drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / xfs / xfs_file.c
blobb8a4a3f29b367dd35a46351991e5dd7c010f35a9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
33 static const struct vm_operations_struct xfs_file_vm_ops;
35 int
36 xfs_update_prealloc_flags(
37 struct xfs_inode *ip,
38 enum xfs_prealloc_flags flags)
40 struct xfs_trans *tp;
41 int error;
43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 0, 0, 0, &tp);
45 if (error)
46 return error;
48 xfs_ilock(ip, XFS_ILOCK_EXCL);
49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
51 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 VFS_I(ip)->i_mode &= ~S_ISUID;
53 if (VFS_I(ip)->i_mode & S_IXGRP)
54 VFS_I(ip)->i_mode &= ~S_ISGID;
55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
58 if (flags & XFS_PREALLOC_SET)
59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 if (flags & XFS_PREALLOC_CLEAR)
61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 if (flags & XFS_PREALLOC_SYNC)
65 xfs_trans_set_sync(tp);
66 return xfs_trans_commit(tp);
70 * Fsync operations on directories are much simpler than on regular files,
71 * as there is no file data to flush, and thus also no need for explicit
72 * cache flush operations, and there are no non-transaction metadata updates
73 * on directories either.
75 STATIC int
76 xfs_dir_fsync(
77 struct file *file,
78 loff_t start,
79 loff_t end,
80 int datasync)
82 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
83 struct xfs_mount *mp = ip->i_mount;
84 xfs_lsn_t lsn = 0;
86 trace_xfs_dir_fsync(ip);
88 xfs_ilock(ip, XFS_ILOCK_SHARED);
89 if (xfs_ipincount(ip))
90 lsn = ip->i_itemp->ili_last_lsn;
91 xfs_iunlock(ip, XFS_ILOCK_SHARED);
93 if (!lsn)
94 return 0;
95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
98 STATIC int
99 xfs_file_fsync(
100 struct file *file,
101 loff_t start,
102 loff_t end,
103 int datasync)
105 struct inode *inode = file->f_mapping->host;
106 struct xfs_inode *ip = XFS_I(inode);
107 struct xfs_mount *mp = ip->i_mount;
108 int error = 0;
109 int log_flushed = 0;
110 xfs_lsn_t lsn = 0;
112 trace_xfs_file_fsync(ip);
114 error = file_write_and_wait_range(file, start, end);
115 if (error)
116 return error;
118 if (XFS_FORCED_SHUTDOWN(mp))
119 return -EIO;
121 xfs_iflags_clear(ip, XFS_ITRUNCATED);
124 * If we have an RT and/or log subvolume we need to make sure to flush
125 * the write cache the device used for file data first. This is to
126 * ensure newly written file data make it to disk before logging the new
127 * inode size in case of an extending write.
129 if (XFS_IS_REALTIME_INODE(ip))
130 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 xfs_blkdev_issue_flush(mp->m_ddev_targp);
135 * All metadata updates are logged, which means that we just have to
136 * flush the log up to the latest LSN that touched the inode. If we have
137 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 * log force before we clear the ili_fsync_fields field. This ensures
139 * that we don't get a racing sync operation that does not wait for the
140 * metadata to hit the journal before returning. If we race with
141 * clearing the ili_fsync_fields, then all that will happen is the log
142 * force will do nothing as the lsn will already be on disk. We can't
143 * race with setting ili_fsync_fields because that is done under
144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 * until after the ili_fsync_fields is cleared.
147 xfs_ilock(ip, XFS_ILOCK_SHARED);
148 if (xfs_ipincount(ip)) {
149 if (!datasync ||
150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 lsn = ip->i_itemp->ili_last_lsn;
154 if (lsn) {
155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
156 ip->i_itemp->ili_fsync_fields = 0;
158 xfs_iunlock(ip, XFS_ILOCK_SHARED);
161 * If we only have a single device, and the log force about was
162 * a no-op we might have to flush the data device cache here.
163 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 * an already allocated file and thus do not have any metadata to
165 * commit.
