1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
6 #include <linux/iversion.h>
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
39 kmem_zone_t
*xfs_inode_zone
;
42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
43 * freed from a file in a single transaction.
45 #define XFS_ITRUNC_MAX_EXTENTS 2
47 STATIC
int xfs_iflush_int(struct xfs_inode
*, struct xfs_buf
*);
48 STATIC
int xfs_iunlink(struct xfs_trans
*, struct xfs_inode
*);
49 STATIC
int xfs_iunlink_remove(struct xfs_trans
*, struct xfs_inode
*);
52 * helper function to extract extent size hint from inode
59 * No point in aligning allocations if we need to COW to actually
62 if (xfs_is_always_cow_inode(ip
))
64 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
65 return ip
->i_d
.di_extsize
;
66 if (XFS_IS_REALTIME_INODE(ip
))
67 return ip
->i_mount
->m_sb
.sb_rextsize
;
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
78 xfs_get_cowextsz_hint(
84 if (ip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
85 a
= ip
->i_d
.di_cowextsize
;
86 b
= xfs_get_extsz_hint(ip
);
90 return XFS_DEFAULT_COWEXTSZ_HINT
;
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
110 xfs_ilock_data_map_shared(
111 struct xfs_inode
*ip
)
113 uint lock_mode
= XFS_ILOCK_SHARED
;
115 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
&&
116 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)
117 lock_mode
= XFS_ILOCK_EXCL
;
118 xfs_ilock(ip
, lock_mode
);
123 xfs_ilock_attr_map_shared(
124 struct xfs_inode
*ip
)
126 uint lock_mode
= XFS_ILOCK_SHARED
;
128 if (ip
->i_d
.di_aformat
== XFS_DINODE_FMT_BTREE
&&
129 (ip
->i_afp
->if_flags
& XFS_IFEXTENTS
) == 0)
130 lock_mode
= XFS_ILOCK_EXCL
;
131 xfs_ilock(ip
, lock_mode
);
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
143 * Basic locking order:
145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
147 * mmap_sem locking order:
149 * i_rwsem -> page lock -> mmap_sem
150 * mmap_sem -> i_mmap_lock -> page_lock
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157 * page faults already hold the mmap_sem.
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
170 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
177 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
178 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
179 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
180 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
181 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
182 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
183 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
185 if (lock_flags
& XFS_IOLOCK_EXCL
) {
186 down_write_nested(&VFS_I(ip
)->i_rwsem
,
187 XFS_IOLOCK_DEP(lock_flags
));
188 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
189 down_read_nested(&VFS_I(ip
)->i_rwsem
,
190 XFS_IOLOCK_DEP(lock_flags
));
193 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
194 mrupdate_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
195 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
196 mraccess_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
198 if (lock_flags
& XFS_ILOCK_EXCL
)
199 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
200 else if (lock_flags
& XFS_ILOCK_SHARED
)
201 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
221 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
229 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
230 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
231 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
232 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
233 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
234 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
236 if (lock_flags
& XFS_IOLOCK_EXCL
) {
237 if (!down_write_trylock(&VFS_I(ip
)->i_rwsem
))
239 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
240 if (!down_read_trylock(&VFS_I(ip
)->i_rwsem
))
244 if (lock_flags
& XFS_MMAPLOCK_EXCL
) {
245 if (!mrtryupdate(&ip
->i_mmaplock
))
246 goto out_undo_iolock
;
247 } else if (lock_flags
& XFS_MMAPLOCK_SHARED
) {
248 if (!mrtryaccess(&ip
->i_mmaplock
))
249 goto out_undo_iolock
;
252 if (lock_flags
& XFS_ILOCK_EXCL
) {
253 if (!mrtryupdate(&ip
->i_lock
))
254 goto out_undo_mmaplock
;
255 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
256 if (!mrtryaccess(&ip
->i_lock
))
257 goto out_undo_mmaplock
;
262 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
263 mrunlock_excl(&ip
->i_mmaplock
);
264 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
265 mrunlock_shared(&ip
->i_mmaplock
);
267 if (lock_flags
& XFS_IOLOCK_EXCL
)
268 up_write(&VFS_I(ip
)->i_rwsem
);
269 else if (lock_flags
& XFS_IOLOCK_SHARED
)
270 up_read(&VFS_I(ip
)->i_rwsem
);
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
298 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
299 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
300 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
301 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
302 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
303 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
304 ASSERT(lock_flags
!= 0);
306 if (lock_flags
& XFS_IOLOCK_EXCL
)
307 up_write(&VFS_I(ip
)->i_rwsem
);
308 else if (lock_flags
& XFS_IOLOCK_SHARED
)
309 up_read(&VFS_I(ip
)->i_rwsem
);
311 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
312 mrunlock_excl(&ip
->i_mmaplock
);
313 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
314 mrunlock_shared(&ip
->i_mmaplock
);
316 if (lock_flags
& XFS_ILOCK_EXCL
)
317 mrunlock_excl(&ip
->i_lock
);
318 else if (lock_flags
& XFS_ILOCK_SHARED
)
319 mrunlock_shared(&ip
->i_lock
);
321 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
333 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
));
335 ~(XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
337 if (lock_flags
& XFS_ILOCK_EXCL
)
338 mrdemote(&ip
->i_lock
);
339 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
340 mrdemote(&ip
->i_mmaplock
);
341 if (lock_flags
& XFS_IOLOCK_EXCL
)
342 downgrade_write(&VFS_I(ip
)->i_rwsem
);
344 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
347 #if defined(DEBUG) || defined(XFS_WARN)
353 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
354 if (!(lock_flags
& XFS_ILOCK_SHARED
))
355 return !!ip
->i_lock
.mr_writer
;
356 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
359 if (lock_flags
& (XFS_MMAPLOCK_EXCL
|XFS_MMAPLOCK_SHARED
)) {
360 if (!(lock_flags
& XFS_MMAPLOCK_SHARED
))
361 return !!ip
->i_mmaplock
.mr_writer
;
362 return rwsem_is_locked(&ip
->i_mmaplock
.mr_lock
);
365 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
366 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
367 return !debug_locks
||
368 lockdep_is_held_type(&VFS_I(ip
)->i_rwsem
, 0);
369 return rwsem_is_locked(&VFS_I(ip
)->i_rwsem
);
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
385 xfs_lockdep_subclass_ok(
388 return subclass
< MAX_LOCKDEP_SUBCLASSES
;
391 #define xfs_lockdep_subclass_ok(subclass) (true)
395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
401 xfs_lock_inumorder(int lock_mode
, int subclass
)
405 ASSERT(!(lock_mode
& (XFS_ILOCK_PARENT
| XFS_ILOCK_RTBITMAP
|
407 ASSERT(xfs_lockdep_subclass_ok(subclass
));
409 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
410 ASSERT(subclass
<= XFS_IOLOCK_MAX_SUBCLASS
);
411 class += subclass
<< XFS_IOLOCK_SHIFT
;
414 if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) {
415 ASSERT(subclass
<= XFS_MMAPLOCK_MAX_SUBCLASS
);
416 class += subclass
<< XFS_MMAPLOCK_SHIFT
;
419 if (lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)) {
420 ASSERT(subclass
<= XFS_ILOCK_MAX_SUBCLASS
);
421 class += subclass
<< XFS_ILOCK_SHIFT
;
424 return (lock_mode
& ~XFS_LOCK_SUBCLASS_MASK
) | class;
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
444 struct xfs_inode
**ips
,
448 int attempts
= 0, i
, j
, try_lock
;
449 struct xfs_log_item
*lp
;
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
458 ASSERT(ips
&& inodes
>= 2 && inodes
<= 5);
459 ASSERT(lock_mode
& (XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
|
461 ASSERT(!(lock_mode
& (XFS_IOLOCK_SHARED
| XFS_MMAPLOCK_SHARED
|
463 ASSERT(!(lock_mode
& XFS_MMAPLOCK_EXCL
) ||
464 inodes
<= XFS_MMAPLOCK_MAX_SUBCLASS
+ 1);
465 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
) ||
466 inodes
<= XFS_ILOCK_MAX_SUBCLASS
+ 1);
468 if (lock_mode
& XFS_IOLOCK_EXCL
) {
469 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_EXCL
| XFS_ILOCK_EXCL
)));
470 } else if (lock_mode
& XFS_MMAPLOCK_EXCL
)
471 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
));
476 for (; i
< inodes
; i
++) {
479 if (i
&& (ips
[i
] == ips
[i
- 1])) /* Already locked */
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
487 for (j
= (i
- 1); j
>= 0 && !try_lock
; j
--) {
488 lp
= &ips
[j
]->i_itemp
->ili_item
;
489 if (lp
&& test_bit(XFS_LI_IN_AIL
, &lp
->li_flags
))
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
501 xfs_ilock(ips
[i
], xfs_lock_inumorder(lock_mode
, i
));
505 /* try_lock means we have an inode locked that is in the AIL. */
507 if (xfs_ilock_nowait(ips
[i
], xfs_lock_inumorder(lock_mode
, i
)))
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
515 for (j
= i
- 1; j
>= 0; j
--) {
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
521 if (j
!= (i
- 1) && ips
[j
] == ips
[j
+ 1])
524 xfs_iunlock(ips
[j
], lock_mode
);
527 if ((attempts
% 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
546 struct xfs_inode
*ip0
,
548 struct xfs_inode
*ip1
,
551 struct xfs_inode
*temp
;
554 struct xfs_log_item
*lp
;
556 ASSERT(hweight32(ip0_mode
) == 1);
557 ASSERT(hweight32(ip1_mode
) == 1);
558 ASSERT(!(ip0_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)));
559 ASSERT(!(ip1_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)));
560 ASSERT(!(ip0_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
561 !(ip0_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
562 ASSERT(!(ip1_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
563 !(ip1_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
564 ASSERT(!(ip1_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
565 !(ip0_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
566 ASSERT(!(ip0_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
567 !(ip1_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
569 ASSERT(ip0
->i_ino
!= ip1
->i_ino
);
571 if (ip0
->i_ino
> ip1
->i_ino
) {
575 mode_temp
= ip0_mode
;
577 ip1_mode
= mode_temp
;
581 xfs_ilock(ip0
, xfs_lock_inumorder(ip0_mode
, 0));
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
588 lp
= &ip0
->i_itemp
->ili_item
;
589 if (lp
&& test_bit(XFS_LI_IN_AIL
, &lp
->li_flags
)) {
590 if (!xfs_ilock_nowait(ip1
, xfs_lock_inumorder(ip1_mode
, 1))) {
591 xfs_iunlock(ip0
, ip0_mode
);
592 if ((++attempts
% 5) == 0)
593 delay(1); /* Don't just spin the CPU */
597 xfs_ilock(ip1
, xfs_lock_inumorder(ip1_mode
, 1));
603 struct xfs_inode
*ip
)
605 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
606 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
609 prepare_to_wait_exclusive(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
610 if (xfs_isiflocked(ip
))
612 } while (!xfs_iflock_nowait(ip
));
614 finish_wait(wq
, &wait
.wq_entry
);
625 if (di_flags
& XFS_DIFLAG_ANY
) {
626 if (di_flags
& XFS_DIFLAG_REALTIME
)
627 flags
|= FS_XFLAG_REALTIME
;
628 if (di_flags
& XFS_DIFLAG_PREALLOC
)
629 flags
|= FS_XFLAG_PREALLOC
;
630 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
631 flags
|= FS_XFLAG_IMMUTABLE
;
632 if (di_flags
& XFS_DIFLAG_APPEND
)
633 flags
|= FS_XFLAG_APPEND
;
634 if (di_flags
& XFS_DIFLAG_SYNC
)
635 flags
|= FS_XFLAG_SYNC
;
636 if (di_flags
& XFS_DIFLAG_NOATIME
)
637 flags
|= FS_XFLAG_NOATIME
;
638 if (di_flags
& XFS_DIFLAG_NODUMP
)
639 flags
|= FS_XFLAG_NODUMP
;
640 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
641 flags
|= FS_XFLAG_RTINHERIT
;
642 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
643 flags
|= FS_XFLAG_PROJINHERIT
;
644 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
645 flags
|= FS_XFLAG_NOSYMLINKS
;
646 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
647 flags
|= FS_XFLAG_EXTSIZE
;
648 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
649 flags
|= FS_XFLAG_EXTSZINHERIT
;
