drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / xfs / xfs_log.c
blobf6006d94a581e9d2f7d3a6a7c6613d2568d66ccd
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
24 kmem_zone_t *xfs_log_ticket_zone;
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29 struct xlog *log,
30 struct xlog_ticket *ticket,
31 struct xlog_in_core **iclog,
32 xfs_lsn_t *commitlsnp);
34 STATIC struct xlog *
35 xlog_alloc_log(
36 struct xfs_mount *mp,
37 struct xfs_buftarg *log_target,
38 xfs_daddr_t blk_offset,
39 int num_bblks);
40 STATIC int
41 xlog_space_left(
42 struct xlog *log,
43 atomic64_t *head);
44 STATIC void
45 xlog_dealloc_log(
46 struct xlog *log);
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50 struct xlog_in_core *iclog,
51 bool aborted);
52 STATIC int
53 xlog_state_get_iclog_space(
54 struct xlog *log,
55 int len,
56 struct xlog_in_core **iclog,
57 struct xlog_ticket *ticket,
58 int *continued_write,
59 int *logoffsetp);
60 STATIC void
61 xlog_state_switch_iclogs(
62 struct xlog *log,
63 struct xlog_in_core *iclog,
64 int eventual_size);
65 STATIC void
66 xlog_state_want_sync(
67 struct xlog *log,
68 struct xlog_in_core *iclog);
70 STATIC void
71 xlog_grant_push_ail(
72 struct xlog *log,
73 int need_bytes);
74 STATIC void
75 xlog_regrant_reserve_log_space(
76 struct xlog *log,
77 struct xlog_ticket *ticket);
78 STATIC void
79 xlog_ungrant_log_space(
80 struct xlog *log,
81 struct xlog_ticket *ticket);
82 STATIC void
83 xlog_sync(
84 struct xlog *log,
85 struct xlog_in_core *iclog);
86 #if defined(DEBUG)
87 STATIC void
88 xlog_verify_dest_ptr(
89 struct xlog *log,
90 void *ptr);
91 STATIC void
92 xlog_verify_grant_tail(
93 struct xlog *log);
94 STATIC void
95 xlog_verify_iclog(
96 struct xlog *log,
97 struct xlog_in_core *iclog,
98 int count);
99 STATIC void
100 xlog_verify_tail_lsn(
101 struct xlog *log,
102 struct xlog_in_core *iclog,
103 xfs_lsn_t tail_lsn);
104 #else
105 #define xlog_verify_dest_ptr(a,b)
106 #define xlog_verify_grant_tail(a)
107 #define xlog_verify_iclog(a,b,c)
108 #define xlog_verify_tail_lsn(a,b,c)
109 #endif
111 STATIC int
112 xlog_iclogs_empty(
113 struct xlog *log);
115 static void
116 xlog_grant_sub_space(
117 struct xlog *log,
118 atomic64_t *head,
119 int bytes)
121 int64_t head_val = atomic64_read(head);
122 int64_t new, old;
124 do {
125 int cycle, space;
127 xlog_crack_grant_head_val(head_val, &cycle, &space);
129 space -= bytes;
130 if (space < 0) {
131 space += log->l_logsize;
132 cycle--;
135 old = head_val;
136 new = xlog_assign_grant_head_val(cycle, space);
137 head_val = atomic64_cmpxchg(head, old, new);
138 } while (head_val != old);
141 static void
142 xlog_grant_add_space(
143 struct xlog *log,
144 atomic64_t *head,
145 int bytes)
147 int64_t head_val = atomic64_read(head);
148 int64_t new, old;
150 do {
151 int tmp;
152 int cycle, space;
154 xlog_crack_grant_head_val(head_val, &cycle, &space);
156 tmp = log->l_logsize - space;
157 if (tmp > bytes)
158 space += bytes;
159 else {
160 space = bytes - tmp;
161 cycle++;
164 old = head_val;
165 new = xlog_assign_grant_head_val(cycle, space);
166 head_val = atomic64_cmpxchg(head, old, new);
167 } while (head_val != old);
170 STATIC void
171 xlog_grant_head_init(
172 struct xlog_grant_head *head)
174 xlog_assign_grant_head(&head->grant, 1, 0);
175 INIT_LIST_HEAD(&head->waiters);
176 spin_lock_init(&head->lock);
179 STATIC void
180 xlog_grant_head_wake_all(
181 struct xlog_grant_head *head)
183 struct xlog_ticket *tic;
185 spin_lock(&head->lock);
186 list_for_each_entry(tic, &head->waiters, t_queue)
187 wake_up_process(tic->t_task);
188 spin_unlock(&head->lock);
191 static inline int
192 xlog_ticket_reservation(
193 struct xlog *log,
194 struct xlog_grant_head *head,
195 struct xlog_ticket *tic)
197 if (head == &log->l_write_head) {
198 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
199 return tic->t_unit_res;
200 } else {
201 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
202 return tic->t_unit_res * tic->t_cnt;
203 else
204 return tic->t_unit_res;
208 STATIC bool
209 xlog_grant_head_wake(
210 struct xlog *log,
211 struct xlog_grant_head *head,
212 int *free_bytes)
214 struct xlog_ticket *tic;
215 int need_bytes;
216 bool woken_task = false;
218 list_for_each_entry(tic, &head->waiters, t_queue) {
221 * There is a chance that the size of the CIL checkpoints in
222 * progress at the last AIL push target calculation resulted in
223 * limiting the target to the log head (l_last_sync_lsn) at the
224 * time. This may not reflect where the log head is now as the
225 * CIL checkpoints may have completed.
227 * Hence when we are woken here, it may be that the head of the
228 * log that has moved rather than the tail. As the tail didn't
229 * move, there still won't be space available for the
230 * reservation we require. However, if the AIL has already
231 * pushed to the target defined by the old log head location, we
232 * will hang here waiting for something else to update the AIL
233 * push target.
235 * Therefore, if there isn't space to wake the first waiter on
236 * the grant head, we need to push the AIL again to ensure the
237 * target reflects both the current log tail and log head
238 * position before we wait for the tail to move again.
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes) {
243 if (!woken_task)
244 xlog_grant_push_ail(log, need_bytes);
245 return false;
248 *free_bytes -= need_bytes;
249 trace_xfs_log_grant_wake_up(log, tic);
250 wake_up_process(tic->t_task);
251 woken_task = true;
254 return true;
257 STATIC int
258 xlog_grant_head_wait(
259 struct xlog *log,
260 struct xlog_grant_head *head,
261 struct xlog_ticket *tic,
262 int need_bytes) __releases(&head->lock)
263 __acquires(&head->lock)
265 list_add_tail(&tic->t_queue, &head->waiters);
267 do {
268 if (XLOG_FORCED_SHUTDOWN(log))
269 goto shutdown;
270 xlog_grant_push_ail(log, need_bytes);
272 __set_current_state(TASK_UNINTERRUPTIBLE);
273 spin_unlock(&head->lock);
275 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
277 trace_xfs_log_grant_sleep(log, tic);
278 schedule();
279 trace_xfs_log_grant_wake(log, tic);
281 spin_lock(&head->lock);
282 if (XLOG_FORCED_SHUTDOWN(log))
283 goto shutdown;
284 } while (xlog_space_left(log, &head->grant) < need_bytes);
286 list_del_init(&tic->t_queue);
287 return 0;
288 shutdown:
289 list_del_init(&tic->t_queue);
290 return -EIO;
294 * Atomically get the log space required for a log ticket.
296 * Once a ticket gets put onto head->waiters, it will only return after the
297 * needed reservation is satisfied.
299 * This function is structured so that it has a lock free fast path. This is
300 * necessary because every new transaction reservation will come through this
301 * path. Hence any lock will be globally hot if we take it unconditionally on
302 * every pass.
304 * As tickets are only ever moved on and off head->waiters under head->lock, we
305 * only need to take that lock if we are going to add the ticket to the queue
306 * and sleep. We can avoid taking the lock if the ticket was never added to
307 * head->waiters because the t_queue list head will be empty and we hold the
308 * only reference to it so it can safely be checked unlocked.
310 STATIC int
311 xlog_grant_head_check(
312 struct xlog *log,
313 struct xlog_grant_head *head,
314 struct xlog_ticket *tic,
315 int *need_bytes)
317 int free_bytes;
318 int error = 0;
320 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
323 * If there are other waiters on the queue then give them a chance at
324 * logspace before us. Wake up the first waiters, if we do not wake
325 * up all the waiters then go to sleep waiting for more free space,
326 * otherwise try to get some space for this transaction.
328 *need_bytes = xlog_ticket_reservation(log, head, tic);
329 free_bytes = xlog_space_left(log, &head->grant);
330 if (!list_empty_careful(&head->waiters)) {
331 spin_lock(&head->lock);
332 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
333 free_bytes < *need_bytes) {
334 error = xlog_grant_head_wait(log, head, tic,
335 *need_bytes);
337 spin_unlock(&head->lock);
338 } else if (free_bytes < *need_bytes) {
339 spin_lock(&head->lock);
340 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
341 spin_unlock(&head->lock);
344 return error;
347 static void
348 xlog_tic_reset_res(xlog_ticket_t *tic)
350 tic->t_res_num = 0;
351 tic->t_res_arr_sum = 0;
352 tic->t_res_num_ophdrs = 0;
355 static void
356 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
358 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
359 /* add to overflow and start again */
360 tic->t_res_o_flow += tic->t_res_arr_sum;
361 tic->t_res_num = 0;
362 tic->t_res_arr_sum = 0;
365 tic->t_res_arr[tic->t_res_num].r_len = len;
366 tic->t_res_arr[tic->t_res_num].r_type = type;
367 tic->t_res_arr_sum += len;
368 tic->t_res_num++;
372 * Replenish the byte reservation required by moving the grant write head.
375 xfs_log_regrant(
376 struct xfs_mount *mp,
377 struct xlog_ticket *tic)
379 struct xlog *log = mp->m_log;
380 int need_bytes;
381 int error = 0;
383 if (XLOG_FORCED_SHUTDOWN(log))
384 return -EIO;
386 XFS_STATS_INC(mp, xs_try_logspace);
389 * This is a new transaction on the ticket, so we need to change the
390 * transaction ID so that the next transaction has a different TID in
391 * the log. Just add one to the existing tid so that we can see chains
392 * of rolling transactions in the log easily.
394 tic->t_tid++;
396 xlog_grant_push_ail(log, tic->t_unit_res);
398 tic->t_curr_res = tic->t_unit_res;
399 xlog_tic_reset_res(tic);
401 if (tic->t_cnt > 0)
402 return 0;
404 trace_xfs_log_regrant(log, tic);
406 error = xlog_grant_head_check(log, &log->l_write_head, tic,
407 &need_bytes);
408 if (error)
409 goto out_error;
411 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
412 trace_xfs_log_regrant_exit(log, tic);
413 xlog_verify_grant_tail(log);
414 return 0;
416 out_error:
418 * If we are failing, make sure the ticket doesn't have any current
419 * reservations. We don't want to add this back when the ticket/
420 * transaction gets cancelled.
422 tic->t_curr_res = 0;
423 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
424 return error;
428 * Reserve log space and return a ticket corresponding to the reservation.
430 * Each reservation is going to reserve extra space for a log record header.
431 * When writes happen to the on-disk log, we don't subtract the length of the
432 * log record header from any reservation. By wasting space in each
433 * reservation, we prevent over allocation problems.
436 xfs_log_reserve(
437 struct xfs_mount *mp,
438 int unit_bytes,
439 int cnt,
440 struct xlog_ticket **ticp,
441 uint8_t client,
442 bool permanent)
444 struct xlog *log = mp->m_log;
445 struct xlog_ticket *tic;
446 int need_bytes;
447 int error = 0;
449 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
451 if (XLOG_FORCED_SHUTDOWN(log))
452 return -EIO;
454 XFS_STATS_INC(mp, xs_try_logspace);
456 ASSERT(*ticp == NULL);
457 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
458 *ticp = tic;
460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 : tic->t_unit_res);
463 trace_xfs_log_reserve(log, tic);
465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 &need_bytes);
467 if (error)
468 goto out_error;
470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 trace_xfs_log_reserve_exit(log, tic);
473 xlog_verify_grant_tail(log);
474 return 0;
476 out_error:
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
482 tic->t_curr_res = 0;
483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484 return error;
489 * NOTES:
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
509 xfs_lsn_t
510 xfs_log_done(
511 struct xfs_mount *mp,
512 struct xlog_ticket *ticket,
513 struct xlog_in_core **iclog,
514 bool regrant)
516 struct xlog *log = mp->m_log;
517 xfs_lsn_t lsn = 0;
519 if (XLOG_FORCED_SHUTDOWN(log) ||
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 lsn = (xfs_lsn_t) -1;
527 regrant = false;
531 if (!regrant) {
532 trace_xfs_log_done_nonperm(log, ticket);
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
538 xlog_ungrant_log_space(log, ticket);
539 } else {
540 trace_xfs_log_done_perm(log, ticket);
542 xlog_regrant_reserve_log_space(log, ticket);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
547 ticket->t_flags |= XLOG_TIC_INITED;
550 xfs_log_ticket_put(ticket);
551 return lsn;
554 static bool
555 __xlog_state_release_iclog(
556 struct xlog *log,
557 struct xlog_in_core *iclog)
559 lockdep_assert_held(&log->l_icloglock);
561 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
562 /* update tail before writing to iclog */
563 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
565 iclog->ic_state = XLOG_STATE_SYNCING;
566 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
567 xlog_verify_tail_lsn(log, iclog, tail_lsn);
568 /* cycle incremented when incrementing curr_block */
569 return true;
572 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
573 return false;
577 * Flush iclog to disk if this is the last reference to the given iclog and the
578 * it is in the WANT_SYNC state.