167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 mp->m_logdev_targp == mp->m_ddev_targp)
169 xfs_blkdev_issue_flush(mp->m_ddev_targp);
171 return error;
174 STATIC ssize_t
175 xfs_file_dio_aio_read(
176 struct kiocb *iocb,
177 struct iov_iter *to)
179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
180 size_t count = iov_iter_count(to);
181 ssize_t ret;
183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
185 if (!count)
186 return 0; /* skip atime */
188 file_accessed(iocb->ki_filp);
190 if (iocb->ki_flags & IOCB_NOWAIT) {
191 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
192 return -EAGAIN;
193 } else {
194 xfs_ilock(ip, XFS_IOLOCK_SHARED);
196 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
197 is_sync_kiocb(iocb));
198 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
200 return ret;
203 static noinline ssize_t
204 xfs_file_dax_read(
205 struct kiocb *iocb,
206 struct iov_iter *to)
208 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
209 size_t count = iov_iter_count(to);
210 ssize_t ret = 0;
212 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
214 if (!count)
215 return 0; /* skip atime */
217 if (iocb->ki_flags & IOCB_NOWAIT) {
218 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
219 return -EAGAIN;
220 } else {
221 xfs_ilock(ip, XFS_IOLOCK_SHARED);
224 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
225 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
227 file_accessed(iocb->ki_filp);
228 return ret;
231 STATIC ssize_t
232 xfs_file_buffered_aio_read(
233 struct kiocb *iocb,
234 struct iov_iter *to)
236 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
237 ssize_t ret;
239 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
241 if (iocb->ki_flags & IOCB_NOWAIT) {
242 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
243 return -EAGAIN;
244 } else {
245 xfs_ilock(ip, XFS_IOLOCK_SHARED);
247 ret = generic_file_read_iter(iocb, to);
248 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
250 return ret;
253 STATIC ssize_t
254 xfs_file_read_iter(
255 struct kiocb *iocb,
256 struct iov_iter *to)
258 struct inode *inode = file_inode(iocb->ki_filp);
259 struct xfs_mount *mp = XFS_I(inode)->i_mount;
260 ssize_t ret = 0;
262 XFS_STATS_INC(mp, xs_read_calls);
264 if (XFS_FORCED_SHUTDOWN(mp))
265 return -EIO;
267 if (IS_DAX(inode))
268 ret = xfs_file_dax_read(iocb, to);
269 else if (iocb->ki_flags & IOCB_DIRECT)
270 ret = xfs_file_dio_aio_read(iocb, to);
271 else
272 ret = xfs_file_buffered_aio_read(iocb, to);
274 if (ret > 0)
275 XFS_STATS_ADD(mp, xs_read_bytes, ret);
276 return ret;
280 * Common pre-write limit and setup checks.
282 * Called with the iolocked held either shared and exclusive according to
283 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
284 * if called for a direct write beyond i_size.
286 STATIC ssize_t
287 xfs_file_aio_write_checks(
288 struct kiocb *iocb,
289 struct iov_iter *from,
290 int *iolock)
292 struct file *file = iocb->ki_filp;
293 struct inode *inode = file->f_mapping->host;
294 struct xfs_inode *ip = XFS_I(inode);
295 ssize_t error = 0;
296 size_t count = iov_iter_count(from);
297 bool drained_dio = false;
298 loff_t isize;
300 restart:
301 error = generic_write_checks(iocb, from);
302 if (error <= 0)
303 return error;
305 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
306 if (error)
307 return error;
310 * For changing security info in file_remove_privs() we need i_rwsem
311 * exclusively.
313 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
314 xfs_iunlock(ip, *iolock);
315 *iolock = XFS_IOLOCK_EXCL;
316 xfs_ilock(ip, *iolock);
317 goto restart;
320 * If the offset is beyond the size of the file, we need to zero any
321 * blocks that fall between the existing EOF and the start of this
322 * write. If zeroing is needed and we are currently holding the
323 * iolock shared, we need to update it to exclusive which implies
324 * having to redo all checks before.
326 * We need to serialise against EOF updates that occur in IO
327 * completions here. We want to make sure that nobody is changing the
328 * size while we do this check until we have placed an IO barrier (i.e.
329 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
330 * The spinlock effectively forms a memory barrier once we have the
331 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
332 * and hence be able to correctly determine if we need to run zeroing.
334 spin_lock(&ip->i_flags_lock);
335 isize = i_size_read(inode);
336 if (iocb->ki_pos > isize) {
337 spin_unlock(&ip->i_flags_lock);
338 if (!drained_dio) {
339 if (*iolock == XFS_IOLOCK_SHARED) {
340 xfs_iunlock(ip, *iolock);
341 *iolock = XFS_IOLOCK_EXCL;
342 xfs_ilock(ip, *iolock);
343 iov_iter_reexpand(from, count);
346 * We now have an IO submission barrier in place, but
347 * AIO can do EOF updates during IO completion and hence
348 * we now need to wait for all of them to drain. Non-AIO
349 * DIO will have drained before we are given the
350 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
351 * no-op.