650 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
651 flags
|= FS_XFLAG_NODEFRAG
;
652 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
653 flags
|= FS_XFLAG_FILESTREAM
;
656 if (di_flags2
& XFS_DIFLAG2_ANY
) {
657 if (di_flags2
& XFS_DIFLAG2_DAX
)
658 flags
|= FS_XFLAG_DAX
;
659 if (di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
660 flags
|= FS_XFLAG_COWEXTSIZE
;
664 flags
|= FS_XFLAG_HASATTR
;
671 struct xfs_inode
*ip
)
673 struct xfs_icdinode
*dic
= &ip
->i_d
;
675 return _xfs_dic2xflags(dic
->di_flags
, dic
->di_flags2
, XFS_IFORK_Q(ip
));
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
687 struct xfs_name
*name
,
689 struct xfs_name
*ci_name
)
694 trace_xfs_lookup(dp
, name
);
696 if (XFS_FORCED_SHUTDOWN(dp
->i_mount
))
699 error
= xfs_dir_lookup(NULL
, dp
, name
, &inum
, ci_name
);
703 error
= xfs_iget(dp
->i_mount
, NULL
, inum
, 0, 0, ipp
);
711 kmem_free(ci_name
->name
);
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
756 xfs_buf_t
**ialloc_context
,
759 struct xfs_mount
*mp
= tp
->t_mountp
;
764 struct timespec64 tv
;
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
771 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
,
772 ialloc_context
, &ino
);
775 if (*ialloc_context
|| ino
== NULLFSINO
) {
779 ASSERT(*ialloc_context
== NULL
);
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
788 if ((pip
&& ino
== pip
->i_ino
) || !xfs_verify_dir_ino(mp
, ino
)) {
789 xfs_alert(mp
, "Allocated a known in-use inode 0x%llx!", ino
);
790 return -EFSCORRUPTED
;
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
798 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
799 XFS_ILOCK_EXCL
, &ip
);
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
810 if (ip
->i_d
.di_version
== 1)
811 ip
->i_d
.di_version
= 2;
813 inode
->i_mode
= mode
;
814 set_nlink(inode
, nlink
);
815 ip
->i_d
.di_uid
= xfs_kuid_to_uid(current_fsuid());
816 ip
->i_d
.di_gid
= xfs_kgid_to_gid(current_fsgid());
817 inode
->i_rdev
= rdev
;
818 ip
->i_d
.di_projid
= prid
;
820 if (pip
&& XFS_INHERIT_GID(pip
)) {
821 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
822 if ((VFS_I(pip
)->i_mode
& S_ISGID
) && S_ISDIR(mode
))
823 inode
->i_mode
|= S_ISGID
;
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
831 if ((irix_sgid_inherit
) &&
832 (inode
->i_mode
& S_ISGID
) &&
833 (!in_group_p(xfs_gid_to_kgid(ip
->i_d
.di_gid
))))
834 inode
->i_mode
&= ~S_ISGID
;
837 ip
->i_d
.di_nextents
= 0;
838 ASSERT(ip
->i_d
.di_nblocks
== 0);
840 tv
= current_time(inode
);
845 ip
->i_d
.di_extsize
= 0;
846 ip
->i_d
.di_dmevmask
= 0;
847 ip
->i_d
.di_dmstate
= 0;
848 ip
->i_d
.di_flags
= 0;
850 if (ip
->i_d
.di_version
== 3) {
851 inode_set_iversion(inode
, 1);
852 ip
->i_d
.di_flags2
= 0;
853 ip
->i_d
.di_cowextsize
= 0;
854 ip
->i_d
.di_crtime
= tv
;
858 flags
= XFS_ILOG_CORE
;
859 switch (mode
& S_IFMT
) {
864 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
865 ip
->i_df
.if_flags
= 0;
866 flags
|= XFS_ILOG_DEV
;
870 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
874 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
875 di_flags
|= XFS_DIFLAG_RTINHERIT
;
876 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
877 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
878 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
880 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
881 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
882 } else if (S_ISREG(mode
)) {
883 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
884 di_flags
|= XFS_DIFLAG_REALTIME
;
885 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
886 di_flags
|= XFS_DIFLAG_EXTSIZE
;
887 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
890 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
892 di_flags
|= XFS_DIFLAG_NOATIME
;
893 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
895 di_flags
|= XFS_DIFLAG_NODUMP
;
896 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
898 di_flags
|= XFS_DIFLAG_SYNC
;
899 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
900 xfs_inherit_nosymlinks
)
901 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
902 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
903 xfs_inherit_nodefrag
)
904 di_flags
|= XFS_DIFLAG_NODEFRAG
;
905 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
906 di_flags
|= XFS_DIFLAG_FILESTREAM
;
908 ip
->i_d
.di_flags
|= di_flags
;
911 (pip
->i_d
.di_flags2
& XFS_DIFLAG2_ANY
) &&
912 pip
->i_d
.di_version
== 3 &&
913 ip
->i_d
.di_version
== 3) {
914 uint64_t di_flags2
= 0;
916 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
) {
917 di_flags2
|= XFS_DIFLAG2_COWEXTSIZE
;
918 ip
->i_d
.di_cowextsize
= pip
->i_d
.di_cowextsize
;
920 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_DAX
)
921 di_flags2
|= XFS_DIFLAG2_DAX
;
923 ip
->i_d
.di_flags2
|= di_flags2
;
927 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
928 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
929 ip
->i_df
.if_bytes
= 0;
930 ip
->i_df
.if_u1
.if_root
= NULL
;
936 * Attribute fork settings for new inode.
938 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
939 ip
->i_d
.di_anextents
= 0;
942 * Log the new values stuffed into the inode.
944 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
945 xfs_trans_log_inode(tp
, ip
, flags
);
947 /* now that we have an i_mode we can setup the inode structure */
955 * Allocates a new inode from disk and return a pointer to the
956 * incore copy. This routine will internally commit the current
957 * transaction and allocate a new one if the Space Manager needed
958 * to do an allocation to replenish the inode free-list.
960 * This routine is designed to be called from xfs_create and
966 xfs_trans_t
**tpp
, /* input: current transaction;
967 output: may be a new transaction. */
968 xfs_inode_t
*dp
, /* directory within whose allocate
973 prid_t prid
, /* project id */
974 xfs_inode_t
**ipp
) /* pointer to inode; it will be
979 xfs_buf_t
*ialloc_context
= NULL
;
985 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
988 * xfs_ialloc will return a pointer to an incore inode if
989 * the Space Manager has an available inode on the free
990 * list. Otherwise, it will do an allocation and replenish
991 * the freelist. Since we can only do one allocation per
992 * transaction without deadlocks, we will need to commit the
993 * current transaction and start a new one. We will then
994 * need to call xfs_ialloc again to get the inode.
996 * If xfs_ialloc did an allocation to replenish the freelist,
997 * it returns the bp containing the head of the freelist as
998 * ialloc_context. We will hold a lock on it across the
999 * transaction commit so that no other process can steal
1000 * the inode(s) that we've just allocated.
1002 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
, &ialloc_context
,
1006 * Return an error if we were unable to allocate a new inode.
1007 * This should only happen if we run out of space on disk or
1008 * encounter a disk error.
1014 if (!ialloc_context
&& !ip
) {
1020 * If the AGI buffer is non-NULL, then we were unable to get an
1021 * inode in one operation. We need to commit the current
1022 * transaction and call xfs_ialloc() again. It is guaranteed
1023 * to succeed the second time.
1025 if (ialloc_context
) {
1027 * Normally, xfs_trans_commit releases all the locks.
1028 * We call bhold to hang on to the ialloc_context across
1029 * the commit. Holding this buffer prevents any other
1030 * processes from doing any allocations in this
1033 xfs_trans_bhold(tp
, ialloc_context
);
1036 * We want the quota changes to be associated with the next
1037 * transaction, NOT this one. So, detach the dqinfo from this
1038 * and attach it to the next transaction.
1043 dqinfo
= (void *)tp
->t_dqinfo
;
1044 tp
->t_dqinfo
= NULL
;
1045 tflags
= tp
->t_flags
& XFS_TRANS_DQ_DIRTY
;
1046 tp
->t_flags
&= ~(XFS_TRANS_DQ_DIRTY
);
1049 code
= xfs_trans_roll(&tp
);
1052 * Re-attach the quota info that we detached from prev trx.
1055 tp
->t_dqinfo
= dqinfo
;
1056 tp
->t_flags
|= tflags
;
1060 xfs_buf_relse(ialloc_context
);
1065 xfs_trans_bjoin(tp
, ialloc_context
);
1068 * Call ialloc again. Since we've locked out all
1069 * other allocations in this allocation group,
1070 * this call should always succeed.
1072 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
,
1073 &ialloc_context
, &ip
);
1076 * If we get an error at this point, return to the caller
1077 * so that the current transaction can be aborted.
1084 ASSERT(!ialloc_context
&& ip
);
1095 * Decrement the link count on an inode & log the change. If this causes the
1096 * link count to go to zero, move the inode to AGI unlinked list so that it can
1097 * be freed when the last active reference goes away via xfs_inactive().
1099 static int /* error */
1104 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1106 drop_nlink(VFS_I(ip
));
1107 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1109 if (VFS_I(ip
)->i_nlink
)
1112 return xfs_iunlink(tp
, ip
);
1116 * Increment the link count on an inode & log the change.
1123 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1125 ASSERT(ip
->i_d
.di_version
> 1);
1126 inc_nlink(VFS_I(ip
));
1127 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1133 struct xfs_name
*name
,
1138 int is_dir
= S_ISDIR(mode
);
1139 struct xfs_mount
*mp
= dp
->i_mount
;
1140 struct xfs_inode
*ip
= NULL
;
1141 struct xfs_trans
*tp
= NULL
;
1143 bool unlock_dp_on_error
= false;
1145 struct xfs_dquot
*udqp
= NULL
;
1146 struct xfs_dquot
*gdqp
= NULL
;
1147 struct xfs_dquot
*pdqp
= NULL
;
1148 struct xfs_trans_res
*tres
;
1151 trace_xfs_create(dp
, name
);
1153 if (XFS_FORCED_SHUTDOWN(mp
))
1156 prid
= xfs_get_initial_prid(dp
);
1159 * Make sure that we have allocated dquot(s) on disk.
1161 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1162 xfs_kgid_to_gid(current_fsgid()), prid
,
1163 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1164 &udqp
, &gdqp
, &pdqp
);
1169 resblks
= XFS_MKDIR_SPACE_RES(mp
, name
->len
);
1170 tres
= &M_RES(mp
)->tr_mkdir
;
1172 resblks
= XFS_CREATE_SPACE_RES(mp
, name
->len
);
1173 tres
= &M_RES(mp
)->tr_create
;
1177 * Initially assume that the file does not exist and
1178 * reserve the resources for that case. If that is not
1179 * the case we'll drop the one we have and get a more
1180 * appropriate transaction later.
1182 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1183 if (error
== -ENOSPC
) {
1184 /* flush outstanding delalloc blocks and retry */
1185 xfs_flush_inodes(mp
);
1186 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1189 goto out_release_inode
;
1191 xfs_ilock(dp
, XFS_ILOCK_EXCL
| XFS_ILOCK_PARENT
);
1192 unlock_dp_on_error
= true;
1195 * Reserve disk quota and the inode.
1197 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1198 pdqp
, resblks
, 1, 0);
1200 goto out_trans_cancel
;
1203 * A newly created regular or special file just has one directory
1204 * entry pointing to them, but a directory also the "." entry
1205 * pointing to itself.
1207 error
= xfs_dir_ialloc(&tp
, dp
, mode
, is_dir
? 2 : 1, rdev
, prid
, &ip
);
1209 goto out_trans_cancel
;
1212 * Now we join the directory inode to the transaction. We do not do it
1213 * earlier because xfs_dir_ialloc might commit the previous transaction
1214 * (and release all the locks). An error from here on will result in
1215 * the transaction cancel unlocking dp so don't do it explicitly in the
1218 xfs_trans_ijoin(tp
, dp
, XFS_ILOCK_EXCL
);
1219 unlock_dp_on_error
= false;
1221 error
= xfs_dir_createname(tp
, dp
, name
, ip
->i_ino
,
1223 resblks
- XFS_IALLOC_SPACE_RES(mp
) : 0);
1225 ASSERT(error
!= -ENOSPC
);
1226 goto out_trans_cancel
;
1228 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1229 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
1232 error
= xfs_dir_init(tp
, ip
, dp
);
1234 goto out_trans_cancel
;
1236 xfs_bumplink(tp
, dp
);
1240 * If this is a synchronous mount, make sure that the
1241 * create transaction goes to disk before returning to
1244 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1245 xfs_trans_set_sync(tp
);
1248 * Attach the dquot(s) to the inodes and modify them incore.
1249 * These ids of the inode couldn't have changed since the new
1250 * inode has been locked ever since it was created.
