drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
blobc5077e6326c7093d5d1230ece91b37c5bb4d1f53
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/iversion.h>
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
39 kmem_zone_t *xfs_inode_zone;
42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
43 * freed from a file in a single transaction.
45 #define XFS_ITRUNC_MAX_EXTENTS 2
47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
52 * helper function to extract extent size hint from inode
54 xfs_extlen_t
55 xfs_get_extsz_hint(
56 struct xfs_inode *ip)
59 * No point in aligning allocations if we need to COW to actually
60 * write to them.
62 if (xfs_is_always_cow_inode(ip))
63 return 0;
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
68 return 0;
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 struct xfs_inode *ip)
81 xfs_extlen_t a, b;
83 a = 0;
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
88 a = max(a, b);
89 if (a == 0)
90 return XFS_DEFAULT_COWEXTSZ_HINT;
91 return a;
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
109 uint
110 xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
113 uint lock_mode = XFS_ILOCK_SHARED;
115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 lock_mode = XFS_ILOCK_EXCL;
118 xfs_ilock(ip, lock_mode);
119 return lock_mode;
122 uint
123 xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
126 uint lock_mode = XFS_ILOCK_SHARED;
128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
143 * Basic locking order:
145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
147 * mmap_sem locking order:
149 * i_rwsem -> page lock -> mmap_sem
150 * mmap_sem -> i_mmap_lock -> page_lock
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157 * page faults already hold the mmap_sem.
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
163 * functions).
165 void
166 xfs_ilock(
167 xfs_inode_t *ip,
168 uint lock_flags)
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
214 * of valid values.
217 xfs_ilock_nowait(
218 xfs_inode_t *ip,
219 uint lock_flags)
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
236 if (lock_flags & XFS_IOLOCK_EXCL) {
237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 goto out;
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 goto out;
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
254 goto out_undo_mmaplock;
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
257 goto out_undo_mmaplock;
259 return 1;
261 out_undo_mmaplock:
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 if (lock_flags & XFS_IOLOCK_EXCL)
268 up_write(&VFS_I(ip)->i_rwsem);
269 else if (lock_flags & XFS_IOLOCK_SHARED)
270 up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 return 0;
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
287 void
288 xfs_iunlock(
289 xfs_inode_t *ip,
290 uint lock_flags)
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 ASSERT(lock_flags != 0);
306 if (lock_flags & XFS_IOLOCK_EXCL)
307 up_write(&VFS_I(ip)->i_rwsem);
308 else if (lock_flags & XFS_IOLOCK_SHARED)
309 up_read(&VFS_I(ip)->i_rwsem);
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
328 void
329 xfs_ilock_demote(
330 xfs_inode_t *ip,
331 uint lock_flags)
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 ASSERT((lock_flags &
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
341 if (lock_flags & XFS_IOLOCK_EXCL)
342 downgrade_write(&VFS_I(ip)->i_rwsem);
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
347 #if defined(DEBUG) || defined(XFS_WARN)
349 xfs_isilocked(
350 xfs_inode_t *ip,
351 uint lock_flags)
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
372 ASSERT(0);
373 return 0;
375 #endif
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
385 xfs_lockdep_subclass_ok(
386 int subclass)
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
390 #else
391 #define xfs_lockdep_subclass_ok(subclass) (true)
392 #endif
395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
400 static inline int
401 xfs_lock_inumorder(int lock_mode, int subclass)
403 int class = 0;
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 XFS_ILOCK_RTSUM)));
407 ASSERT(xfs_lockdep_subclass_ok(subclass));
409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 class += subclass << XFS_IOLOCK_SHIFT;
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
442 static void
443 xfs_lock_inodes(
444 struct xfs_inode **ips,
445 int inodes,
446 uint lock_mode)
448 int attempts = 0, i, j, try_lock;
449 struct xfs_log_item *lp;
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
456 * the asserts.
458 ASSERT(ips && inodes >= 2 && inodes <= 5);
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 XFS_ILOCK_EXCL));
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 XFS_ILOCK_SHARED)));
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
473 try_lock = 0;
474 i = 0;
475 again:
476 for (; i < inodes; i++) {
477 ASSERT(ips[i]);
479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
480 continue;
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
486 if (!try_lock) {
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 lp = &ips[j]->i_itemp->ili_item;
489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 try_lock++;
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
498 * and try again.
500 if (!try_lock) {
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 continue;
505 /* try_lock means we have an inode locked that is in the AIL. */
506 ASSERT(i != 0);
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 continue;
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
514 attempts++;
515 for (j = i - 1; j >= 0; j--) {
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
519 * same.
521 if (j != (i - 1) && ips[j] == ips[j + 1])
522 continue;
524 xfs_iunlock(ips[j], lock_mode);
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
530 i = 0;
531 try_lock = 0;
532 goto again;
537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
542 * SHARED.
544 void
545 xfs_lock_two_inodes(
546 struct xfs_inode *ip0,
547 uint ip0_mode,
548 struct xfs_inode *ip1,
549 uint ip1_mode)
551 struct xfs_inode *temp;
552 uint mode_temp;
553 int attempts = 0;
554 struct xfs_log_item *lp;
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
569 ASSERT(ip0->i_ino != ip1->i_ino);
571 if (ip0->i_ino > ip1->i_ino) {
572 temp = ip0;
573 ip0 = ip1;
574 ip1 = temp;
575 mode_temp = ip0_mode;
576 ip0_mode = ip1_mode;
577 ip1_mode = mode_temp;
580 again:
581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
586 * and try again.
588 lp = &ip0->i_itemp->ili_item;
589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
594 goto again;
596 } else {
597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
601 void
602 __xfs_iflock(
603 struct xfs_inode *ip)
605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
608 do {
609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
610 if (xfs_isiflocked(ip))
611 io_schedule();
612 } while (!xfs_iflock_nowait(ip));
614 finish_wait(wq, &wait.wq_entry);
617 STATIC uint
618 _xfs_dic2xflags(
619 uint16_t di_flags,
620 uint64_t di_flags2,
621 bool has_attr)
623 uint flags = 0;
625 if (di_flags & XFS_DIFLAG_ANY) {
626 if (di_flags & XFS_DIFLAG_REALTIME)
627 flags |= FS_XFLAG_REALTIME;
628 if (di_flags & XFS_DIFLAG_PREALLOC)
629 flags |= FS_XFLAG_PREALLOC;
630 if (di_flags & XFS_DIFLAG_IMMUTABLE)
631 flags |= FS_XFLAG_IMMUTABLE;
632 if (di_flags & XFS_DIFLAG_APPEND)
633 flags |= FS_XFLAG_APPEND;
634 if (di_flags & XFS_DIFLAG_SYNC)
635 flags |= FS_XFLAG_SYNC;
636 if (di_flags & XFS_DIFLAG_NOATIME)
637 flags |= FS_XFLAG_NOATIME;
638 if (di_flags & XFS_DIFLAG_NODUMP)
639 flags |= FS_XFLAG_NODUMP;
640 if (di_flags & XFS_DIFLAG_RTINHERIT)
641 flags |= FS_XFLAG_RTINHERIT;
642 if (di_flags & XFS_DIFLAG_PROJINHERIT)
643 flags |= FS_XFLAG_PROJINHERIT;
644 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
645 flags |= FS_XFLAG_NOSYMLINKS;
646 if (di_flags & XFS_DIFLAG_EXTSIZE)
647 flags |= FS_XFLAG_EXTSIZE;
648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
649 flags |= FS_XFLAG_EXTSZINHERIT;
650 if (di_flags & XFS_DIFLAG_NODEFRAG)
651 flags |= FS_XFLAG_NODEFRAG;
652 if (di_flags & XFS_DIFLAG_FILESTREAM)
653 flags |= FS_XFLAG_FILESTREAM;
656 if (di_flags2 & XFS_DIFLAG2_ANY) {
657 if (di_flags2 & XFS_DIFLAG2_DAX)
658 flags |= FS_XFLAG_DAX;
659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 flags |= FS_XFLAG_COWEXTSIZE;
663 if (has_attr)
664 flags |= FS_XFLAG_HASATTR;
666 return flags;
669 uint
670 xfs_ip2xflags(
671 struct xfs_inode *ip)
673 struct xfs_icdinode *dic = &ip->i_d;
675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
685 xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
691 xfs_ino_t inum;
692 int error;
694 trace_xfs_lookup(dp, name);
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 return -EIO;
699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
700 if (error)
701 goto out_unlock;
703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
704 if (error)
705 goto out_free_name;
707 return 0;
709 out_free_name:
710 if (ci_name)
711 kmem_free(ci_name->name);
712 out_unlock:
713 *ipp = NULL;
714 return error;
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
727 * set to NULL.
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
748 static int
749 xfs_ialloc(
750 xfs_trans_t *tp,
751 xfs_inode_t *pip,
752 umode_t mode,
753 xfs_nlink_t nlink,
754 dev_t rdev,
755 prid_t prid,
756 xfs_buf_t **ialloc_context,
757 xfs_inode_t **ipp)
759 struct xfs_mount *mp = tp->t_mountp;
760 xfs_ino_t ino;
761 xfs_inode_t *ip;
762 uint flags;
763 int error;
764 struct timespec64 tv;
765 struct inode *inode;
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
772 ialloc_context, &ino);
773 if (error)
774 return error;
775 if (*ialloc_context || ino == NULLFSINO) {
776 *ipp = NULL;
777 return 0;
779 ASSERT(*ialloc_context == NULL);
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
786 * first.
788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 return -EFSCORRUPTED;
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 XFS_ILOCK_EXCL, &ip);
800 if (error)
801 return error;
802 ASSERT(ip != NULL);
803 inode = VFS_I(ip);
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
813 inode->i_mode = mode;
814 set_nlink(inode, nlink);
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 inode->i_rdev = rdev;
818 ip->i_d.di_projid = prid;
820 if (pip && XFS_INHERIT_GID(pip)) {
821 ip->i_d.di_gid = pip->i_d.di_gid;
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
831 if ((irix_sgid_inherit) &&
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
836 ip->i_d.di_size = 0;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
840 tv = current_time(inode);
841 inode->i_mtime = tv;
842 inode->i_atime = tv;
843 inode->i_ctime = tv;
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
850 if (ip->i_d.di_version == 3) {
851 inode_set_iversion(inode, 1);
852 ip->i_d.di_flags2 = 0;
853 ip->i_d.di_cowextsize = 0;
854 ip->i_d.di_crtime = tv;
858 flags = XFS_ILOG_CORE;
859 switch (mode & S_IFMT) {
860 case S_IFIFO:
861 case S_IFCHR:
862 case S_IFBLK:
863 case S_IFSOCK:
864 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
865 ip->i_df.if_flags = 0;
866 flags |= XFS_ILOG_DEV;
867 break;
868 case S_IFREG:
869 case S_IFDIR:
870 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
871 uint di_flags = 0;
873 if (S_ISDIR(mode)) {
874 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
875 di_flags |= XFS_DIFLAG_RTINHERIT;
876 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
877 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
878 ip->i_d.di_extsize = pip->i_d.di_extsize;
880 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
881 di_flags |= XFS_DIFLAG_PROJINHERIT;
882 } else if (S_ISREG(mode)) {
883 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
884 di_flags |= XFS_DIFLAG_REALTIME;
885 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
886 di_flags |= XFS_DIFLAG_EXTSIZE;
887 ip->i_d.di_extsize = pip->i_d.di_extsize;
890 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
891 xfs_inherit_noatime)
892 di_flags |= XFS_DIFLAG_NOATIME;
893 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
894 xfs_inherit_nodump)
895 di_flags |= XFS_DIFLAG_NODUMP;
896 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
897 xfs_inherit_sync)
898 di_flags |= XFS_DIFLAG_SYNC;
899 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
900 xfs_inherit_nosymlinks)
901 di_flags |= XFS_DIFLAG_NOSYMLINKS;
902 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
903 xfs_inherit_nodefrag)
904 di_flags |= XFS_DIFLAG_NODEFRAG;
905 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
906 di_flags |= XFS_DIFLAG_FILESTREAM;
908 ip->i_d.di_flags |= di_flags;
910 if (pip &&
911 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
912 pip->i_d.di_version == 3 &&
913 ip->i_d.di_version == 3) {
914 uint64_t di_flags2 = 0;
916 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
917 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
918 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
921 di_flags2 |= XFS_DIFLAG2_DAX;
923 ip->i_d.di_flags2 |= di_flags2;
925 /* FALLTHROUGH */
926 case S_IFLNK:
927 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
928 ip->i_df.if_flags = XFS_IFEXTENTS;
929 ip->i_df.if_bytes = 0;
930 ip->i_df.if_u1.if_root = NULL;
931 break;
932 default:
933 ASSERT(0);
936 * Attribute fork settings for new inode.