353 inode_dio_wait(inode);
354 drained_dio = true;
355 goto restart;
358 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
359 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
360 NULL, &xfs_buffered_write_iomap_ops);
361 if (error)
362 return error;
363 } else
364 spin_unlock(&ip->i_flags_lock);
367 * Updating the timestamps will grab the ilock again from
368 * xfs_fs_dirty_inode, so we have to call it after dropping the
369 * lock above. Eventually we should look into a way to avoid
370 * the pointless lock roundtrip.
372 return file_modified(file);
375 static int
376 xfs_dio_write_end_io(
377 struct kiocb *iocb,
378 ssize_t size,
379 int error,
380 unsigned flags)
382 struct inode *inode = file_inode(iocb->ki_filp);
383 struct xfs_inode *ip = XFS_I(inode);
384 loff_t offset = iocb->ki_pos;
385 unsigned int nofs_flag;
387 trace_xfs_end_io_direct_write(ip, offset, size);
389 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
390 return -EIO;
392 if (error)
393 return error;
394 if (!size)
395 return 0;
398 * Capture amount written on completion as we can't reliably account
399 * for it on submission.
401 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
404 * We can allocate memory here while doing writeback on behalf of
405 * memory reclaim. To avoid memory allocation deadlocks set the
406 * task-wide nofs context for the following operations.
408 nofs_flag = memalloc_nofs_save();
410 if (flags & IOMAP_DIO_COW) {
411 error = xfs_reflink_end_cow(ip, offset, size);
412 if (error)
413 goto out;
417 * Unwritten conversion updates the in-core isize after extent
418 * conversion but before updating the on-disk size. Updating isize any
419 * earlier allows a racing dio read to find unwritten extents before
420 * they are converted.
422 if (flags & IOMAP_DIO_UNWRITTEN) {
423 error = xfs_iomap_write_unwritten(ip, offset, size, true);
424 goto out;
428 * We need to update the in-core inode size here so that we don't end up
429 * with the on-disk inode size being outside the in-core inode size. We
430 * have no other method of updating EOF for AIO, so always do it here
431 * if necessary.
433 * We need to lock the test/set EOF update as we can be racing with
434 * other IO completions here to update the EOF. Failing to serialise
435 * here can result in EOF moving backwards and Bad Things Happen when
436 * that occurs.
438 spin_lock(&ip->i_flags_lock);
439 if (offset + size > i_size_read(inode)) {
440 i_size_write(inode, offset + size);
441 spin_unlock(&ip->i_flags_lock);
442 error = xfs_setfilesize(ip, offset, size);
443 } else {
444 spin_unlock(&ip->i_flags_lock);
447 out:
448 memalloc_nofs_restore(nofs_flag);
449 return error;
452 static const struct iomap_dio_ops xfs_dio_write_ops = {
453 .end_io = xfs_dio_write_end_io,
457 * xfs_file_dio_aio_write - handle direct IO writes
459 * Lock the inode appropriately to prepare for and issue a direct IO write.
460 * By separating it from the buffered write path we remove all the tricky to
461 * follow locking changes and looping.
463 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
464 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
465 * pages are flushed out.
467 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
468 * allowing them to be done in parallel with reads and other direct IO writes.
469 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
470 * needs to do sub-block zeroing and that requires serialisation against other
471 * direct IOs to the same block. In this case we need to serialise the
472 * submission of the unaligned IOs so that we don't get racing block zeroing in
473 * the dio layer. To avoid the problem with aio, we also need to wait for
474 * outstanding IOs to complete so that unwritten extent conversion is completed
475 * before we try to map the overlapping block. This is currently implemented by
476 * hitting it with a big hammer (i.e. inode_dio_wait()).
478 * Returns with locks held indicated by @iolock and errors indicated by
479 * negative return values.
481 STATIC ssize_t
482 xfs_file_dio_aio_write(
483 struct kiocb *iocb,
484 struct iov_iter *from)
486 struct file *file = iocb->ki_filp;
487 struct address_space *mapping = file->f_mapping;
488 struct inode *inode = mapping->host;
489 struct xfs_inode *ip = XFS_I(inode);
490 struct xfs_mount *mp = ip->i_mount;
491 ssize_t ret = 0;
492 int unaligned_io = 0;
493 int iolock;
494 size_t count = iov_iter_count(from);
495 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
497 /* DIO must be aligned to device logical sector size */
498 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
499 return -EINVAL;
502 * Don't take the exclusive iolock here unless the I/O is unaligned to
503 * the file system block size. We don't need to consider the EOF
504 * extension case here because xfs_file_aio_write_checks() will relock
505 * the inode as necessary for EOF zeroing cases and fill out the new
506 * inode size as appropriate.
