_formats[i].blf_map_size))
949 return true;
952 return false;
955 STATIC void
956 xfs_buf_item_free(
957 struct xfs_buf_log_item *bip)
959 xfs_buf_item_free_format(bip);
960 kmem_free(bip->bli_item.li_lv_shadow);
961 kmem_cache_free(xfs_buf_item_zone, bip);
965 * This is called when the buf log item is no longer needed. It should
966 * free the buf log item associated with the given buffer and clear
967 * the buffer's pointer to the buf log item. If there are no more
968 * items in the list, clear the b_iodone field of the buffer (see
969 * xfs_buf_attach_iodone() below).
971 void
972 xfs_buf_item_relse(
973 xfs_buf_t *bp)
975 struct xfs_buf_log_item *bip = bp->b_log_item;
977 trace_xfs_buf_item_relse(bp, _RET_IP_);
978 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
980 bp->b_log_item = NULL;
981 if (list_empty(&bp->b_li_list))
982 bp->b_iodone = NULL;
984 xfs_buf_rele(bp);
985 xfs_buf_item_free(bip);
990 * Add the given log item with its callback to the list of callbacks
991 * to be called when the buffer's I/O completes. If it is not set
992 * already, set the buffer's b_iodone() routine to be
993 * xfs_buf_iodone_callbacks() and link the log item into the list of
994 * items rooted at b_li_list.
996 void
997 xfs_buf_attach_iodone(
998 struct xfs_buf *bp,
999 void (*cb)(struct xfs_buf *, struct xfs_log_item *),
1000 struct xfs_log_item *lip)
1002 ASSERT(xfs_buf_islocked(bp));
1004 lip->li_cb = cb;
1005 list_add_tail(&lip->li_bio_list, &bp->b_li_list);
1007 ASSERT(bp->b_iodone == NULL ||
1008 bp->b_iodone == xfs_buf_iodone_callbacks);
1009 bp->b_iodone = xfs_buf_iodone_callbacks;
1013 * We can have many callbacks on a buffer. Running the callbacks individually
1014 * can cause a lot of contention on the AIL lock, so we allow for a single
1015 * callback to be able to scan the remaining items in bp->b_li_list for other
1016 * items of the same type and callback to be processed in the first call.
1018 * As a result, the loop walking the callback list below will also modify the
1019 * list. it removes the first item from the list and then runs the callback.
1020 * The loop then restarts from the new first item int the list. This allows the
1021 * callback to scan and modify the list attached to the buffer and we don't
1022 * have to care about maintaining a next item pointer.
1024 STATIC void
1025 xfs_buf_do_callbacks(
1026 struct xfs_buf *bp)
1028 struct xfs_buf_log_item *blip = bp->b_log_item;
1029 struct xfs_log_item *lip;
1031 /* If there is a buf_log_item attached, run its callback */
1032 if (blip) {
1033 lip = &blip->bli_item;
1034 lip->li_cb(bp, lip);
1037 while (!list_empty(&bp->b_li_list)) {
1038 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1039 li_bio_list);
1042 * Remove the item from the list, so we don't have any
1043 * confusion if the item is added to another buf.
1044 * Don't touch the log item after calling its
1045 * callback, because it could have freed itself.
1047 list_del_init(&lip->li_bio_list);
1048 lip->li_cb(bp, lip);
1053 * Invoke the error state callback for each log item affected by the failed I/O.
1055 * If a metadata buffer write fails with a non-permanent error, the buffer is
1056 * eventually resubmitted and so the completion callbacks are not run. The error
1057 * state may need to be propagated to the log items attached to the buffer,
1058 * however, so the next AIL push of the item knows hot to handle it correctly.
1060 STATIC void
1061 xfs_buf_do_callbacks_fail(
1062 struct xfs_buf *bp)
1064 struct xfs_log_item *lip;
1065 struct xfs_ail *ailp;
1068 * Buffer log item errors are handled directly by xfs_buf_item_push()
1069 * and xfs_buf_iodone_callback_error, and they have no IO error
1070 * callbacks. Check only for items in b_li_list.
1072 if (list_empty(&bp->b_li_list))
1073 return;
1075 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1076 li_bio_list);
1077 ailp = lip->li_ailp;
1078 spin_lock(&ailp->ail_lock);
1079 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1080 if (lip->li_ops->iop_error)
1081 lip->li_ops->iop_error(lip, bp);
1083 spin_unlock(&ailp->ail_lock);
1086 static bool
1087 xfs_buf_iodone_callback_error(
1088 struct xfs_buf *bp)
1090 struct xfs_buf_log_item *bip = bp->b_log_item;
1091 struct xfs_log_item *lip;
1092 struct xfs_mount *mp;
1093 static ulong lasttime;
1094 static xfs_buftarg_t *lasttarg;
1095 struct xfs_error_cfg *cfg;
1098 * The failed buffer might not have a buf_log_item attached or the
1099 * log_item list might be empty. Get the mp from the available
1100 * xfs_log_item
1102 lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1103 li_bio_list);
1104 mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1107 * If we've already decided to shutdown the filesystem because of
1108 * I/O errors, there's no point in giving this a retry.