938 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
939 ip->i_d.di_anextents = 0;
942 * Log the new values stuffed into the inode.
944 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
945 xfs_trans_log_inode(tp, ip, flags);
947 /* now that we have an i_mode we can setup the inode structure */
948 xfs_setup_inode(ip);
950 *ipp = ip;
951 return 0;
955 * Allocates a new inode from disk and return a pointer to the
956 * incore copy. This routine will internally commit the current
957 * transaction and allocate a new one if the Space Manager needed
958 * to do an allocation to replenish the inode free-list.
960 * This routine is designed to be called from xfs_create and
961 * xfs_create_dir.
965 xfs_dir_ialloc(
966 xfs_trans_t **tpp, /* input: current transaction;
967 output: may be a new transaction. */
968 xfs_inode_t *dp, /* directory within whose allocate
969 the inode. */
970 umode_t mode,
971 xfs_nlink_t nlink,
972 dev_t rdev,
973 prid_t prid, /* project id */
974 xfs_inode_t **ipp) /* pointer to inode; it will be
975 locked. */
977 xfs_trans_t *tp;
978 xfs_inode_t *ip;
979 xfs_buf_t *ialloc_context = NULL;
980 int code;
981 void *dqinfo;
982 uint tflags;
984 tp = *tpp;
985 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
988 * xfs_ialloc will return a pointer to an incore inode if
989 * the Space Manager has an available inode on the free
990 * list. Otherwise, it will do an allocation and replenish
991 * the freelist. Since we can only do one allocation per
992 * transaction without deadlocks, we will need to commit the
993 * current transaction and start a new one. We will then
994 * need to call xfs_ialloc again to get the inode.
996 * If xfs_ialloc did an allocation to replenish the freelist,
997 * it returns the bp containing the head of the freelist as
998 * ialloc_context. We will hold a lock on it across the
999 * transaction commit so that no other process can steal
1000 * the inode(s) that we've just allocated.
1002 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1003 &ip);
1006 * Return an error if we were unable to allocate a new inode.
1007 * This should only happen if we run out of space on disk or
1008 * encounter a disk error.
1010 if (code) {
1011 *ipp = NULL;
1012 return code;
1014 if (!ialloc_context && !ip) {
1015 *ipp = NULL;
1016 return -ENOSPC;
1020 * If the AGI buffer is non-NULL, then we were unable to get an
1021 * inode in one operation. We need to commit the current
1022 * transaction and call xfs_ialloc() again. It is guaranteed
1023 * to succeed the second time.
1025 if (ialloc_context) {
1027 * Normally, xfs_trans_commit releases all the locks.
1028 * We call bhold to hang on to the ialloc_context across
1029 * the commit. Holding this buffer prevents any other
1030 * processes from doing any allocations in this
1031 * allocation group.
1033 xfs_trans_bhold(tp, ialloc_context);
1036 * We want the quota changes to be associated with the next
1037 * transaction, NOT this one. So, detach the dqinfo from this
1038 * and attach it to the next transaction.
1040 dqinfo = NULL;
1041 tflags = 0;
1042 if (tp->t_dqinfo) {
1043 dqinfo = (void *)tp->t_dqinfo;
1044 tp->t_dqinfo = NULL;
1045 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1046 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1049 code = xfs_trans_roll(&tp);
1052 * Re-attach the quota info that we detached from prev trx.
1054 if (dqinfo) {
1055 tp->t_dqinfo = dqinfo;
1056 tp->t_flags |= tflags;
1059 if (code) {
1060 xfs_buf_relse(ialloc_context);
1061 *tpp = tp;
1062 *ipp = NULL;
1063 return code;
1065 xfs_trans_bjoin(tp, ialloc_context);
1068 * Call ialloc again. Since we've locked out all
1069 * other allocations in this allocation group,
1070 * this call should always succeed.
1072 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1073 &ialloc_context, &ip);
1076 * If we get an error at this point, return to the caller
1077 * so that the current transaction can be aborted.
1079 if (code) {
1080 *tpp = tp;
1081 *ipp = NULL;
1082 return code;
1084 ASSERT(!ialloc_context && ip);
1088 *ipp = ip;
1089 *tpp = tp;
1091 return 0;
1095 * Decrement the link count on an inode & log the change. If this causes the
1096 * link count to go to zero, move the inode to AGI unlinked list so that it can
1097 * be freed when the last active reference goes away via xfs_inactive().
1099 static int /* error */
1100 xfs_droplink(
1101 xfs_trans_t *tp,
1102 xfs_inode_t *ip)
1104 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106 drop_nlink(VFS_I(ip));
1107 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109 if (VFS_I(ip)->i_nlink)
1110 return 0;
1112 return xfs_iunlink(tp, ip);
1116 * Increment the link count on an inode & log the change.
1118 static void
1119 xfs_bumplink(
1120 xfs_trans_t *tp,
1121 xfs_inode_t *ip)
1123 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125 ASSERT(ip->i_d.di_version > 1);
1126 inc_nlink(VFS_I(ip));
1127 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1131 xfs_create(
1132 xfs_inode_t *dp,
1133 struct xfs_name *name,
1134 umode_t mode,
1135 dev_t rdev,
1136 xfs_inode_t **ipp)
1138 int is_dir = S_ISDIR(mode);
1139 struct xfs_mount *mp = dp->i_mount;
1140 struct xfs_inode *ip = NULL;
1141 struct xfs_trans *tp = NULL;
1142 int error;
1143 bool unlock_dp_on_error = false;
1144 prid_t prid;
1145 struct xfs_dquot *udqp = NULL;
1146 struct xfs_dquot *gdqp = NULL;
1147 struct xfs_dquot *pdqp = NULL;
1148 struct xfs_trans_res *tres;
1149 uint resblks;
1151 trace_xfs_create(dp, name);
1153 if (XFS_FORCED_SHUTDOWN(mp))
1154 return -EIO;
1156 prid = xfs_get_initial_prid(dp);
1159 * Make sure that we have allocated dquot(s) on disk.
1161 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1162 xfs_kgid_to_gid(current_fsgid()), prid,
1163 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1164 &udqp, &gdqp, &pdqp);
1165 if (error)
1166 return error;
1168 if (is_dir) {
1169 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1170 tres = &M_RES(mp)->tr_mkdir;
1171 } else {
1172 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1173 tres = &M_RES(mp)->tr_create;
1177 * Initially assume that the file does not exist and
1178 * reserve the resources for that case. If that is not
1179 * the case we'll drop the one we have and get a more
1180 * appropriate transaction later.
1182 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1183 if (error == -ENOSPC) {
1184 /* flush outstanding delalloc blocks and retry */
1185 xfs_flush_inodes(mp);
1186 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1188 if (error)
1189 goto out_release_inode;
1191 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1192 unlock_dp_on_error = true;
1195 * Reserve disk quota and the inode.
1197 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1198 pdqp, resblks, 1, 0);
1199 if (error)
1200 goto out_trans_cancel;
1203 * A newly created regular or special file just has one directory
1204 * entry pointing to them, but a directory also the "." entry
1205 * pointing to itself.
1207 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1208 if (error)
1209 goto out_trans_cancel;
1212 * Now we join the directory inode to the transaction. We do not do it
1213 * earlier because xfs_dir_ialloc might commit the previous transaction
1214 * (and release all the locks). An error from here on will result in
1215 * the transaction cancel unlocking dp so don't do it explicitly in the
1216 * error path.
1218 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1219 unlock_dp_on_error = false;
1221 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1222 resblks ?
1223 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1224 if (error) {
1225 ASSERT(error != -ENOSPC);
1226 goto out_trans_cancel;
1228 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1229 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1231 if (is_dir) {
1232 error = xfs_dir_init(tp, ip, dp);
1233 if (error)
1234 goto out_trans_cancel;
1236 xfs_bumplink(tp, dp);
1240 * If this is a synchronous mount, make sure that the
1241 * create transaction goes to disk before returning to
1242 * the user.
1244 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1245 xfs_trans_set_sync(tp);
1248 * Attach the dquot(s) to the inodes and modify them incore.
1249 * These ids of the inode couldn't have changed since the new
1250 * inode has been locked ever since it was created.
1252 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1254 error = xfs_trans_commit(tp);
1255 if (error)
1256 goto out_release_inode;
1258 xfs_qm_dqrele(udqp);
1259 xfs_qm_dqrele(gdqp);
1260 xfs_qm_dqrele(pdqp);
1262 *ipp = ip;
1263 return 0;
1265 out_trans_cancel:
1266 xfs_trans_cancel(tp);
1267 out_release_inode:
1269 * Wait until after the current transaction is aborted to finish the
1270 * setup of the inode and release the inode. This prevents recursive
1271 * transactions and deadlocks from xfs_inactive.
1273 if (ip) {
1274 xfs_finish_inode_setup(ip);
1275 xfs_irele(ip);
1278 xfs_qm_dqrele(udqp);
1279 xfs_qm_dqrele(gdqp);
1280 xfs_qm_dqrele(pdqp);
1282 if (unlock_dp_on_error)
1283 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1284 return error;
1288 xfs_create_tmpfile(
1289 struct xfs_inode *dp,
1290 umode_t mode,
1291 struct xfs_inode **ipp)
1293 struct xfs_mount *mp = dp->i_mount;
1294 struct xfs_inode *ip = NULL;
1295 struct xfs_trans *tp = NULL;
1296 int error;
1297 prid_t prid;
1298 struct xfs_dquot *udqp = NULL;
1299 struct xfs_dquot *gdqp = NULL;
1300 struct xfs_dquot *pdqp = NULL;
1301 struct xfs_trans_res *tres;
1302 uint resblks;
1304 if (XFS_FORCED_SHUTDOWN(mp))
1305 return -EIO;
1307 prid = xfs_get_initial_prid(dp);
1310 * Make sure that we have allocated dquot(s) on disk.
1312 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1313 xfs_kgid_to_gid(current_fsgid()), prid,
1314 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1315 &udqp, &gdqp, &pdqp);
1316 if (error)
1317 return error;
1319 resblks = XFS_IALLOC_SPACE_RES(mp);
1320 tres = &M_RES(mp)->tr_create_tmpfile;
1322 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1323 if (error)
1324 goto out_release_inode;
1326 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1327 pdqp, resblks, 1, 0);
1328 if (error)
1329 goto out_trans_cancel;
1331 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1332 if (error)
1333 goto out_trans_cancel;
1335 if (mp->m_flags & XFS_MOUNT_WSYNC)
1336 xfs_trans_set_sync(tp);
1339 * Attach the dquot(s) to the inodes and modify them incore.
1340 * These ids of the inode couldn't have changed since the new
1341 * inode has been locked ever since it was created.