508 if ((iocb->ki_pos & mp->m_blockmask) ||
509 ((iocb->ki_pos + count) & mp->m_blockmask)) {
510 unaligned_io = 1;
513 * We can't properly handle unaligned direct I/O to reflink
514 * files yet, as we can't unshare a partial block.
516 if (xfs_is_cow_inode(ip)) {
517 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
518 return -EREMCHG;
520 iolock = XFS_IOLOCK_EXCL;
521 } else {
522 iolock = XFS_IOLOCK_SHARED;
525 if (iocb->ki_flags & IOCB_NOWAIT) {
526 /* unaligned dio always waits, bail */
527 if (unaligned_io)
528 return -EAGAIN;
529 if (!xfs_ilock_nowait(ip, iolock))
530 return -EAGAIN;
531 } else {
532 xfs_ilock(ip, iolock);
535 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
536 if (ret)
537 goto out;
538 count = iov_iter_count(from);
541 * If we are doing unaligned IO, we can't allow any other overlapping IO
542 * in-flight at the same time or we risk data corruption. Wait for all
543 * other IO to drain before we submit. If the IO is aligned, demote the
544 * iolock if we had to take the exclusive lock in
545 * xfs_file_aio_write_checks() for other reasons.
547 if (unaligned_io) {
548 inode_dio_wait(inode);
549 } else if (iolock == XFS_IOLOCK_EXCL) {
550 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
551 iolock = XFS_IOLOCK_SHARED;
554 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
556 * If unaligned, this is the only IO in-flight. Wait on it before we
557 * release the iolock to prevent subsequent overlapping IO.
559 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
560 &xfs_dio_write_ops,
561 is_sync_kiocb(iocb) || unaligned_io);
562 out:
563 xfs_iunlock(ip, iolock);
566 * No fallback to buffered IO on errors for XFS, direct IO will either
567 * complete fully or fail.
569 ASSERT(ret < 0 || ret == count);
570 return ret;
573 static noinline ssize_t
574 xfs_file_dax_write(
575 struct kiocb *iocb,
576 struct iov_iter *from)
578 struct inode *inode = iocb->ki_filp->f_mapping->host;
579 struct xfs_inode *ip = XFS_I(inode);
580 int iolock = XFS_IOLOCK_EXCL;
581 ssize_t ret, error = 0;
582 size_t count;
583 loff_t pos;
585 if (iocb->ki_flags & IOCB_NOWAIT) {
586 if (!xfs_ilock_nowait(ip, iolock))
587 return -EAGAIN;
588 } else {
589 xfs_ilock(ip, iolock);
592 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
593 if (ret)
594 goto out;
596 pos = iocb->ki_pos;
597 count = iov_iter_count(from);
599 trace_xfs_file_dax_write(ip, count, pos);
600 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
601 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
602 i_size_write(inode, iocb->ki_pos);
603 error = xfs_setfilesize(ip, pos, ret);
605 out:
606 xfs_iunlock(ip, iolock);
607 if (error)
608 return error;
610 if (ret > 0) {
611 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
613 /* Handle various SYNC-type writes */
614 ret = generic_write_sync(iocb, ret);
616 return ret;
619 STATIC ssize_t
620 xfs_file_buffered_aio_write(
621 struct kiocb *iocb,
622 struct iov_iter *from)
624 struct file *file = iocb->ki_filp;
625 struct address_space *mapping = file->f_mapping;
626 struct inode *inode = mapping->host;
627 struct xfs_inode *ip = XFS_I(inode);
628 ssize_t ret;
629 int enospc = 0;
630 int iolock;
632 if (iocb->ki_flags & IOCB_NOWAIT)
633 return -EOPNOTSUPP;
635 write_retry:
636 iolock = XFS_IOLOCK_EXCL;
637 xfs_ilock(ip, iolock);
639 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
640 if (ret)
641 goto out;
643 /* We can write back this queue in page reclaim */
644 current->backing_dev_info = inode_to_bdi(inode);
646 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
647 ret = iomap_file_buffered_write(iocb, from,
648 &xfs_buffered_write_iomap_ops);
649 if (likely(ret >= 0))
650 iocb->ki_pos += ret;
653 * If we hit a space limit, try to free up some lingering preallocated
654 * space before returning an error. In the case of ENOSPC, first try to
655 * write back all dirty inodes to free up some of the excess reserved
656 * metadata space. This reduces the chances that the eofblocks scan
657 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
658 * also behaves as a filter to prevent too many eofblocks scans from
659 * running at the same time.