1252 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1254 error
= xfs_trans_commit(tp
);
1256 goto out_release_inode
;
1258 xfs_qm_dqrele(udqp
);
1259 xfs_qm_dqrele(gdqp
);
1260 xfs_qm_dqrele(pdqp
);
1266 xfs_trans_cancel(tp
);
1269 * Wait until after the current transaction is aborted to finish the
1270 * setup of the inode and release the inode. This prevents recursive
1271 * transactions and deadlocks from xfs_inactive.
1274 xfs_finish_inode_setup(ip
);
1278 xfs_qm_dqrele(udqp
);
1279 xfs_qm_dqrele(gdqp
);
1280 xfs_qm_dqrele(pdqp
);
1282 if (unlock_dp_on_error
)
1283 xfs_iunlock(dp
, XFS_ILOCK_EXCL
);
1289 struct xfs_inode
*dp
,
1291 struct xfs_inode
**ipp
)
1293 struct xfs_mount
*mp
= dp
->i_mount
;
1294 struct xfs_inode
*ip
= NULL
;
1295 struct xfs_trans
*tp
= NULL
;
1298 struct xfs_dquot
*udqp
= NULL
;
1299 struct xfs_dquot
*gdqp
= NULL
;
1300 struct xfs_dquot
*pdqp
= NULL
;
1301 struct xfs_trans_res
*tres
;
1304 if (XFS_FORCED_SHUTDOWN(mp
))
1307 prid
= xfs_get_initial_prid(dp
);
1310 * Make sure that we have allocated dquot(s) on disk.
1312 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1313 xfs_kgid_to_gid(current_fsgid()), prid
,
1314 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1315 &udqp
, &gdqp
, &pdqp
);
1319 resblks
= XFS_IALLOC_SPACE_RES(mp
);
1320 tres
= &M_RES(mp
)->tr_create_tmpfile
;
1322 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1324 goto out_release_inode
;
1326 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1327 pdqp
, resblks
, 1, 0);
1329 goto out_trans_cancel
;
1331 error
= xfs_dir_ialloc(&tp
, dp
, mode
, 0, 0, prid
, &ip
);
1333 goto out_trans_cancel
;
1335 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1336 xfs_trans_set_sync(tp
);
1339 * Attach the dquot(s) to the inodes and modify them incore.
1340 * These ids of the inode couldn't have changed since the new
1341 * inode has been locked ever since it was created.
1343 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1345 error
= xfs_iunlink(tp
, ip
);
1347 goto out_trans_cancel
;
1349 error
= xfs_trans_commit(tp
);
1351 goto out_release_inode
;
1353 xfs_qm_dqrele(udqp
);
1354 xfs_qm_dqrele(gdqp
);
1355 xfs_qm_dqrele(pdqp
);
1361 xfs_trans_cancel(tp
);
1364 * Wait until after the current transaction is aborted to finish the
1365 * setup of the inode and release the inode. This prevents recursive
1366 * transactions and deadlocks from xfs_inactive.
1369 xfs_finish_inode_setup(ip
);
1373 xfs_qm_dqrele(udqp
);
1374 xfs_qm_dqrele(gdqp
);
1375 xfs_qm_dqrele(pdqp
);
1384 struct xfs_name
*target_name
)
1386 xfs_mount_t
*mp
= tdp
->i_mount
;
1391 trace_xfs_link(tdp
, target_name
);
1393 ASSERT(!S_ISDIR(VFS_I(sip
)->i_mode
));
1395 if (XFS_FORCED_SHUTDOWN(mp
))
1398 error
= xfs_qm_dqattach(sip
);
1402 error
= xfs_qm_dqattach(tdp
);
1406 resblks
= XFS_LINK_SPACE_RES(mp
, target_name
->len
);
1407 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, resblks
, 0, 0, &tp
);
1408 if (error
== -ENOSPC
) {
1410 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, 0, 0, 0, &tp
);
1415 xfs_lock_two_inodes(sip
, XFS_ILOCK_EXCL
, tdp
, XFS_ILOCK_EXCL
);
1417 xfs_trans_ijoin(tp
, sip
, XFS_ILOCK_EXCL
);
1418 xfs_trans_ijoin(tp
, tdp
, XFS_ILOCK_EXCL
);
1421 * If we are using project inheritance, we only allow hard link
1422 * creation in our tree when the project IDs are the same; else
1423 * the tree quota mechanism could be circumvented.
1425 if (unlikely((tdp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
1426 tdp
->i_d
.di_projid
!= sip
->i_d
.di_projid
)) {
1432 error
= xfs_dir_canenter(tp
, tdp
, target_name
);
1438 * Handle initial link state of O_TMPFILE inode
1440 if (VFS_I(sip
)->i_nlink
== 0) {
1441 error
= xfs_iunlink_remove(tp
, sip
);
1446 error
= xfs_dir_createname(tp
, tdp
, target_name
, sip
->i_ino
,
1450 xfs_trans_ichgtime(tp
, tdp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1451 xfs_trans_log_inode(tp
, tdp
, XFS_ILOG_CORE
);
1453 xfs_bumplink(tp
, sip
);
1456 * If this is a synchronous mount, make sure that the
1457 * link transaction goes to disk before returning to
1460 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1461 xfs_trans_set_sync(tp
);
1463 return xfs_trans_commit(tp
);
1466 xfs_trans_cancel(tp
);
1471 /* Clear the reflink flag and the cowblocks tag if possible. */
1473 xfs_itruncate_clear_reflink_flags(
1474 struct xfs_inode
*ip
)
1476 struct xfs_ifork
*dfork
;
1477 struct xfs_ifork
*cfork
;
1479 if (!xfs_is_reflink_inode(ip
))
1481 dfork
= XFS_IFORK_PTR(ip
, XFS_DATA_FORK
);
1482 cfork
= XFS_IFORK_PTR(ip
, XFS_COW_FORK
);
1483 if (dfork
->if_bytes
== 0 && cfork
->if_bytes
== 0)
1484 ip
->i_d
.di_flags2
&= ~XFS_DIFLAG2_REFLINK
;
1485 if (cfork
->if_bytes
== 0)
1486 xfs_inode_clear_cowblocks_tag(ip
);
1490 * Free up the underlying blocks past new_size. The new size must be smaller
1491 * than the current size. This routine can be used both for the attribute and
1492 * data fork, and does not modify the inode size, which is left to the caller.
1494 * The transaction passed to this routine must have made a permanent log
1495 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1496 * given transaction and start new ones, so make sure everything involved in
1497 * the transaction is tidy before calling here. Some transaction will be
1498 * returned to the caller to be committed. The incoming transaction must
1499 * already include the inode, and both inode locks must be held exclusively.
1500 * The inode must also be "held" within the transaction. On return the inode
1501 * will be "held" within the returned transaction. This routine does NOT
1502 * require any disk space to be reserved for it within the transaction.
1504 * If we get an error, we must return with the inode locked and linked into the
1505 * current transaction. This keeps things simple for the higher level code,
1506 * because it always knows that the inode is locked and held in the transaction
1507 * that returns to it whether errors occur or not. We don't mark the inode
1508 * dirty on error so that transactions can be easily aborted if possible.
1511 xfs_itruncate_extents_flags(
1512 struct xfs_trans
**tpp
,
1513 struct xfs_inode
*ip
,
1515 xfs_fsize_t new_size
,
1518 struct xfs_mount
*mp
= ip
->i_mount
;
1519 struct xfs_trans
*tp
= *tpp
;
1520 xfs_fileoff_t first_unmap_block
;
1521 xfs_filblks_t unmap_len
;
1524 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1525 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1526 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1527 ASSERT(new_size
<= XFS_ISIZE(ip
));
1528 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1529 ASSERT(ip
->i_itemp
!= NULL
);
1530 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1531 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1533 trace_xfs_itruncate_extents_start(ip
, new_size
);
1535 flags
|= xfs_bmapi_aflag(whichfork
);
1538 * Since it is possible for space to become allocated beyond
1539 * the end of the file (in a crash where the space is allocated
1540 * but the inode size is not yet updated), simply remove any
1541 * blocks which show up between the new EOF and the maximum
1542 * possible file size.
1544 * We have to free all the blocks to the bmbt maximum offset, even if
1545 * the page cache can't scale that far.
1547 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1548 if (first_unmap_block
>= XFS_MAX_FILEOFF
) {
1549 WARN_ON_ONCE(first_unmap_block
> XFS_MAX_FILEOFF
);
1553 unmap_len
= XFS_MAX_FILEOFF
- first_unmap_block
+ 1;
1554 while (unmap_len
> 0) {
1555 ASSERT(tp
->t_firstblock
== NULLFSBLOCK
);
1556 error
= __xfs_bunmapi(tp
, ip
, first_unmap_block
, &unmap_len
,
1557 flags
, XFS_ITRUNC_MAX_EXTENTS
);
1562 * Duplicate the transaction that has the permanent
1563 * reservation and commit the old transaction.
1565 error
= xfs_defer_finish(&tp
);
1569 error
= xfs_trans_roll_inode(&tp
, ip
);
1574 if (whichfork
== XFS_DATA_FORK
) {
1575 /* Remove all pending CoW reservations. */
1576 error
= xfs_reflink_cancel_cow_blocks(ip
, &tp
,
1577 first_unmap_block
, XFS_MAX_FILEOFF
, true);
1581 xfs_itruncate_clear_reflink_flags(ip
);
1585 * Always re-log the inode so that our permanent transaction can keep
1586 * on rolling it forward in the log.
1588 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1590 trace_xfs_itruncate_extents_end(ip
, new_size
);
1601 xfs_mount_t
*mp
= ip
->i_mount
;
1604 if (!S_ISREG(VFS_I(ip
)->i_mode
) || (VFS_I(ip
)->i_mode
== 0))
1607 /* If this is a read-only mount, don't do this (would generate I/O) */
1608 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1611 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1615 * If we previously truncated this file and removed old data
1616 * in the process, we want to initiate "early" writeout on
1617 * the last close. This is an attempt to combat the notorious
1618 * NULL files problem which is particularly noticeable from a
1619 * truncate down, buffered (re-)write (delalloc), followed by
1620 * a crash. What we are effectively doing here is
1621 * significantly reducing the time window where we'd otherwise
1622 * be exposed to that problem.
1624 truncated
= xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
);
1626 xfs_iflags_clear(ip
, XFS_IDIRTY_RELEASE
);
1627 if (ip
->i_delayed_blks
> 0) {
1628 error
= filemap_flush(VFS_I(ip
)->i_mapping
);
1635 if (VFS_I(ip
)->i_nlink
== 0)
1638 if (xfs_can_free_eofblocks(ip
, false)) {
1641 * Check if the inode is being opened, written and closed
1642 * frequently and we have delayed allocation blocks outstanding
1643 * (e.g. streaming writes from the NFS server), truncating the
1644 * blocks past EOF will cause fragmentation to occur.
1646 * In this case don't do the truncation, but we have to be
1647 * careful how we detect this case. Blocks beyond EOF show up as
1648 * i_delayed_blks even when the inode is clean, so we need to
1649 * truncate them away first before checking for a dirty release.
1650 * Hence on the first dirty close we will still remove the
1651 * speculative allocation, but after that we will leave it in
1654 if (xfs_iflags_test(ip
, XFS_IDIRTY_RELEASE
))
1657 * If we can't get the iolock just skip truncating the blocks
1658 * past EOF because we could deadlock with the mmap_sem
1659 * otherwise. We'll get another chance to drop them once the
1660 * last reference to the inode is dropped, so we'll never leak
1661 * blocks permanently.
1663 if (xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1664 error
= xfs_free_eofblocks(ip
);
1665 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
1670 /* delalloc blocks after truncation means it really is dirty */
1671 if (ip
->i_delayed_blks
)
1672 xfs_iflags_set(ip
, XFS_IDIRTY_RELEASE
);
1678 * xfs_inactive_truncate
1680 * Called to perform a truncate when an inode becomes unlinked.
1683 xfs_inactive_truncate(
1684 struct xfs_inode
*ip
)
1686 struct xfs_mount
*mp
= ip
->i_mount
;
1687 struct xfs_trans
*tp
;
1690 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, 0, 0, 0, &tp
);
1692 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1695 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1696 xfs_trans_ijoin(tp
, ip
, 0);
1699 * Log the inode size first to prevent stale data exposure in the event
1700 * of a system crash before the truncate completes. See the related
1701 * comment in xfs_vn_setattr_size() for details.