1343 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1345 error = xfs_iunlink(tp, ip);
1346 if (error)
1347 goto out_trans_cancel;
1349 error = xfs_trans_commit(tp);
1350 if (error)
1351 goto out_release_inode;
1353 xfs_qm_dqrele(udqp);
1354 xfs_qm_dqrele(gdqp);
1355 xfs_qm_dqrele(pdqp);
1357 *ipp = ip;
1358 return 0;
1360 out_trans_cancel:
1361 xfs_trans_cancel(tp);
1362 out_release_inode:
1364 * Wait until after the current transaction is aborted to finish the
1365 * setup of the inode and release the inode. This prevents recursive
1366 * transactions and deadlocks from xfs_inactive.
1368 if (ip) {
1369 xfs_finish_inode_setup(ip);
1370 xfs_irele(ip);
1373 xfs_qm_dqrele(udqp);
1374 xfs_qm_dqrele(gdqp);
1375 xfs_qm_dqrele(pdqp);
1377 return error;
1381 xfs_link(
1382 xfs_inode_t *tdp,
1383 xfs_inode_t *sip,
1384 struct xfs_name *target_name)
1386 xfs_mount_t *mp = tdp->i_mount;
1387 xfs_trans_t *tp;
1388 int error;
1389 int resblks;
1391 trace_xfs_link(tdp, target_name);
1393 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1395 if (XFS_FORCED_SHUTDOWN(mp))
1396 return -EIO;
1398 error = xfs_qm_dqattach(sip);
1399 if (error)
1400 goto std_return;
1402 error = xfs_qm_dqattach(tdp);
1403 if (error)
1404 goto std_return;
1406 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1407 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1408 if (error == -ENOSPC) {
1409 resblks = 0;
1410 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1412 if (error)
1413 goto std_return;
1415 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1417 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1418 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1421 * If we are using project inheritance, we only allow hard link
1422 * creation in our tree when the project IDs are the same; else
1423 * the tree quota mechanism could be circumvented.
1425 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1426 tdp->i_d.di_projid != sip->i_d.di_projid)) {
1427 error = -EXDEV;
1428 goto error_return;
1431 if (!resblks) {
1432 error = xfs_dir_canenter(tp, tdp, target_name);
1433 if (error)
1434 goto error_return;
1438 * Handle initial link state of O_TMPFILE inode
1440 if (VFS_I(sip)->i_nlink == 0) {
1441 error = xfs_iunlink_remove(tp, sip);
1442 if (error)
1443 goto error_return;
1446 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1447 resblks);
1448 if (error)
1449 goto error_return;
1450 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1451 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1453 xfs_bumplink(tp, sip);
1456 * If this is a synchronous mount, make sure that the
1457 * link transaction goes to disk before returning to
1458 * the user.
1460 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1461 xfs_trans_set_sync(tp);
1463 return xfs_trans_commit(tp);
1465 error_return:
1466 xfs_trans_cancel(tp);
1467 std_return:
1468 return error;
1471 /* Clear the reflink flag and the cowblocks tag if possible. */
1472 static void
1473 xfs_itruncate_clear_reflink_flags(
1474 struct xfs_inode *ip)
1476 struct xfs_ifork *dfork;
1477 struct xfs_ifork *cfork;
1479 if (!xfs_is_reflink_inode(ip))
1480 return;
1481 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1482 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1483 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1484 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1485 if (cfork->if_bytes == 0)
1486 xfs_inode_clear_cowblocks_tag(ip);
1490 * Free up the underlying blocks past new_size. The new size must be smaller
1491 * than the current size. This routine can be used both for the attribute and
1492 * data fork, and does not modify the inode size, which is left to the caller.
1494 * The transaction passed to this routine must have made a permanent log
1495 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1496 * given transaction and start new ones, so make sure everything involved in
1497 * the transaction is tidy before calling here. Some transaction will be
1498 * returned to the caller to be committed. The incoming transaction must
1499 * already include the inode, and both inode locks must be held exclusively.
1500 * The inode must also be "held" within the transaction. On return the inode
1501 * will be "held" within the returned transaction. This routine does NOT
1502 * require any disk space to be reserved for it within the transaction.
1504 * If we get an error, we must return with the inode locked and linked into the
1505 * current transaction. This keeps things simple for the higher level code,
1506 * because it always knows that the inode is locked and held in the transaction
1507 * that returns to it whether errors occur or not. We don't mark the inode
1508 * dirty on error so that transactions can be easily aborted if possible.
1511 xfs_itruncate_extents_flags(
1512 struct xfs_trans **tpp,
1513 struct xfs_inode *ip,
1514 int whichfork,
1515 xfs_fsize_t new_size,
1516 int flags)
1518 struct xfs_mount *mp = ip->i_mount;
1519 struct xfs_trans *tp = *tpp;
1520 xfs_fileoff_t first_unmap_block;
1521 xfs_filblks_t unmap_len;
1522 int error = 0;
1524 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1525 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1526 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1527 ASSERT(new_size <= XFS_ISIZE(ip));
1528 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1529 ASSERT(ip->i_itemp != NULL);
1530 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1531 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1533 trace_xfs_itruncate_extents_start(ip, new_size);
1535 flags |= xfs_bmapi_aflag(whichfork);
1538 * Since it is possible for space to become allocated beyond
1539 * the end of the file (in a crash where the space is allocated
1540 * but the inode size is not yet updated), simply remove any
1541 * blocks which show up between the new EOF and the maximum
1542 * possible file size.
1544 * We have to free all the blocks to the bmbt maximum offset, even if
1545 * the page cache can't scale that far.
1547 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1548 if (first_unmap_block >= XFS_MAX_FILEOFF) {
1549 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1550 return 0;
1553 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1554 while (unmap_len > 0) {
1555 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1556 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1557 flags, XFS_ITRUNC_MAX_EXTENTS);
1558 if (error)
1559 goto out;
1562 * Duplicate the transaction that has the permanent
1563 * reservation and commit the old transaction.
1565 error = xfs_defer_finish(&tp);
1566 if (error)
1567 goto out;
1569 error = xfs_trans_roll_inode(&tp, ip);
1570 if (error)
1571 goto out;
1574 if (whichfork == XFS_DATA_FORK) {
1575 /* Remove all pending CoW reservations. */
1576 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1577 first_unmap_block, XFS_MAX_FILEOFF, true);
1578 if (error)
1579 goto out;
1581 xfs_itruncate_clear_reflink_flags(ip);
1585 * Always re-log the inode so that our permanent transaction can keep
1586 * on rolling it forward in the log.
1588 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1590 trace_xfs_itruncate_extents_end(ip, new_size);
1592 out:
1593 *tpp = tp;
1594 return error;
1598 xfs_release(
1599 xfs_inode_t *ip)
1601 xfs_mount_t *mp = ip->i_mount;
1602 int error;
1604 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1605 return 0;
1607 /* If this is a read-only mount, don't do this (would generate I/O) */
1608 if (mp->m_flags & XFS_MOUNT_RDONLY)
1609 return 0;
1611 if (!XFS_FORCED_SHUTDOWN(mp)) {
1612 int truncated;
1615 * If we previously truncated this file and removed old data
1616 * in the process, we want to initiate "early" writeout on
1617 * the last close. This is an attempt to combat the notorious
1618 * NULL files problem which is particularly noticeable from a
1619 * truncate down, buffered (re-)write (delalloc), followed by
1620 * a crash. What we are effectively doing here is
1621 * significantly reducing the time window where we'd otherwise
1622 * be exposed to that problem.
1624 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1625 if (truncated) {
1626 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1627 if (ip->i_delayed_blks > 0) {
1628 error = filemap_flush(VFS_I(ip)->i_mapping);
1629 if (error)
1630 return error;
1635 if (VFS_I(ip)->i_nlink == 0)
1636 return 0;
1638 if (xfs_can_free_eofblocks(ip, false)) {
1641 * Check if the inode is being opened, written and closed
1642 * frequently and we have delayed allocation blocks outstanding
1643 * (e.g. streaming writes from the NFS server), truncating the
1644 * blocks past EOF will cause fragmentation to occur.
1646 * In this case don't do the truncation, but we have to be
1647 * careful how we detect this case. Blocks beyond EOF show up as
1648 * i_delayed_blks even when the inode is clean, so we need to
1649 * truncate them away first before checking for a dirty release.
1650 * Hence on the first dirty close we will still remove the
1651 * speculative allocation, but after that we will leave it in
1652 * place.
1654 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1655 return 0;
1657 * If we can't get the iolock just skip truncating the blocks
1658 * past EOF because we could deadlock with the mmap_sem
1659 * otherwise. We'll get another chance to drop them once the
1660 * last reference to the inode is dropped, so we'll never leak
1661 * blocks permanently.
1663 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1664 error = xfs_free_eofblocks(ip);
1665 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1666 if (error)
1667 return error;
1670 /* delalloc blocks after truncation means it really is dirty */
1671 if (ip->i_delayed_blks)
1672 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1674 return 0;
1678 * xfs_inactive_truncate
1680 * Called to perform a truncate when an inode becomes unlinked.
1682 STATIC int
1683 xfs_inactive_truncate(
1684 struct xfs_inode *ip)
1686 struct xfs_mount *mp = ip->i_mount;
1687 struct xfs_trans *tp;
1688 int error;
1690 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1691 if (error) {
1692 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1693 return error;
1695 xfs_ilock(ip, XFS_ILOCK_EXCL);
1696 xfs_trans_ijoin(tp, ip, 0);
1699 * Log the inode size first to prevent stale data exposure in the event
1700 * of a system crash before the truncate completes. See the related
1701 * comment in xfs_vn_setattr_size() for details.
1703 ip->i_d.di_size = 0;
1704 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1706 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1707 if (error)
1708 goto error_trans_cancel;
1710 ASSERT(ip->i_d.di_nextents == 0);
1712 error = xfs_trans_commit(tp);
1713 if (error)
1714 goto error_unlock;
1716 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1717 return 0;
1719 error_trans_cancel:
1720 xfs_trans_cancel(tp);
1721 error_unlock:
1722 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1723 return error;
1727 * xfs_inactive_ifree()
1729 * Perform the inode free when an inode is unlinked.
1731 STATIC int
1732 xfs_inactive_ifree(
1733 struct xfs_inode *ip)
1735 struct xfs_mount *mp = ip->i_mount;
1736 struct xfs_trans *tp;
1737 int error;
1740 * We try to use a per-AG reservation for any block needed by the finobt
1741 * tree, but as the finobt feature predates the per-AG reservation
1742 * support a degraded file system might not have enough space for the
1743 * reservation at mount time. In that case try to dip into the reserved
1744 * pool and pray.
1746 * Send a warning if the reservation does happen to fail, as the inode
1747 * now remains allocated and sits on the unlinked list until the fs is
1748 * repaired.
1750 if (unlikely(mp->m_finobt_nores)) {
1751 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1752 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1753 &tp);
1754 } else {
1755 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1757 if (error) {
1758 if (error == -ENOSPC) {
1759 xfs_warn_ratelimited(mp,
1760 "Failed to remove inode(s) from unlinked list. "
1761 "Please free space, unmount and run xfs_repair.");
1762 } else {
1763 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1765 return error;
1768 xfs_ilock(ip, XFS_ILOCK_EXCL);
1769 xfs_trans_ijoin(tp, ip, 0);
1771 error = xfs_ifree(tp, ip);
1772 if (error) {
1774 * If we fail to free the inode, shut down. The cancel
1775 * might do that, we need to make sure. Otherwise the
1776 * inode might be lost for a long time or forever.
1778 if (!XFS_FORCED_SHUTDOWN(mp)) {
1779 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1780 __func__, error);
1781 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1783 xfs_trans_cancel(tp);
1784 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1785 return error;
1789 * Credit the quota account(s). The inode is gone.