661 if (ret == -EDQUOT && !enospc) {
662 xfs_iunlock(ip, iolock);
663 enospc = xfs_inode_free_quota_eofblocks(ip);
664 if (enospc)
665 goto write_retry;
666 enospc = xfs_inode_free_quota_cowblocks(ip);
667 if (enospc)
668 goto write_retry;
669 iolock = 0;
670 } else if (ret == -ENOSPC && !enospc) {
671 struct xfs_eofblocks eofb = {0};
673 enospc = 1;
674 xfs_flush_inodes(ip->i_mount);
676 xfs_iunlock(ip, iolock);
677 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
678 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
679 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
680 goto write_retry;
683 current->backing_dev_info = NULL;
684 out:
685 if (iolock)
686 xfs_iunlock(ip, iolock);
688 if (ret > 0) {
689 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
690 /* Handle various SYNC-type writes */
691 ret = generic_write_sync(iocb, ret);
693 return ret;
696 STATIC ssize_t
697 xfs_file_write_iter(
698 struct kiocb *iocb,
699 struct iov_iter *from)
701 struct file *file = iocb->ki_filp;
702 struct address_space *mapping = file->f_mapping;
703 struct inode *inode = mapping->host;
704 struct xfs_inode *ip = XFS_I(inode);
705 ssize_t ret;
706 size_t ocount = iov_iter_count(from);
708 XFS_STATS_INC(ip->i_mount, xs_write_calls);
710 if (ocount == 0)
711 return 0;
713 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
714 return -EIO;
716 if (IS_DAX(inode))
717 return xfs_file_dax_write(iocb, from);
719 if (iocb->ki_flags & IOCB_DIRECT) {
721 * Allow a directio write to fall back to a buffered
722 * write *only* in the case that we're doing a reflink
723 * CoW. In all other directio scenarios we do not
724 * allow an operation to fall back to buffered mode.
726 ret = xfs_file_dio_aio_write(iocb, from);
727 if (ret != -EREMCHG)
728 return ret;
731 return xfs_file_buffered_aio_write(iocb, from);
734 static void
735 xfs_wait_dax_page(
736 struct inode *inode)
738 struct xfs_inode *ip = XFS_I(inode);
740 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
741 schedule();
742 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
745 static int
746 xfs_break_dax_layouts(
747 struct inode *inode,
748 bool *retry)
750 struct page *page;
752 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
754 page = dax_layout_busy_page(inode->i_mapping);
755 if (!page)
756 return 0;
758 *retry = true;
759 return ___wait_var_event(&page->_refcount,
760 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
761 0, 0, xfs_wait_dax_page(inode));
765 xfs_break_layouts(
766 struct inode *inode,
767 uint *iolock,
768 enum layout_break_reason reason)
770 bool retry;
771 int error;
773 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
775 do {
776 retry = false;
777 switch (reason) {
778 case BREAK_UNMAP:
779 error = xfs_break_dax_layouts(inode, &retry);
780 if (error || retry)
781 break;
782 /* fall through */
783 case BREAK_WRITE:
784 error = xfs_break_leased_layouts(inode, iolock, &retry);
785 break;
786 default:
787 WARN_ON_ONCE(1);
788 error = -EINVAL;
790 } while (error == 0 && retry);
792 return error;
795 #define XFS_FALLOC_FL_SUPPORTED \
796 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
797 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
798 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
800 STATIC long
801 xfs_file_fallocate(
802 struct file *file,
803 int mode,
804 loff_t offset,
805 loff_t len)
807 struct inode *inode = file_inode(file);
808 struct xfs_inode *ip = XFS_I(inode);
809 long error;
810 enum xfs_prealloc_flags flags = 0;
811 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
812 loff_t new_size = 0;
813 bool do_file_insert = false;
815 if (!S_ISREG(inode->i_mode))
816 return -EINVAL;
817 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
818 return -EOPNOTSUPP;
820 xfs_ilock(ip, iolock);
821 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
822 if (error)
823 goto out_unlock;
826 * Must wait for all AIO to complete before we continue as AIO can
827 * change the file size on completion without holding any locks we
828 * currently hold. We must do this first because AIO can update both
829 * the on disk and in memory inode sizes, and the operations that follow
830 * require the in-memory size to be fully up-to-date.
832 inode_dio_wait(inode);
835 * Now AIO and DIO has drained we flush and (if necessary) invalidate
836 * the cached range over the first operation we are about to run.
838 * We care about zero and collapse here because they both run a hole
839 * punch over the range first. Because that can zero data, and the range
840 * of invalidation for the shift operations is much larger, we still do
841 * the required flush for collapse in xfs_prepare_shift().
843 * Insert has the same range requirements as collapse, and we extend the
844 * file first which can zero data. Hence insert has the same
845 * flush/invalidate requirements as collapse and so they are both
846 * handled at the right time by xfs_prepare_shift().