1703 ip
->i_d
.di_size
= 0;
1704 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1706 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
, 0);
1708 goto error_trans_cancel
;
1710 ASSERT(ip
->i_d
.di_nextents
== 0);
1712 error
= xfs_trans_commit(tp
);
1716 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1720 xfs_trans_cancel(tp
);
1722 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1727 * xfs_inactive_ifree()
1729 * Perform the inode free when an inode is unlinked.
1733 struct xfs_inode
*ip
)
1735 struct xfs_mount
*mp
= ip
->i_mount
;
1736 struct xfs_trans
*tp
;
1740 * We try to use a per-AG reservation for any block needed by the finobt
1741 * tree, but as the finobt feature predates the per-AG reservation
1742 * support a degraded file system might not have enough space for the
1743 * reservation at mount time. In that case try to dip into the reserved
1746 * Send a warning if the reservation does happen to fail, as the inode
1747 * now remains allocated and sits on the unlinked list until the fs is
1750 if (unlikely(mp
->m_finobt_nores
)) {
1751 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
,
1752 XFS_IFREE_SPACE_RES(mp
), 0, XFS_TRANS_RESERVE
,
1755 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
, 0, 0, 0, &tp
);
1758 if (error
== -ENOSPC
) {
1759 xfs_warn_ratelimited(mp
,
1760 "Failed to remove inode(s) from unlinked list. "
1761 "Please free space, unmount and run xfs_repair.");
1763 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1768 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1769 xfs_trans_ijoin(tp
, ip
, 0);
1771 error
= xfs_ifree(tp
, ip
);
1774 * If we fail to free the inode, shut down. The cancel
1775 * might do that, we need to make sure. Otherwise the
1776 * inode might be lost for a long time or forever.
1778 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1779 xfs_notice(mp
, "%s: xfs_ifree returned error %d",
1781 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1783 xfs_trans_cancel(tp
);
1784 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1789 * Credit the quota account(s). The inode is gone.
1791 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_ICOUNT
, -1);
1794 * Just ignore errors at this point. There is nothing we can do except
1795 * to try to keep going. Make sure it's not a silent error.
1797 error
= xfs_trans_commit(tp
);
1799 xfs_notice(mp
, "%s: xfs_trans_commit returned error %d",
1802 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1809 * This is called when the vnode reference count for the vnode
1810 * goes to zero. If the file has been unlinked, then it must
1811 * now be truncated. Also, we clear all of the read-ahead state
1812 * kept for the inode here since the file is now closed.
1818 struct xfs_mount
*mp
;
1823 * If the inode is already free, then there can be nothing
1826 if (VFS_I(ip
)->i_mode
== 0) {
1827 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
1832 ASSERT(!xfs_iflags_test(ip
, XFS_IRECOVERY
));
1834 /* If this is a read-only mount, don't do this (would generate I/O) */
1835 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1838 /* Try to clean out the cow blocks if there are any. */
1839 if (xfs_inode_has_cow_data(ip
))
1840 xfs_reflink_cancel_cow_range(ip
, 0, NULLFILEOFF
, true);
1842 if (VFS_I(ip
)->i_nlink
!= 0) {
1844 * force is true because we are evicting an inode from the
1845 * cache. Post-eof blocks must be freed, lest we end up with
1846 * broken free space accounting.
1848 * Note: don't bother with iolock here since lockdep complains
1849 * about acquiring it in reclaim context. We have the only
1850 * reference to the inode at this point anyways.
1852 if (xfs_can_free_eofblocks(ip
, true))
1853 xfs_free_eofblocks(ip
);
1858 if (S_ISREG(VFS_I(ip
)->i_mode
) &&
1859 (ip
->i_d
.di_size
!= 0 || XFS_ISIZE(ip
) != 0 ||
1860 ip
->i_d
.di_nextents
> 0 || ip
->i_delayed_blks
> 0))
1863 error
= xfs_qm_dqattach(ip
);
1867 if (S_ISLNK(VFS_I(ip
)->i_mode
))
1868 error
= xfs_inactive_symlink(ip
);
1870 error
= xfs_inactive_truncate(ip
);
1875 * If there are attributes associated with the file then blow them away
1876 * now. The code calls a routine that recursively deconstructs the
1877 * attribute fork. If also blows away the in-core attribute fork.
1879 if (XFS_IFORK_Q(ip
)) {
1880 error
= xfs_attr_inactive(ip
);
1886 ASSERT(ip
->i_d
.di_anextents
== 0);
1887 ASSERT(ip
->i_d
.di_forkoff
== 0);
1892 error
= xfs_inactive_ifree(ip
);
1897 * Release the dquots held by inode, if any.
1899 xfs_qm_dqdetach(ip
);
1903 * In-Core Unlinked List Lookups
1904 * =============================
1906 * Every inode is supposed to be reachable from some other piece of metadata
1907 * with the exception of the root directory. Inodes with a connection to a
1908 * file descriptor but not linked from anywhere in the on-disk directory tree
1909 * are collectively known as unlinked inodes, though the filesystem itself
1910 * maintains links to these inodes so that on-disk metadata are consistent.
1912 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1913 * header contains a number of buckets that point to an inode, and each inode
1914 * record has a pointer to the next inode in the hash chain. This
1915 * singly-linked list causes scaling problems in the iunlink remove function
1916 * because we must walk that list to find the inode that points to the inode
1917 * being removed from the unlinked hash bucket list.
1919 * What if we modelled the unlinked list as a collection of records capturing
1920 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1921 * have a fast way to look up unlinked list predecessors, which avoids the
1922 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1925 * Because this is a backref cache, we ignore operational failures since the
1926 * iunlink code can fall back to the slow bucket walk. The only errors that
1927 * should bubble out are for obviously incorrect situations.
1929 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1930 * access or have otherwise provided for concurrency control.
1933 /* Capture a "X.next_unlinked = Y" relationship. */
1934 struct xfs_iunlink
{
1935 struct rhash_head iu_rhash_head
;
1936 xfs_agino_t iu_agino
; /* X */
1937 xfs_agino_t iu_next_unlinked
; /* Y */
1940 /* Unlinked list predecessor lookup hashtable construction */
1942 xfs_iunlink_obj_cmpfn(
1943 struct rhashtable_compare_arg
*arg
,
1946 const xfs_agino_t
*key
= arg
->key
;
1947 const struct xfs_iunlink
*iu
= obj
;
1949 if (iu
->iu_next_unlinked
!= *key
)
1954 static const struct rhashtable_params xfs_iunlink_hash_params
= {
1955 .min_size
= XFS_AGI_UNLINKED_BUCKETS
,
1956 .key_len
= sizeof(xfs_agino_t
),
1957 .key_offset
= offsetof(struct xfs_iunlink
,
1959 .head_offset
= offsetof(struct xfs_iunlink
, iu_rhash_head
),
1960 .automatic_shrinking
= true,
1961 .obj_cmpfn
= xfs_iunlink_obj_cmpfn
,
1965 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1966 * relation is found.
1969 xfs_iunlink_lookup_backref(
1970 struct xfs_perag
*pag
,
1973 struct xfs_iunlink
*iu
;
1975 iu
= rhashtable_lookup_fast(&pag
->pagi_unlinked_hash
, &agino
,
1976 xfs_iunlink_hash_params
);
1977 return iu
? iu
->iu_agino
: NULLAGINO
;
1981 * Take ownership of an iunlink cache entry and insert it into the hash table.
1982 * If successful, the entry will be owned by the cache; if not, it is freed.
1983 * Either way, the caller does not own @iu after this call.
1986 xfs_iunlink_insert_backref(
1987 struct xfs_perag
*pag
,
1988 struct xfs_iunlink
*iu
)
1992 error
= rhashtable_insert_fast(&pag
->pagi_unlinked_hash
,
1993 &iu
->iu_rhash_head
, xfs_iunlink_hash_params
);
1995 * Fail loudly if there already was an entry because that's a sign of
1996 * corruption of in-memory data. Also fail loudly if we see an error
1997 * code we didn't anticipate from the rhashtable code. Currently we
1998 * only anticipate ENOMEM.
2001 WARN(error
!= -ENOMEM
, "iunlink cache insert error %d", error
);
2005 * Absorb any runtime errors that aren't a result of corruption because
2006 * this is a cache and we can always fall back to bucket list scanning.
2008 if (error
!= 0 && error
!= -EEXIST
)
2013 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2015 xfs_iunlink_add_backref(
2016 struct xfs_perag
*pag
,
2017 xfs_agino_t prev_agino
,
2018 xfs_agino_t this_agino
)
2020 struct xfs_iunlink
*iu
;
2022 if (XFS_TEST_ERROR(false, pag
->pag_mount
, XFS_ERRTAG_IUNLINK_FALLBACK
))
2025 iu
= kmem_zalloc(sizeof(*iu
), KM_NOFS
);
2026 iu
->iu_agino
= prev_agino
;
2027 iu
->iu_next_unlinked
= this_agino
;
2029 return xfs_iunlink_insert_backref(pag
, iu
);
2033 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2034 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2035 * wasn't any such entry then we don't bother.
2038 xfs_iunlink_change_backref(
2039 struct xfs_perag
*pag
,
2041 xfs_agino_t next_unlinked
)
2043 struct xfs_iunlink
*iu
;
2046 /* Look up the old entry; if there wasn't one then exit. */
2047 iu
= rhashtable_lookup_fast(&pag
->pagi_unlinked_hash
, &agino
,
2048 xfs_iunlink_hash_params
);
2053 * Remove the entry. This shouldn't ever return an error, but if we
2054 * couldn't remove the old entry we don't want to add it again to the
2055 * hash table, and if the entry disappeared on us then someone's
2056 * violated the locking rules and we need to fail loudly. Either way
2057 * we cannot remove the inode because internal state is or would have
2060 error
= rhashtable_remove_fast(&pag
->pagi_unlinked_hash
,
2061 &iu
->iu_rhash_head
, xfs_iunlink_hash_params
);
2065 /* If there is no new next entry just free our item and return. */
2066 if (next_unlinked
== NULLAGINO
) {
2071 /* Update the entry and re-add it to the hash table. */
2072 iu
->iu_next_unlinked
= next_unlinked
;
2073 return xfs_iunlink_insert_backref(pag
, iu
);
2076 /* Set up the in-core predecessor structures. */
2079 struct xfs_perag
*pag
)
2081 return rhashtable_init(&pag
->pagi_unlinked_hash
,
2082 &xfs_iunlink_hash_params
);
2085 /* Free the in-core predecessor structures. */
2087 xfs_iunlink_free_item(
2091 struct xfs_iunlink
*iu
= ptr
;
2092 bool *freed_anything
= arg
;
2094 *freed_anything
= true;
2099 xfs_iunlink_destroy(
2100 struct xfs_perag
*pag
)
2102 bool freed_anything
= false;
2104 rhashtable_free_and_destroy(&pag
->pagi_unlinked_hash
,
2105 xfs_iunlink_free_item
, &freed_anything
);
2107 ASSERT(freed_anything
== false || XFS_FORCED_SHUTDOWN(pag
->pag_mount
));
2111 * Point the AGI unlinked bucket at an inode and log the results. The caller
2112 * is responsible for validating the old value.