1791 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1794 * Just ignore errors at this point. There is nothing we can do except
1795 * to try to keep going. Make sure it's not a silent error.
1797 error = xfs_trans_commit(tp);
1798 if (error)
1799 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1800 __func__, error);
1802 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1803 return 0;
1807 * xfs_inactive
1809 * This is called when the vnode reference count for the vnode
1810 * goes to zero. If the file has been unlinked, then it must
1811 * now be truncated. Also, we clear all of the read-ahead state
1812 * kept for the inode here since the file is now closed.
1814 void
1815 xfs_inactive(
1816 xfs_inode_t *ip)
1818 struct xfs_mount *mp;
1819 int error;
1820 int truncate = 0;
1823 * If the inode is already free, then there can be nothing
1824 * to clean up here.
1826 if (VFS_I(ip)->i_mode == 0) {
1827 ASSERT(ip->i_df.if_broot_bytes == 0);
1828 return;
1831 mp = ip->i_mount;
1832 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1834 /* If this is a read-only mount, don't do this (would generate I/O) */
1835 if (mp->m_flags & XFS_MOUNT_RDONLY)
1836 return;
1838 /* Try to clean out the cow blocks if there are any. */
1839 if (xfs_inode_has_cow_data(ip))
1840 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1842 if (VFS_I(ip)->i_nlink != 0) {
1844 * force is true because we are evicting an inode from the
1845 * cache. Post-eof blocks must be freed, lest we end up with
1846 * broken free space accounting.
1848 * Note: don't bother with iolock here since lockdep complains
1849 * about acquiring it in reclaim context. We have the only
1850 * reference to the inode at this point anyways.
1852 if (xfs_can_free_eofblocks(ip, true))
1853 xfs_free_eofblocks(ip);
1855 return;
1858 if (S_ISREG(VFS_I(ip)->i_mode) &&
1859 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1860 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1861 truncate = 1;
1863 error = xfs_qm_dqattach(ip);
1864 if (error)
1865 return;
1867 if (S_ISLNK(VFS_I(ip)->i_mode))
1868 error = xfs_inactive_symlink(ip);
1869 else if (truncate)
1870 error = xfs_inactive_truncate(ip);
1871 if (error)
1872 return;
1875 * If there are attributes associated with the file then blow them away
1876 * now. The code calls a routine that recursively deconstructs the
1877 * attribute fork. If also blows away the in-core attribute fork.
1879 if (XFS_IFORK_Q(ip)) {
1880 error = xfs_attr_inactive(ip);
1881 if (error)
1882 return;
1885 ASSERT(!ip->i_afp);
1886 ASSERT(ip->i_d.di_anextents == 0);
1887 ASSERT(ip->i_d.di_forkoff == 0);
1890 * Free the inode.
1892 error = xfs_inactive_ifree(ip);
1893 if (error)
1894 return;
1897 * Release the dquots held by inode, if any.
1899 xfs_qm_dqdetach(ip);
1903 * In-Core Unlinked List Lookups
1904 * =============================
1906 * Every inode is supposed to be reachable from some other piece of metadata
1907 * with the exception of the root directory. Inodes with a connection to a
1908 * file descriptor but not linked from anywhere in the on-disk directory tree
1909 * are collectively known as unlinked inodes, though the filesystem itself
1910 * maintains links to these inodes so that on-disk metadata are consistent.
1912 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1913 * header contains a number of buckets that point to an inode, and each inode
1914 * record has a pointer to the next inode in the hash chain. This
1915 * singly-linked list causes scaling problems in the iunlink remove function
1916 * because we must walk that list to find the inode that points to the inode
1917 * being removed from the unlinked hash bucket list.
1919 * What if we modelled the unlinked list as a collection of records capturing
1920 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1921 * have a fast way to look up unlinked list predecessors, which avoids the
1922 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1923 * rhashtable.
1925 * Because this is a backref cache, we ignore operational failures since the
1926 * iunlink code can fall back to the slow bucket walk. The only errors that
1927 * should bubble out are for obviously incorrect situations.
1929 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1930 * access or have otherwise provided for concurrency control.
1933 /* Capture a "X.next_unlinked = Y" relationship. */
1934 struct xfs_iunlink {
1935 struct rhash_head iu_rhash_head;
1936 xfs_agino_t iu_agino; /* X */
1937 xfs_agino_t iu_next_unlinked; /* Y */
1940 /* Unlinked list predecessor lookup hashtable construction */
1941 static int
1942 xfs_iunlink_obj_cmpfn(
1943 struct rhashtable_compare_arg *arg,
1944 const void *obj)
1946 const xfs_agino_t *key = arg->key;
1947 const struct xfs_iunlink *iu = obj;
1949 if (iu->iu_next_unlinked != *key)
1950 return 1;
1951 return 0;
1954 static const struct rhashtable_params xfs_iunlink_hash_params = {
1955 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1956 .key_len = sizeof(xfs_agino_t),
1957 .key_offset = offsetof(struct xfs_iunlink,
1958 iu_next_unlinked),
1959 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1960 .automatic_shrinking = true,
1961 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1965 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1966 * relation is found.
1968 static xfs_agino_t
1969 xfs_iunlink_lookup_backref(
1970 struct xfs_perag *pag,
1971 xfs_agino_t agino)
1973 struct xfs_iunlink *iu;
1975 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1976 xfs_iunlink_hash_params);
1977 return iu ? iu->iu_agino : NULLAGINO;
1981 * Take ownership of an iunlink cache entry and insert it into the hash table.
1982 * If successful, the entry will be owned by the cache; if not, it is freed.
1983 * Either way, the caller does not own @iu after this call.
1985 static int
1986 xfs_iunlink_insert_backref(
1987 struct xfs_perag *pag,
1988 struct xfs_iunlink *iu)
1990 int error;
1992 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1993 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1995 * Fail loudly if there already was an entry because that's a sign of
1996 * corruption of in-memory data. Also fail loudly if we see an error
1997 * code we didn't anticipate from the rhashtable code. Currently we
1998 * only anticipate ENOMEM.
2000 if (error) {
2001 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
2002 kmem_free(iu);
2005 * Absorb any runtime errors that aren't a result of corruption because
2006 * this is a cache and we can always fall back to bucket list scanning.
2008 if (error != 0 && error != -EEXIST)
2009 error = 0;
2010 return error;
2013 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2014 static int
2015 xfs_iunlink_add_backref(
2016 struct xfs_perag *pag,
2017 xfs_agino_t prev_agino,
2018 xfs_agino_t this_agino)
2020 struct xfs_iunlink *iu;
2022 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2023 return 0;
2025 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2026 iu->iu_agino = prev_agino;
2027 iu->iu_next_unlinked = this_agino;
2029 return xfs_iunlink_insert_backref(pag, iu);
2033 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2034 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2035 * wasn't any such entry then we don't bother.
2037 static int
2038 xfs_iunlink_change_backref(
2039 struct xfs_perag *pag,
2040 xfs_agino_t agino,
2041 xfs_agino_t next_unlinked)
2043 struct xfs_iunlink *iu;
2044 int error;
2046 /* Look up the old entry; if there wasn't one then exit. */
2047 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2048 xfs_iunlink_hash_params);
2049 if (!iu)
2050 return 0;
2053 * Remove the entry. This shouldn't ever return an error, but if we
2054 * couldn't remove the old entry we don't want to add it again to the
2055 * hash table, and if the entry disappeared on us then someone's
2056 * violated the locking rules and we need to fail loudly. Either way
2057 * we cannot remove the inode because internal state is or would have
2058 * been corrupt.
2060 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2061 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2062 if (error)
2063 return error;
2065 /* If there is no new next entry just free our item and return. */
2066 if (next_unlinked == NULLAGINO) {
2067 kmem_free(iu);
2068 return 0;
2071 /* Update the entry and re-add it to the hash table. */
2072 iu->iu_next_unlinked = next_unlinked;
2073 return xfs_iunlink_insert_backref(pag, iu);
2076 /* Set up the in-core predecessor structures. */
2078 xfs_iunlink_init(
2079 struct xfs_perag *pag)
2081 return rhashtable_init(&pag->pagi_unlinked_hash,
2082 &xfs_iunlink_hash_params);
2085 /* Free the in-core predecessor structures. */
2086 static void
2087 xfs_iunlink_free_item(
2088 void *ptr,
2089 void *arg)
2091 struct xfs_iunlink *iu = ptr;
2092 bool *freed_anything = arg;
2094 *freed_anything = true;
2095 kmem_free(iu);
2098 void
2099 xfs_iunlink_destroy(
2100 struct xfs_perag *pag)
2102 bool freed_anything = false;
2104 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2105 xfs_iunlink_free_item, &freed_anything);
2107 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2111 * Point the AGI unlinked bucket at an inode and log the results. The caller
2112 * is responsible for validating the old value.
2114 STATIC int
2115 xfs_iunlink_update_bucket(
2116 struct xfs_trans *tp,
2117 xfs_agnumber_t agno,
2118 struct xfs_buf *agibp,
2119 unsigned int bucket_index,
2120 xfs_agino_t new_agino)
2122 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
2123 xfs_agino_t old_value;
2124 int offset;
2126 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2128 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2129 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2130 old_value, new_agino);
2133 * We should never find the head of the list already set to the value
2134 * passed in because either we're adding or removing ourselves from the
2135 * head of the list.
2137 if (old_value == new_agino) {
2138 xfs_buf_corruption_error(agibp);
2139 return -EFSCORRUPTED;
2142 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2143 offset = offsetof(struct xfs_agi, agi_unlinked) +
2144 (sizeof(xfs_agino_t) * bucket_index);
2145 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2146 return 0;
2149 /* Set an on-disk inode's next_unlinked pointer. */
2150 STATIC void
2151 xfs_iunlink_update_dinode(
2152 struct xfs_trans *tp,
2153 xfs_agnumber_t agno,
2154 xfs_agino_t agino,
2155 struct xfs_buf *ibp,
2156 struct xfs_dinode *dip,
2157 struct xfs_imap *imap,
2158 xfs_agino_t next_agino)
2160 struct xfs_mount *mp = tp->t_mountp;
2161 int offset;
2163 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2165 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2166 be32_to_cpu(dip->di_next_unlinked), next_agino);
2168 dip->di_next_unlinked = cpu_to_be32(next_agino);
2169 offset = imap->im_boffset +
2170 offsetof(struct xfs_dinode, di_next_unlinked);
2172 /* need to recalc the inode CRC if appropriate */
2173 xfs_dinode_calc_crc(mp, dip);
2174 xfs_trans_inode_buf(tp, ibp);
2175 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2176 xfs_inobp_check(mp, ibp);
2179 /* Set an in-core inode's unlinked pointer and return the old value. */
2180 STATIC int
2181 xfs_iunlink_update_inode(
2182 struct xfs_trans *tp,
2183 struct xfs_inode *ip,
2184 xfs_agnumber_t agno,
2185 xfs_agino_t next_agino,
2186 xfs_agino_t *old_next_agino)
2188 struct xfs_mount *mp = tp->t_mountp;
2189 struct xfs_dinode *dip;
2190 struct xfs_buf *ibp;
2191 xfs_agino_t old_value;
2192 int error;
2194 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2196 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2197 if (error)
2198 return error;
2200 /* Make sure the old pointer isn't garbage. */
2201 old_value = be32_to_cpu(dip->di_next_unlinked);
2202 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2203 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2204 sizeof(*dip), __this_address);
2205 error = -EFSCORRUPTED;
2206 goto out;
2210 * Since we're updating a linked list, we should never find that the
2211 * current pointer is the same as the new value, unless we're
2212 * terminating the list.