848 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
849 FALLOC_FL_COLLAPSE_RANGE)) {
850 error = xfs_flush_unmap_range(ip, offset, len);
851 if (error)
852 goto out_unlock;
855 if (mode & FALLOC_FL_PUNCH_HOLE) {
856 error = xfs_free_file_space(ip, offset, len);
857 if (error)
858 goto out_unlock;
859 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
860 unsigned int blksize_mask = i_blocksize(inode) - 1;
862 if (offset & blksize_mask || len & blksize_mask) {
863 error = -EINVAL;
864 goto out_unlock;
868 * There is no need to overlap collapse range with EOF,
869 * in which case it is effectively a truncate operation
871 if (offset + len >= i_size_read(inode)) {
872 error = -EINVAL;
873 goto out_unlock;
876 new_size = i_size_read(inode) - len;
878 error = xfs_collapse_file_space(ip, offset, len);
879 if (error)
880 goto out_unlock;
881 } else if (mode & FALLOC_FL_INSERT_RANGE) {
882 unsigned int blksize_mask = i_blocksize(inode) - 1;
883 loff_t isize = i_size_read(inode);
885 if (offset & blksize_mask || len & blksize_mask) {
886 error = -EINVAL;
887 goto out_unlock;
891 * New inode size must not exceed ->s_maxbytes, accounting for
892 * possible signed overflow.
894 if (inode->i_sb->s_maxbytes - isize < len) {
895 error = -EFBIG;
896 goto out_unlock;
898 new_size = isize + len;
900 /* Offset should be less than i_size */
901 if (offset >= isize) {
902 error = -EINVAL;
903 goto out_unlock;
905 do_file_insert = true;
906 } else {
907 flags |= XFS_PREALLOC_SET;
909 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
910 offset + len > i_size_read(inode)) {
911 new_size = offset + len;
912 error = inode_newsize_ok(inode, new_size);
913 if (error)
914 goto out_unlock;
917 if (mode & FALLOC_FL_ZERO_RANGE) {
919 * Punch a hole and prealloc the range. We use a hole
920 * punch rather than unwritten extent conversion for two
921 * reasons:
923 * 1.) Hole punch handles partial block zeroing for us.
924 * 2.) If prealloc returns ENOSPC, the file range is
925 * still zero-valued by virtue of the hole punch.
927 unsigned int blksize = i_blocksize(inode);
929 trace_xfs_zero_file_space(ip);
931 error = xfs_free_file_space(ip, offset, len);
932 if (error)
933 goto out_unlock;
935 len = round_up(offset + len, blksize) -
936 round_down(offset, blksize);
937 offset = round_down(offset, blksize);
938 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
939 error = xfs_reflink_unshare(ip, offset, len);
940 if (error)
941 goto out_unlock;
942 } else {
944 * If always_cow mode we can't use preallocations and
945 * thus should not create them.
947 if (xfs_is_always_cow_inode(ip)) {
948 error = -EOPNOTSUPP;
949 goto out_unlock;
953 if (!xfs_is_always_cow_inode(ip)) {
954 error = xfs_alloc_file_space(ip, offset, len,
955 XFS_BMAPI_PREALLOC);
956 if (error)
957 goto out_unlock;
961 if (file->f_flags & O_DSYNC)
962 flags |= XFS_PREALLOC_SYNC;
964 error = xfs_update_prealloc_flags(ip, flags);
965 if (error)
966 goto out_unlock;
968 /* Change file size if needed */
969 if (new_size) {
970 struct iattr iattr;
972 iattr.ia_valid = ATTR_SIZE;
973 iattr.ia_size = new_size;
974 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
975 if (error)
976 goto out_unlock;
980 * Perform hole insertion now that the file size has been
981 * updated so that if we crash during the operation we don't
982 * leave shifted extents past EOF and hence losing access to
983 * the data that is contained within them.