580 static int
581 xlog_state_release_iclog(
582 struct xlog *log,
583 struct xlog_in_core *iclog)
585 lockdep_assert_held(&log->l_icloglock);
587 if (iclog->ic_state == XLOG_STATE_IOERROR)
588 return -EIO;
590 if (atomic_dec_and_test(&iclog->ic_refcnt) &&
591 __xlog_state_release_iclog(log, iclog)) {
592 spin_unlock(&log->l_icloglock);
593 xlog_sync(log, iclog);
594 spin_lock(&log->l_icloglock);
597 return 0;
601 xfs_log_release_iclog(
602 struct xfs_mount *mp,
603 struct xlog_in_core *iclog)
605 struct xlog *log = mp->m_log;
606 bool sync;
608 if (iclog->ic_state == XLOG_STATE_IOERROR) {
609 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
610 return -EIO;
613 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
614 sync = __xlog_state_release_iclog(log, iclog);
615 spin_unlock(&log->l_icloglock);
616 if (sync)
617 xlog_sync(log, iclog);
619 return 0;
623 * Mount a log filesystem
625 * mp - ubiquitous xfs mount point structure
626 * log_target - buftarg of on-disk log device
627 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
628 * num_bblocks - Number of BBSIZE blocks in on-disk log
630 * Return error or zero.
633 xfs_log_mount(
634 xfs_mount_t *mp,
635 xfs_buftarg_t *log_target,
636 xfs_daddr_t blk_offset,
637 int num_bblks)
639 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
640 int error = 0;
641 int min_logfsbs;
643 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
644 xfs_notice(mp, "Mounting V%d Filesystem",
645 XFS_SB_VERSION_NUM(&mp->m_sb));
646 } else {
647 xfs_notice(mp,
648 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
649 XFS_SB_VERSION_NUM(&mp->m_sb));
650 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
653 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
654 if (IS_ERR(mp->m_log)) {
655 error = PTR_ERR(mp->m_log);
656 goto out;
660 * Validate the given log space and drop a critical message via syslog
661 * if the log size is too small that would lead to some unexpected
662 * situations in transaction log space reservation stage.
664 * Note: we can't just reject the mount if the validation fails. This
665 * would mean that people would have to downgrade their kernel just to
666 * remedy the situation as there is no way to grow the log (short of
667 * black magic surgery with xfs_db).
669 * We can, however, reject mounts for CRC format filesystems, as the
670 * mkfs binary being used to make the filesystem should never create a
671 * filesystem with a log that is too small.
673 min_logfsbs = xfs_log_calc_minimum_size(mp);
675 if (mp->m_sb.sb_logblocks < min_logfsbs) {
676 xfs_warn(mp,
677 "Log size %d blocks too small, minimum size is %d blocks",
678 mp->m_sb.sb_logblocks, min_logfsbs);
679 error = -EINVAL;
680 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
681 xfs_warn(mp,
682 "Log size %d blocks too large, maximum size is %lld blocks",
683 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
684 error = -EINVAL;
685 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
686 xfs_warn(mp,
687 "log size %lld bytes too large, maximum size is %lld bytes",
688 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
689 XFS_MAX_LOG_BYTES);
690 error = -EINVAL;
691 } else if (mp->m_sb.sb_logsunit > 1 &&
692 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
693 xfs_warn(mp,
694 "log stripe unit %u bytes must be a multiple of block size",
695 mp->m_sb.sb_logsunit);
696 error = -EINVAL;
697 fatal = true;
699 if (error) {
701 * Log check errors are always fatal on v5; or whenever bad
702 * metadata leads to a crash.
704 if (fatal) {
705 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
706 ASSERT(0);
707 goto out_free_log;
709 xfs_crit(mp, "Log size out of supported range.");
710 xfs_crit(mp,
711 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
715 * Initialize the AIL now we have a log.
717 error = xfs_trans_ail_init(mp);
718 if (error) {
719 xfs_warn(mp, "AIL initialisation failed: error %d", error);
720 goto out_free_log;
722 mp->m_log->l_ailp = mp->m_ail;
725 * skip log recovery on a norecovery mount. pretend it all
726 * just worked.
728 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
729 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
731 if (readonly)
732 mp->m_flags &= ~XFS_MOUNT_RDONLY;
734 error = xlog_recover(mp->m_log);
736 if (readonly)
737 mp->m_flags |= XFS_MOUNT_RDONLY;
738 if (error) {
739 xfs_warn(mp, "log mount/recovery failed: error %d",
740 error);
741 xlog_recover_cancel(mp->m_log);
742 goto out_destroy_ail;
746 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
747 "log");
748 if (error)
749 goto out_destroy_ail;
751 /* Normal transactions can now occur */
752 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
755 * Now the log has been fully initialised and we know were our
756 * space grant counters are, we can initialise the permanent ticket
757 * needed for delayed logging to work.
759 xlog_cil_init_post_recovery(mp->m_log);
761 return 0;
763 out_destroy_ail:
764 xfs_trans_ail_destroy(mp);
765 out_free_log:
766 xlog_dealloc_log(mp->m_log);
767 out:
768 return error;
772 * Finish the recovery of the file system. This is separate from the
773 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
774 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
775 * here.
777 * If we finish recovery successfully, start the background log work. If we are
778 * not doing recovery, then we have a RO filesystem and we don't need to start
779 * it.
782 xfs_log_mount_finish(
783 struct xfs_mount *mp)
785 int error = 0;
786 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
787 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
789 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
790 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
791 return 0;
792 } else if (readonly) {
793 /* Allow unlinked processing to proceed */
794 mp->m_flags &= ~XFS_MOUNT_RDONLY;
798 * During the second phase of log recovery, we need iget and
799 * iput to behave like they do for an active filesystem.
800 * xfs_fs_drop_inode needs to be able to prevent the deletion
801 * of inodes before we're done replaying log items on those
802 * inodes. Turn it off immediately after recovery finishes
803 * so that we don't leak the quota inodes if subsequent mount
804 * activities fail.
806 * We let all inodes involved in redo item processing end up on
807 * the LRU instead of being evicted immediately so that if we do
808 * something to an unlinked inode, the irele won't cause
809 * premature truncation and freeing of the inode, which results
810 * in log recovery failure. We have to evict the unreferenced
811 * lru inodes after clearing SB_ACTIVE because we don't
812 * otherwise clean up the lru if there's a subsequent failure in
813 * xfs_mountfs, which leads to us leaking the inodes if nothing
814 * else (e.g. quotacheck) references the inodes before the
815 * mount failure occurs.
817 mp->m_super->s_flags |= SB_ACTIVE;
818 error = xlog_recover_finish(mp->m_log);
819 if (!error)
820 xfs_log_work_queue(mp);
821 mp->m_super->s_flags &= ~SB_ACTIVE;
822 evict_inodes(mp->m_super);
825 * Drain the buffer LRU after log recovery. This is required for v4
826 * filesystems to avoid leaving around buffers with NULL verifier ops,
827 * but we do it unconditionally to make sure we're always in a clean
828 * cache state after mount.
830 * Don't push in the error case because the AIL may have pending intents
831 * that aren't removed until recovery is cancelled.
833 if (!error && recovered) {
834 xfs_log_force(mp, XFS_LOG_SYNC);
835 xfs_ail_push_all_sync(mp->m_ail);
837 xfs_wait_buftarg(mp->m_ddev_targp);
839 if (readonly)
840 mp->m_flags |= XFS_MOUNT_RDONLY;
842 return error;
846 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
847 * the log.
849 void
850 xfs_log_mount_cancel(
851 struct xfs_mount *mp)
853 xlog_recover_cancel(mp->m_log);
854 xfs_log_unmount(mp);
858 * Final log writes as part of unmount.
860 * Mark the filesystem clean as unmount happens. Note that during relocation
861 * this routine needs to be executed as part of source-bag while the
862 * deallocation must not be done until source-end.
865 /* Actually write the unmount record to disk. */
866 static void
867 xfs_log_write_unmount_record(
868 struct xfs_mount *mp)
870 /* the data section must be 32 bit size aligned */
871 struct xfs_unmount_log_format magic = {
872 .magic = XLOG_UNMOUNT_TYPE,
874 struct xfs_log_iovec reg = {
875 .i_addr = &magic,
876 .i_len = sizeof(magic),
877 .i_type = XLOG_REG_TYPE_UNMOUNT,
879 struct xfs_log_vec vec = {
880 .lv_niovecs = 1,
881 .lv_iovecp = &reg,
883 struct xlog *log = mp->m_log;
884 struct xlog_in_core *iclog;
885 struct xlog_ticket *tic = NULL;
886 xfs_lsn_t lsn;
887 uint flags = XLOG_UNMOUNT_TRANS;
888 int error;
890 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
891 if (error)
892 goto out_err;
895 * If we think the summary counters are bad, clear the unmount header
896 * flag in the unmount record so that the summary counters will be
897 * recalculated during log recovery at next mount. Refer to
898 * xlog_check_unmount_rec for more details.
900 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
901 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
902 xfs_alert(mp, "%s: will fix summary counters at next mount",
903 __func__);
904 flags &= ~XLOG_UNMOUNT_TRANS;
907 /* remove inited flag, and account for space used */
908 tic->t_flags = 0;
909 tic->t_curr_res -= sizeof(magic);
910 error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
912 * At this point, we're umounting anyway, so there's no point in
913 * transitioning log state to IOERROR. Just continue...
915 out_err:
916 if (error)
917 xfs_alert(mp, "%s: unmount record failed", __func__);
919 spin_lock(&log->l_icloglock);
920 iclog = log->l_iclog;
921 atomic_inc(&iclog->ic_refcnt);
922 xlog_state_want_sync(log, iclog);
923 error = xlog_state_release_iclog(log, iclog);
924 switch (iclog->ic_state) {
925 default:
926 if (!XLOG_FORCED_SHUTDOWN(log)) {
927 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
928 break;
930 /* fall through */
931 case XLOG_STATE_ACTIVE:
932 case XLOG_STATE_DIRTY:
933 spin_unlock(&log->l_icloglock);
934 break;
937 if (tic) {
938 trace_xfs_log_umount_write(log, tic);
939 xlog_ungrant_log_space(log, tic);
940 xfs_log_ticket_put(tic);
945 * Unmount record used to have a string "Unmount filesystem--" in the
946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
947 * We just write the magic number now since that particular field isn't
948 * currently architecture converted and "Unmount" is a bit foo.
949 * As far as I know, there weren't any dependencies on the old behaviour.
952 static int
953 xfs_log_unmount_write(xfs_mount_t *mp)
955 struct xlog *log = mp->m_log;
956 xlog_in_core_t *iclog;
957 #ifdef DEBUG
958 xlog_in_core_t *first_iclog;
959 #endif
960 int error;
963 * Don't write out unmount record on norecovery mounts or ro devices.
964 * Or, if we are doing a forced umount (typically because of IO errors).
966 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
967 xfs_readonly_buftarg(log->l_targ)) {
968 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
969 return 0;
972 error = xfs_log_force(mp, XFS_LOG_SYNC);
973 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
975 #ifdef DEBUG
976 first_iclog = iclog = log->l_iclog;
977 do {
978 if (iclog->ic_state != XLOG_STATE_IOERROR) {
979 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
980 ASSERT(iclog->ic_offset == 0);
982 iclog = iclog->ic_next;
983 } while (iclog != first_iclog);
984 #endif
985 if (! (XLOG_FORCED_SHUTDOWN(log))) {
986 xfs_log_write_unmount_record(mp);
987 } else {
989 * We're already in forced_shutdown mode, couldn't
990 * even attempt to write out the unmount transaction.
992 * Go through the motions of sync'ing and releasing
993 * the iclog, even though no I/O will actually happen,
994 * we need to wait for other log I/Os that may already
995 * be in progress. Do this as a separate section of
996 * code so we'll know if we ever get stuck here that
997 * we're in this odd situation of trying to unmount
998 * a file system that went into forced_shutdown as
999 * the result of an unmount..
1001 spin_lock(&log->l_icloglock);
1002 iclog = log->l_iclog;
1003 atomic_inc(&iclog->ic_refcnt);
1004 xlog_state_want_sync(log, iclog);
1005 error = xlog_state_release_iclog(log, iclog);
1006 switch (iclog->ic_state) {
1007 case XLOG_STATE_ACTIVE:
1008 case XLOG_STATE_DIRTY:
1009 case XLOG_STATE_IOERROR:
1010 spin_unlock(&log->l_icloglock);
1011 break;
1012 default:
1013 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
1014 break;
1018 return error;
1019 } /* xfs_log_unmount_write */
1022 * Empty the log for unmount/freeze.
1024 * To do this, we first need to shut down the background log work so it is not
1025 * trying to cover the log as we clean up. We then need to unpin all objects in
1026 * the log so we can then flush them out. Once they have completed their IO and
1027 * run the callbacks removing themselves from the AIL, we can write the unmount
1028 * record.
1030 void
1031 xfs_log_quiesce(
1032 struct xfs_mount *mp)
1034 cancel_delayed_work_sync(&mp->m_log->l_work);
1035 xfs_log_force(mp, XFS_LOG_SYNC);
1038 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1039 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1040 * xfs_buf_iowait() cannot be used because it was pushed with the
1041 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1042 * the IO to complete.
1044 xfs_ail_push_all_sync(mp->m_ail);
1045 xfs_wait_buftarg(mp->m_ddev_targp);
1046 xfs_buf_lock(mp->m_sb_bp);
1047 xfs_buf_unlock(mp->m_sb_bp);
1049 xfs_log_unmount_write(mp);
1053 * Shut down and release the AIL and Log.
1055 * During unmount, we need to ensure we flush all the dirty metadata objects
1056 * from the AIL so that the log is empty before we write the unmount record to
1057 * the log. Once this is done, we can tear down the AIL and the log.
1059 void
1060 xfs_log_unmount(
1061 struct xfs_mount *mp)
1063 xfs_log_quiesce(mp);
1065 xfs_trans_ail_destroy(mp);
1067 xfs_sysfs_del(&mp->m_log->l_kobj);
1069 xlog_dealloc_log(mp->m_log);
1072 void
1073 xfs_log_item_init(
1074 struct xfs_mount *mp,
1075 struct xfs_log_item *item,
1076 int type,
1077 const struct xfs_item_ops *ops)
1079 item->li_mountp = mp;
1080 item->li_ailp = mp->m_ail;
1081 item->li_type = type;
1082 item->li_ops = ops;
1083 item->li_lv = NULL;
1085 INIT_LIST_HEAD(&item->li_ail);
1086 INIT_LIST_HEAD(&item->li_cil);
1087 INIT_LIST_HEAD(&item->li_bio_list);
1088 INIT_LIST_HEAD(&item->li_trans);
1092 * Wake up processes waiting for log space after we have moved the log tail.