2214 *old_next_agino = old_value;
2215 if (old_value == next_agino) {
2216 if (next_agino != NULLAGINO) {
2217 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2218 dip, sizeof(*dip), __this_address);
2219 error = -EFSCORRUPTED;
2221 goto out;
2224 /* Ok, update the new pointer. */
2225 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2226 ibp, dip, &ip->i_imap, next_agino);
2227 return 0;
2228 out:
2229 xfs_trans_brelse(tp, ibp);
2230 return error;
2234 * This is called when the inode's link count has gone to 0 or we are creating
2235 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2237 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2238 * list when the inode is freed.
2240 STATIC int
2241 xfs_iunlink(
2242 struct xfs_trans *tp,
2243 struct xfs_inode *ip)
2245 struct xfs_mount *mp = tp->t_mountp;
2246 struct xfs_agi *agi;
2247 struct xfs_buf *agibp;
2248 xfs_agino_t next_agino;
2249 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2250 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2251 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2252 int error;
2254 ASSERT(VFS_I(ip)->i_nlink == 0);
2255 ASSERT(VFS_I(ip)->i_mode != 0);
2256 trace_xfs_iunlink(ip);
2258 /* Get the agi buffer first. It ensures lock ordering on the list. */
2259 error = xfs_read_agi(mp, tp, agno, &agibp);
2260 if (error)
2261 return error;
2262 agi = XFS_BUF_TO_AGI(agibp);
2265 * Get the index into the agi hash table for the list this inode will
2266 * go on. Make sure the pointer isn't garbage and that this inode
2267 * isn't already on the list.
2269 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2270 if (next_agino == agino ||
2271 !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2272 xfs_buf_corruption_error(agibp);
2273 return -EFSCORRUPTED;
2276 if (next_agino != NULLAGINO) {
2277 struct xfs_perag *pag;
2278 xfs_agino_t old_agino;
2281 * There is already another inode in the bucket, so point this
2282 * inode to the current head of the list.
2284 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2285 &old_agino);
2286 if (error)
2287 return error;
2288 ASSERT(old_agino == NULLAGINO);
2291 * agino has been unlinked, add a backref from the next inode
2292 * back to agino.
2294 pag = xfs_perag_get(mp, agno);
2295 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2296 xfs_perag_put(pag);
2297 if (error)
2298 return error;
2301 /* Point the head of the list to point to this inode. */
2302 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2305 /* Return the imap, dinode pointer, and buffer for an inode. */
2306 STATIC int
2307 xfs_iunlink_map_ino(
2308 struct xfs_trans *tp,
2309 xfs_agnumber_t agno,
2310 xfs_agino_t agino,
2311 struct xfs_imap *imap,
2312 struct xfs_dinode **dipp,
2313 struct xfs_buf **bpp)
2315 struct xfs_mount *mp = tp->t_mountp;
2316 int error;
2318 imap->im_blkno = 0;
2319 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2320 if (error) {
2321 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2322 __func__, error);
2323 return error;
2326 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2327 if (error) {
2328 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2329 __func__, error);
2330 return error;
2333 return 0;
2337 * Walk the unlinked chain from @head_agino until we find the inode that
2338 * points to @target_agino. Return the inode number, map, dinode pointer,
2339 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2341 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2342 * @agino, @imap, @dipp, and @bpp are all output parameters.
2344 * Do not call this function if @target_agino is the head of the list.
2346 STATIC int
2347 xfs_iunlink_map_prev(
2348 struct xfs_trans *tp,
2349 xfs_agnumber_t agno,
2350 xfs_agino_t head_agino,
2351 xfs_agino_t target_agino,
2352 xfs_agino_t *agino,
2353 struct xfs_imap *imap,
2354 struct xfs_dinode **dipp,
2355 struct xfs_buf **bpp,
2356 struct xfs_perag *pag)
2358 struct xfs_mount *mp = tp->t_mountp;
2359 xfs_agino_t next_agino;
2360 int error;
2362 ASSERT(head_agino != target_agino);
2363 *bpp = NULL;
2365 /* See if our backref cache can find it faster. */
2366 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2367 if (*agino != NULLAGINO) {
2368 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2369 if (error)
2370 return error;
2372 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2373 return 0;
2376 * If we get here the cache contents were corrupt, so drop the
2377 * buffer and fall back to walking the bucket list.
2379 xfs_trans_brelse(tp, *bpp);
2380 *bpp = NULL;
2381 WARN_ON_ONCE(1);
2384 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2386 /* Otherwise, walk the entire bucket until we find it. */
2387 next_agino = head_agino;
2388 while (next_agino != target_agino) {
2389 xfs_agino_t unlinked_agino;
2391 if (*bpp)
2392 xfs_trans_brelse(tp, *bpp);
2394 *agino = next_agino;
2395 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2396 bpp);
2397 if (error)
2398 return error;
2400 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2402 * Make sure this pointer is valid and isn't an obvious
2403 * infinite loop.
2405 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2406 next_agino == unlinked_agino) {
2407 XFS_CORRUPTION_ERROR(__func__,
2408 XFS_ERRLEVEL_LOW, mp,
2409 *dipp, sizeof(**dipp));
2410 error = -EFSCORRUPTED;
2411 return error;
2413 next_agino = unlinked_agino;
2416 return 0;
2420 * Pull the on-disk inode from the AGI unlinked list.
2422 STATIC int
2423 xfs_iunlink_remove(
2424 struct xfs_trans *tp,
2425 struct xfs_inode *ip)
2427 struct xfs_mount *mp = tp->t_mountp;
2428 struct xfs_agi *agi;
2429 struct xfs_buf *agibp;
2430 struct xfs_buf *last_ibp;
2431 struct xfs_dinode *last_dip = NULL;
2432 struct xfs_perag *pag = NULL;
2433 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2434 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2435 xfs_agino_t next_agino;
2436 xfs_agino_t head_agino;
2437 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2438 int error;
2440 trace_xfs_iunlink_remove(ip);
2442 /* Get the agi buffer first. It ensures lock ordering on the list. */
2443 error = xfs_read_agi(mp, tp, agno, &agibp);
2444 if (error)
2445 return error;
2446 agi = XFS_BUF_TO_AGI(agibp);
2449 * Get the index into the agi hash table for the list this inode will
2450 * go on. Make sure the head pointer isn't garbage.
2452 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2453 if (!xfs_verify_agino(mp, agno, head_agino)) {
2454 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2455 agi, sizeof(*agi));
2456 return -EFSCORRUPTED;
2460 * Set our inode's next_unlinked pointer to NULL and then return
2461 * the old pointer value so that we can update whatever was previous
2462 * to us in the list to point to whatever was next in the list.
2464 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2465 if (error)
2466 return error;
2469 * If there was a backref pointing from the next inode back to this
2470 * one, remove it because we've removed this inode from the list.
2472 * Later, if this inode was in the middle of the list we'll update
2473 * this inode's backref to point from the next inode.
2475 if (next_agino != NULLAGINO) {
2476 pag = xfs_perag_get(mp, agno);
2477 error = xfs_iunlink_change_backref(pag, next_agino,
2478 NULLAGINO);
2479 if (error)
2480 goto out;
2483 if (head_agino == agino) {
2484 /* Point the head of the list to the next unlinked inode. */
2485 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2486 next_agino);
2487 if (error)
2488 goto out;
2489 } else {
2490 struct xfs_imap imap;
2491 xfs_agino_t prev_agino;
2493 if (!pag)
2494 pag = xfs_perag_get(mp, agno);
2496 /* We need to search the list for the inode being freed. */
2497 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2498 &prev_agino, &imap, &last_dip, &last_ibp,
2499 pag);
2500 if (error)
2501 goto out;
2503 /* Point the previous inode on the list to the next inode. */
2504 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2505 last_dip, &imap, next_agino);
2508 * Now we deal with the backref for this inode. If this inode
2509 * pointed at a real inode, change the backref that pointed to
2510 * us to point to our old next. If this inode was the end of
2511 * the list, delete the backref that pointed to us. Note that
2512 * change_backref takes care of deleting the backref if
2513 * next_agino is NULLAGINO.
2515 error = xfs_iunlink_change_backref(pag, agino, next_agino);
2516 if (error)
2517 goto out;
2520 out:
2521 if (pag)
2522 xfs_perag_put(pag);
2523 return error;
2527 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2528 * inodes that are in memory - they all must be marked stale and attached to
2529 * the cluster buffer.
2531 STATIC int
2532 xfs_ifree_cluster(
2533 xfs_inode_t *free_ip,
2534 xfs_trans_t *tp,
2535 struct xfs_icluster *xic)
2537 xfs_mount_t *mp = free_ip->i_mount;
2538 int nbufs;
2539 int i, j;
2540 int ioffset;
2541 xfs_daddr_t blkno;
2542 xfs_buf_t *bp;
2543 xfs_inode_t *ip;
2544 xfs_inode_log_item_t *iip;
2545 struct xfs_log_item *lip;
2546 struct xfs_perag *pag;
2547 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2548 xfs_ino_t inum;
2549 int error;
2551 inum = xic->first_ino;
2552 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2553 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2555 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2557 * The allocation bitmap tells us which inodes of the chunk were
2558 * physically allocated. Skip the cluster if an inode falls into
2559 * a sparse region.
2561 ioffset = inum - xic->first_ino;
2562 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2563 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2564 continue;
2567 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2568 XFS_INO_TO_AGBNO(mp, inum));
2571 * We obtain and lock the backing buffer first in the process
2572 * here, as we have to ensure that any dirty inode that we
2573 * can't get the flush lock on is attached to the buffer.
2574 * If we scan the in-memory inodes first, then buffer IO can
2575 * complete before we get a lock on it, and hence we may fail
2576 * to mark all the active inodes on the buffer stale.
2578 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2579 mp->m_bsize * igeo->blocks_per_cluster,
2580 XBF_UNMAPPED, &bp);
2581 if (error)
2582 return error;
2585 * This buffer may not have been correctly initialised as we
2586 * didn't read it from disk. That's not important because we are
2587 * only using to mark the buffer as stale in the log, and to
2588 * attach stale cached inodes on it. That means it will never be
2589 * dispatched for IO. If it is, we want to know about it, and we
2590 * want it to fail. We can acheive this by adding a write
2591 * verifier to the buffer.
2593 bp->b_ops = &xfs_inode_buf_ops;
2596 * Walk the inodes already attached to the buffer and mark them
2597 * stale. These will all have the flush locks held, so an
2598 * in-memory inode walk can't lock them. By marking them all
2599 * stale first, we will not attempt to lock them in the loop
2600 * below as the XFS_ISTALE flag will be set.
2602 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2603 if (lip->li_type == XFS_LI_INODE) {
2604 iip = (xfs_inode_log_item_t *)lip;
2605 ASSERT(iip->ili_logged == 1);
2606 lip->li_cb = xfs_istale_done;
2607 xfs_trans_ail_copy_lsn(mp->m_ail,
2608 &iip->ili_flush_lsn,
2609 &iip->ili_item.li_lsn);
2610 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2616 * For each inode in memory attempt to add it to the inode
2617 * buffer and set it up for being staled on buffer IO
2618 * completion. This is safe as we've locked out tail pushing
2619 * and flushing by locking the buffer.
2621 * We have already marked every inode that was part of a
2622 * transaction stale above, which means there is no point in
2623 * even trying to lock them.
2625 for (i = 0; i < igeo->inodes_per_cluster; i++) {
2626 retry:
2627 rcu_read_lock();
2628 ip = radix_tree_lookup(&pag->pag_ici_root,
2629 XFS_INO_TO_AGINO(mp, (inum + i)));
2631 /* Inode not in memory, nothing to do */
2632 if (!ip) {
2633 rcu_read_unlock();
2634 continue;
2638 * because this is an RCU protected lookup, we could
2639 * find a recently freed or even reallocated inode
2640 * during the lookup. We need to check under the
2641 * i_flags_lock for a valid inode here. Skip it if it
2642 * is not valid, the wrong inode or stale.