2115 xfs_iunlink_update_bucket(
2116 struct xfs_trans
*tp
,
2117 xfs_agnumber_t agno
,
2118 struct xfs_buf
*agibp
,
2119 unsigned int bucket_index
,
2120 xfs_agino_t new_agino
)
2122 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
2123 xfs_agino_t old_value
;
2126 ASSERT(xfs_verify_agino_or_null(tp
->t_mountp
, agno
, new_agino
));
2128 old_value
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2129 trace_xfs_iunlink_update_bucket(tp
->t_mountp
, agno
, bucket_index
,
2130 old_value
, new_agino
);
2133 * We should never find the head of the list already set to the value
2134 * passed in because either we're adding or removing ourselves from the
2137 if (old_value
== new_agino
) {
2138 xfs_buf_corruption_error(agibp
);
2139 return -EFSCORRUPTED
;
2142 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(new_agino
);
2143 offset
= offsetof(struct xfs_agi
, agi_unlinked
) +
2144 (sizeof(xfs_agino_t
) * bucket_index
);
2145 xfs_trans_log_buf(tp
, agibp
, offset
, offset
+ sizeof(xfs_agino_t
) - 1);
2149 /* Set an on-disk inode's next_unlinked pointer. */
2151 xfs_iunlink_update_dinode(
2152 struct xfs_trans
*tp
,
2153 xfs_agnumber_t agno
,
2155 struct xfs_buf
*ibp
,
2156 struct xfs_dinode
*dip
,
2157 struct xfs_imap
*imap
,
2158 xfs_agino_t next_agino
)
2160 struct xfs_mount
*mp
= tp
->t_mountp
;
2163 ASSERT(xfs_verify_agino_or_null(mp
, agno
, next_agino
));
2165 trace_xfs_iunlink_update_dinode(mp
, agno
, agino
,
2166 be32_to_cpu(dip
->di_next_unlinked
), next_agino
);
2168 dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2169 offset
= imap
->im_boffset
+
2170 offsetof(struct xfs_dinode
, di_next_unlinked
);
2172 /* need to recalc the inode CRC if appropriate */
2173 xfs_dinode_calc_crc(mp
, dip
);
2174 xfs_trans_inode_buf(tp
, ibp
);
2175 xfs_trans_log_buf(tp
, ibp
, offset
, offset
+ sizeof(xfs_agino_t
) - 1);
2176 xfs_inobp_check(mp
, ibp
);
2179 /* Set an in-core inode's unlinked pointer and return the old value. */
2181 xfs_iunlink_update_inode(
2182 struct xfs_trans
*tp
,
2183 struct xfs_inode
*ip
,
2184 xfs_agnumber_t agno
,
2185 xfs_agino_t next_agino
,
2186 xfs_agino_t
*old_next_agino
)
2188 struct xfs_mount
*mp
= tp
->t_mountp
;
2189 struct xfs_dinode
*dip
;
2190 struct xfs_buf
*ibp
;
2191 xfs_agino_t old_value
;
2194 ASSERT(xfs_verify_agino_or_null(mp
, agno
, next_agino
));
2196 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
2200 /* Make sure the old pointer isn't garbage. */
2201 old_value
= be32_to_cpu(dip
->di_next_unlinked
);
2202 if (!xfs_verify_agino_or_null(mp
, agno
, old_value
)) {
2203 xfs_inode_verifier_error(ip
, -EFSCORRUPTED
, __func__
, dip
,
2204 sizeof(*dip
), __this_address
);
2205 error
= -EFSCORRUPTED
;
2210 * Since we're updating a linked list, we should never find that the
2211 * current pointer is the same as the new value, unless we're
2212 * terminating the list.
2214 *old_next_agino
= old_value
;
2215 if (old_value
== next_agino
) {
2216 if (next_agino
!= NULLAGINO
) {
2217 xfs_inode_verifier_error(ip
, -EFSCORRUPTED
, __func__
,
2218 dip
, sizeof(*dip
), __this_address
);
2219 error
= -EFSCORRUPTED
;
2224 /* Ok, update the new pointer. */
2225 xfs_iunlink_update_dinode(tp
, agno
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
2226 ibp
, dip
, &ip
->i_imap
, next_agino
);
2229 xfs_trans_brelse(tp
, ibp
);
2234 * This is called when the inode's link count has gone to 0 or we are creating
2235 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2237 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2238 * list when the inode is freed.
2242 struct xfs_trans
*tp
,
2243 struct xfs_inode
*ip
)
2245 struct xfs_mount
*mp
= tp
->t_mountp
;
2246 struct xfs_agi
*agi
;
2247 struct xfs_buf
*agibp
;
2248 xfs_agino_t next_agino
;
2249 xfs_agnumber_t agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2250 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2251 short bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2254 ASSERT(VFS_I(ip
)->i_nlink
== 0);
2255 ASSERT(VFS_I(ip
)->i_mode
!= 0);
2256 trace_xfs_iunlink(ip
);
2258 /* Get the agi buffer first. It ensures lock ordering on the list. */
2259 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2262 agi
= XFS_BUF_TO_AGI(agibp
);
2265 * Get the index into the agi hash table for the list this inode will
2266 * go on. Make sure the pointer isn't garbage and that this inode
2267 * isn't already on the list.
2269 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2270 if (next_agino
== agino
||
2271 !xfs_verify_agino_or_null(mp
, agno
, next_agino
)) {
2272 xfs_buf_corruption_error(agibp
);
2273 return -EFSCORRUPTED
;
2276 if (next_agino
!= NULLAGINO
) {
2277 struct xfs_perag
*pag
;
2278 xfs_agino_t old_agino
;
2281 * There is already another inode in the bucket, so point this
2282 * inode to the current head of the list.
2284 error
= xfs_iunlink_update_inode(tp
, ip
, agno
, next_agino
,
2288 ASSERT(old_agino
== NULLAGINO
);
2291 * agino has been unlinked, add a backref from the next inode
2294 pag
= xfs_perag_get(mp
, agno
);
2295 error
= xfs_iunlink_add_backref(pag
, agino
, next_agino
);
2301 /* Point the head of the list to point to this inode. */
2302 return xfs_iunlink_update_bucket(tp
, agno
, agibp
, bucket_index
, agino
);
2305 /* Return the imap, dinode pointer, and buffer for an inode. */
2307 xfs_iunlink_map_ino(
2308 struct xfs_trans
*tp
,
2309 xfs_agnumber_t agno
,
2311 struct xfs_imap
*imap
,
2312 struct xfs_dinode
**dipp
,
2313 struct xfs_buf
**bpp
)
2315 struct xfs_mount
*mp
= tp
->t_mountp
;
2319 error
= xfs_imap(mp
, tp
, XFS_AGINO_TO_INO(mp
, agno
, agino
), imap
, 0);
2321 xfs_warn(mp
, "%s: xfs_imap returned error %d.",
2326 error
= xfs_imap_to_bp(mp
, tp
, imap
, dipp
, bpp
, 0, 0);
2328 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
2337 * Walk the unlinked chain from @head_agino until we find the inode that
2338 * points to @target_agino. Return the inode number, map, dinode pointer,
2339 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2341 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2342 * @agino, @imap, @dipp, and @bpp are all output parameters.
2344 * Do not call this function if @target_agino is the head of the list.
2347 xfs_iunlink_map_prev(
2348 struct xfs_trans
*tp
,
2349 xfs_agnumber_t agno
,
2350 xfs_agino_t head_agino
,
2351 xfs_agino_t target_agino
,
2353 struct xfs_imap
*imap
,
2354 struct xfs_dinode
**dipp
,
2355 struct xfs_buf
**bpp
,
2356 struct xfs_perag
*pag
)
2358 struct xfs_mount
*mp
= tp
->t_mountp
;
2359 xfs_agino_t next_agino
;
2362 ASSERT(head_agino
!= target_agino
);
2365 /* See if our backref cache can find it faster. */
2366 *agino
= xfs_iunlink_lookup_backref(pag
, target_agino
);
2367 if (*agino
!= NULLAGINO
) {
2368 error
= xfs_iunlink_map_ino(tp
, agno
, *agino
, imap
, dipp
, bpp
);
2372 if (be32_to_cpu((*dipp
)->di_next_unlinked
) == target_agino
)
2376 * If we get here the cache contents were corrupt, so drop the
2377 * buffer and fall back to walking the bucket list.
2379 xfs_trans_brelse(tp
, *bpp
);
2384 trace_xfs_iunlink_map_prev_fallback(mp
, agno
);
2386 /* Otherwise, walk the entire bucket until we find it. */
2387 next_agino
= head_agino
;
2388 while (next_agino
!= target_agino
) {
2389 xfs_agino_t unlinked_agino
;
2392 xfs_trans_brelse(tp
, *bpp
);
2394 *agino
= next_agino
;
2395 error
= xfs_iunlink_map_ino(tp
, agno
, next_agino
, imap
, dipp
,
2400 unlinked_agino
= be32_to_cpu((*dipp
)->di_next_unlinked
);
2402 * Make sure this pointer is valid and isn't an obvious
2405 if (!xfs_verify_agino(mp
, agno
, unlinked_agino
) ||
2406 next_agino
== unlinked_agino
) {
2407 XFS_CORRUPTION_ERROR(__func__
,
2408 XFS_ERRLEVEL_LOW
, mp
,
2409 *dipp
, sizeof(**dipp
));
2410 error
= -EFSCORRUPTED
;
2413 next_agino
= unlinked_agino
;
2420 * Pull the on-disk inode from the AGI unlinked list.
2424 struct xfs_trans
*tp
,
2425 struct xfs_inode
*ip
)
2427 struct xfs_mount
*mp
= tp
->t_mountp
;
2428 struct xfs_agi
*agi
;
2429 struct xfs_buf
*agibp
;
2430 struct xfs_buf
*last_ibp
;
2431 struct xfs_dinode
*last_dip
= NULL
;
2432 struct xfs_perag
*pag
= NULL
;
2433 xfs_agnumber_t agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2434 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2435 xfs_agino_t next_agino
;
2436 xfs_agino_t head_agino
;
2437 short bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2440 trace_xfs_iunlink_remove(ip
);
2442 /* Get the agi buffer first. It ensures lock ordering on the list. */
2443 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2446 agi
= XFS_BUF_TO_AGI(agibp
);
2449 * Get the index into the agi hash table for the list this inode will
2450 * go on. Make sure the head pointer isn't garbage.
2452 head_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2453 if (!xfs_verify_agino(mp
, agno
, head_agino
)) {
2454 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_LOW
, mp
,
2456 return -EFSCORRUPTED
;
2460 * Set our inode's next_unlinked pointer to NULL and then return
2461 * the old pointer value so that we can update whatever was previous
2462 * to us in the list to point to whatever was next in the list.
2464 error
= xfs_iunlink_update_inode(tp
, ip
, agno
, NULLAGINO
, &next_agino
);
2469 * If there was a backref pointing from the next inode back to this
2470 * one, remove it because we've removed this inode from the list.
2472 * Later, if this inode was in the middle of the list we'll update
2473 * this inode's backref to point from the next inode.
2475 if (next_agino
!= NULLAGINO
) {
2476 pag
= xfs_perag_get(mp
, agno
);
2477 error
= xfs_iunlink_change_backref(pag
, next_agino
,
2483 if (head_agino
== agino
) {
2484 /* Point the head of the list to the next unlinked inode. */
2485 error
= xfs_iunlink_update_bucket(tp
, agno
, agibp
, bucket_index
,
2490 struct xfs_imap imap
;
2491 xfs_agino_t prev_agino
;
2494 pag
= xfs_perag_get(mp
, agno
);
2496 /* We need to search the list for the inode being freed. */
2497 error
= xfs_iunlink_map_prev(tp
, agno
, head_agino
, agino
,
2498 &prev_agino
, &imap
, &last_dip
, &last_ibp
,
2503 /* Point the previous inode on the list to the next inode. */
2504 xfs_iunlink_update_dinode(tp
, agno
, prev_agino
, last_ibp
,
2505 last_dip
, &imap
, next_agino
);
2508 * Now we deal with the backref for this inode. If this inode
2509 * pointed at a real inode, change the backref that pointed to
2510 * us to point to our old next. If this inode was the end of
2511 * the list, delete the backref that pointed to us. Note that
2512 * change_backref takes care of deleting the backref if
2513 * next_agino is NULLAGINO.
2515 error
= xfs_iunlink_change_backref(pag
, agino
, next_agino
);
2527 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2528 * inodes that are in memory - they all must be marked stale and attached to
2529 * the cluster buffer.
2533 xfs_inode_t
*free_ip
,
2535 struct xfs_icluster
*xic
)
2537 xfs_mount_t
*mp
= free_ip
->i_mount
;
2544 xfs_inode_log_item_t
*iip
;
2545 struct xfs_log_item
*lip
;
2546 struct xfs_perag
*pag
;
2547 struct xfs_ino_geometry
*igeo
= M_IGEO(mp
);
2551 inum
= xic
->first_ino
;
2552 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
2553 nbufs
= igeo
->ialloc_blks
/ igeo
->blocks_per_cluster
;
2555 for (j
= 0; j
< nbufs
; j
++, inum
+= igeo
->inodes_per_cluster
) {
2557 * The allocation bitmap tells us which inodes of the chunk were
2558 * physically allocated. Skip the cluster if an inode falls into
2561 ioffset
= inum
- xic
->first_ino
;
2562 if ((xic
->alloc
& XFS_INOBT_MASK(ioffset
)) == 0) {
2563 ASSERT(ioffset
% igeo
->inodes_per_cluster
== 0);
2567 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2568 XFS_INO_TO_AGBNO(mp
, inum
));
2571 * We obtain and lock the backing buffer first in the process
2572 * here, as we have to ensure that any dirty inode that we
2573 * can't get the flush lock on is attached to the buffer.
2574 * If we scan the in-memory inodes first, then buffer IO can
2575 * complete before we get a lock on it, and hence we may fail
2576 * to mark all the active inodes on the buffer stale.