1094 void
1095 xfs_log_space_wake(
1096 struct xfs_mount *mp)
1098 struct xlog *log = mp->m_log;
1099 int free_bytes;
1101 if (XLOG_FORCED_SHUTDOWN(log))
1102 return;
1104 if (!list_empty_careful(&log->l_write_head.waiters)) {
1105 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1107 spin_lock(&log->l_write_head.lock);
1108 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1109 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1110 spin_unlock(&log->l_write_head.lock);
1113 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1114 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1116 spin_lock(&log->l_reserve_head.lock);
1117 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1118 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1119 spin_unlock(&log->l_reserve_head.lock);
1124 * Determine if we have a transaction that has gone to disk that needs to be
1125 * covered. To begin the transition to the idle state firstly the log needs to
1126 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1127 * we start attempting to cover the log.
1129 * Only if we are then in a state where covering is needed, the caller is
1130 * informed that dummy transactions are required to move the log into the idle
1131 * state.
1133 * If there are any items in the AIl or CIL, then we do not want to attempt to
1134 * cover the log as we may be in a situation where there isn't log space
1135 * available to run a dummy transaction and this can lead to deadlocks when the
1136 * tail of the log is pinned by an item that is modified in the CIL. Hence
1137 * there's no point in running a dummy transaction at this point because we
1138 * can't start trying to idle the log until both the CIL and AIL are empty.
1140 static int
1141 xfs_log_need_covered(xfs_mount_t *mp)
1143 struct xlog *log = mp->m_log;
1144 int needed = 0;
1146 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1147 return 0;
1149 if (!xlog_cil_empty(log))
1150 return 0;
1152 spin_lock(&log->l_icloglock);
1153 switch (log->l_covered_state) {
1154 case XLOG_STATE_COVER_DONE:
1155 case XLOG_STATE_COVER_DONE2:
1156 case XLOG_STATE_COVER_IDLE:
1157 break;
1158 case XLOG_STATE_COVER_NEED:
1159 case XLOG_STATE_COVER_NEED2:
1160 if (xfs_ail_min_lsn(log->l_ailp))
1161 break;
1162 if (!xlog_iclogs_empty(log))
1163 break;
1165 needed = 1;
1166 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1167 log->l_covered_state = XLOG_STATE_COVER_DONE;
1168 else
1169 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1170 break;
1171 default:
1172 needed = 1;
1173 break;
1175 spin_unlock(&log->l_icloglock);
1176 return needed;
1180 * We may be holding the log iclog lock upon entering this routine.
1182 xfs_lsn_t
1183 xlog_assign_tail_lsn_locked(
1184 struct xfs_mount *mp)
1186 struct xlog *log = mp->m_log;
1187 struct xfs_log_item *lip;
1188 xfs_lsn_t tail_lsn;
1190 assert_spin_locked(&mp->m_ail->ail_lock);
1193 * To make sure we always have a valid LSN for the log tail we keep
1194 * track of the last LSN which was committed in log->l_last_sync_lsn,
1195 * and use that when the AIL was empty.
1197 lip = xfs_ail_min(mp->m_ail);
1198 if (lip)
1199 tail_lsn = lip->li_lsn;
1200 else
1201 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1202 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1203 atomic64_set(&log->l_tail_lsn, tail_lsn);
1204 return tail_lsn;
1207 xfs_lsn_t
1208 xlog_assign_tail_lsn(
1209 struct xfs_mount *mp)
1211 xfs_lsn_t tail_lsn;
1213 spin_lock(&mp->m_ail->ail_lock);
1214 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1215 spin_unlock(&mp->m_ail->ail_lock);
1217 return tail_lsn;
1221 * Return the space in the log between the tail and the head. The head
1222 * is passed in the cycle/bytes formal parms. In the special case where
1223 * the reserve head has wrapped passed the tail, this calculation is no
1224 * longer valid. In this case, just return 0 which means there is no space
1225 * in the log. This works for all places where this function is called
1226 * with the reserve head. Of course, if the write head were to ever
1227 * wrap the tail, we should blow up. Rather than catch this case here,
1228 * we depend on other ASSERTions in other parts of the code. XXXmiken
1230 * This code also handles the case where the reservation head is behind
1231 * the tail. The details of this case are described below, but the end
1232 * result is that we return the size of the log as the amount of space left.
1234 STATIC int
1235 xlog_space_left(
1236 struct xlog *log,
1237 atomic64_t *head)
1239 int free_bytes;
1240 int tail_bytes;
1241 int tail_cycle;
1242 int head_cycle;
1243 int head_bytes;
1245 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1246 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1247 tail_bytes = BBTOB(tail_bytes);
1248 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1249 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1250 else if (tail_cycle + 1 < head_cycle)
1251 return 0;
1252 else if (tail_cycle < head_cycle) {
1253 ASSERT(tail_cycle == (head_cycle - 1));
1254 free_bytes = tail_bytes - head_bytes;
1255 } else {
1257 * The reservation head is behind the tail.
1258 * In this case we just want to return the size of the
1259 * log as the amount of space left.
1261 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1262 xfs_alert(log->l_mp,
1263 " tail_cycle = %d, tail_bytes = %d",
1264 tail_cycle, tail_bytes);
1265 xfs_alert(log->l_mp,
1266 " GH cycle = %d, GH bytes = %d",
1267 head_cycle, head_bytes);
1268 ASSERT(0);
1269 free_bytes = log->l_logsize;
1271 return free_bytes;
1275 static void
1276 xlog_ioend_work(
1277 struct work_struct *work)
1279 struct xlog_in_core *iclog =
1280 container_of(work, struct xlog_in_core, ic_end_io_work);
1281 struct xlog *log = iclog->ic_log;
1282 bool aborted = false;
1283 int error;
1285 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1286 #ifdef DEBUG
1287 /* treat writes with injected CRC errors as failed */
1288 if (iclog->ic_fail_crc)
1289 error = -EIO;
1290 #endif
1293 * Race to shutdown the filesystem if we see an error.
1295 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1296 xfs_alert(log->l_mp, "log I/O error %d", error);
1297 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1299 * This flag will be propagated to the trans-committed
1300 * callback routines to let them know that the log-commit
1301 * didn't succeed.
1303 aborted = true;
1304 } else if (iclog->ic_state == XLOG_STATE_IOERROR) {
1305 aborted = true;
1308 xlog_state_done_syncing(iclog, aborted);
1309 bio_uninit(&iclog->ic_bio);
1312 * Drop the lock to signal that we are done. Nothing references the
1313 * iclog after this, so an unmount waiting on this lock can now tear it
1314 * down safely. As such, it is unsafe to reference the iclog after the
1315 * unlock as we could race with it being freed.
1317 up(&iclog->ic_sema);
1321 * Return size of each in-core log record buffer.
1323 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1325 * If the filesystem blocksize is too large, we may need to choose a
1326 * larger size since the directory code currently logs entire blocks.
1328 STATIC void
1329 xlog_get_iclog_buffer_size(
1330 struct xfs_mount *mp,
1331 struct xlog *log)
1333 if (mp->m_logbufs <= 0)
1334 mp->m_logbufs = XLOG_MAX_ICLOGS;
1335 if (mp->m_logbsize <= 0)
1336 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1338 log->l_iclog_bufs = mp->m_logbufs;
1339 log->l_iclog_size = mp->m_logbsize;
1342 * # headers = size / 32k - one header holds cycles from 32k of data.
1344 log->l_iclog_heads =
1345 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1346 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1349 void
1350 xfs_log_work_queue(
1351 struct xfs_mount *mp)
1353 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1354 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1358 * Every sync period we need to unpin all items in the AIL and push them to
1359 * disk. If there is nothing dirty, then we might need to cover the log to
1360 * indicate that the filesystem is idle.
1362 static void
1363 xfs_log_worker(
1364 struct work_struct *work)
1366 struct xlog *log = container_of(to_delayed_work(work),
1367 struct xlog, l_work);
1368 struct xfs_mount *mp = log->l_mp;
1370 /* dgc: errors ignored - not fatal and nowhere to report them */
1371 if (xfs_log_need_covered(mp)) {
1373 * Dump a transaction into the log that contains no real change.
1374 * This is needed to stamp the current tail LSN into the log
1375 * during the covering operation.
1377 * We cannot use an inode here for this - that will push dirty
1378 * state back up into the VFS and then periodic inode flushing
1379 * will prevent log covering from making progress. Hence we
1380 * synchronously log the superblock instead to ensure the
1381 * superblock is immediately unpinned and can be written back.
1383 xfs_sync_sb(mp, true);
1384 } else
1385 xfs_log_force(mp, 0);
1387 /* start pushing all the metadata that is currently dirty */
1388 xfs_ail_push_all(mp->m_ail);
1390 /* queue us up again */
1391 xfs_log_work_queue(mp);
1395 * This routine initializes some of the log structure for a given mount point.
1396 * Its primary purpose is to fill in enough, so recovery can occur. However,
1397 * some other stuff may be filled in too.
1399 STATIC struct xlog *
1400 xlog_alloc_log(
1401 struct xfs_mount *mp,
1402 struct xfs_buftarg *log_target,
1403 xfs_daddr_t blk_offset,
1404 int num_bblks)
1406 struct xlog *log;
1407 xlog_rec_header_t *head;
1408 xlog_in_core_t **iclogp;
1409 xlog_in_core_t *iclog, *prev_iclog=NULL;
1410 int i;
1411 int error = -ENOMEM;
1412 uint log2_size = 0;
1414 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1415 if (!log) {
1416 xfs_warn(mp, "Log allocation failed: No memory!");
1417 goto out;
1420 log->l_mp = mp;
1421 log->l_targ = log_target;
1422 log->l_logsize = BBTOB(num_bblks);
1423 log->l_logBBstart = blk_offset;
1424 log->l_logBBsize = num_bblks;
1425 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1426 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1427 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1429 log->l_prev_block = -1;
1430 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1431 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1432 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1433 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1435 xlog_grant_head_init(&log->l_reserve_head);
1436 xlog_grant_head_init(&log->l_write_head);
1438 error = -EFSCORRUPTED;
1439 if (xfs_sb_version_hassector(&mp->m_sb)) {
1440 log2_size = mp->m_sb.sb_logsectlog;
1441 if (log2_size < BBSHIFT) {
1442 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1443 log2_size, BBSHIFT);
1444 goto out_free_log;
1447 log2_size -= BBSHIFT;
1448 if (log2_size > mp->m_sectbb_log) {
1449 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1450 log2_size, mp->m_sectbb_log);
1451 goto out_free_log;
1454 /* for larger sector sizes, must have v2 or external log */
1455 if (log2_size && log->l_logBBstart > 0 &&
1456 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1457 xfs_warn(mp,
1458 "log sector size (0x%x) invalid for configuration.",
1459 log2_size);
1460 goto out_free_log;
1463 log->l_sectBBsize = 1 << log2_size;
1465 xlog_get_iclog_buffer_size(mp, log);
1467 spin_lock_init(&log->l_icloglock);
1468 init_waitqueue_head(&log->l_flush_wait);
1470 iclogp = &log->l_iclog;
1472 * The amount of memory to allocate for the iclog structure is
1473 * rather funky due to the way the structure is defined. It is
1474 * done this way so that we can use different sizes for machines
1475 * with different amounts of memory. See the definition of
1476 * xlog_in_core_t in xfs_log_priv.h for details.
1478 ASSERT(log->l_iclog_size >= 4096);
1479 for (i = 0; i < log->l_iclog_bufs; i++) {
1480 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1481 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1482 sizeof(struct bio_vec);
1484 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1485 if (!iclog)
1486 goto out_free_iclog;
1488 *iclogp = iclog;
1489 iclog->ic_prev = prev_iclog;
1490 prev_iclog = iclog;
1492 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1493 KM_MAYFAIL | KM_ZERO);
1494 if (!iclog->ic_data)
1495 goto out_free_iclog;
1496 #ifdef DEBUG
1497 log->l_iclog_bak[i] = &iclog->ic_header;
1498 #endif
1499 head = &iclog->ic_header;
1500 memset(head, 0, sizeof(xlog_rec_header_t));
1501 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1502 head->h_version = cpu_to_be32(
1503 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1504 head->h_size = cpu_to_be32(log->l_iclog_size);
1505 /* new fields */
1506 head->h_fmt = cpu_to_be32(XLOG_FMT);
1507 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1509 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1510 iclog->ic_state = XLOG_STATE_ACTIVE;
1511 iclog->ic_log = log;
1512 atomic_set(&iclog->ic_refcnt, 0);
1513 spin_lock_init(&iclog->ic_callback_lock);
1514 INIT_LIST_HEAD(&iclog->ic_callbacks);
1515 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1517 init_waitqueue_head(&iclog->ic_force_wait);
1518 init_waitqueue_head(&iclog->ic_write_wait);
1519 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1520 sema_init(&iclog->ic_sema, 1);
1522 iclogp = &iclog->ic_next;
1524 *iclogp = log->l_iclog; /* complete ring */
1525 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1527 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1528 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1529 mp->m_super->s_id);
1530 if (!log->l_ioend_workqueue)
1531 goto out_free_iclog;
1533 error = xlog_cil_init(log);
1534 if (error)
1535 goto out_destroy_workqueue;
1536 return log;
1538 out_destroy_workqueue:
1539 destroy_workqueue(log->l_ioend_workqueue);
1540 out_free_iclog:
1541 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1542 prev_iclog = iclog->ic_next;
1543 kmem_free(iclog->ic_data);
1544 kmem_free(iclog);
1545 if (prev_iclog == log->l_iclog)
1546 break;
1548 out_free_log:
1549 kmem_free(log);
1550 out:
1551 return ERR_PTR(error);
1552 } /* xlog_alloc_log */
1556 * Write out the commit record of a transaction associated with the given
1557 * ticket. Return the lsn of the commit record.