1110 if (XFS_FORCED_SHUTDOWN(mp))
1111 goto out_stale;
1113 if (bp->b_target != lasttarg ||
1114 time_after(jiffies, (lasttime + 5*HZ))) {
1115 lasttime = jiffies;
1116 xfs_buf_ioerror_alert(bp, __this_address);
1118 lasttarg = bp->b_target;
1120 /* synchronous writes will have callers process the error */
1121 if (!(bp->b_flags & XBF_ASYNC))
1122 goto out_stale;
1124 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1125 ASSERT(bp->b_iodone != NULL);
1127 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1130 * If the write was asynchronous then no one will be looking for the
1131 * error. If this is the first failure of this type, clear the error
1132 * state and write the buffer out again. This means we always retry an
1133 * async write failure at least once, but we also need to set the buffer
1134 * up to behave correctly now for repeated failures.
1136 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1137 bp->b_last_error != bp->b_error) {
1138 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1139 bp->b_last_error = bp->b_error;
1140 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1141 !bp->b_first_retry_time)
1142 bp->b_first_retry_time = jiffies;
1144 xfs_buf_ioerror(bp, 0);
1145 xfs_buf_submit(bp);
1146 return true;
1150 * Repeated failure on an async write. Take action according to the
1151 * error configuration we have been set up to use.
1154 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1155 ++bp->b_retries > cfg->max_retries)
1156 goto permanent_error;
1157 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1158 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1159 goto permanent_error;
1161 /* At unmount we may treat errors differently */
1162 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1163 goto permanent_error;
1166 * Still a transient error, run IO completion failure callbacks and let
1167 * the higher layers retry the buffer.
1169 xfs_buf_do_callbacks_fail(bp);
1170 xfs_buf_ioerror(bp, 0);
1171 xfs_buf_relse(bp);
1172 return true;
1175 * Permanent error - we need to trigger a shutdown if we haven't already
1176 * to indicate that inconsistency will result from this action.
1178 permanent_error:
1179 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1180 out_stale:
1181 xfs_buf_stale(bp);
1182 bp->b_flags |= XBF_DONE;
1183 trace_xfs_buf_error_relse(bp, _RET_IP_);
1184 return false;
1188 * This is the iodone() function for buffers which have had callbacks attached
1189 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1190 * callback list, mark the buffer as having no more callbacks and then push the
1191 * buffer through IO completion processing.
1193 void
1194 xfs_buf_iodone_callbacks(
1195 struct xfs_buf *bp)
1198 * If there is an error, process it. Some errors require us
1199 * to run callbacks after failure processing is done so we
1200 * detect that and take appropriate action.
1202 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1203 return;
1206 * Successful IO or permanent error. Either way, we can clear the
1207 * retry state here in preparation for the next error that may occur.
1209 bp->b_last_error = 0;
1210 bp->b_retries = 0;
1211 bp->b_first_retry_time = 0;
1213 xfs_buf_do_callbacks(bp);
1214 bp->b_log_item = NULL;
1215 list_del_init(&bp->b_li_list);
1216 bp->b_iodone = NULL;
1217 xfs_buf_ioend(bp);
1221 * This is the iodone() function for buffers which have been
1222 * logged. It is called when they are eventually flushed out.
1223 * It should remove the buf item from the AIL, and free the buf item.
1224 * It is called by xfs_buf_iodone_callbacks() above which will take
1225 * care of cleaning up the buffer itself.
1227 void
1228 xfs_buf_iodone(
1229 struct xfs_buf *bp,
1230 struct xfs_log_item *lip)
1232 struct xfs_ail *ailp = lip->li_ailp;
1234 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1236 xfs_buf_rele(bp);
1239 * If we are forcibly shutting down, this may well be
1240 * off the AIL already. That's because we simulate the
1241 * log-committed callbacks to unpin these buffers. Or we may never
1242 * have put this item on AIL because of the transaction was
1243 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1245 * Either way, AIL is useless if we're forcing a shutdown.
1247 spin_lock(&ailp->ail_lock);
1248 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1249 xfs_buf_item_free(BUF_ITEM(lip));
1253 * Requeue a failed buffer for writeback.
1255 * We clear the log item failed state here as well, but we have to be careful
1256 * about reference counts because the only active reference counts on the buffer
1257 * may be the failed log items. Hence if we clear the log item failed state
1258 * before queuing the buffer for IO we can release all active references to
1259 * the buffer and free it, leading to use after free problems in
1260 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
1261 * order we process them in - the buffer is locked, and we own the buffer list
1262 * so nothing on them is going to change while we are performing this action.
1264 * Hence we can safely queue the buffer for IO before we clear the failed log
1265 * item state, therefore always having an active reference to the buffer and
1266 * avoiding the transient zero-reference state that leads to use-after-free.
1268 * Return true if the buffer was added to the buffer list, false if it was
1269 * already on the buffer list.
1271 bool
1272 xfs_buf_resubmit_failed_buffers(
1273 struct xfs_buf *bp,
1274 struct list_head *buffer_list)
1276 struct xfs_log_item *lip;
1277 bool ret;
1279 ret = xfs_buf_delwri_queue(bp, buffer_list);
1282 * XFS_LI_FAILED set/clear is protected by ail_lock, caller of this
1283 * function already have it acquired
1285 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1286 xfs_clear_li_failed(lip);
1288 return ret;