2578 error
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2579 mp
->m_bsize
* igeo
->blocks_per_cluster
,
2585 * This buffer may not have been correctly initialised as we
2586 * didn't read it from disk. That's not important because we are
2587 * only using to mark the buffer as stale in the log, and to
2588 * attach stale cached inodes on it. That means it will never be
2589 * dispatched for IO. If it is, we want to know about it, and we
2590 * want it to fail. We can acheive this by adding a write
2591 * verifier to the buffer.
2593 bp
->b_ops
= &xfs_inode_buf_ops
;
2596 * Walk the inodes already attached to the buffer and mark them
2597 * stale. These will all have the flush locks held, so an
2598 * in-memory inode walk can't lock them. By marking them all
2599 * stale first, we will not attempt to lock them in the loop
2600 * below as the XFS_ISTALE flag will be set.
2602 list_for_each_entry(lip
, &bp
->b_li_list
, li_bio_list
) {
2603 if (lip
->li_type
== XFS_LI_INODE
) {
2604 iip
= (xfs_inode_log_item_t
*)lip
;
2605 ASSERT(iip
->ili_logged
== 1);
2606 lip
->li_cb
= xfs_istale_done
;
2607 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2608 &iip
->ili_flush_lsn
,
2609 &iip
->ili_item
.li_lsn
);
2610 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2616 * For each inode in memory attempt to add it to the inode
2617 * buffer and set it up for being staled on buffer IO
2618 * completion. This is safe as we've locked out tail pushing
2619 * and flushing by locking the buffer.
2621 * We have already marked every inode that was part of a
2622 * transaction stale above, which means there is no point in
2623 * even trying to lock them.
2625 for (i
= 0; i
< igeo
->inodes_per_cluster
; i
++) {
2628 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2629 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2631 /* Inode not in memory, nothing to do */
2638 * because this is an RCU protected lookup, we could
2639 * find a recently freed or even reallocated inode
2640 * during the lookup. We need to check under the
2641 * i_flags_lock for a valid inode here. Skip it if it
2642 * is not valid, the wrong inode or stale.
2644 spin_lock(&ip
->i_flags_lock
);
2645 if (ip
->i_ino
!= inum
+ i
||
2646 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2647 spin_unlock(&ip
->i_flags_lock
);
2651 spin_unlock(&ip
->i_flags_lock
);
2654 * Don't try to lock/unlock the current inode, but we
2655 * _cannot_ skip the other inodes that we did not find
2656 * in the list attached to the buffer and are not
2657 * already marked stale. If we can't lock it, back off
2660 if (ip
!= free_ip
) {
2661 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2668 * Check the inode number again in case we're
2669 * racing with freeing in xfs_reclaim_inode().
2670 * See the comments in that function for more
2671 * information as to why the initial check is
2674 if (ip
->i_ino
!= inum
+ i
) {
2675 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2683 xfs_iflags_set(ip
, XFS_ISTALE
);
2686 * we don't need to attach clean inodes or those only
2687 * with unlogged changes (which we throw away, anyway).
2690 if (!iip
|| xfs_inode_clean(ip
)) {
2691 ASSERT(ip
!= free_ip
);
2693 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2697 iip
->ili_last_fields
= iip
->ili_fields
;
2698 iip
->ili_fields
= 0;
2699 iip
->ili_fsync_fields
= 0;
2700 iip
->ili_logged
= 1;
2701 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2702 &iip
->ili_item
.li_lsn
);
2704 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2708 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2711 xfs_trans_stale_inode_buf(tp
, bp
);
2712 xfs_trans_binval(tp
, bp
);
2720 * Free any local-format buffers sitting around before we reset to
2724 xfs_ifree_local_data(
2725 struct xfs_inode
*ip
,
2728 struct xfs_ifork
*ifp
;
2730 if (XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_LOCAL
)
2733 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2734 xfs_idata_realloc(ip
, -ifp
->if_bytes
, whichfork
);
2738 * This is called to return an inode to the inode free list.
2739 * The inode should already be truncated to 0 length and have
2740 * no pages associated with it. This routine also assumes that
2741 * the inode is already a part of the transaction.
2743 * The on-disk copy of the inode will have been added to the list
2744 * of unlinked inodes in the AGI. We need to remove the inode from
2745 * that list atomically with respect to freeing it here.
2749 struct xfs_trans
*tp
,
2750 struct xfs_inode
*ip
)
2753 struct xfs_icluster xic
= { 0 };
2755 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2756 ASSERT(VFS_I(ip
)->i_nlink
== 0);
2757 ASSERT(ip
->i_d
.di_nextents
== 0);
2758 ASSERT(ip
->i_d
.di_anextents
== 0);
2759 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(VFS_I(ip
)->i_mode
));
2760 ASSERT(ip
->i_d
.di_nblocks
== 0);
2763 * Pull the on-disk inode from the AGI unlinked list.
2765 error
= xfs_iunlink_remove(tp
, ip
);
2769 error
= xfs_difree(tp
, ip
->i_ino
, &xic
);
2773 xfs_ifree_local_data(ip
, XFS_DATA_FORK
);
2774 xfs_ifree_local_data(ip
, XFS_ATTR_FORK
);
2776 VFS_I(ip
)->i_mode
= 0; /* mark incore inode as free */
2777 ip
->i_d
.di_flags
= 0;
2778 ip
->i_d
.di_flags2
= 0;
2779 ip
->i_d
.di_dmevmask
= 0;
2780 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2781 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2782 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2784 /* Don't attempt to replay owner changes for a deleted inode */
2785 ip
->i_itemp
->ili_fields
&= ~(XFS_ILOG_AOWNER
|XFS_ILOG_DOWNER
);
2788 * Bump the generation count so no one will be confused
2789 * by reincarnations of this inode.
2791 VFS_I(ip
)->i_generation
++;
2792 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2795 error
= xfs_ifree_cluster(ip
, tp
, &xic
);
2801 * This is called to unpin an inode. The caller must have the inode locked
2802 * in at least shared mode so that the buffer cannot be subsequently pinned
2803 * once someone is waiting for it to be unpinned.
2807 struct xfs_inode
*ip
)
2809 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2811 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2813 /* Give the log a push to start the unpinning I/O */
2814 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0, NULL
);
2820 struct xfs_inode
*ip
)
2822 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2823 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2828 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2829 if (xfs_ipincount(ip
))
2831 } while (xfs_ipincount(ip
));
2832 finish_wait(wq
, &wait
.wq_entry
);
2837 struct xfs_inode
*ip
)
2839 if (xfs_ipincount(ip
))
2840 __xfs_iunpin_wait(ip
);
2844 * Removing an inode from the namespace involves removing the directory entry
2845 * and dropping the link count on the inode. Removing the directory entry can
2846 * result in locking an AGF (directory blocks were freed) and removing a link
2847 * count can result in placing the inode on an unlinked list which results in
2850 * The big problem here is that we have an ordering constraint on AGF and AGI
2851 * locking - inode allocation locks the AGI, then can allocate a new extent for
2852 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2853 * removes the inode from the unlinked list, requiring that we lock the AGI
2854 * first, and then freeing the inode can result in an inode chunk being freed
2855 * and hence freeing disk space requiring that we lock an AGF.
2857 * Hence the ordering that is imposed by other parts of the code is AGI before
2858 * AGF. This means we cannot remove the directory entry before we drop the inode
2859 * reference count and put it on the unlinked list as this results in a lock
2860 * order of AGF then AGI, and this can deadlock against inode allocation and
2861 * freeing. Therefore we must drop the link counts before we remove the
2864 * This is still safe from a transactional point of view - it is not until we
2865 * get to xfs_defer_finish() that we have the possibility of multiple
2866 * transactions in this operation. Hence as long as we remove the directory
2867 * entry and drop the link count in the first transaction of the remove
2868 * operation, there are no transactional constraints on the ordering here.
2873 struct xfs_name
*name
,
2876 xfs_mount_t
*mp
= dp
->i_mount
;
2877 xfs_trans_t
*tp
= NULL
;
2878 int is_dir
= S_ISDIR(VFS_I(ip
)->i_mode
);
2882 trace_xfs_remove(dp
, name
);
2884 if (XFS_FORCED_SHUTDOWN(mp
))
2887 error
= xfs_qm_dqattach(dp
);
2891 error
= xfs_qm_dqattach(ip
);
2896 * We try to get the real space reservation first,
2897 * allowing for directory btree deletion(s) implying
2898 * possible bmap insert(s). If we can't get the space
2899 * reservation then we use 0 instead, and avoid the bmap
2900 * btree insert(s) in the directory code by, if the bmap
2901 * insert tries to happen, instead trimming the LAST
2902 * block from the directory.
2904 resblks
= XFS_REMOVE_SPACE_RES(mp
);
2905 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, resblks
, 0, 0, &tp
);
2906 if (error
== -ENOSPC
) {
2908 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, 0, 0, 0,
2912 ASSERT(error
!= -ENOSPC
);
2916 xfs_lock_two_inodes(dp
, XFS_ILOCK_EXCL
, ip
, XFS_ILOCK_EXCL
);
2918 xfs_trans_ijoin(tp
, dp
, XFS_ILOCK_EXCL
);
2919 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
2922 * If we're removing a directory perform some additional validation.
2925 ASSERT(VFS_I(ip
)->i_nlink
>= 2);
2926 if (VFS_I(ip
)->i_nlink
!= 2) {
2928 goto out_trans_cancel
;
2930 if (!xfs_dir_isempty(ip
)) {
2932 goto out_trans_cancel
;
2935 /* Drop the link from ip's "..". */
2936 error
= xfs_droplink(tp
, dp
);
2938 goto out_trans_cancel
;
2940 /* Drop the "." link from ip to self. */
2941 error
= xfs_droplink(tp
, ip
);
2943 goto out_trans_cancel
;
2946 * When removing a non-directory we need to log the parent
2947 * inode here. For a directory this is done implicitly
2948 * by the xfs_droplink call for the ".." entry.
2950 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
2952 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2954 /* Drop the link from dp to ip. */
2955 error
= xfs_droplink(tp
, ip
);
2957 goto out_trans_cancel
;
2959 error
= xfs_dir_removename(tp
, dp
, name
, ip
->i_ino
, resblks
);
2961 ASSERT(error
!= -ENOENT
);
2962 goto out_trans_cancel
;
2966 * If this is a synchronous mount, make sure that the
2967 * remove transaction goes to disk before returning to
2970 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2971 xfs_trans_set_sync(tp
);
2973 error
= xfs_trans_commit(tp
);
2977 if (is_dir
&& xfs_inode_is_filestream(ip
))
2978 xfs_filestream_deassociate(ip
);
2983 xfs_trans_cancel(tp
);
2989 * Enter all inodes for a rename transaction into a sorted array.
2991 #define __XFS_SORT_INODES 5
2993 xfs_sort_for_rename(
2994 struct xfs_inode
*dp1
, /* in: old (source) directory inode */
2995 struct xfs_inode
*dp2
, /* in: new (target) directory inode */
2996 struct xfs_inode
*ip1
, /* in: inode of old entry */
2997 struct xfs_inode
*ip2
, /* in: inode of new entry */
2998 struct xfs_inode
*wip
, /* in: whiteout inode */
2999 struct xfs_inode
**i_tab
,/* out: sorted array of inodes */
3000 int *num_inodes
) /* in/out: inodes in array */
3004 ASSERT(*num_inodes
== __XFS_SORT_INODES
);
3005 memset(i_tab
, 0, *num_inodes
* sizeof(struct xfs_inode
*));
3008 * i_tab contains a list of pointers to inodes. We initialize
3009 * the table here & we'll sort it. We will then use it to
3010 * order the acquisition of the inode locks.
3012 * Note that the table may contain duplicates. e.g., dp1 == dp2.
3025 * Sort the elements via bubble sort. (Remember, there are at
3026 * most 5 elements to sort, so this is adequate.)
3028 for (i
= 0; i
< *num_inodes
; i
++) {
3029 for (j
= 1; j
< *num_inodes
; j
++) {
3030 if (i_tab
[j
]->i_ino
< i_tab
[j
-1]->i_ino
) {
3031 struct xfs_inode
*temp
= i_tab
[j
];
3032 i_tab
[j
] = i_tab
[j
-1];
3041 struct xfs_trans
*tp
)
3044 * If this is a synchronous mount, make sure that the rename transaction
3045 * goes to disk before returning to the user.