1559 STATIC int
1560 xlog_commit_record(
1561 struct xlog *log,
1562 struct xlog_ticket *ticket,
1563 struct xlog_in_core **iclog,
1564 xfs_lsn_t *commitlsnp)
1566 struct xfs_mount *mp = log->l_mp;
1567 int error;
1568 struct xfs_log_iovec reg = {
1569 .i_addr = NULL,
1570 .i_len = 0,
1571 .i_type = XLOG_REG_TYPE_COMMIT,
1573 struct xfs_log_vec vec = {
1574 .lv_niovecs = 1,
1575 .lv_iovecp = &reg,
1578 ASSERT_ALWAYS(iclog);
1579 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1580 XLOG_COMMIT_TRANS);
1581 if (error)
1582 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1583 return error;
1587 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1588 * log space. This code pushes on the lsn which would supposedly free up
1589 * the 25% which we want to leave free. We may need to adopt a policy which
1590 * pushes on an lsn which is further along in the log once we reach the high
1591 * water mark. In this manner, we would be creating a low water mark.
1593 STATIC void
1594 xlog_grant_push_ail(
1595 struct xlog *log,
1596 int need_bytes)
1598 xfs_lsn_t threshold_lsn = 0;
1599 xfs_lsn_t last_sync_lsn;
1600 int free_blocks;
1601 int free_bytes;
1602 int threshold_block;
1603 int threshold_cycle;
1604 int free_threshold;
1606 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1608 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1609 free_blocks = BTOBBT(free_bytes);
1612 * Set the threshold for the minimum number of free blocks in the
1613 * log to the maximum of what the caller needs, one quarter of the
1614 * log, and 256 blocks.
1616 free_threshold = BTOBB(need_bytes);
1617 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1618 free_threshold = max(free_threshold, 256);
1619 if (free_blocks >= free_threshold)
1620 return;
1622 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1623 &threshold_block);
1624 threshold_block += free_threshold;
1625 if (threshold_block >= log->l_logBBsize) {
1626 threshold_block -= log->l_logBBsize;
1627 threshold_cycle += 1;
1629 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1630 threshold_block);
1632 * Don't pass in an lsn greater than the lsn of the last
1633 * log record known to be on disk. Use a snapshot of the last sync lsn
1634 * so that it doesn't change between the compare and the set.
1636 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1637 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1638 threshold_lsn = last_sync_lsn;
1641 * Get the transaction layer to kick the dirty buffers out to
1642 * disk asynchronously. No point in trying to do this if
1643 * the filesystem is shutting down.
1645 if (!XLOG_FORCED_SHUTDOWN(log))
1646 xfs_ail_push(log->l_ailp, threshold_lsn);
1650 * Stamp cycle number in every block
1652 STATIC void
1653 xlog_pack_data(
1654 struct xlog *log,
1655 struct xlog_in_core *iclog,
1656 int roundoff)
1658 int i, j, k;
1659 int size = iclog->ic_offset + roundoff;
1660 __be32 cycle_lsn;
1661 char *dp;
1663 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1665 dp = iclog->ic_datap;
1666 for (i = 0; i < BTOBB(size); i++) {
1667 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1668 break;
1669 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1670 *(__be32 *)dp = cycle_lsn;
1671 dp += BBSIZE;
1674 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1675 xlog_in_core_2_t *xhdr = iclog->ic_data;
1677 for ( ; i < BTOBB(size); i++) {
1678 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1679 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1680 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1681 *(__be32 *)dp = cycle_lsn;
1682 dp += BBSIZE;
1685 for (i = 1; i < log->l_iclog_heads; i++)
1686 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1691 * Calculate the checksum for a log buffer.
1693 * This is a little more complicated than it should be because the various
1694 * headers and the actual data are non-contiguous.
1696 __le32
1697 xlog_cksum(
1698 struct xlog *log,
1699 struct xlog_rec_header *rhead,
1700 char *dp,
1701 int size)
1703 uint32_t crc;
1705 /* first generate the crc for the record header ... */
1706 crc = xfs_start_cksum_update((char *)rhead,
1707 sizeof(struct xlog_rec_header),
1708 offsetof(struct xlog_rec_header, h_crc));
1710 /* ... then for additional cycle data for v2 logs ... */
1711 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1712 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1713 int i;
1714 int xheads;
1716 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1717 if (size % XLOG_HEADER_CYCLE_SIZE)
1718 xheads++;
1720 for (i = 1; i < xheads; i++) {
1721 crc = crc32c(crc, &xhdr[i].hic_xheader,
1722 sizeof(struct xlog_rec_ext_header));
1726 /* ... and finally for the payload */
1727 crc = crc32c(crc, dp, size);
1729 return xfs_end_cksum(crc);
1732 static void
1733 xlog_bio_end_io(
1734 struct bio *bio)
1736 struct xlog_in_core *iclog = bio->bi_private;
1738 queue_work(iclog->ic_log->l_ioend_workqueue,
1739 &iclog->ic_end_io_work);
1742 static void
1743 xlog_map_iclog_data(
1744 struct bio *bio,
1745 void *data,
1746 size_t count)
1748 do {
1749 struct page *page = kmem_to_page(data);
1750 unsigned int off = offset_in_page(data);
1751 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1753 WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1755 data += len;
1756 count -= len;
1757 } while (count);
1760 STATIC void
1761 xlog_write_iclog(
1762 struct xlog *log,
1763 struct xlog_in_core *iclog,
1764 uint64_t bno,
1765 unsigned int count,
1766 bool need_flush)
1768 ASSERT(bno < log->l_logBBsize);
1771 * We lock the iclogbufs here so that we can serialise against I/O
1772 * completion during unmount. We might be processing a shutdown
1773 * triggered during unmount, and that can occur asynchronously to the
1774 * unmount thread, and hence we need to ensure that completes before
1775 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1776 * across the log IO to archieve that.
1778 down(&iclog->ic_sema);
1779 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1781 * It would seem logical to return EIO here, but we rely on
1782 * the log state machine to propagate I/O errors instead of
1783 * doing it here. We kick of the state machine and unlock
1784 * the buffer manually, the code needs to be kept in sync
1785 * with the I/O completion path.
1787 xlog_state_done_syncing(iclog, true);
1788 up(&iclog->ic_sema);
1789 return;
1792 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1793 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1794 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1795 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1796 iclog->ic_bio.bi_private = iclog;
1797 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1798 if (need_flush)
1799 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1801 xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count);
1802 if (is_vmalloc_addr(iclog->ic_data))
1803 flush_kernel_vmap_range(iclog->ic_data, count);
1806 * If this log buffer would straddle the end of the log we will have
1807 * to split it up into two bios, so that we can continue at the start.
1809 if (bno + BTOBB(count) > log->l_logBBsize) {
1810 struct bio *split;
1812 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1813 GFP_NOIO, &fs_bio_set);
1814 bio_chain(split, &iclog->ic_bio);
1815 submit_bio(split);
1817 /* restart at logical offset zero for the remainder */
1818 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1821 submit_bio(&iclog->ic_bio);
1825 * We need to bump cycle number for the part of the iclog that is
1826 * written to the start of the log. Watch out for the header magic
1827 * number case, though.
1829 static void
1830 xlog_split_iclog(
1831 struct xlog *log,
1832 void *data,
1833 uint64_t bno,
1834 unsigned int count)
1836 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1837 unsigned int i;
1839 for (i = split_offset; i < count; i += BBSIZE) {
1840 uint32_t cycle = get_unaligned_be32(data + i);
1842 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1843 cycle++;
1844 put_unaligned_be32(cycle, data + i);
1848 static int
1849 xlog_calc_iclog_size(
1850 struct xlog *log,
1851 struct xlog_in_core *iclog,
1852 uint32_t *roundoff)
1854 uint32_t count_init, count;
1855 bool use_lsunit;
1857 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1858 log->l_mp->m_sb.sb_logsunit > 1;
1860 /* Add for LR header */
1861 count_init = log->l_iclog_hsize + iclog->ic_offset;
1863 /* Round out the log write size */
1864 if (use_lsunit) {
1865 /* we have a v2 stripe unit to use */
1866 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1867 } else {
1868 count = BBTOB(BTOBB(count_init));
1871 ASSERT(count >= count_init);
1872 *roundoff = count - count_init;
1874 if (use_lsunit)
1875 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1876 else
1877 ASSERT(*roundoff < BBTOB(1));
1878 return count;
1882 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1883 * fashion. Previously, we should have moved the current iclog
1884 * ptr in the log to point to the next available iclog. This allows further
1885 * write to continue while this code syncs out an iclog ready to go.
1886 * Before an in-core log can be written out, the data section must be scanned
1887 * to save away the 1st word of each BBSIZE block into the header. We replace
1888 * it with the current cycle count. Each BBSIZE block is tagged with the
1889 * cycle count because there in an implicit assumption that drives will
1890 * guarantee that entire 512 byte blocks get written at once. In other words,
1891 * we can't have part of a 512 byte block written and part not written. By
1892 * tagging each block, we will know which blocks are valid when recovering
1893 * after an unclean shutdown.
1895 * This routine is single threaded on the iclog. No other thread can be in
1896 * this routine with the same iclog. Changing contents of iclog can there-
1897 * fore be done without grabbing the state machine lock. Updating the global
1898 * log will require grabbing the lock though.
1900 * The entire log manager uses a logical block numbering scheme. Only
1901 * xlog_write_iclog knows about the fact that the log may not start with
1902 * block zero on a given device.
1904 STATIC void
1905 xlog_sync(
1906 struct xlog *log,
1907 struct xlog_in_core *iclog)
1909 unsigned int count; /* byte count of bwrite */
1910 unsigned int roundoff; /* roundoff to BB or stripe */
1911 uint64_t bno;
1912 unsigned int size;
1913 bool need_flush = true, split = false;
1915 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1917 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1919 /* move grant heads by roundoff in sync */
1920 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1921 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1923 /* put cycle number in every block */
1924 xlog_pack_data(log, iclog, roundoff);
1926 /* real byte length */
1927 size = iclog->ic_offset;
1928 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1929 size += roundoff;
1930 iclog->ic_header.h_len = cpu_to_be32(size);
1932 XFS_STATS_INC(log->l_mp, xs_log_writes);
1933 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1935 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1937 /* Do we need to split this write into 2 parts? */
1938 if (bno + BTOBB(count) > log->l_logBBsize) {
1939 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1940 split = true;
1943 /* calculcate the checksum */
1944 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1945 iclog->ic_datap, size);
1947 * Intentionally corrupt the log record CRC based on the error injection
1948 * frequency, if defined. This facilitates testing log recovery in the
1949 * event of torn writes. Hence, set the IOABORT state to abort the log
1950 * write on I/O completion and shutdown the fs. The subsequent mount
1951 * detects the bad CRC and attempts to recover.
1953 #ifdef DEBUG
1954 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1955 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1956 iclog->ic_fail_crc = true;
1957 xfs_warn(log->l_mp,
1958 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1959 be64_to_cpu(iclog->ic_header.h_lsn));
1961 #endif
1964 * Flush the data device before flushing the log to make sure all meta
1965 * data written back from the AIL actually made it to disk before
1966 * stamping the new log tail LSN into the log buffer. For an external
1967 * log we need to issue the flush explicitly, and unfortunately
1968 * synchronously here; for an internal log we can simply use the block
1969 * layer state machine for preflushes.
1971 if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1972 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1973 need_flush = false;
1976 xlog_verify_iclog(log, iclog, count);
1977 xlog_write_iclog(log, iclog, bno, count, need_flush);
1981 * Deallocate a log structure
1983 STATIC void
1984 xlog_dealloc_log(
1985 struct xlog *log)
1987 xlog_in_core_t *iclog, *next_iclog;
1988 int i;
1990 xlog_cil_destroy(log);
1993 * Cycle all the iclogbuf locks to make sure all log IO completion
1994 * is done before we tear down these buffers.
1996 iclog = log->l_iclog;
1997 for (i = 0; i < log->l_iclog_bufs; i++) {
1998 down(&iclog->ic_sema);
1999 up(&iclog->ic_sema);
2000 iclog = iclog->ic_next;
2003 iclog = log->l_iclog;
2004 for (i = 0; i < log->l_iclog_bufs; i++) {
2005 next_iclog = iclog->ic_next;
2006 kmem_free(iclog->ic_data);
2007 kmem_free(iclog);
2008 iclog = next_iclog;
2011 log->l_mp->m_log = NULL;
2012 destroy_workqueue(log->l_ioend_workqueue);
2013 kmem_free(log);
2014 } /* xlog_dealloc_log */
2017 * Update counters atomically now that memcpy is done.
2019 static inline void
2020 xlog_state_finish_copy(
2021 struct xlog *log,
2022 struct xlog_in_core *iclog,
2023 int record_cnt,
2024 int copy_bytes)
2026 lockdep_assert_held(&log->l_icloglock);
2028 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2029 iclog->ic_offset += copy_bytes;
2033 * print out info relating to regions written which consume
2034 * the reservation
2036 void
2037 xlog_print_tic_res(
2038 struct xfs_mount *mp,
2039 struct xlog_ticket *ticket)
2041 uint i;
2042 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2044 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2045 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2046 static char *res_type_str[] = {
2047 REG_TYPE_STR(BFORMAT, "bformat"),
2048 REG_TYPE_STR(BCHUNK, "bchunk"),
2049 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2050 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2051 REG_TYPE_STR(IFORMAT, "iformat"),
2052 REG_TYPE_STR(ICORE, "icore"),
2053 REG_TYPE_STR(IEXT, "iext"),
2054 REG_TYPE_STR(IBROOT, "ibroot"),
2055 REG_TYPE_STR(ILOCAL, "ilocal"),
2056 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2057 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2058 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2059 REG_TYPE_STR(QFORMAT, "qformat"),
2060 REG_TYPE_STR(DQUOT, "dquot"),
2061 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2062 REG_TYPE_STR(LRHEADER, "LR header"),
2063 REG_TYPE_STR(UNMOUNT, "unmount"),
2064 REG_TYPE_STR(COMMIT, "commit"),
2065 REG_TYPE_STR(TRANSHDR, "trans header"),
2066 REG_TYPE_STR(ICREATE, "inode create"),
2067 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2068 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2069 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2070 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2071 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2072 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2074 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2075 #undef REG_TYPE_STR
2077 xfs_warn(mp, "ticket reservation summary:");
2078 xfs_warn(mp, " unit res = %d bytes",
2079 ticket->t_unit_res);
2080 xfs_warn(mp, " current res = %d bytes",
2081 ticket->t_curr_res);
2082 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2083 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2084 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2085 ticket->t_res_num_ophdrs, ophdr_spc);
2086 xfs_warn(mp, " ophdr + reg = %u bytes",
2087 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2088 xfs_warn(mp, " num regions = %u",
2089 ticket->t_res_num);
2091 for (i = 0; i < ticket->t_res_num; i++) {
2092 uint r_type = ticket->t_res_arr[i].r_type;
2093 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2094 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2095 "bad-rtype" : res_type_str[r_type]),
2096 ticket->t_res_arr[i].r_len);
2101 * Print a summary of the transaction.