985 if (do_file_insert)
986 error = xfs_insert_file_space(ip, offset, len);
988 out_unlock:
989 xfs_iunlock(ip, iolock);
990 return error;
993 STATIC int
994 xfs_file_fadvise(
995 struct file *file,
996 loff_t start,
997 loff_t end,
998 int advice)
1000 struct xfs_inode *ip = XFS_I(file_inode(file));
1001 int ret;
1002 int lockflags = 0;
1005 * Operations creating pages in page cache need protection from hole
1006 * punching and similar ops
1008 if (advice == POSIX_FADV_WILLNEED) {
1009 lockflags = XFS_IOLOCK_SHARED;
1010 xfs_ilock(ip, lockflags);
1012 ret = generic_fadvise(file, start, end, advice);
1013 if (lockflags)
1014 xfs_iunlock(ip, lockflags);
1015 return ret;
1018 STATIC loff_t
1019 xfs_file_remap_range(
1020 struct file *file_in,
1021 loff_t pos_in,
1022 struct file *file_out,
1023 loff_t pos_out,
1024 loff_t len,
1025 unsigned int remap_flags)
1027 struct inode *inode_in = file_inode(file_in);
1028 struct xfs_inode *src = XFS_I(inode_in);
1029 struct inode *inode_out = file_inode(file_out);
1030 struct xfs_inode *dest = XFS_I(inode_out);
1031 struct xfs_mount *mp = src->i_mount;
1032 loff_t remapped = 0;
1033 xfs_extlen_t cowextsize;
1034 int ret;
1036 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1037 return -EINVAL;
1039 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1040 return -EOPNOTSUPP;
1042 if (XFS_FORCED_SHUTDOWN(mp))
1043 return -EIO;
1045 /* Prepare and then clone file data. */
1046 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1047 &len, remap_flags);
1048 if (ret < 0 || len == 0)
1049 return ret;
1051 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1053 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1054 &remapped);
1055 if (ret)
1056 goto out_unlock;
1059 * Carry the cowextsize hint from src to dest if we're sharing the
1060 * entire source file to the entire destination file, the source file
1061 * has a cowextsize hint, and the destination file does not.
1063 cowextsize = 0;
1064 if (pos_in == 0 && len == i_size_read(inode_in) &&
1065 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1066 pos_out == 0 && len >= i_size_read(inode_out) &&
1067 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1068 cowextsize = src->i_d.di_cowextsize;
1070 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1071 remap_flags);
1073 out_unlock:
1074 xfs_reflink_remap_unlock(file_in, file_out);
1075 if (ret)
1076 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1077 return remapped > 0 ? remapped : ret;
1080 STATIC int
1081 xfs_file_open(
1082 struct inode *inode,
1083 struct file *file)
1085 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1086 return -EFBIG;
1087 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1088 return -EIO;
1089 file->f_mode |= FMODE_NOWAIT;
1090 return 0;
1093 STATIC int
1094 xfs_dir_open(
1095 struct inode *inode,
1096 struct file *file)
1098 struct xfs_inode *ip = XFS_I(inode);
1099 int mode;
1100 int error;
1102 error = xfs_file_open(inode, file);
1103 if (error)
1104 return error;
1107 * If there are any blocks, read-ahead block 0 as we're almost
1108 * certain to have the next operation be a read there.
1110 mode = xfs_ilock_data_map_shared(ip);
1111 if (ip->i_d.di_nextents > 0)
1112 error = xfs_dir3_data_readahead(ip, 0, 0);
1113 xfs_iunlock(ip, mode);
1114 return error;
1117 STATIC int
1118 xfs_file_release(
1119 struct inode *inode,
1120 struct file *filp)
1122 return xfs_release(XFS_I(inode));
1125 STATIC int
1126 xfs_file_readdir(
1127 struct file *file,
1128 struct dir_context *ctx)
1130 struct inode *inode = file_inode(file);
1131 xfs_inode_t *ip = XFS_I(inode);
1132 size_t bufsize;
1135 * The Linux API doesn't pass down the total size of the buffer
1136 * we read into down to the filesystem. With the filldir concept
1137 * it's not needed for correct information, but the XFS dir2 leaf
1138 * code wants an estimate of the buffer size to calculate it's
1139 * readahead window and size the buffers used for mapping to
1140 * physical blocks.
1142 * Try to give it an estimate that's good enough, maybe at some
1143 * point we can change the ->readdir prototype to include the
1144 * buffer size. For now we use the current glibc buffer size.
1146 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1148 return xfs_readdir(NULL, ip, ctx, bufsize);
1151 STATIC loff_t
1152 xfs_file_llseek(
1153 struct file *file,
1154 loff_t offset,
1155 int whence)
1157 struct inode *inode = file->f_mapping->host;
1159 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1160 return -EIO;
1162 switch (whence) {
1163 default:
1164 return generic_file_llseek(file, offset, whence);
1165 case SEEK_HOLE:
1166 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1167 break;
1168 case SEEK_DATA:
1169 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1170 break;
1173 if (offset < 0)
1174 return offset;
1175 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1179 * Locking for serialisation of IO during page faults. This results in a lock
1180 * ordering of:
1182 * mmap_sem (MM)
1183 * sb_start_pagefault(vfs, freeze)
1184 * i_mmaplock (XFS - truncate serialisation)
1185 * page_lock (MM)
1186 * i_lock (XFS - extent map serialisation)
1188 static vm_fault_t
1189 __xfs_filemap_fault(
1190 struct vm_fault *vmf,
1191 enum page_entry_size pe_size,
1192 bool write_fault)
1194 struct inode *inode = file_inode(vmf->vma->vm_file);
1195 struct xfs_inode *ip = XFS_I(inode);
1196 vm_fault_t ret;
1198 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1200 if (write_fault) {
1201 sb_start_pagefault(inode->i_sb);
1202 file_update_time(vmf->vma->vm_file);
1205 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1206 if (IS_DAX(inode)) {
1207 pfn_t pfn;
1209 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1210 (write_fault && !vmf->cow_page) ?