2644 spin_lock(&ip->i_flags_lock);
2645 if (ip->i_ino != inum + i ||
2646 __xfs_iflags_test(ip, XFS_ISTALE)) {
2647 spin_unlock(&ip->i_flags_lock);
2648 rcu_read_unlock();
2649 continue;
2651 spin_unlock(&ip->i_flags_lock);
2654 * Don't try to lock/unlock the current inode, but we
2655 * _cannot_ skip the other inodes that we did not find
2656 * in the list attached to the buffer and are not
2657 * already marked stale. If we can't lock it, back off
2658 * and retry.
2660 if (ip != free_ip) {
2661 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2662 rcu_read_unlock();
2663 delay(1);
2664 goto retry;
2668 * Check the inode number again in case we're
2669 * racing with freeing in xfs_reclaim_inode().
2670 * See the comments in that function for more
2671 * information as to why the initial check is
2672 * not sufficient.
2674 if (ip->i_ino != inum + i) {
2675 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2676 rcu_read_unlock();
2677 continue;
2680 rcu_read_unlock();
2682 xfs_iflock(ip);
2683 xfs_iflags_set(ip, XFS_ISTALE);
2686 * we don't need to attach clean inodes or those only
2687 * with unlogged changes (which we throw away, anyway).
2689 iip = ip->i_itemp;
2690 if (!iip || xfs_inode_clean(ip)) {
2691 ASSERT(ip != free_ip);
2692 xfs_ifunlock(ip);
2693 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2694 continue;
2697 iip->ili_last_fields = iip->ili_fields;
2698 iip->ili_fields = 0;
2699 iip->ili_fsync_fields = 0;
2700 iip->ili_logged = 1;
2701 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2702 &iip->ili_item.li_lsn);
2704 xfs_buf_attach_iodone(bp, xfs_istale_done,
2705 &iip->ili_item);
2707 if (ip != free_ip)
2708 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2711 xfs_trans_stale_inode_buf(tp, bp);
2712 xfs_trans_binval(tp, bp);
2715 xfs_perag_put(pag);
2716 return 0;
2720 * Free any local-format buffers sitting around before we reset to
2721 * extents format.
2723 static inline void
2724 xfs_ifree_local_data(
2725 struct xfs_inode *ip,
2726 int whichfork)
2728 struct xfs_ifork *ifp;
2730 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2731 return;
2733 ifp = XFS_IFORK_PTR(ip, whichfork);
2734 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2738 * This is called to return an inode to the inode free list.
2739 * The inode should already be truncated to 0 length and have
2740 * no pages associated with it. This routine also assumes that
2741 * the inode is already a part of the transaction.
2743 * The on-disk copy of the inode will have been added to the list
2744 * of unlinked inodes in the AGI. We need to remove the inode from
2745 * that list atomically with respect to freeing it here.
2748 xfs_ifree(
2749 struct xfs_trans *tp,
2750 struct xfs_inode *ip)
2752 int error;
2753 struct xfs_icluster xic = { 0 };
2755 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2756 ASSERT(VFS_I(ip)->i_nlink == 0);
2757 ASSERT(ip->i_d.di_nextents == 0);
2758 ASSERT(ip->i_d.di_anextents == 0);
2759 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2760 ASSERT(ip->i_d.di_nblocks == 0);
2763 * Pull the on-disk inode from the AGI unlinked list.
2765 error = xfs_iunlink_remove(tp, ip);
2766 if (error)
2767 return error;
2769 error = xfs_difree(tp, ip->i_ino, &xic);
2770 if (error)
2771 return error;
2773 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2774 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2776 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2777 ip->i_d.di_flags = 0;
2778 ip->i_d.di_flags2 = 0;
2779 ip->i_d.di_dmevmask = 0;
2780 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2781 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2782 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2784 /* Don't attempt to replay owner changes for a deleted inode */
2785 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2788 * Bump the generation count so no one will be confused
2789 * by reincarnations of this inode.
2791 VFS_I(ip)->i_generation++;
2792 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2794 if (xic.deleted)
2795 error = xfs_ifree_cluster(ip, tp, &xic);
2797 return error;
2801 * This is called to unpin an inode. The caller must have the inode locked
2802 * in at least shared mode so that the buffer cannot be subsequently pinned
2803 * once someone is waiting for it to be unpinned.
2805 static void
2806 xfs_iunpin(
2807 struct xfs_inode *ip)
2809 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2811 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2813 /* Give the log a push to start the unpinning I/O */
2814 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2818 static void
2819 __xfs_iunpin_wait(
2820 struct xfs_inode *ip)
2822 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2823 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2825 xfs_iunpin(ip);
2827 do {
2828 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2829 if (xfs_ipincount(ip))
2830 io_schedule();
2831 } while (xfs_ipincount(ip));
2832 finish_wait(wq, &wait.wq_entry);
2835 void
2836 xfs_iunpin_wait(
2837 struct xfs_inode *ip)
2839 if (xfs_ipincount(ip))
2840 __xfs_iunpin_wait(ip);
2844 * Removing an inode from the namespace involves removing the directory entry
2845 * and dropping the link count on the inode. Removing the directory entry can
2846 * result in locking an AGF (directory blocks were freed) and removing a link
2847 * count can result in placing the inode on an unlinked list which results in
2848 * locking an AGI.
2850 * The big problem here is that we have an ordering constraint on AGF and AGI
2851 * locking - inode allocation locks the AGI, then can allocate a new extent for
2852 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2853 * removes the inode from the unlinked list, requiring that we lock the AGI
2854 * first, and then freeing the inode can result in an inode chunk being freed
2855 * and hence freeing disk space requiring that we lock an AGF.
2857 * Hence the ordering that is imposed by other parts of the code is AGI before
2858 * AGF. This means we cannot remove the directory entry before we drop the inode
2859 * reference count and put it on the unlinked list as this results in a lock
2860 * order of AGF then AGI, and this can deadlock against inode allocation and
2861 * freeing. Therefore we must drop the link counts before we remove the
2862 * directory entry.
2864 * This is still safe from a transactional point of view - it is not until we
2865 * get to xfs_defer_finish() that we have the possibility of multiple
2866 * transactions in this operation. Hence as long as we remove the directory
2867 * entry and drop the link count in the first transaction of the remove
2868 * operation, there are no transactional constraints on the ordering here.
2871 xfs_remove(
2872 xfs_inode_t *dp,
2873 struct xfs_name *name,
2874 xfs_inode_t *ip)
2876 xfs_mount_t *mp = dp->i_mount;
2877 xfs_trans_t *tp = NULL;
2878 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2879 int error = 0;
2880 uint resblks;
2882 trace_xfs_remove(dp, name);
2884 if (XFS_FORCED_SHUTDOWN(mp))
2885 return -EIO;
2887 error = xfs_qm_dqattach(dp);
2888 if (error)
2889 goto std_return;
2891 error = xfs_qm_dqattach(ip);
2892 if (error)
2893 goto std_return;
2896 * We try to get the real space reservation first,
2897 * allowing for directory btree deletion(s) implying
2898 * possible bmap insert(s). If we can't get the space
2899 * reservation then we use 0 instead, and avoid the bmap
2900 * btree insert(s) in the directory code by, if the bmap
2901 * insert tries to happen, instead trimming the LAST
2902 * block from the directory.
2904 resblks = XFS_REMOVE_SPACE_RES(mp);
2905 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2906 if (error == -ENOSPC) {
2907 resblks = 0;
2908 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2909 &tp);
2911 if (error) {
2912 ASSERT(error != -ENOSPC);
2913 goto std_return;
2916 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2918 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2919 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2922 * If we're removing a directory perform some additional validation.
2924 if (is_dir) {
2925 ASSERT(VFS_I(ip)->i_nlink >= 2);
2926 if (VFS_I(ip)->i_nlink != 2) {
2927 error = -ENOTEMPTY;
2928 goto out_trans_cancel;
2930 if (!xfs_dir_isempty(ip)) {
2931 error = -ENOTEMPTY;
2932 goto out_trans_cancel;
2935 /* Drop the link from ip's "..". */
2936 error = xfs_droplink(tp, dp);
2937 if (error)
2938 goto out_trans_cancel;
2940 /* Drop the "." link from ip to self. */
2941 error = xfs_droplink(tp, ip);
2942 if (error)
2943 goto out_trans_cancel;
2944 } else {
2946 * When removing a non-directory we need to log the parent
2947 * inode here. For a directory this is done implicitly
2948 * by the xfs_droplink call for the ".." entry.
2950 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2952 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2954 /* Drop the link from dp to ip. */
2955 error = xfs_droplink(tp, ip);
2956 if (error)
2957 goto out_trans_cancel;
2959 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2960 if (error) {
2961 ASSERT(error != -ENOENT);
2962 goto out_trans_cancel;
2966 * If this is a synchronous mount, make sure that the
2967 * remove transaction goes to disk before returning to
2968 * the user.
2970 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2971 xfs_trans_set_sync(tp);
2973 error = xfs_trans_commit(tp);
2974 if (error)
2975 goto std_return;
2977 if (is_dir && xfs_inode_is_filestream(ip))
2978 xfs_filestream_deassociate(ip);
2980 return 0;
2982 out_trans_cancel:
2983 xfs_trans_cancel(tp);
2984 std_return:
2985 return error;
2989 * Enter all inodes for a rename transaction into a sorted array.
2991 #define __XFS_SORT_INODES 5
2992 STATIC void
2993 xfs_sort_for_rename(
2994 struct xfs_inode *dp1, /* in: old (source) directory inode */
2995 struct xfs_inode *dp2, /* in: new (target) directory inode */
2996 struct xfs_inode *ip1, /* in: inode of old entry */
2997 struct xfs_inode *ip2, /* in: inode of new entry */
2998 struct xfs_inode *wip, /* in: whiteout inode */
2999 struct xfs_inode **i_tab,/* out: sorted array of inodes */
3000 int *num_inodes) /* in/out: inodes in array */
3002 int i, j;
3004 ASSERT(*num_inodes == __XFS_SORT_INODES);
3005 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
3008 * i_tab contains a list of pointers to inodes. We initialize
3009 * the table here & we'll sort it. We will then use it to
3010 * order the acquisition of the inode locks.
3012 * Note that the table may contain duplicates. e.g., dp1 == dp2.
3014 i = 0;
3015 i_tab[i++] = dp1;
3016 i_tab[i++] = dp2;
3017 i_tab[i++] = ip1;
3018 if (ip2)
3019 i_tab[i++] = ip2;
3020 if (wip)
3021 i_tab[i++] = wip;
3022 *num_inodes = i;
3025 * Sort the elements via bubble sort. (Remember, there are at
3026 * most 5 elements to sort, so this is adequate.)
3028 for (i = 0; i < *num_inodes; i++) {
3029 for (j = 1; j < *num_inodes; j++) {
3030 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3031 struct xfs_inode *temp = i_tab[j];
3032 i_tab[j] = i_tab[j-1];
3033 i_tab[j-1] = temp;
3039 static int
3040 xfs_finish_rename(
3041 struct xfs_trans *tp)
3044 * If this is a synchronous mount, make sure that the rename transaction
3045 * goes to disk before returning to the user.