2103 void
2104 xlog_print_trans(
2105 struct xfs_trans *tp)
2107 struct xfs_mount *mp = tp->t_mountp;
2108 struct xfs_log_item *lip;
2110 /* dump core transaction and ticket info */
2111 xfs_warn(mp, "transaction summary:");
2112 xfs_warn(mp, " log res = %d", tp->t_log_res);
2113 xfs_warn(mp, " log count = %d", tp->t_log_count);
2114 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2116 xlog_print_tic_res(mp, tp->t_ticket);
2118 /* dump each log item */
2119 list_for_each_entry(lip, &tp->t_items, li_trans) {
2120 struct xfs_log_vec *lv = lip->li_lv;
2121 struct xfs_log_iovec *vec;
2122 int i;
2124 xfs_warn(mp, "log item: ");
2125 xfs_warn(mp, " type = 0x%x", lip->li_type);
2126 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
2127 if (!lv)
2128 continue;
2129 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2130 xfs_warn(mp, " size = %d", lv->lv_size);
2131 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2132 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2134 /* dump each iovec for the log item */
2135 vec = lv->lv_iovecp;
2136 for (i = 0; i < lv->lv_niovecs; i++) {
2137 int dumplen = min(vec->i_len, 32);
2139 xfs_warn(mp, " iovec[%d]", i);
2140 xfs_warn(mp, " type = 0x%x", vec->i_type);
2141 xfs_warn(mp, " len = %d", vec->i_len);
2142 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2143 xfs_hex_dump(vec->i_addr, dumplen);
2145 vec++;
2151 * Calculate the potential space needed by the log vector. Each region gets
2152 * its own xlog_op_header_t and may need to be double word aligned.
2154 static int
2155 xlog_write_calc_vec_length(
2156 struct xlog_ticket *ticket,
2157 struct xfs_log_vec *log_vector)
2159 struct xfs_log_vec *lv;
2160 int headers = 0;
2161 int len = 0;
2162 int i;
2164 /* acct for start rec of xact */
2165 if (ticket->t_flags & XLOG_TIC_INITED)
2166 headers++;
2168 for (lv = log_vector; lv; lv = lv->lv_next) {
2169 /* we don't write ordered log vectors */
2170 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2171 continue;
2173 headers += lv->lv_niovecs;
2175 for (i = 0; i < lv->lv_niovecs; i++) {
2176 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2178 len += vecp->i_len;
2179 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2183 ticket->t_res_num_ophdrs += headers;
2184 len += headers * sizeof(struct xlog_op_header);
2186 return len;
2190 * If first write for transaction, insert start record We can't be trying to
2191 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2193 static int
2194 xlog_write_start_rec(
2195 struct xlog_op_header *ophdr,
2196 struct xlog_ticket *ticket)
2198 if (!(ticket->t_flags & XLOG_TIC_INITED))
2199 return 0;
2201 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2202 ophdr->oh_clientid = ticket->t_clientid;
2203 ophdr->oh_len = 0;
2204 ophdr->oh_flags = XLOG_START_TRANS;
2205 ophdr->oh_res2 = 0;
2207 ticket->t_flags &= ~XLOG_TIC_INITED;
2209 return sizeof(struct xlog_op_header);
2212 static xlog_op_header_t *
2213 xlog_write_setup_ophdr(
2214 struct xlog *log,
2215 struct xlog_op_header *ophdr,
2216 struct xlog_ticket *ticket,
2217 uint flags)
2219 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2220 ophdr->oh_clientid = ticket->t_clientid;
2221 ophdr->oh_res2 = 0;
2223 /* are we copying a commit or unmount record? */
2224 ophdr->oh_flags = flags;
2227 * We've seen logs corrupted with bad transaction client ids. This
2228 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2229 * and shut down the filesystem.
2231 switch (ophdr->oh_clientid) {
2232 case XFS_TRANSACTION:
2233 case XFS_VOLUME:
2234 case XFS_LOG:
2235 break;
2236 default:
2237 xfs_warn(log->l_mp,
2238 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2239 ophdr->oh_clientid, ticket);
2240 return NULL;
2243 return ophdr;
2247 * Set up the parameters of the region copy into the log. This has
2248 * to handle region write split across multiple log buffers - this
2249 * state is kept external to this function so that this code can
2250 * be written in an obvious, self documenting manner.
2252 static int
2253 xlog_write_setup_copy(
2254 struct xlog_ticket *ticket,
2255 struct xlog_op_header *ophdr,
2256 int space_available,
2257 int space_required,
2258 int *copy_off,
2259 int *copy_len,
2260 int *last_was_partial_copy,
2261 int *bytes_consumed)
2263 int still_to_copy;
2265 still_to_copy = space_required - *bytes_consumed;
2266 *copy_off = *bytes_consumed;
2268 if (still_to_copy <= space_available) {
2269 /* write of region completes here */
2270 *copy_len = still_to_copy;
2271 ophdr->oh_len = cpu_to_be32(*copy_len);
2272 if (*last_was_partial_copy)
2273 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2274 *last_was_partial_copy = 0;
2275 *bytes_consumed = 0;
2276 return 0;
2279 /* partial write of region, needs extra log op header reservation */
2280 *copy_len = space_available;
2281 ophdr->oh_len = cpu_to_be32(*copy_len);
2282 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2283 if (*last_was_partial_copy)
2284 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2285 *bytes_consumed += *copy_len;
2286 (*last_was_partial_copy)++;
2288 /* account for new log op header */
2289 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2290 ticket->t_res_num_ophdrs++;
2292 return sizeof(struct xlog_op_header);
2295 static int
2296 xlog_write_copy_finish(
2297 struct xlog *log,
2298 struct xlog_in_core *iclog,
2299 uint flags,
2300 int *record_cnt,
2301 int *data_cnt,
2302 int *partial_copy,
2303 int *partial_copy_len,
2304 int log_offset,
2305 struct xlog_in_core **commit_iclog)
2307 int error;
2309 if (*partial_copy) {
2311 * This iclog has already been marked WANT_SYNC by
2312 * xlog_state_get_iclog_space.
2314 spin_lock(&log->l_icloglock);
2315 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2316 *record_cnt = 0;
2317 *data_cnt = 0;
2318 goto release_iclog;
2321 *partial_copy = 0;
2322 *partial_copy_len = 0;
2324 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2325 /* no more space in this iclog - push it. */
2326 spin_lock(&log->l_icloglock);
2327 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2328 *record_cnt = 0;
2329 *data_cnt = 0;
2331 xlog_state_want_sync(log, iclog);
2332 if (!commit_iclog)
2333 goto release_iclog;
2334 spin_unlock(&log->l_icloglock);
2335 ASSERT(flags & XLOG_COMMIT_TRANS);
2336 *commit_iclog = iclog;
2339 return 0;
2341 release_iclog:
2342 error = xlog_state_release_iclog(log, iclog);
2343 spin_unlock(&log->l_icloglock);
2344 return error;
2348 * Write some region out to in-core log
2350 * This will be called when writing externally provided regions or when
2351 * writing out a commit record for a given transaction.
2353 * General algorithm:
2354 * 1. Find total length of this write. This may include adding to the
2355 * lengths passed in.
2356 * 2. Check whether we violate the tickets reservation.
2357 * 3. While writing to this iclog
2358 * A. Reserve as much space in this iclog as can get
2359 * B. If this is first write, save away start lsn
2360 * C. While writing this region:
2361 * 1. If first write of transaction, write start record
2362 * 2. Write log operation header (header per region)
2363 * 3. Find out if we can fit entire region into this iclog
2364 * 4. Potentially, verify destination memcpy ptr
2365 * 5. Memcpy (partial) region
2366 * 6. If partial copy, release iclog; otherwise, continue
2367 * copying more regions into current iclog
2368 * 4. Mark want sync bit (in simulation mode)
2369 * 5. Release iclog for potential flush to on-disk log.
2371 * ERRORS:
2372 * 1. Panic if reservation is overrun. This should never happen since
2373 * reservation amounts are generated internal to the filesystem.
2374 * NOTES:
2375 * 1. Tickets are single threaded data structures.
2376 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2377 * syncing routine. When a single log_write region needs to span
2378 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2379 * on all log operation writes which don't contain the end of the
2380 * region. The XLOG_END_TRANS bit is used for the in-core log
2381 * operation which contains the end of the continued log_write region.
2382 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2383 * we don't really know exactly how much space will be used. As a result,
2384 * we don't update ic_offset until the end when we know exactly how many
2385 * bytes have been written out.
2388 xlog_write(
2389 struct xlog *log,
2390 struct xfs_log_vec *log_vector,
2391 struct xlog_ticket *ticket,
2392 xfs_lsn_t *start_lsn,
2393 struct xlog_in_core **commit_iclog,
2394 uint flags)
2396 struct xlog_in_core *iclog = NULL;
2397 struct xfs_log_iovec *vecp;
2398 struct xfs_log_vec *lv;
2399 int len;
2400 int index;
2401 int partial_copy = 0;
2402 int partial_copy_len = 0;
2403 int contwr = 0;
2404 int record_cnt = 0;
2405 int data_cnt = 0;
2406 int error = 0;
2408 *start_lsn = 0;
2410 len = xlog_write_calc_vec_length(ticket, log_vector);
2413 * Region headers and bytes are already accounted for.
2414 * We only need to take into account start records and
2415 * split regions in this function.
2417 if (ticket->t_flags & XLOG_TIC_INITED)
2418 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2421 * Commit record headers need to be accounted for. These
2422 * come in as separate writes so are easy to detect.
2424 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2425 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2427 if (ticket->t_curr_res < 0) {
2428 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2429 "ctx ticket reservation ran out. Need to up reservation");
2430 xlog_print_tic_res(log->l_mp, ticket);
2431 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2434 index = 0;
2435 lv = log_vector;
2436 vecp = lv->lv_iovecp;
2437 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2438 void *ptr;
2439 int log_offset;
2441 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2442 &contwr, &log_offset);
2443 if (error)
2444 return error;
2446 ASSERT(log_offset <= iclog->ic_size - 1);
2447 ptr = iclog->ic_datap + log_offset;
2449 /* start_lsn is the first lsn written to. That's all we need. */
2450 if (!*start_lsn)
2451 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2454 * This loop writes out as many regions as can fit in the amount
2455 * of space which was allocated by xlog_state_get_iclog_space().
2457 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2458 struct xfs_log_iovec *reg;
2459 struct xlog_op_header *ophdr;
2460 int start_rec_copy;
2461 int copy_len;
2462 int copy_off;
2463 bool ordered = false;
2465 /* ordered log vectors have no regions to write */
2466 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2467 ASSERT(lv->lv_niovecs == 0);
2468 ordered = true;
2469 goto next_lv;
2472 reg = &vecp[index];
2473 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2474 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2476 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2477 if (start_rec_copy) {
2478 record_cnt++;
2479 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2480 start_rec_copy);
2483 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2484 if (!ophdr)
2485 return -EIO;
2487 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2488 sizeof(struct xlog_op_header));
2490 len += xlog_write_setup_copy(ticket, ophdr,
2491 iclog->ic_size-log_offset,
2492 reg->i_len,
2493 &copy_off, &copy_len,
2494 &partial_copy,
2495 &partial_copy_len);
2496 xlog_verify_dest_ptr(log, ptr);
2499 * Copy region.
2501 * Unmount records just log an opheader, so can have
2502 * empty payloads with no data region to copy. Hence we
2503 * only copy the payload if the vector says it has data
2504 * to copy.
2506 ASSERT(copy_len >= 0);
2507 if (copy_len > 0) {
2508 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2509 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2510 copy_len);
2512 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2513 record_cnt++;
2514 data_cnt += contwr ? copy_len : 0;
2516 error = xlog_write_copy_finish(log, iclog, flags,
2517 &record_cnt, &data_cnt,
2518 &partial_copy,
2519 &partial_copy_len,
2520 log_offset,
2521 commit_iclog);
2522 if (error)
2523 return error;
2526 * if we had a partial copy, we need to get more iclog
2527 * space but we don't want to increment the region
2528 * index because there is still more is this region to
2529 * write.
2531 * If we completed writing this region, and we flushed
2532 * the iclog (indicated by resetting of the record
2533 * count), then we also need to get more log space. If
2534 * this was the last record, though, we are done and
2535 * can just return.
2537 if (partial_copy)
2538 break;
2540 if (++index == lv->lv_niovecs) {
2541 next_lv:
2542 lv = lv->lv_next;
2543 index = 0;
2544 if (lv)
2545 vecp = lv->lv_iovecp;
2547 if (record_cnt == 0 && !ordered) {
2548 if (!lv)
2549 return 0;
2550 break;
2555 ASSERT(len == 0);
2557 spin_lock(&log->l_icloglock);
2558 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2559 if (commit_iclog) {
2560 ASSERT(flags & XLOG_COMMIT_TRANS);
2561 *commit_iclog = iclog;
2562 } else {
2563 error = xlog_state_release_iclog(log, iclog);
2565 spin_unlock(&log->l_icloglock);
2567 return error;
2571 /*****************************************************************************
2573 * State Machine functions
2575 *****************************************************************************
2579 * An iclog has just finished IO completion processing, so we need to update
2580 * the iclog state and propagate that up into the overall log state. Hence we
2581 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2582 * starting from the head, and then wake up any threads that are waiting for the
2583 * iclog to be marked clean.