3047 if (tp
->t_mountp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
3048 xfs_trans_set_sync(tp
);
3050 return xfs_trans_commit(tp
);
3054 * xfs_cross_rename()
3056 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3060 struct xfs_trans
*tp
,
3061 struct xfs_inode
*dp1
,
3062 struct xfs_name
*name1
,
3063 struct xfs_inode
*ip1
,
3064 struct xfs_inode
*dp2
,
3065 struct xfs_name
*name2
,
3066 struct xfs_inode
*ip2
,
3074 /* Swap inode number for dirent in first parent */
3075 error
= xfs_dir_replace(tp
, dp1
, name1
, ip2
->i_ino
, spaceres
);
3077 goto out_trans_abort
;
3079 /* Swap inode number for dirent in second parent */
3080 error
= xfs_dir_replace(tp
, dp2
, name2
, ip1
->i_ino
, spaceres
);
3082 goto out_trans_abort
;
3085 * If we're renaming one or more directories across different parents,
3086 * update the respective ".." entries (and link counts) to match the new
3090 dp2_flags
= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
3092 if (S_ISDIR(VFS_I(ip2
)->i_mode
)) {
3093 error
= xfs_dir_replace(tp
, ip2
, &xfs_name_dotdot
,
3094 dp1
->i_ino
, spaceres
);
3096 goto out_trans_abort
;
3098 /* transfer ip2 ".." reference to dp1 */
3099 if (!S_ISDIR(VFS_I(ip1
)->i_mode
)) {
3100 error
= xfs_droplink(tp
, dp2
);
3102 goto out_trans_abort
;
3103 xfs_bumplink(tp
, dp1
);
3107 * Although ip1 isn't changed here, userspace needs
3108 * to be warned about the change, so that applications
3109 * relying on it (like backup ones), will properly
3112 ip1_flags
|= XFS_ICHGTIME_CHG
;
3113 ip2_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
3116 if (S_ISDIR(VFS_I(ip1
)->i_mode
)) {
3117 error
= xfs_dir_replace(tp
, ip1
, &xfs_name_dotdot
,
3118 dp2
->i_ino
, spaceres
);
3120 goto out_trans_abort
;
3122 /* transfer ip1 ".." reference to dp2 */
3123 if (!S_ISDIR(VFS_I(ip2
)->i_mode
)) {
3124 error
= xfs_droplink(tp
, dp1
);
3126 goto out_trans_abort
;
3127 xfs_bumplink(tp
, dp2
);
3131 * Although ip2 isn't changed here, userspace needs
3132 * to be warned about the change, so that applications
3133 * relying on it (like backup ones), will properly
3136 ip1_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
3137 ip2_flags
|= XFS_ICHGTIME_CHG
;
3142 xfs_trans_ichgtime(tp
, ip1
, ip1_flags
);
3143 xfs_trans_log_inode(tp
, ip1
, XFS_ILOG_CORE
);
3146 xfs_trans_ichgtime(tp
, ip2
, ip2_flags
);
3147 xfs_trans_log_inode(tp
, ip2
, XFS_ILOG_CORE
);
3150 xfs_trans_ichgtime(tp
, dp2
, dp2_flags
);
3151 xfs_trans_log_inode(tp
, dp2
, XFS_ILOG_CORE
);
3153 xfs_trans_ichgtime(tp
, dp1
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3154 xfs_trans_log_inode(tp
, dp1
, XFS_ILOG_CORE
);
3155 return xfs_finish_rename(tp
);
3158 xfs_trans_cancel(tp
);
3163 * xfs_rename_alloc_whiteout()
3165 * Return a referenced, unlinked, unlocked inode that that can be used as a
3166 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3167 * crash between allocating the inode and linking it into the rename transaction
3168 * recovery will free the inode and we won't leak it.
3171 xfs_rename_alloc_whiteout(
3172 struct xfs_inode
*dp
,
3173 struct xfs_inode
**wip
)
3175 struct xfs_inode
*tmpfile
;
3178 error
= xfs_create_tmpfile(dp
, S_IFCHR
| WHITEOUT_MODE
, &tmpfile
);
3183 * Prepare the tmpfile inode as if it were created through the VFS.
3184 * Complete the inode setup and flag it as linkable. nlink is already
3185 * zero, so we can skip the drop_nlink.
3187 xfs_setup_iops(tmpfile
);
3188 xfs_finish_inode_setup(tmpfile
);
3189 VFS_I(tmpfile
)->i_state
|= I_LINKABLE
;
3200 struct xfs_inode
*src_dp
,
3201 struct xfs_name
*src_name
,
3202 struct xfs_inode
*src_ip
,
3203 struct xfs_inode
*target_dp
,
3204 struct xfs_name
*target_name
,
3205 struct xfs_inode
*target_ip
,
3208 struct xfs_mount
*mp
= src_dp
->i_mount
;
3209 struct xfs_trans
*tp
;
3210 struct xfs_inode
*wip
= NULL
; /* whiteout inode */
3211 struct xfs_inode
*inodes
[__XFS_SORT_INODES
];
3212 struct xfs_buf
*agibp
;
3213 int num_inodes
= __XFS_SORT_INODES
;
3214 bool new_parent
= (src_dp
!= target_dp
);
3215 bool src_is_directory
= S_ISDIR(VFS_I(src_ip
)->i_mode
);
3219 trace_xfs_rename(src_dp
, target_dp
, src_name
, target_name
);
3221 if ((flags
& RENAME_EXCHANGE
) && !target_ip
)
3225 * If we are doing a whiteout operation, allocate the whiteout inode
3226 * we will be placing at the target and ensure the type is set
3229 if (flags
& RENAME_WHITEOUT
) {
3230 ASSERT(!(flags
& (RENAME_NOREPLACE
| RENAME_EXCHANGE
)));
3231 error
= xfs_rename_alloc_whiteout(target_dp
, &wip
);
3235 /* setup target dirent info as whiteout */
3236 src_name
->type
= XFS_DIR3_FT_CHRDEV
;
3239 xfs_sort_for_rename(src_dp
, target_dp
, src_ip
, target_ip
, wip
,
3240 inodes
, &num_inodes
);
3242 spaceres
= XFS_RENAME_SPACE_RES(mp
, target_name
->len
);
3243 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, spaceres
, 0, 0, &tp
);
3244 if (error
== -ENOSPC
) {
3246 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, 0, 0, 0,
3250 goto out_release_wip
;
3253 * Attach the dquots to the inodes
3255 error
= xfs_qm_vop_rename_dqattach(inodes
);
3257 goto out_trans_cancel
;
3260 * Lock all the participating inodes. Depending upon whether
3261 * the target_name exists in the target directory, and
3262 * whether the target directory is the same as the source
3263 * directory, we can lock from 2 to 4 inodes.
3265 xfs_lock_inodes(inodes
, num_inodes
, XFS_ILOCK_EXCL
);
3268 * Join all the inodes to the transaction. From this point on,
3269 * we can rely on either trans_commit or trans_cancel to unlock
3272 xfs_trans_ijoin(tp
, src_dp
, XFS_ILOCK_EXCL
);
3274 xfs_trans_ijoin(tp
, target_dp
, XFS_ILOCK_EXCL
);
3275 xfs_trans_ijoin(tp
, src_ip
, XFS_ILOCK_EXCL
);
3277 xfs_trans_ijoin(tp
, target_ip
, XFS_ILOCK_EXCL
);
3279 xfs_trans_ijoin(tp
, wip
, XFS_ILOCK_EXCL
);
3282 * If we are using project inheritance, we only allow renames
3283 * into our tree when the project IDs are the same; else the
3284 * tree quota mechanism would be circumvented.
3286 if (unlikely((target_dp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
3287 target_dp
->i_d
.di_projid
!= src_ip
->i_d
.di_projid
)) {
3289 goto out_trans_cancel
;
3292 /* RENAME_EXCHANGE is unique from here on. */
3293 if (flags
& RENAME_EXCHANGE
)
3294 return xfs_cross_rename(tp
, src_dp
, src_name
, src_ip
,
3295 target_dp
, target_name
, target_ip
,
3299 * Check for expected errors before we dirty the transaction
3300 * so we can return an error without a transaction abort.
3302 if (target_ip
== NULL
) {
3304 * If there's no space reservation, check the entry will
3305 * fit before actually inserting it.
3308 error
= xfs_dir_canenter(tp
, target_dp
, target_name
);
3310 goto out_trans_cancel
;
3314 * If target exists and it's a directory, check that whether
3315 * it can be destroyed.
3317 if (S_ISDIR(VFS_I(target_ip
)->i_mode
) &&
3318 (!xfs_dir_isempty(target_ip
) ||
3319 (VFS_I(target_ip
)->i_nlink
> 2))) {
3321 goto out_trans_cancel
;
3326 * Directory entry creation below may acquire the AGF. Remove
3327 * the whiteout from the unlinked list first to preserve correct
3328 * AGI/AGF locking order. This dirties the transaction so failures
3329 * after this point will abort and log recovery will clean up the
3332 * For whiteouts, we need to bump the link count on the whiteout
3333 * inode. After this point, we have a real link, clear the tmpfile
3334 * state flag from the inode so it doesn't accidentally get misused
3338 ASSERT(VFS_I(wip
)->i_nlink
== 0);
3339 error
= xfs_iunlink_remove(tp
, wip
);
3341 goto out_trans_cancel
;
3343 xfs_bumplink(tp
, wip
);
3344 VFS_I(wip
)->i_state
&= ~I_LINKABLE
;
3348 * Set up the target.
3350 if (target_ip
== NULL
) {
3352 * If target does not exist and the rename crosses
3353 * directories, adjust the target directory link count
3354 * to account for the ".." reference from the new entry.
3356 error
= xfs_dir_createname(tp
, target_dp
, target_name
,
3357 src_ip
->i_ino
, spaceres
);
3359 goto out_trans_cancel
;
3361 xfs_trans_ichgtime(tp
, target_dp
,
3362 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3364 if (new_parent
&& src_is_directory
) {
3365 xfs_bumplink(tp
, target_dp
);
3367 } else { /* target_ip != NULL */
3369 * Link the source inode under the target name.
3370 * If the source inode is a directory and we are moving
3371 * it across directories, its ".." entry will be
3372 * inconsistent until we replace that down below.
3374 * In case there is already an entry with the same
3375 * name at the destination directory, remove it first.
3379 * Check whether the replace operation will need to allocate
3380 * blocks. This happens when the shortform directory lacks
3381 * space and we have to convert it to a block format directory.
3382 * When more blocks are necessary, we must lock the AGI first
3383 * to preserve locking order (AGI -> AGF).
3385 if (xfs_dir2_sf_replace_needblock(target_dp
, src_ip
->i_ino
)) {
3386 error
= xfs_read_agi(mp
, tp
,
3387 XFS_INO_TO_AGNO(mp
, target_ip
->i_ino
),
3390 goto out_trans_cancel
;
3393 error
= xfs_dir_replace(tp
, target_dp
, target_name
,
3394 src_ip
->i_ino
, spaceres
);
3396 goto out_trans_cancel
;
3398 xfs_trans_ichgtime(tp
, target_dp
,
3399 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3402 * Decrement the link count on the target since the target
3403 * dir no longer points to it.
3405 error
= xfs_droplink(tp
, target_ip
);
3407 goto out_trans_cancel
;
3409 if (src_is_directory
) {
3411 * Drop the link from the old "." entry.
3413 error
= xfs_droplink(tp
, target_ip
);
3415 goto out_trans_cancel
;
3417 } /* target_ip != NULL */
3420 * Remove the source.
3422 if (new_parent
&& src_is_directory
) {
3424 * Rewrite the ".." entry to point to the new
3427 error
= xfs_dir_replace(tp
, src_ip
, &xfs_name_dotdot
,
3428 target_dp
->i_ino
, spaceres
);
3429 ASSERT(error
!= -EEXIST
);
3431 goto out_trans_cancel
;
3435 * We always want to hit the ctime on the source inode.
3437 * This isn't strictly required by the standards since the source
3438 * inode isn't really being changed, but old unix file systems did
3439 * it and some incremental backup programs won't work without it.
3441 xfs_trans_ichgtime(tp
, src_ip
, XFS_ICHGTIME_CHG
);
3442 xfs_trans_log_inode(tp
, src_ip
, XFS_ILOG_CORE
);
3445 * Adjust the link count on src_dp. This is necessary when
3446 * renaming a directory, either within one parent when
3447 * the target existed, or across two parent directories.
3449 if (src_is_directory
&& (new_parent
|| target_ip
!= NULL
)) {
3452 * Decrement link count on src_directory since the
3453 * entry that's moved no longer points to it.