3047 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3048 xfs_trans_set_sync(tp);
3050 return xfs_trans_commit(tp);
3054 * xfs_cross_rename()
3056 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3058 STATIC int
3059 xfs_cross_rename(
3060 struct xfs_trans *tp,
3061 struct xfs_inode *dp1,
3062 struct xfs_name *name1,
3063 struct xfs_inode *ip1,
3064 struct xfs_inode *dp2,
3065 struct xfs_name *name2,
3066 struct xfs_inode *ip2,
3067 int spaceres)
3069 int error = 0;
3070 int ip1_flags = 0;
3071 int ip2_flags = 0;
3072 int dp2_flags = 0;
3074 /* Swap inode number for dirent in first parent */
3075 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3076 if (error)
3077 goto out_trans_abort;
3079 /* Swap inode number for dirent in second parent */
3080 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3081 if (error)
3082 goto out_trans_abort;
3085 * If we're renaming one or more directories across different parents,
3086 * update the respective ".." entries (and link counts) to match the new
3087 * parents.
3089 if (dp1 != dp2) {
3090 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3092 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3093 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3094 dp1->i_ino, spaceres);
3095 if (error)
3096 goto out_trans_abort;
3098 /* transfer ip2 ".." reference to dp1 */
3099 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3100 error = xfs_droplink(tp, dp2);
3101 if (error)
3102 goto out_trans_abort;
3103 xfs_bumplink(tp, dp1);
3107 * Although ip1 isn't changed here, userspace needs
3108 * to be warned about the change, so that applications
3109 * relying on it (like backup ones), will properly
3110 * notify the change
3112 ip1_flags |= XFS_ICHGTIME_CHG;
3113 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3116 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3117 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3118 dp2->i_ino, spaceres);
3119 if (error)
3120 goto out_trans_abort;
3122 /* transfer ip1 ".." reference to dp2 */
3123 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3124 error = xfs_droplink(tp, dp1);
3125 if (error)
3126 goto out_trans_abort;
3127 xfs_bumplink(tp, dp2);
3131 * Although ip2 isn't changed here, userspace needs
3132 * to be warned about the change, so that applications
3133 * relying on it (like backup ones), will properly
3134 * notify the change
3136 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3137 ip2_flags |= XFS_ICHGTIME_CHG;
3141 if (ip1_flags) {
3142 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3143 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3145 if (ip2_flags) {
3146 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3147 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3149 if (dp2_flags) {
3150 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3151 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3153 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3154 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3155 return xfs_finish_rename(tp);
3157 out_trans_abort:
3158 xfs_trans_cancel(tp);
3159 return error;
3163 * xfs_rename_alloc_whiteout()
3165 * Return a referenced, unlinked, unlocked inode that that can be used as a
3166 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3167 * crash between allocating the inode and linking it into the rename transaction
3168 * recovery will free the inode and we won't leak it.
3170 static int
3171 xfs_rename_alloc_whiteout(
3172 struct xfs_inode *dp,
3173 struct xfs_inode **wip)
3175 struct xfs_inode *tmpfile;
3176 int error;
3178 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3179 if (error)
3180 return error;
3183 * Prepare the tmpfile inode as if it were created through the VFS.
3184 * Complete the inode setup and flag it as linkable. nlink is already
3185 * zero, so we can skip the drop_nlink.
3187 xfs_setup_iops(tmpfile);
3188 xfs_finish_inode_setup(tmpfile);
3189 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3191 *wip = tmpfile;
3192 return 0;
3196 * xfs_rename
3199 xfs_rename(
3200 struct xfs_inode *src_dp,
3201 struct xfs_name *src_name,
3202 struct xfs_inode *src_ip,
3203 struct xfs_inode *target_dp,
3204 struct xfs_name *target_name,
3205 struct xfs_inode *target_ip,
3206 unsigned int flags)
3208 struct xfs_mount *mp = src_dp->i_mount;
3209 struct xfs_trans *tp;
3210 struct xfs_inode *wip = NULL; /* whiteout inode */
3211 struct xfs_inode *inodes[__XFS_SORT_INODES];
3212 struct xfs_buf *agibp;
3213 int num_inodes = __XFS_SORT_INODES;
3214 bool new_parent = (src_dp != target_dp);
3215 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3216 int spaceres;
3217 int error;
3219 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3221 if ((flags & RENAME_EXCHANGE) && !target_ip)
3222 return -EINVAL;
3225 * If we are doing a whiteout operation, allocate the whiteout inode
3226 * we will be placing at the target and ensure the type is set
3227 * appropriately.
3229 if (flags & RENAME_WHITEOUT) {
3230 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3231 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3232 if (error)
3233 return error;
3235 /* setup target dirent info as whiteout */
3236 src_name->type = XFS_DIR3_FT_CHRDEV;
3239 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3240 inodes, &num_inodes);
3242 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3243 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3244 if (error == -ENOSPC) {
3245 spaceres = 0;
3246 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3247 &tp);
3249 if (error)
3250 goto out_release_wip;
3253 * Attach the dquots to the inodes
3255 error = xfs_qm_vop_rename_dqattach(inodes);
3256 if (error)
3257 goto out_trans_cancel;
3260 * Lock all the participating inodes. Depending upon whether
3261 * the target_name exists in the target directory, and
3262 * whether the target directory is the same as the source
3263 * directory, we can lock from 2 to 4 inodes.
3265 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3268 * Join all the inodes to the transaction. From this point on,
3269 * we can rely on either trans_commit or trans_cancel to unlock
3270 * them.
3272 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3273 if (new_parent)
3274 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3275 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3276 if (target_ip)
3277 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3278 if (wip)
3279 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3282 * If we are using project inheritance, we only allow renames
3283 * into our tree when the project IDs are the same; else the
3284 * tree quota mechanism would be circumvented.
3286 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3287 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3288 error = -EXDEV;
3289 goto out_trans_cancel;
3292 /* RENAME_EXCHANGE is unique from here on. */
3293 if (flags & RENAME_EXCHANGE)
3294 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3295 target_dp, target_name, target_ip,
3296 spaceres);
3299 * Check for expected errors before we dirty the transaction
3300 * so we can return an error without a transaction abort.
3302 if (target_ip == NULL) {
3304 * If there's no space reservation, check the entry will
3305 * fit before actually inserting it.
3307 if (!spaceres) {
3308 error = xfs_dir_canenter(tp, target_dp, target_name);
3309 if (error)
3310 goto out_trans_cancel;
3312 } else {
3314 * If target exists and it's a directory, check that whether
3315 * it can be destroyed.
3317 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3318 (!xfs_dir_isempty(target_ip) ||
3319 (VFS_I(target_ip)->i_nlink > 2))) {
3320 error = -EEXIST;
3321 goto out_trans_cancel;
3326 * Directory entry creation below may acquire the AGF. Remove
3327 * the whiteout from the unlinked list first to preserve correct
3328 * AGI/AGF locking order. This dirties the transaction so failures
3329 * after this point will abort and log recovery will clean up the
3330 * mess.
3332 * For whiteouts, we need to bump the link count on the whiteout
3333 * inode. After this point, we have a real link, clear the tmpfile
3334 * state flag from the inode so it doesn't accidentally get misused
3335 * in future.
3337 if (wip) {
3338 ASSERT(VFS_I(wip)->i_nlink == 0);
3339 error = xfs_iunlink_remove(tp, wip);
3340 if (error)
3341 goto out_trans_cancel;
3343 xfs_bumplink(tp, wip);
3344 VFS_I(wip)->i_state &= ~I_LINKABLE;
3348 * Set up the target.
3350 if (target_ip == NULL) {
3352 * If target does not exist and the rename crosses
3353 * directories, adjust the target directory link count
3354 * to account for the ".." reference from the new entry.
3356 error = xfs_dir_createname(tp, target_dp, target_name,
3357 src_ip->i_ino, spaceres);
3358 if (error)
3359 goto out_trans_cancel;
3361 xfs_trans_ichgtime(tp, target_dp,
3362 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3364 if (new_parent && src_is_directory) {
3365 xfs_bumplink(tp, target_dp);
3367 } else { /* target_ip != NULL */
3369 * Link the source inode under the target name.
3370 * If the source inode is a directory and we are moving
3371 * it across directories, its ".." entry will be
3372 * inconsistent until we replace that down below.
3374 * In case there is already an entry with the same
3375 * name at the destination directory, remove it first.
3379 * Check whether the replace operation will need to allocate
3380 * blocks. This happens when the shortform directory lacks
3381 * space and we have to convert it to a block format directory.
3382 * When more blocks are necessary, we must lock the AGI first
3383 * to preserve locking order (AGI -> AGF).
3385 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3386 error = xfs_read_agi(mp, tp,
3387 XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3388 &agibp);
3389 if (error)
3390 goto out_trans_cancel;
3393 error = xfs_dir_replace(tp, target_dp, target_name,
3394 src_ip->i_ino, spaceres);
3395 if (error)
3396 goto out_trans_cancel;
3398 xfs_trans_ichgtime(tp, target_dp,
3399 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3402 * Decrement the link count on the target since the target
3403 * dir no longer points to it.
3405 error = xfs_droplink(tp, target_ip);
3406 if (error)
3407 goto out_trans_cancel;
3409 if (src_is_directory) {
3411 * Drop the link from the old "." entry.
3413 error = xfs_droplink(tp, target_ip);
3414 if (error)
3415 goto out_trans_cancel;
3417 } /* target_ip != NULL */
3420 * Remove the source.
3422 if (new_parent && src_is_directory) {
3424 * Rewrite the ".." entry to point to the new
3425 * directory.
3427 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3428 target_dp->i_ino, spaceres);
3429 ASSERT(error != -EEXIST);
3430 if (error)
3431 goto out_trans_cancel;
3435 * We always want to hit the ctime on the source inode.
3437 * This isn't strictly required by the standards since the source
3438 * inode isn't really being changed, but old unix file systems did
3439 * it and some incremental backup programs won't work without it.
3441 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3442 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3445 * Adjust the link count on src_dp. This is necessary when
3446 * renaming a directory, either within one parent when
3447 * the target existed, or across two parent directories.
3449 if (src_is_directory && (new_parent || target_ip != NULL)) {
3452 * Decrement link count on src_directory since the
3453 * entry that's moved no longer points to it.
3455 error = xfs_droplink(tp, src_dp);
3456 if (error)
3457 goto out_trans_cancel;
3461 * For whiteouts, we only need to update the source dirent with the
3462 * inode number of the whiteout inode rather than removing it
3463 * altogether.
3465 if (wip) {
3466 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3467 spaceres);
3468 } else
3469 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3470 spaceres);
3471 if (error)
3472 goto out_trans_cancel;
3474 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3475 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3476 if (new_parent)
3477 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3479 error = xfs_finish_rename(tp);
3480 if (wip)
3481 xfs_irele(wip);
3482 return error;
3484 out_trans_cancel:
3485 xfs_trans_cancel(tp);
3486 out_release_wip:
3487 if (wip)
3488 xfs_irele(wip);
3489 return error;
3492 STATIC int
3493 xfs_iflush_cluster(
3494 struct xfs_inode *ip,
3495 struct xfs_buf *bp)
3497 struct xfs_mount *mp = ip->i_mount;
3498 struct xfs_perag *pag;
3499 unsigned long first_index, mask;
3500 int cilist_size;
3501 struct xfs_inode **cilist;
3502 struct xfs_inode *cip;
3503 struct xfs_ino_geometry *igeo = M_IGEO(mp);
3504 int nr_found;
3505 int clcount = 0;
3506 int i;
3508 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3510 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
3511 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3512 if (!cilist)
3513 goto out_put;
3515 mask = ~(igeo->inodes_per_cluster - 1);
3516 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3517 rcu_read_lock();
3518 /* really need a gang lookup range call here */
3519 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3520 first_index, igeo->inodes_per_cluster);
3521 if (nr_found == 0)
3522 goto out_free;
3524 for (i = 0; i < nr_found; i++) {
3525 cip = cilist[i];
3526 if (cip == ip)
3527 continue;
3530 * because this is an RCU protected lookup, we could find a
3531 * recently freed or even reallocated inode during the lookup.