2585 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2586 * doesn't become ACTIVE beyond one that is SYNCING. This is also required to
2587 * maintain the notion that we use a ordered wait queue to hold off would be
2588 * writers to the log when every iclog is trying to sync to disk.
2590 * Caller must hold the icloglock before calling us.
2592 * State Change: !IOERROR -> DIRTY -> ACTIVE
2594 STATIC void
2595 xlog_state_clean_iclog(
2596 struct xlog *log,
2597 struct xlog_in_core *dirty_iclog)
2599 struct xlog_in_core *iclog;
2600 int changed = 0;
2602 /* Prepare the completed iclog. */
2603 if (dirty_iclog->ic_state != XLOG_STATE_IOERROR)
2604 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2606 /* Walk all the iclogs to update the ordered active state. */
2607 iclog = log->l_iclog;
2608 do {
2609 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2610 iclog->ic_state = XLOG_STATE_ACTIVE;
2611 iclog->ic_offset = 0;
2612 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2614 * If the number of ops in this iclog indicate it just
2615 * contains the dummy transaction, we can
2616 * change state into IDLE (the second time around).
2617 * Otherwise we should change the state into
2618 * NEED a dummy.
2619 * We don't need to cover the dummy.
2621 if (!changed &&
2622 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2623 XLOG_COVER_OPS)) {
2624 changed = 1;
2625 } else {
2627 * We have two dirty iclogs so start over
2628 * This could also be num of ops indicates
2629 * this is not the dummy going out.
2631 changed = 2;
2633 iclog->ic_header.h_num_logops = 0;
2634 memset(iclog->ic_header.h_cycle_data, 0,
2635 sizeof(iclog->ic_header.h_cycle_data));
2636 iclog->ic_header.h_lsn = 0;
2637 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2638 /* do nothing */;
2639 else
2640 break; /* stop cleaning */
2641 iclog = iclog->ic_next;
2642 } while (iclog != log->l_iclog);
2646 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2647 * to be cleaned.
2649 wake_up_all(&dirty_iclog->ic_force_wait);
2652 * Change state for the dummy log recording.
2653 * We usually go to NEED. But we go to NEED2 if the changed indicates
2654 * we are done writing the dummy record.
2655 * If we are done with the second dummy recored (DONE2), then
2656 * we go to IDLE.
2658 if (changed) {
2659 switch (log->l_covered_state) {
2660 case XLOG_STATE_COVER_IDLE:
2661 case XLOG_STATE_COVER_NEED:
2662 case XLOG_STATE_COVER_NEED2:
2663 log->l_covered_state = XLOG_STATE_COVER_NEED;
2664 break;
2666 case XLOG_STATE_COVER_DONE:
2667 if (changed == 1)
2668 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2669 else
2670 log->l_covered_state = XLOG_STATE_COVER_NEED;
2671 break;
2673 case XLOG_STATE_COVER_DONE2:
2674 if (changed == 1)
2675 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2676 else
2677 log->l_covered_state = XLOG_STATE_COVER_NEED;
2678 break;
2680 default:
2681 ASSERT(0);
2686 STATIC xfs_lsn_t
2687 xlog_get_lowest_lsn(
2688 struct xlog *log)
2690 struct xlog_in_core *iclog = log->l_iclog;
2691 xfs_lsn_t lowest_lsn = 0, lsn;
2693 do {
2694 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2695 iclog->ic_state == XLOG_STATE_DIRTY)
2696 continue;
2698 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2699 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2700 lowest_lsn = lsn;
2701 } while ((iclog = iclog->ic_next) != log->l_iclog);
2703 return lowest_lsn;
2707 * Completion of a iclog IO does not imply that a transaction has completed, as
2708 * transactions can be large enough to span many iclogs. We cannot change the
2709 * tail of the log half way through a transaction as this may be the only
2710 * transaction in the log and moving the tail to point to the middle of it
2711 * will prevent recovery from finding the start of the transaction. Hence we
2712 * should only update the last_sync_lsn if this iclog contains transaction
2713 * completion callbacks on it.
2715 * We have to do this before we drop the icloglock to ensure we are the only one
2716 * that can update it.
2718 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2719 * the reservation grant head pushing. This is due to the fact that the push
2720 * target is bound by the current last_sync_lsn value. Hence if we have a large
2721 * amount of log space bound up in this committing transaction then the
2722 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2723 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2724 * should push the AIL to ensure the push target (and hence the grant head) is
2725 * no longer bound by the old log head location and can move forwards and make
2726 * progress again.
2728 static void
2729 xlog_state_set_callback(
2730 struct xlog *log,
2731 struct xlog_in_core *iclog,
2732 xfs_lsn_t header_lsn)
2734 iclog->ic_state = XLOG_STATE_CALLBACK;
2736 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2737 header_lsn) <= 0);
2739 if (list_empty_careful(&iclog->ic_callbacks))
2740 return;
2742 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2743 xlog_grant_push_ail(log, 0);
2747 * Return true if we need to stop processing, false to continue to the next
2748 * iclog. The caller will need to run callbacks if the iclog is returned in the
2749 * XLOG_STATE_CALLBACK state.
2751 static bool
2752 xlog_state_iodone_process_iclog(
2753 struct xlog *log,
2754 struct xlog_in_core *iclog,
2755 bool *ioerror)
2757 xfs_lsn_t lowest_lsn;
2758 xfs_lsn_t header_lsn;
2760 switch (iclog->ic_state) {
2761 case XLOG_STATE_ACTIVE:
2762 case XLOG_STATE_DIRTY:
2764 * Skip all iclogs in the ACTIVE & DIRTY states:
2766 return false;
2767 case XLOG_STATE_IOERROR:
2769 * Between marking a filesystem SHUTDOWN and stopping the log,
2770 * we do flush all iclogs to disk (if there wasn't a log I/O
2771 * error). So, we do want things to go smoothly in case of just
2772 * a SHUTDOWN w/o a LOG_IO_ERROR.
2774 *ioerror = true;
2775 return false;
2776 case XLOG_STATE_DONE_SYNC:
2778 * Now that we have an iclog that is in the DONE_SYNC state, do
2779 * one more check here to see if we have chased our tail around.
2780 * If this is not the lowest lsn iclog, then we will leave it
2781 * for another completion to process.
2783 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2784 lowest_lsn = xlog_get_lowest_lsn(log);
2785 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2786 return false;
2787 xlog_state_set_callback(log, iclog, header_lsn);
2788 return false;
2789 default:
2791 * Can only perform callbacks in order. Since this iclog is not
2792 * in the DONE_SYNC state, we skip the rest and just try to
2793 * clean up.
2795 return true;
2800 * Keep processing entries in the iclog callback list until we come around and
2801 * it is empty. We need to atomically see that the list is empty and change the
2802 * state to DIRTY so that we don't miss any more callbacks being added.
2804 * This function is called with the icloglock held and returns with it held. We
2805 * drop it while running callbacks, however, as holding it over thousands of
2806 * callbacks is unnecessary and causes excessive contention if we do.
2808 static void
2809 xlog_state_do_iclog_callbacks(
2810 struct xlog *log,
2811 struct xlog_in_core *iclog,
2812 bool aborted)
2813 __releases(&log->l_icloglock)
2814 __acquires(&log->l_icloglock)
2816 spin_unlock(&log->l_icloglock);
2817 spin_lock(&iclog->ic_callback_lock);
2818 while (!list_empty(&iclog->ic_callbacks)) {
2819 LIST_HEAD(tmp);
2821 list_splice_init(&iclog->ic_callbacks, &tmp);
2823 spin_unlock(&iclog->ic_callback_lock);
2824 xlog_cil_process_committed(&tmp, aborted);
2825 spin_lock(&iclog->ic_callback_lock);
2829 * Pick up the icloglock while still holding the callback lock so we
2830 * serialise against anyone trying to add more callbacks to this iclog
2831 * now we've finished processing.
2833 spin_lock(&log->l_icloglock);
2834 spin_unlock(&iclog->ic_callback_lock);
2837 STATIC void
2838 xlog_state_do_callback(
2839 struct xlog *log,
2840 bool aborted)
2842 struct xlog_in_core *iclog;
2843 struct xlog_in_core *first_iclog;
2844 bool cycled_icloglock;
2845 bool ioerror;
2846 int flushcnt = 0;
2847 int repeats = 0;
2849 spin_lock(&log->l_icloglock);
2850 do {
2852 * Scan all iclogs starting with the one pointed to by the
2853 * log. Reset this starting point each time the log is
2854 * unlocked (during callbacks).
2856 * Keep looping through iclogs until one full pass is made
2857 * without running any callbacks.
2859 first_iclog = log->l_iclog;
2860 iclog = log->l_iclog;
2861 cycled_icloglock = false;
2862 ioerror = false;
2863 repeats++;
2865 do {
2866 if (xlog_state_iodone_process_iclog(log, iclog,
2867 &ioerror))
2868 break;
2870 if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2871 iclog->ic_state != XLOG_STATE_IOERROR) {
2872 iclog = iclog->ic_next;
2873 continue;
2877 * Running callbacks will drop the icloglock which means
2878 * we'll have to run at least one more complete loop.
2880 cycled_icloglock = true;
2881 xlog_state_do_iclog_callbacks(log, iclog, aborted);
2883 xlog_state_clean_iclog(log, iclog);
2884 iclog = iclog->ic_next;
2885 } while (first_iclog != iclog);
2887 if (repeats > 5000) {
2888 flushcnt += repeats;
2889 repeats = 0;
2890 xfs_warn(log->l_mp,
2891 "%s: possible infinite loop (%d iterations)",
2892 __func__, flushcnt);
2894 } while (!ioerror && cycled_icloglock);
2896 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2897 log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2898 wake_up_all(&log->l_flush_wait);
2900 spin_unlock(&log->l_icloglock);
2905 * Finish transitioning this iclog to the dirty state.
2907 * Make sure that we completely execute this routine only when this is
2908 * the last call to the iclog. There is a good chance that iclog flushes,
2909 * when we reach the end of the physical log, get turned into 2 separate
2910 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2911 * routine. By using the reference count bwritecnt, we guarantee that only
2912 * the second completion goes through.
2914 * Callbacks could take time, so they are done outside the scope of the
2915 * global state machine log lock.
2917 STATIC void
2918 xlog_state_done_syncing(
2919 struct xlog_in_core *iclog,
2920 bool aborted)
2922 struct xlog *log = iclog->ic_log;
2924 spin_lock(&log->l_icloglock);
2926 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2929 * If we got an error, either on the first buffer, or in the case of
2930 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2931 * and none should ever be attempted to be written to disk
2932 * again.
2934 if (iclog->ic_state == XLOG_STATE_SYNCING)
2935 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2936 else
2937 ASSERT(iclog->ic_state == XLOG_STATE_IOERROR);
2940 * Someone could be sleeping prior to writing out the next
2941 * iclog buffer, we wake them all, one will get to do the
2942 * I/O, the others get to wait for the result.
2944 wake_up_all(&iclog->ic_write_wait);
2945 spin_unlock(&log->l_icloglock);
2946 xlog_state_do_callback(log, aborted); /* also cleans log */
2947 } /* xlog_state_done_syncing */
2951 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2952 * sleep. We wait on the flush queue on the head iclog as that should be
2953 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2954 * we will wait here and all new writes will sleep until a sync completes.
2956 * The in-core logs are used in a circular fashion. They are not used
2957 * out-of-order even when an iclog past the head is free.
2959 * return:
2960 * * log_offset where xlog_write() can start writing into the in-core
2961 * log's data space.
2962 * * in-core log pointer to which xlog_write() should write.
2963 * * boolean indicating this is a continued write to an in-core log.
2964 * If this is the last write, then the in-core log's offset field
2965 * needs to be incremented, depending on the amount of data which
2966 * is copied.
2968 STATIC int
2969 xlog_state_get_iclog_space(
2970 struct xlog *log,
2971 int len,
2972 struct xlog_in_core **iclogp,
2973 struct xlog_ticket *ticket,
2974 int *continued_write,
2975 int *logoffsetp)
2977 int log_offset;
2978 xlog_rec_header_t *head;
2979 xlog_in_core_t *iclog;
2981 restart:
2982 spin_lock(&log->l_icloglock);
2983 if (XLOG_FORCED_SHUTDOWN(log)) {
2984 spin_unlock(&log->l_icloglock);
2985 return -EIO;
2988 iclog = log->l_iclog;
2989 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2990 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2992 /* Wait for log writes to have flushed */
2993 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2994 goto restart;
2997 head = &iclog->ic_header;
2999 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
3000 log_offset = iclog->ic_offset;
3002 /* On the 1st write to an iclog, figure out lsn. This works
3003 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3004 * committing to. If the offset is set, that's how many blocks
3005 * must be written.
3007 if (log_offset == 0) {
3008 ticket->t_curr_res -= log->l_iclog_hsize;
3009 xlog_tic_add_region(ticket,
3010 log->l_iclog_hsize,
3011 XLOG_REG_TYPE_LRHEADER);
3012 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3013 head->h_lsn = cpu_to_be64(
3014 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3015 ASSERT(log->l_curr_block >= 0);
3018 /* If there is enough room to write everything, then do it. Otherwise,
3019 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3020 * bit is on, so this will get flushed out. Don't update ic_offset
3021 * until you know exactly how many bytes get copied. Therefore, wait
3022 * until later to update ic_offset.
3024 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3025 * can fit into remaining data section.
3027 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3028 int error = 0;
3030 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3033 * If we are the only one writing to this iclog, sync it to
3034 * disk. We need to do an atomic compare and decrement here to
3035 * avoid racing with concurrent atomic_dec_and_lock() calls in
3036 * xlog_state_release_iclog() when there is more than one
3037 * reference to the iclog.