3455 error
= xfs_droplink(tp
, src_dp
);
3457 goto out_trans_cancel
;
3461 * For whiteouts, we only need to update the source dirent with the
3462 * inode number of the whiteout inode rather than removing it
3466 error
= xfs_dir_replace(tp
, src_dp
, src_name
, wip
->i_ino
,
3469 error
= xfs_dir_removename(tp
, src_dp
, src_name
, src_ip
->i_ino
,
3472 goto out_trans_cancel
;
3474 xfs_trans_ichgtime(tp
, src_dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3475 xfs_trans_log_inode(tp
, src_dp
, XFS_ILOG_CORE
);
3477 xfs_trans_log_inode(tp
, target_dp
, XFS_ILOG_CORE
);
3479 error
= xfs_finish_rename(tp
);
3485 xfs_trans_cancel(tp
);
3494 struct xfs_inode
*ip
,
3497 struct xfs_mount
*mp
= ip
->i_mount
;
3498 struct xfs_perag
*pag
;
3499 unsigned long first_index
, mask
;
3501 struct xfs_inode
**cilist
;
3502 struct xfs_inode
*cip
;
3503 struct xfs_ino_geometry
*igeo
= M_IGEO(mp
);
3508 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
3510 cilist_size
= igeo
->inodes_per_cluster
* sizeof(struct xfs_inode
*);
3511 cilist
= kmem_alloc(cilist_size
, KM_MAYFAIL
|KM_NOFS
);
3515 mask
= ~(igeo
->inodes_per_cluster
- 1);
3516 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
3518 /* really need a gang lookup range call here */
3519 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)cilist
,
3520 first_index
, igeo
->inodes_per_cluster
);
3524 for (i
= 0; i
< nr_found
; i
++) {
3530 * because this is an RCU protected lookup, we could find a
3531 * recently freed or even reallocated inode during the lookup.
3532 * We need to check under the i_flags_lock for a valid inode
3533 * here. Skip it if it is not valid or the wrong inode.
3535 spin_lock(&cip
->i_flags_lock
);
3537 __xfs_iflags_test(cip
, XFS_ISTALE
)) {
3538 spin_unlock(&cip
->i_flags_lock
);
3543 * Once we fall off the end of the cluster, no point checking
3544 * any more inodes in the list because they will also all be
3545 * outside the cluster.
3547 if ((XFS_INO_TO_AGINO(mp
, cip
->i_ino
) & mask
) != first_index
) {
3548 spin_unlock(&cip
->i_flags_lock
);
3551 spin_unlock(&cip
->i_flags_lock
);
3554 * Do an un-protected check to see if the inode is dirty and
3555 * is a candidate for flushing. These checks will be repeated
3556 * later after the appropriate locks are acquired.
3558 if (xfs_inode_clean(cip
) && xfs_ipincount(cip
) == 0)
3562 * Try to get locks. If any are unavailable or it is pinned,
3563 * then this inode cannot be flushed and is skipped.
3566 if (!xfs_ilock_nowait(cip
, XFS_ILOCK_SHARED
))
3568 if (!xfs_iflock_nowait(cip
)) {
3569 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3572 if (xfs_ipincount(cip
)) {
3574 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3580 * Check the inode number again, just to be certain we are not
3581 * racing with freeing in xfs_reclaim_inode(). See the comments
3582 * in that function for more information as to why the initial
3583 * check is not sufficient.
3587 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3592 * arriving here means that this inode can be flushed. First
3593 * re-check that it's dirty before flushing.
3595 if (!xfs_inode_clean(cip
)) {
3597 error
= xfs_iflush_int(cip
, bp
);
3599 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3600 goto cluster_corrupt_out
;
3606 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3610 XFS_STATS_INC(mp
, xs_icluster_flushcnt
);
3611 XFS_STATS_ADD(mp
, xs_icluster_flushinode
, clcount
);
3622 cluster_corrupt_out
:
3624 * Corruption detected in the clustering loop. Invalidate the
3625 * inode buffer and shut down the filesystem.
3630 * We'll always have an inode attached to the buffer for completion
3631 * process by the time we are called from xfs_iflush(). Hence we have
3632 * always need to do IO completion processing to abort the inodes
3633 * attached to the buffer. handle them just like the shutdown case in
3636 ASSERT(bp
->b_iodone
);
3637 bp
->b_flags
|= XBF_ASYNC
;
3638 bp
->b_flags
&= ~XBF_DONE
;
3640 xfs_buf_ioerror(bp
, -EIO
);
3643 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3645 /* abort the corrupt inode, as it was not attached to the buffer */
3646 xfs_iflush_abort(cip
, false);
3649 return -EFSCORRUPTED
;
3653 * Flush dirty inode metadata into the backing buffer.
3655 * The caller must have the inode lock and the inode flush lock held. The
3656 * inode lock will still be held upon return to the caller, and the inode
3657 * flush lock will be released after the inode has reached the disk.
3659 * The caller must write out the buffer returned in *bpp and release it.
3663 struct xfs_inode
*ip
,
3664 struct xfs_buf
**bpp
)
3666 struct xfs_mount
*mp
= ip
->i_mount
;
3667 struct xfs_buf
*bp
= NULL
;
3668 struct xfs_dinode
*dip
;
3671 XFS_STATS_INC(mp
, xs_iflush_count
);
3673 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3674 ASSERT(xfs_isiflocked(ip
));
3675 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3676 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3680 xfs_iunpin_wait(ip
);
3683 * For stale inodes we cannot rely on the backing buffer remaining
3684 * stale in cache for the remaining life of the stale inode and so
3685 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3686 * inodes below. We have to check this after ensuring the inode is
3687 * unpinned so that it is safe to reclaim the stale inode after the
3690 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
3696 * This may have been unpinned because the filesystem is shutting
3697 * down forcibly. If that's the case we must not write this inode
3698 * to disk, because the log record didn't make it to disk.
3700 * We also have to remove the log item from the AIL in this case,
3701 * as we wait for an empty AIL as part of the unmount process.
3703 if (XFS_FORCED_SHUTDOWN(mp
)) {
3709 * Get the buffer containing the on-disk inode. We are doing a try-lock
3710 * operation here, so we may get an EAGAIN error. In that case, we
3711 * simply want to return with the inode still dirty.
3713 * If we get any other error, we effectively have a corruption situation
3714 * and we cannot flush the inode, so we treat it the same as failing
3717 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
3719 if (error
== -EAGAIN
) {
3727 * First flush out the inode that xfs_iflush was called with.
3729 error
= xfs_iflush_int(ip
, bp
);
3734 * If the buffer is pinned then push on the log now so we won't
3735 * get stuck waiting in the write for too long.
3737 if (xfs_buf_ispinned(bp
))
3738 xfs_log_force(mp
, 0);
3741 * inode clustering: try to gather other inodes into this write
3743 * Note: Any error during clustering will result in the filesystem
3744 * being shut down and completion callbacks run on the cluster buffer.
3745 * As we have already flushed and attached this inode to the buffer,
3746 * it has already been aborted and released by xfs_iflush_cluster() and
3747 * so we have no further error handling to do here.
3749 error
= xfs_iflush_cluster(ip
, bp
);
3759 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3761 /* abort the corrupt inode, as it was not attached to the buffer */
3762 xfs_iflush_abort(ip
, false);
3767 * If there are inline format data / attr forks attached to this inode,
3768 * make sure they're not corrupt.
3771 xfs_inode_verify_forks(
3772 struct xfs_inode
*ip
)
3774 struct xfs_ifork
*ifp
;
3777 fa
= xfs_ifork_verify_data(ip
, &xfs_default_ifork_ops
);
3779 ifp
= XFS_IFORK_PTR(ip
, XFS_DATA_FORK
);
3780 xfs_inode_verifier_error(ip
, -EFSCORRUPTED
, "data fork",
3781 ifp
->if_u1
.if_data
, ifp
->if_bytes
, fa
);
3785 fa
= xfs_ifork_verify_attr(ip
, &xfs_default_ifork_ops
);
3787 ifp
= XFS_IFORK_PTR(ip
, XFS_ATTR_FORK
);
3788 xfs_inode_verifier_error(ip
, -EFSCORRUPTED
, "attr fork",
3789 ifp
? ifp
->if_u1
.if_data
: NULL
,
3790 ifp
? ifp
->if_bytes
: 0, fa
);
3798 struct xfs_inode
*ip
,
3801 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
3802 struct xfs_dinode
*dip
;
3803 struct xfs_mount
*mp
= ip
->i_mount
;
3805 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3806 ASSERT(xfs_isiflocked(ip
));
3807 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3808 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3809 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
3810 ASSERT(ip
->i_d
.di_version
> 1);
3812 /* set *dip = inode's place in the buffer */
3813 dip
= xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3815 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
3816 mp
, XFS_ERRTAG_IFLUSH_1
)) {
3817 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3818 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT
,
3819 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3822 if (S_ISREG(VFS_I(ip
)->i_mode
)) {
3824 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3825 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3826 mp
, XFS_ERRTAG_IFLUSH_3
)) {
3827 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3828 "%s: Bad regular inode %Lu, ptr "PTR_FMT
,
3829 __func__
, ip
->i_ino
, ip
);
3832 } else if (S_ISDIR(VFS_I(ip
)->i_mode
)) {
3834 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3835 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3836 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3837 mp
, XFS_ERRTAG_IFLUSH_4
)) {
3838 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3839 "%s: Bad directory inode %Lu, ptr "PTR_FMT
,
3840 __func__
, ip
->i_ino
, ip
);
3844 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3845 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
)) {
3846 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3847 "%s: detected corrupt incore inode %Lu, "
3848 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT
,
3849 __func__
, ip
->i_ino
,
3850 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3851 ip
->i_d
.di_nblocks
, ip
);
3854 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3855 mp
, XFS_ERRTAG_IFLUSH_6
)) {
3856 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3857 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT
,
3858 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3863 * Inode item log recovery for v2 inodes are dependent on the
3864 * di_flushiter count for correct sequencing. We bump the flush
3865 * iteration count so we can detect flushes which postdate a log record
3866 * during recovery. This is redundant as we now log every change and
3867 * hence this can't happen but we need to still do it to ensure
3868 * backwards compatibility with old kernels that predate logging all
3871 if (ip
->i_d
.di_version
< 3)
3872 ip
->i_d
.di_flushiter
++;
3874 /* Check the inline fork data before we write out. */
3875 if (!xfs_inode_verify_forks(ip
))
3879 * Copy the dirty parts of the inode into the on-disk inode. We always
3880 * copy out the core of the inode, because if the inode is dirty at all
3883 xfs_inode_to_disk(ip
, dip
, iip
->ili_item
.li_lsn
);
3885 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3886 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3887 ip
->i_d
.di_flushiter
= 0;
3889 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
);
3890 if (XFS_IFORK_Q(ip
))
3891 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
);
3892 xfs_inobp_check(mp
, bp
);
3895 * We've recorded everything logged in the inode, so we'd like to clear
3896 * the ili_fields bits so we don't log and flush things unnecessarily.
3897 * However, we can't stop logging all this information until the data
3898 * we've copied into the disk buffer is written to disk. If we did we
3899 * might overwrite the copy of the inode in the log with all the data
3900 * after re-logging only part of it, and in the face of a crash we
3901 * wouldn't have all the data we need to recover.
3903 * What we do is move the bits to the ili_last_fields field. When
3904 * logging the inode, these bits are moved back to the ili_fields field.
3905 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3906 * know that the information those bits represent is permanently on
3907 * disk. As long as the flush completes before the inode is logged
3908 * again, then both ili_fields and ili_last_fields will be cleared.
3910 * We can play with the ili_fields bits here, because the inode lock
3911 * must be held exclusively in order to set bits there and the flush
3912 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3913 * done routine can tell whether or not to look in the AIL. Also, store
3914 * the current LSN of the inode so that we can tell whether the item has
3915 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3916 * need the AIL lock, because it is a 64 bit value that cannot be read
3919 iip
->ili_last_fields
= iip
->ili_fields
;
3920 iip
->ili_fields
= 0;
3921 iip
->ili_fsync_fields
= 0;
3922 iip
->ili_logged
= 1;
3924 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3925 &iip
->ili_item
.li_lsn
);
3928 * Attach the function xfs_iflush_done to the inode's
3929 * buffer. This will remove the inode from the AIL
3930 * and unlock the inode's flush lock when the inode is
3931 * completely written to disk.
3933 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3935 /* generate the checksum. */
3936 xfs_dinode_calc_crc(mp
, dip
);
3938 ASSERT(!list_empty(&bp
->b_li_list
));
3939 ASSERT(bp
->b_iodone
!= NULL
);
3943 return -EFSCORRUPTED
;
3946 /* Release an inode. */
3949 struct xfs_inode
*ip
)
3951 trace_xfs_irele(ip
, _RET_IP_
);