3532 * We need to check under the i_flags_lock for a valid inode
3533 * here. Skip it if it is not valid or the wrong inode.
3535 spin_lock(&cip->i_flags_lock);
3536 if (!cip->i_ino ||
3537 __xfs_iflags_test(cip, XFS_ISTALE)) {
3538 spin_unlock(&cip->i_flags_lock);
3539 continue;
3543 * Once we fall off the end of the cluster, no point checking
3544 * any more inodes in the list because they will also all be
3545 * outside the cluster.
3547 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3548 spin_unlock(&cip->i_flags_lock);
3549 break;
3551 spin_unlock(&cip->i_flags_lock);
3554 * Do an un-protected check to see if the inode is dirty and
3555 * is a candidate for flushing. These checks will be repeated
3556 * later after the appropriate locks are acquired.
3558 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3559 continue;
3562 * Try to get locks. If any are unavailable or it is pinned,
3563 * then this inode cannot be flushed and is skipped.
3566 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3567 continue;
3568 if (!xfs_iflock_nowait(cip)) {
3569 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3570 continue;
3572 if (xfs_ipincount(cip)) {
3573 xfs_ifunlock(cip);
3574 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3575 continue;
3580 * Check the inode number again, just to be certain we are not
3581 * racing with freeing in xfs_reclaim_inode(). See the comments
3582 * in that function for more information as to why the initial
3583 * check is not sufficient.
3585 if (!cip->i_ino) {
3586 xfs_ifunlock(cip);
3587 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3588 continue;
3592 * arriving here means that this inode can be flushed. First
3593 * re-check that it's dirty before flushing.
3595 if (!xfs_inode_clean(cip)) {
3596 int error;
3597 error = xfs_iflush_int(cip, bp);
3598 if (error) {
3599 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3600 goto cluster_corrupt_out;
3602 clcount++;
3603 } else {
3604 xfs_ifunlock(cip);
3606 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3609 if (clcount) {
3610 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3611 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3614 out_free:
3615 rcu_read_unlock();
3616 kmem_free(cilist);
3617 out_put:
3618 xfs_perag_put(pag);
3619 return 0;
3622 cluster_corrupt_out:
3624 * Corruption detected in the clustering loop. Invalidate the
3625 * inode buffer and shut down the filesystem.
3627 rcu_read_unlock();
3630 * We'll always have an inode attached to the buffer for completion
3631 * process by the time we are called from xfs_iflush(). Hence we have
3632 * always need to do IO completion processing to abort the inodes
3633 * attached to the buffer. handle them just like the shutdown case in
3634 * xfs_buf_submit().
3636 ASSERT(bp->b_iodone);
3637 bp->b_flags |= XBF_ASYNC;
3638 bp->b_flags &= ~XBF_DONE;
3639 xfs_buf_stale(bp);
3640 xfs_buf_ioerror(bp, -EIO);
3641 xfs_buf_ioend(bp);
3643 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3645 /* abort the corrupt inode, as it was not attached to the buffer */
3646 xfs_iflush_abort(cip, false);
3647 kmem_free(cilist);
3648 xfs_perag_put(pag);
3649 return -EFSCORRUPTED;
3653 * Flush dirty inode metadata into the backing buffer.
3655 * The caller must have the inode lock and the inode flush lock held. The
3656 * inode lock will still be held upon return to the caller, and the inode
3657 * flush lock will be released after the inode has reached the disk.
3659 * The caller must write out the buffer returned in *bpp and release it.
3662 xfs_iflush(
3663 struct xfs_inode *ip,
3664 struct xfs_buf **bpp)
3666 struct xfs_mount *mp = ip->i_mount;
3667 struct xfs_buf *bp = NULL;
3668 struct xfs_dinode *dip;
3669 int error;
3671 XFS_STATS_INC(mp, xs_iflush_count);
3673 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3674 ASSERT(xfs_isiflocked(ip));
3675 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3676 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3678 *bpp = NULL;
3680 xfs_iunpin_wait(ip);
3683 * For stale inodes we cannot rely on the backing buffer remaining
3684 * stale in cache for the remaining life of the stale inode and so
3685 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3686 * inodes below. We have to check this after ensuring the inode is
3687 * unpinned so that it is safe to reclaim the stale inode after the
3688 * flush call.
3690 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3691 xfs_ifunlock(ip);
3692 return 0;
3696 * This may have been unpinned because the filesystem is shutting
3697 * down forcibly. If that's the case we must not write this inode
3698 * to disk, because the log record didn't make it to disk.
3700 * We also have to remove the log item from the AIL in this case,
3701 * as we wait for an empty AIL as part of the unmount process.
3703 if (XFS_FORCED_SHUTDOWN(mp)) {
3704 error = -EIO;
3705 goto abort_out;
3709 * Get the buffer containing the on-disk inode. We are doing a try-lock
3710 * operation here, so we may get an EAGAIN error. In that case, we
3711 * simply want to return with the inode still dirty.
3713 * If we get any other error, we effectively have a corruption situation
3714 * and we cannot flush the inode, so we treat it the same as failing
3715 * xfs_iflush_int().
3717 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3719 if (error == -EAGAIN) {
3720 xfs_ifunlock(ip);
3721 return error;
3723 if (error)
3724 goto corrupt_out;
3727 * First flush out the inode that xfs_iflush was called with.
3729 error = xfs_iflush_int(ip, bp);
3730 if (error)
3731 goto corrupt_out;
3734 * If the buffer is pinned then push on the log now so we won't
3735 * get stuck waiting in the write for too long.
3737 if (xfs_buf_ispinned(bp))
3738 xfs_log_force(mp, 0);
3741 * inode clustering: try to gather other inodes into this write
3743 * Note: Any error during clustering will result in the filesystem
3744 * being shut down and completion callbacks run on the cluster buffer.
3745 * As we have already flushed and attached this inode to the buffer,
3746 * it has already been aborted and released by xfs_iflush_cluster() and
3747 * so we have no further error handling to do here.
3749 error = xfs_iflush_cluster(ip, bp);
3750 if (error)
3751 return error;
3753 *bpp = bp;
3754 return 0;
3756 corrupt_out:
3757 if (bp)
3758 xfs_buf_relse(bp);
3759 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3760 abort_out:
3761 /* abort the corrupt inode, as it was not attached to the buffer */
3762 xfs_iflush_abort(ip, false);
3763 return error;
3767 * If there are inline format data / attr forks attached to this inode,
3768 * make sure they're not corrupt.
3770 bool
3771 xfs_inode_verify_forks(
3772 struct xfs_inode *ip)
3774 struct xfs_ifork *ifp;
3775 xfs_failaddr_t fa;
3777 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3778 if (fa) {
3779 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3780 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3781 ifp->if_u1.if_data, ifp->if_bytes, fa);
3782 return false;
3785 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3786 if (fa) {
3787 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3788 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3789 ifp ? ifp->if_u1.if_data : NULL,
3790 ifp ? ifp->if_bytes : 0, fa);
3791 return false;
3793 return true;
3796 STATIC int
3797 xfs_iflush_int(
3798 struct xfs_inode *ip,
3799 struct xfs_buf *bp)
3801 struct xfs_inode_log_item *iip = ip->i_itemp;
3802 struct xfs_dinode *dip;
3803 struct xfs_mount *mp = ip->i_mount;
3805 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3806 ASSERT(xfs_isiflocked(ip));
3807 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3808 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3809 ASSERT(iip != NULL && iip->ili_fields != 0);
3810 ASSERT(ip->i_d.di_version > 1);
3812 /* set *dip = inode's place in the buffer */
3813 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3815 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3816 mp, XFS_ERRTAG_IFLUSH_1)) {
3817 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3818 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3819 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3820 goto corrupt_out;
3822 if (S_ISREG(VFS_I(ip)->i_mode)) {
3823 if (XFS_TEST_ERROR(
3824 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3825 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3826 mp, XFS_ERRTAG_IFLUSH_3)) {
3827 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3828 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3829 __func__, ip->i_ino, ip);
3830 goto corrupt_out;
3832 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3833 if (XFS_TEST_ERROR(
3834 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3835 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3836 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3837 mp, XFS_ERRTAG_IFLUSH_4)) {
3838 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3839 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3840 __func__, ip->i_ino, ip);
3841 goto corrupt_out;
3844 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3845 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3846 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3847 "%s: detected corrupt incore inode %Lu, "
3848 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3849 __func__, ip->i_ino,
3850 ip->i_d.di_nextents + ip->i_d.di_anextents,
3851 ip->i_d.di_nblocks, ip);
3852 goto corrupt_out;
3854 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3855 mp, XFS_ERRTAG_IFLUSH_6)) {
3856 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3857 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3858 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3859 goto corrupt_out;
3863 * Inode item log recovery for v2 inodes are dependent on the
3864 * di_flushiter count for correct sequencing. We bump the flush
3865 * iteration count so we can detect flushes which postdate a log record
3866 * during recovery. This is redundant as we now log every change and
3867 * hence this can't happen but we need to still do it to ensure
3868 * backwards compatibility with old kernels that predate logging all
3869 * inode changes.
3871 if (ip->i_d.di_version < 3)
3872 ip->i_d.di_flushiter++;
3874 /* Check the inline fork data before we write out. */
3875 if (!xfs_inode_verify_forks(ip))
3876 goto corrupt_out;
3879 * Copy the dirty parts of the inode into the on-disk inode. We always
3880 * copy out the core of the inode, because if the inode is dirty at all
3881 * the core must be.
3883 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3885 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3886 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3887 ip->i_d.di_flushiter = 0;
3889 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3890 if (XFS_IFORK_Q(ip))
3891 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3892 xfs_inobp_check(mp, bp);
3895 * We've recorded everything logged in the inode, so we'd like to clear
3896 * the ili_fields bits so we don't log and flush things unnecessarily.
3897 * However, we can't stop logging all this information until the data
3898 * we've copied into the disk buffer is written to disk. If we did we
3899 * might overwrite the copy of the inode in the log with all the data
3900 * after re-logging only part of it, and in the face of a crash we
3901 * wouldn't have all the data we need to recover.
3903 * What we do is move the bits to the ili_last_fields field. When
3904 * logging the inode, these bits are moved back to the ili_fields field.
3905 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3906 * know that the information those bits represent is permanently on
3907 * disk. As long as the flush completes before the inode is logged
3908 * again, then both ili_fields and ili_last_fields will be cleared.
3910 * We can play with the ili_fields bits here, because the inode lock
3911 * must be held exclusively in order to set bits there and the flush
3912 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3913 * done routine can tell whether or not to look in the AIL. Also, store
3914 * the current LSN of the inode so that we can tell whether the item has
3915 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3916 * need the AIL lock, because it is a 64 bit value that cannot be read
3917 * atomically.
3919 iip->ili_last_fields = iip->ili_fields;
3920 iip->ili_fields = 0;
3921 iip->ili_fsync_fields = 0;
3922 iip->ili_logged = 1;
3924 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3925 &iip->ili_item.li_lsn);
3928 * Attach the function xfs_iflush_done to the inode's
3929 * buffer. This will remove the inode from the AIL
3930 * and unlock the inode's flush lock when the inode is
3931 * completely written to disk.
3933 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3935 /* generate the checksum. */
3936 xfs_dinode_calc_crc(mp, dip);
3938 ASSERT(!list_empty(&bp->b_li_list));
3939 ASSERT(bp->b_iodone != NULL);
3940 return 0;
3942 corrupt_out:
3943 return -EFSCORRUPTED;
3946 /* Release an inode. */
3947 void
3948 xfs_irele(
3949 struct xfs_inode *ip)
3951 trace_xfs_irele(ip, _RET_IP_);
3952 iput(VFS_I(ip));