3039 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3040 error = xlog_state_release_iclog(log, iclog);
3041 spin_unlock(&log->l_icloglock);
3042 if (error)
3043 return error;
3044 goto restart;
3047 /* Do we have enough room to write the full amount in the remainder
3048 * of this iclog? Or must we continue a write on the next iclog and
3049 * mark this iclog as completely taken? In the case where we switch
3050 * iclogs (to mark it taken), this particular iclog will release/sync
3051 * to disk in xlog_write().
3053 if (len <= iclog->ic_size - iclog->ic_offset) {
3054 *continued_write = 0;
3055 iclog->ic_offset += len;
3056 } else {
3057 *continued_write = 1;
3058 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3060 *iclogp = iclog;
3062 ASSERT(iclog->ic_offset <= iclog->ic_size);
3063 spin_unlock(&log->l_icloglock);
3065 *logoffsetp = log_offset;
3066 return 0;
3067 } /* xlog_state_get_iclog_space */
3069 /* The first cnt-1 times through here we don't need to
3070 * move the grant write head because the permanent
3071 * reservation has reserved cnt times the unit amount.
3072 * Release part of current permanent unit reservation and
3073 * reset current reservation to be one units worth. Also
3074 * move grant reservation head forward.
3076 STATIC void
3077 xlog_regrant_reserve_log_space(
3078 struct xlog *log,
3079 struct xlog_ticket *ticket)
3081 trace_xfs_log_regrant_reserve_enter(log, ticket);
3083 if (ticket->t_cnt > 0)
3084 ticket->t_cnt--;
3086 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3087 ticket->t_curr_res);
3088 xlog_grant_sub_space(log, &log->l_write_head.grant,
3089 ticket->t_curr_res);
3090 ticket->t_curr_res = ticket->t_unit_res;
3091 xlog_tic_reset_res(ticket);
3093 trace_xfs_log_regrant_reserve_sub(log, ticket);
3095 /* just return if we still have some of the pre-reserved space */
3096 if (ticket->t_cnt > 0)
3097 return;
3099 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3100 ticket->t_unit_res);
3102 trace_xfs_log_regrant_reserve_exit(log, ticket);
3104 ticket->t_curr_res = ticket->t_unit_res;
3105 xlog_tic_reset_res(ticket);
3106 } /* xlog_regrant_reserve_log_space */
3110 * Give back the space left from a reservation.
3112 * All the information we need to make a correct determination of space left
3113 * is present. For non-permanent reservations, things are quite easy. The
3114 * count should have been decremented to zero. We only need to deal with the
3115 * space remaining in the current reservation part of the ticket. If the
3116 * ticket contains a permanent reservation, there may be left over space which
3117 * needs to be released. A count of N means that N-1 refills of the current
3118 * reservation can be done before we need to ask for more space. The first
3119 * one goes to fill up the first current reservation. Once we run out of
3120 * space, the count will stay at zero and the only space remaining will be
3121 * in the current reservation field.
3123 STATIC void
3124 xlog_ungrant_log_space(
3125 struct xlog *log,
3126 struct xlog_ticket *ticket)
3128 int bytes;
3130 if (ticket->t_cnt > 0)
3131 ticket->t_cnt--;
3133 trace_xfs_log_ungrant_enter(log, ticket);
3134 trace_xfs_log_ungrant_sub(log, ticket);
3137 * If this is a permanent reservation ticket, we may be able to free
3138 * up more space based on the remaining count.
3140 bytes = ticket->t_curr_res;
3141 if (ticket->t_cnt > 0) {
3142 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3143 bytes += ticket->t_unit_res*ticket->t_cnt;
3146 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3147 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3149 trace_xfs_log_ungrant_exit(log, ticket);
3151 xfs_log_space_wake(log->l_mp);
3155 * This routine will mark the current iclog in the ring as WANT_SYNC
3156 * and move the current iclog pointer to the next iclog in the ring.
3157 * When this routine is called from xlog_state_get_iclog_space(), the
3158 * exact size of the iclog has not yet been determined. All we know is
3159 * that every data block. We have run out of space in this log record.
3161 STATIC void
3162 xlog_state_switch_iclogs(
3163 struct xlog *log,
3164 struct xlog_in_core *iclog,
3165 int eventual_size)
3167 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3168 if (!eventual_size)
3169 eventual_size = iclog->ic_offset;
3170 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3171 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3172 log->l_prev_block = log->l_curr_block;
3173 log->l_prev_cycle = log->l_curr_cycle;
3175 /* roll log?: ic_offset changed later */
3176 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3178 /* Round up to next log-sunit */
3179 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3180 log->l_mp->m_sb.sb_logsunit > 1) {
3181 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3182 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3185 if (log->l_curr_block >= log->l_logBBsize) {
3187 * Rewind the current block before the cycle is bumped to make
3188 * sure that the combined LSN never transiently moves forward
3189 * when the log wraps to the next cycle. This is to support the
3190 * unlocked sample of these fields from xlog_valid_lsn(). Most
3191 * other cases should acquire l_icloglock.
3193 log->l_curr_block -= log->l_logBBsize;
3194 ASSERT(log->l_curr_block >= 0);
3195 smp_wmb();
3196 log->l_curr_cycle++;
3197 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3198 log->l_curr_cycle++;
3200 ASSERT(iclog == log->l_iclog);
3201 log->l_iclog = iclog->ic_next;
3202 } /* xlog_state_switch_iclogs */
3205 * Write out all data in the in-core log as of this exact moment in time.
3207 * Data may be written to the in-core log during this call. However,
3208 * we don't guarantee this data will be written out. A change from past
3209 * implementation means this routine will *not* write out zero length LRs.
3211 * Basically, we try and perform an intelligent scan of the in-core logs.
3212 * If we determine there is no flushable data, we just return. There is no
3213 * flushable data if:
3215 * 1. the current iclog is active and has no data; the previous iclog
3216 * is in the active or dirty state.
3217 * 2. the current iclog is drity, and the previous iclog is in the
3218 * active or dirty state.
3220 * We may sleep if:
3222 * 1. the current iclog is not in the active nor dirty state.
3223 * 2. the current iclog dirty, and the previous iclog is not in the
3224 * active nor dirty state.
3225 * 3. the current iclog is active, and there is another thread writing
3226 * to this particular iclog.
3227 * 4. a) the current iclog is active and has no other writers
3228 * b) when we return from flushing out this iclog, it is still
3229 * not in the active nor dirty state.
3232 xfs_log_force(
3233 struct xfs_mount *mp,
3234 uint flags)
3236 struct xlog *log = mp->m_log;
3237 struct xlog_in_core *iclog;
3238 xfs_lsn_t lsn;
3240 XFS_STATS_INC(mp, xs_log_force);
3241 trace_xfs_log_force(mp, 0, _RET_IP_);
3243 xlog_cil_force(log);
3245 spin_lock(&log->l_icloglock);
3246 iclog = log->l_iclog;
3247 if (iclog->ic_state == XLOG_STATE_IOERROR)
3248 goto out_error;
3250 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3251 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3252 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3254 * If the head is dirty or (active and empty), then we need to
3255 * look at the previous iclog.
3257 * If the previous iclog is active or dirty we are done. There
3258 * is nothing to sync out. Otherwise, we attach ourselves to the
3259 * previous iclog and go to sleep.
3261 iclog = iclog->ic_prev;
3262 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3263 iclog->ic_state == XLOG_STATE_DIRTY)
3264 goto out_unlock;
3265 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3266 if (atomic_read(&iclog->ic_refcnt) == 0) {
3268 * We are the only one with access to this iclog.
3270 * Flush it out now. There should be a roundoff of zero
3271 * to show that someone has already taken care of the
3272 * roundoff from the previous sync.
3274 atomic_inc(&iclog->ic_refcnt);
3275 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3276 xlog_state_switch_iclogs(log, iclog, 0);
3277 if (xlog_state_release_iclog(log, iclog))
3278 goto out_error;
3280 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3281 iclog->ic_state == XLOG_STATE_DIRTY)
3282 goto out_unlock;
3283 } else {
3285 * Someone else is writing to this iclog.
3287 * Use its call to flush out the data. However, the
3288 * other thread may not force out this LR, so we mark
3289 * it WANT_SYNC.
3291 xlog_state_switch_iclogs(log, iclog, 0);
3293 } else {
3295 * If the head iclog is not active nor dirty, we just attach
3296 * ourselves to the head and go to sleep if necessary.
3301 if (!(flags & XFS_LOG_SYNC))
3302 goto out_unlock;
3304 if (iclog->ic_state == XLOG_STATE_IOERROR)
3305 goto out_error;
3306 XFS_STATS_INC(mp, xs_log_force_sleep);
3307 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3308 if (iclog->ic_state == XLOG_STATE_IOERROR)
3309 return -EIO;
3310 return 0;
3312 out_unlock:
3313 spin_unlock(&log->l_icloglock);
3314 return 0;
3315 out_error:
3316 spin_unlock(&log->l_icloglock);
3317 return -EIO;
3320 static int
3321 __xfs_log_force_lsn(
3322 struct xfs_mount *mp,
3323 xfs_lsn_t lsn,
3324 uint flags,
3325 int *log_flushed,
3326 bool already_slept)
3328 struct xlog *log = mp->m_log;
3329 struct xlog_in_core *iclog;
3331 spin_lock(&log->l_icloglock);
3332 iclog = log->l_iclog;
3333 if (iclog->ic_state == XLOG_STATE_IOERROR)
3334 goto out_error;
3336 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3337 iclog = iclog->ic_next;
3338 if (iclog == log->l_iclog)
3339 goto out_unlock;
3342 if (iclog->ic_state == XLOG_STATE_DIRTY)
3343 goto out_unlock;
3345 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3347 * We sleep here if we haven't already slept (e.g. this is the
3348 * first time we've looked at the correct iclog buf) and the
3349 * buffer before us is going to be sync'ed. The reason for this
3350 * is that if we are doing sync transactions here, by waiting
3351 * for the previous I/O to complete, we can allow a few more
3352 * transactions into this iclog before we close it down.
3354 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3355 * refcnt so we can release the log (which drops the ref count).
3356 * The state switch keeps new transaction commits from using
3357 * this buffer. When the current commits finish writing into
3358 * the buffer, the refcount will drop to zero and the buffer
3359 * will go out then.
3361 if (!already_slept &&
3362 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3363 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3364 XFS_STATS_INC(mp, xs_log_force_sleep);
3366 xlog_wait(&iclog->ic_prev->ic_write_wait,
3367 &log->l_icloglock);
3368 return -EAGAIN;
3370 atomic_inc(&iclog->ic_refcnt);
3371 xlog_state_switch_iclogs(log, iclog, 0);
3372 if (xlog_state_release_iclog(log, iclog))
3373 goto out_error;
3374 if (log_flushed)
3375 *log_flushed = 1;
3378 if (!(flags & XFS_LOG_SYNC) ||
3379 (iclog->ic_state == XLOG_STATE_ACTIVE ||
3380 iclog->ic_state == XLOG_STATE_DIRTY))
3381 goto out_unlock;
3383 if (iclog->ic_state == XLOG_STATE_IOERROR)
3384 goto out_error;
3386 XFS_STATS_INC(mp, xs_log_force_sleep);
3387 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3388 if (iclog->ic_state == XLOG_STATE_IOERROR)
3389 return -EIO;
3390 return 0;
3392 out_unlock:
3393 spin_unlock(&log->l_icloglock);
3394 return 0;
3395 out_error:
3396 spin_unlock(&log->l_icloglock);
3397 return -EIO;
3401 * Force the in-core log to disk for a specific LSN.
3403 * Find in-core log with lsn.
3404 * If it is in the DIRTY state, just return.
3405 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3406 * state and go to sleep or return.
3407 * If it is in any other state, go to sleep or return.
3409 * Synchronous forces are implemented with a wait queue. All callers trying
3410 * to force a given lsn to disk must wait on the queue attached to the
3411 * specific in-core log. When given in-core log finally completes its write
3412 * to disk, that thread will wake up all threads waiting on the queue.
3415 xfs_log_force_lsn(
3416 struct xfs_mount *mp,
3417 xfs_lsn_t lsn,
3418 uint flags,
3419 int *log_flushed)
3421 int ret;
3422 ASSERT(lsn != 0);
3424 XFS_STATS_INC(mp, xs_log_force);
3425 trace_xfs_log_force(mp, lsn, _RET_IP_);
3427 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3428 if (lsn == NULLCOMMITLSN)
3429 return 0;
3431 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3432 if (ret == -EAGAIN)
3433 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3434 return ret;
3438 * Called when we want to mark the current iclog as being ready to sync to
3439 * disk.
3441 STATIC void
3442 xlog_state_want_sync(
3443 struct xlog *log,
3444 struct xlog_in_core *iclog)
3446 assert_spin_locked(&log->l_icloglock);
3448 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3449 xlog_state_switch_iclogs(log, iclog, 0);
3450 } else {
3451 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
3452 iclog->ic_state == XLOG_STATE_IOERROR);
3457 /*****************************************************************************
3459 * TICKET functions
3461 *****************************************************************************
3465 * Free a used ticket when its refcount falls to zero.
3467 void
3468 xfs_log_ticket_put(
3469 xlog_ticket_t *ticket)
3471 ASSERT(atomic_read(&ticket->t_ref) > 0);
3472 if (atomic_dec_and_test(&ticket->t_ref))
3473 kmem_cache_free(xfs_log_ticket_zone, ticket);
3476 xlog_ticket_t *
3477 xfs_log_ticket_get(
3478 xlog_ticket_t *ticket)
3480 ASSERT(atomic_read(&ticket->t_ref) > 0);
3481 atomic_inc(&ticket->t_ref);
3482 return ticket;
3486 * Figure out the total log space unit (in bytes) that would be
3487 * required for a log ticket.
3490 xfs_log_calc_unit_res(
3491 struct xfs_mount *mp,
3492 int unit_bytes)
3494 struct xlog *log = mp->m_log;
3495 int iclog_space;
3496 uint num_headers;
3499 * Permanent reservations have up to 'cnt'-1 active log operations
3500 * in the log. A unit in this case is the amount of space for one
3501 * of these log operations. Normal reservations have a cnt of 1
3502 * and their unit amount is the total amount of space required.
3504 * The following lines of code account for non-transaction data
3505 * which occupy space in the on-disk log.