1211 &xfs_direct_write_iomap_ops :
1212 &xfs_read_iomap_ops);
1213 if (ret & VM_FAULT_NEEDDSYNC)
1214 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1215 } else {
1216 if (write_fault)
1217 ret = iomap_page_mkwrite(vmf,
1218 &xfs_buffered_write_iomap_ops);
1219 else
1220 ret = filemap_fault(vmf);
1222 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1224 if (write_fault)
1225 sb_end_pagefault(inode->i_sb);
1226 return ret;
1229 static vm_fault_t
1230 xfs_filemap_fault(
1231 struct vm_fault *vmf)
1233 /* DAX can shortcut the normal fault path on write faults! */
1234 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1235 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1236 (vmf->flags & FAULT_FLAG_WRITE));
1239 static vm_fault_t
1240 xfs_filemap_huge_fault(
1241 struct vm_fault *vmf,
1242 enum page_entry_size pe_size)
1244 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1245 return VM_FAULT_FALLBACK;
1247 /* DAX can shortcut the normal fault path on write faults! */
1248 return __xfs_filemap_fault(vmf, pe_size,
1249 (vmf->flags & FAULT_FLAG_WRITE));
1252 static vm_fault_t
1253 xfs_filemap_page_mkwrite(
1254 struct vm_fault *vmf)
1256 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1260 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1261 * on write faults. In reality, it needs to serialise against truncate and
1262 * prepare memory for writing so handle is as standard write fault.
1264 static vm_fault_t
1265 xfs_filemap_pfn_mkwrite(
1266 struct vm_fault *vmf)
1269 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1272 static const struct vm_operations_struct xfs_file_vm_ops = {
1273 .fault = xfs_filemap_fault,
1274 .huge_fault = xfs_filemap_huge_fault,
1275 .map_pages = filemap_map_pages,
1276 .page_mkwrite = xfs_filemap_page_mkwrite,
1277 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1280 STATIC int
1281 xfs_file_mmap(
1282 struct file *file,
1283 struct vm_area_struct *vma)
1285 struct inode *inode = file_inode(file);
1286 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1289 * We don't support synchronous mappings for non-DAX files and
1290 * for DAX files if underneath dax_device is not synchronous.
1292 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1293 return -EOPNOTSUPP;
1295 file_accessed(file);
1296 vma->vm_ops = &xfs_file_vm_ops;
1297 if (IS_DAX(inode))
1298 vma->vm_flags |= VM_HUGEPAGE;
1299 return 0;
1302 const struct file_operations xfs_file_operations = {
1303 .llseek = xfs_file_llseek,
1304 .read_iter = xfs_file_read_iter,
1305 .write_iter = xfs_file_write_iter,
1306 .splice_read = generic_file_splice_read,
1307 .splice_write = iter_file_splice_write,
1308 .iopoll = iomap_dio_iopoll,
1309 .unlocked_ioctl = xfs_file_ioctl,
1310 #ifdef CONFIG_COMPAT
1311 .compat_ioctl = xfs_file_compat_ioctl,
1312 #endif
1313 .mmap = xfs_file_mmap,
1314 .mmap_supported_flags = MAP_SYNC,
1315 .open = xfs_file_open,
1316 .release = xfs_file_release,
1317 .fsync = xfs_file_fsync,
1318 .get_unmapped_area = thp_get_unmapped_area,
1319 .fallocate = xfs_file_fallocate,
1320 .fadvise = xfs_file_fadvise,
1321 .remap_file_range = xfs_file_remap_range,
1324 const struct file_operations xfs_dir_file_operations = {
1325 .open = xfs_dir_open,
1326 .read = generic_read_dir,
1327 .iterate_shared = xfs_file_readdir,
1328 .llseek = generic_file_llseek,
1329 .unlocked_ioctl = xfs_file_ioctl,
1330 #ifdef CONFIG_COMPAT
1331 .compat_ioctl = xfs_file_compat_ioctl,
1332 #endif
1333 .fsync = xfs_dir_fsync,