3507 * Normal form of a transaction is:
3508 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3509 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3511 * We need to account for all the leadup data and trailer data
3512 * around the transaction data.
3513 * And then we need to account for the worst case in terms of using
3514 * more space.
3515 * The worst case will happen if:
3516 * - the placement of the transaction happens to be such that the
3517 * roundoff is at its maximum
3518 * - the transaction data is synced before the commit record is synced
3519 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3520 * Therefore the commit record is in its own Log Record.
3521 * This can happen as the commit record is called with its
3522 * own region to xlog_write().
3523 * This then means that in the worst case, roundoff can happen for
3524 * the commit-rec as well.
3525 * The commit-rec is smaller than padding in this scenario and so it is
3526 * not added separately.
3529 /* for trans header */
3530 unit_bytes += sizeof(xlog_op_header_t);
3531 unit_bytes += sizeof(xfs_trans_header_t);
3533 /* for start-rec */
3534 unit_bytes += sizeof(xlog_op_header_t);
3537 * for LR headers - the space for data in an iclog is the size minus
3538 * the space used for the headers. If we use the iclog size, then we
3539 * undercalculate the number of headers required.
3541 * Furthermore - the addition of op headers for split-recs might
3542 * increase the space required enough to require more log and op
3543 * headers, so take that into account too.
3545 * IMPORTANT: This reservation makes the assumption that if this
3546 * transaction is the first in an iclog and hence has the LR headers
3547 * accounted to it, then the remaining space in the iclog is
3548 * exclusively for this transaction. i.e. if the transaction is larger
3549 * than the iclog, it will be the only thing in that iclog.
3550 * Fundamentally, this means we must pass the entire log vector to
3551 * xlog_write to guarantee this.
3553 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3554 num_headers = howmany(unit_bytes, iclog_space);
3556 /* for split-recs - ophdrs added when data split over LRs */
3557 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3559 /* add extra header reservations if we overrun */
3560 while (!num_headers ||
3561 howmany(unit_bytes, iclog_space) > num_headers) {
3562 unit_bytes += sizeof(xlog_op_header_t);
3563 num_headers++;
3565 unit_bytes += log->l_iclog_hsize * num_headers;
3567 /* for commit-rec LR header - note: padding will subsume the ophdr */
3568 unit_bytes += log->l_iclog_hsize;
3570 /* for roundoff padding for transaction data and one for commit record */
3571 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3572 /* log su roundoff */
3573 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3574 } else {
3575 /* BB roundoff */
3576 unit_bytes += 2 * BBSIZE;
3579 return unit_bytes;
3583 * Allocate and initialise a new log ticket.
3585 struct xlog_ticket *
3586 xlog_ticket_alloc(
3587 struct xlog *log,
3588 int unit_bytes,
3589 int cnt,
3590 char client,
3591 bool permanent,
3592 xfs_km_flags_t alloc_flags)
3594 struct xlog_ticket *tic;
3595 int unit_res;
3597 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3598 if (!tic)
3599 return NULL;
3601 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3603 atomic_set(&tic->t_ref, 1);
3604 tic->t_task = current;
3605 INIT_LIST_HEAD(&tic->t_queue);
3606 tic->t_unit_res = unit_res;
3607 tic->t_curr_res = unit_res;
3608 tic->t_cnt = cnt;
3609 tic->t_ocnt = cnt;
3610 tic->t_tid = prandom_u32();
3611 tic->t_clientid = client;
3612 tic->t_flags = XLOG_TIC_INITED;
3613 if (permanent)
3614 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3616 xlog_tic_reset_res(tic);
3618 return tic;
3622 /******************************************************************************
3624 * Log debug routines
3626 ******************************************************************************
3628 #if defined(DEBUG)
3630 * Make sure that the destination ptr is within the valid data region of
3631 * one of the iclogs. This uses backup pointers stored in a different
3632 * part of the log in case we trash the log structure.
3634 STATIC void
3635 xlog_verify_dest_ptr(
3636 struct xlog *log,
3637 void *ptr)
3639 int i;
3640 int good_ptr = 0;
3642 for (i = 0; i < log->l_iclog_bufs; i++) {
3643 if (ptr >= log->l_iclog_bak[i] &&
3644 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3645 good_ptr++;
3648 if (!good_ptr)
3649 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3653 * Check to make sure the grant write head didn't just over lap the tail. If
3654 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3655 * the cycles differ by exactly one and check the byte count.
3657 * This check is run unlocked, so can give false positives. Rather than assert
3658 * on failures, use a warn-once flag and a panic tag to allow the admin to
3659 * determine if they want to panic the machine when such an error occurs. For
3660 * debug kernels this will have the same effect as using an assert but, unlinke
3661 * an assert, it can be turned off at runtime.
3663 STATIC void
3664 xlog_verify_grant_tail(
3665 struct xlog *log)
3667 int tail_cycle, tail_blocks;
3668 int cycle, space;
3670 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3671 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3672 if (tail_cycle != cycle) {
3673 if (cycle - 1 != tail_cycle &&
3674 !(log->l_flags & XLOG_TAIL_WARN)) {
3675 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3676 "%s: cycle - 1 != tail_cycle", __func__);
3677 log->l_flags |= XLOG_TAIL_WARN;
3680 if (space > BBTOB(tail_blocks) &&
3681 !(log->l_flags & XLOG_TAIL_WARN)) {
3682 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3683 "%s: space > BBTOB(tail_blocks)", __func__);
3684 log->l_flags |= XLOG_TAIL_WARN;
3689 /* check if it will fit */
3690 STATIC void
3691 xlog_verify_tail_lsn(
3692 struct xlog *log,
3693 struct xlog_in_core *iclog,
3694 xfs_lsn_t tail_lsn)
3696 int blocks;
3698 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3699 blocks =
3700 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3701 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3702 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3703 } else {
3704 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3706 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3707 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3709 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3710 if (blocks < BTOBB(iclog->ic_offset) + 1)
3711 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3713 } /* xlog_verify_tail_lsn */
3716 * Perform a number of checks on the iclog before writing to disk.
3718 * 1. Make sure the iclogs are still circular
3719 * 2. Make sure we have a good magic number
3720 * 3. Make sure we don't have magic numbers in the data
3721 * 4. Check fields of each log operation header for:
3722 * A. Valid client identifier
3723 * B. tid ptr value falls in valid ptr space (user space code)
3724 * C. Length in log record header is correct according to the
3725 * individual operation headers within record.
3726 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3727 * log, check the preceding blocks of the physical log to make sure all
3728 * the cycle numbers agree with the current cycle number.
3730 STATIC void
3731 xlog_verify_iclog(
3732 struct xlog *log,
3733 struct xlog_in_core *iclog,
3734 int count)
3736 xlog_op_header_t *ophead;
3737 xlog_in_core_t *icptr;
3738 xlog_in_core_2_t *xhdr;
3739 void *base_ptr, *ptr, *p;
3740 ptrdiff_t field_offset;
3741 uint8_t clientid;
3742 int len, i, j, k, op_len;
3743 int idx;
3745 /* check validity of iclog pointers */
3746 spin_lock(&log->l_icloglock);
3747 icptr = log->l_iclog;
3748 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3749 ASSERT(icptr);
3751 if (icptr != log->l_iclog)
3752 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3753 spin_unlock(&log->l_icloglock);
3755 /* check log magic numbers */
3756 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3757 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3759 base_ptr = ptr = &iclog->ic_header;
3760 p = &iclog->ic_header;
3761 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3762 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3763 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3764 __func__);
3767 /* check fields */
3768 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3769 base_ptr = ptr = iclog->ic_datap;
3770 ophead = ptr;
3771 xhdr = iclog->ic_data;
3772 for (i = 0; i < len; i++) {
3773 ophead = ptr;
3775 /* clientid is only 1 byte */
3776 p = &ophead->oh_clientid;
3777 field_offset = p - base_ptr;
3778 if (field_offset & 0x1ff) {
3779 clientid = ophead->oh_clientid;
3780 } else {
3781 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3782 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3783 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3784 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3785 clientid = xlog_get_client_id(
3786 xhdr[j].hic_xheader.xh_cycle_data[k]);
3787 } else {
3788 clientid = xlog_get_client_id(
3789 iclog->ic_header.h_cycle_data[idx]);
3792 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3793 xfs_warn(log->l_mp,
3794 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3795 __func__, clientid, ophead,
3796 (unsigned long)field_offset);
3798 /* check length */
3799 p = &ophead->oh_len;
3800 field_offset = p - base_ptr;
3801 if (field_offset & 0x1ff) {
3802 op_len = be32_to_cpu(ophead->oh_len);
3803 } else {
3804 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3805 (uintptr_t)iclog->ic_datap);
3806 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3807 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3808 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3809 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3810 } else {
3811 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3814 ptr += sizeof(xlog_op_header_t) + op_len;
3816 } /* xlog_verify_iclog */
3817 #endif
3820 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3822 STATIC int
3823 xlog_state_ioerror(
3824 struct xlog *log)
3826 xlog_in_core_t *iclog, *ic;
3828 iclog = log->l_iclog;
3829 if (iclog->ic_state != XLOG_STATE_IOERROR) {
3831 * Mark all the incore logs IOERROR.
3832 * From now on, no log flushes will result.
3834 ic = iclog;
3835 do {
3836 ic->ic_state = XLOG_STATE_IOERROR;
3837 ic = ic->ic_next;
3838 } while (ic != iclog);
3839 return 0;
3842 * Return non-zero, if state transition has already happened.
3844 return 1;
3848 * This is called from xfs_force_shutdown, when we're forcibly
3849 * shutting down the filesystem, typically because of an IO error.
3850 * Our main objectives here are to make sure that:
3851 * a. if !logerror, flush the logs to disk. Anything modified
3852 * after this is ignored.
3853 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3854 * parties to find out, 'atomically'.
3855 * c. those who're sleeping on log reservations, pinned objects and
3856 * other resources get woken up, and be told the bad news.
3857 * d. nothing new gets queued up after (b) and (c) are done.
3859 * Note: for the !logerror case we need to flush the regions held in memory out
3860 * to disk first. This needs to be done before the log is marked as shutdown,
3861 * otherwise the iclog writes will fail.
3864 xfs_log_force_umount(
3865 struct xfs_mount *mp,
3866 int logerror)
3868 struct xlog *log;
3869 int retval;
3871 log = mp->m_log;
3874 * If this happens during log recovery, don't worry about
3875 * locking; the log isn't open for business yet.
3877 if (!log ||
3878 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3879 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3880 if (mp->m_sb_bp)
3881 mp->m_sb_bp->b_flags |= XBF_DONE;
3882 return 0;
3886 * Somebody could've already done the hard work for us.
3887 * No need to get locks for this.
3889 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3890 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3891 return 1;
3895 * Flush all the completed transactions to disk before marking the log
3896 * being shut down. We need to do it in this order to ensure that
3897 * completed operations are safely on disk before we shut down, and that
3898 * we don't have to issue any buffer IO after the shutdown flags are set
3899 * to guarantee this.
3901 if (!logerror)
3902 xfs_log_force(mp, XFS_LOG_SYNC);
3905 * mark the filesystem and the as in a shutdown state and wake
3906 * everybody up to tell them the bad news.
3908 spin_lock(&log->l_icloglock);
3909 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3910 if (mp->m_sb_bp)
3911 mp->m_sb_bp->b_flags |= XBF_DONE;
3914 * Mark the log and the iclogs with IO error flags to prevent any
3915 * further log IO from being issued or completed.
3917 log->l_flags |= XLOG_IO_ERROR;
3918 retval = xlog_state_ioerror(log);
3919 spin_unlock(&log->l_icloglock);
3922 * We don't want anybody waiting for log reservations after this. That
3923 * means we have to wake up everybody queued up on reserveq as well as
3924 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3925 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3926 * action is protected by the grant locks.
3928 xlog_grant_head_wake_all(&log->l_reserve_head);
3929 xlog_grant_head_wake_all(&log->l_write_head);
3932 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3933 * as if the log writes were completed. The abort handling in the log
3934 * item committed callback functions will do this again under lock to
3935 * avoid races.
3937 spin_lock(&log->l_cilp->xc_push_lock);
3938 wake_up_all(&log->l_cilp->xc_commit_wait);
3939 spin_unlock(&log->l_cilp->xc_push_lock);
3940 xlog_state_do_callback(log, true);
3942 /* return non-zero if log IOERROR transition had already happened */
3943 return retval;
3946 STATIC int
3947 xlog_iclogs_empty(
3948 struct xlog *log)
3950 xlog_in_core_t *iclog;
3952 iclog = log->l_iclog;
3953 do {
3954 /* endianness does not matter here, zero is zero in
3955 * any language.
3957 if (iclog->ic_header.h_num_logops)
3958 return 0;
3959 iclog = iclog->ic_next;
3960 } while (iclog != log->l_iclog);
3961 return 1;
3965 * Verify that an LSN stamped into a piece of metadata is valid. This is
3966 * intended for use in read verifiers on v5 superblocks.
3968 bool
3969 xfs_log_check_lsn(
3970 struct xfs_mount *mp,
3971 xfs_lsn_t lsn)
3973 struct xlog *log = mp->m_log;
3974 bool valid;
3977 * norecovery mode skips mount-time log processing and unconditionally
3978 * resets the in-core LSN. We can't validate in this mode, but
3979 * modifications are not allowed anyways so just return true.
3981 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3982 return true;
3985 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3986 * handled by recovery and thus safe to ignore here.
3988 if (lsn == NULLCOMMITLSN)
3989 return true;
3991 valid = xlog_valid_lsn(mp->m_log, lsn);
3993 /* warn the user about what's gone wrong before verifier failure */
3994 if (!valid) {
3995 spin_lock(&log->l_icloglock);
3996 xfs_warn(mp,
3997 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3998 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3999 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4000 log->l_curr_cycle, log->l_curr_block);
4001 spin_unlock(&log->l_icloglock);
4004 return valid;
4007 bool
4008 xfs_log_in_recovery(
4009 struct xfs_mount *mp)
4011 struct xlog *log = mp->m_log;
4013 return log->l_flags & XLOG_ACTIVE_RECOVERY;