1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
22 #include "xfs_health.h"
24 kmem_zone_t
*xfs_log_ticket_zone
;
26 /* Local miscellaneous function prototypes */
30 struct xlog_ticket
*ticket
,
31 struct xlog_in_core
**iclog
,
32 xfs_lsn_t
*commitlsnp
);
37 struct xfs_buftarg
*log_target
,
38 xfs_daddr_t blk_offset
,
48 /* local state machine functions */
49 STATIC
void xlog_state_done_syncing(
50 struct xlog_in_core
*iclog
,
53 xlog_state_get_iclog_space(
56 struct xlog_in_core
**iclog
,
57 struct xlog_ticket
*ticket
,
61 xlog_state_switch_iclogs(
63 struct xlog_in_core
*iclog
,
68 struct xlog_in_core
*iclog
);
75 xlog_regrant_reserve_log_space(
77 struct xlog_ticket
*ticket
);
79 xlog_ungrant_log_space(
81 struct xlog_ticket
*ticket
);
85 struct xlog_in_core
*iclog
);
92 xlog_verify_grant_tail(
97 struct xlog_in_core
*iclog
,
100 xlog_verify_tail_lsn(
102 struct xlog_in_core
*iclog
,
105 #define xlog_verify_dest_ptr(a,b)
106 #define xlog_verify_grant_tail(a)
107 #define xlog_verify_iclog(a,b,c)
108 #define xlog_verify_tail_lsn(a,b,c)
116 xlog_grant_sub_space(
121 int64_t head_val
= atomic64_read(head
);
127 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
131 space
+= log
->l_logsize
;
136 new = xlog_assign_grant_head_val(cycle
, space
);
137 head_val
= atomic64_cmpxchg(head
, old
, new);
138 } while (head_val
!= old
);
142 xlog_grant_add_space(
147 int64_t head_val
= atomic64_read(head
);
154 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
156 tmp
= log
->l_logsize
- space
;
165 new = xlog_assign_grant_head_val(cycle
, space
);
166 head_val
= atomic64_cmpxchg(head
, old
, new);
167 } while (head_val
!= old
);
171 xlog_grant_head_init(
172 struct xlog_grant_head
*head
)
174 xlog_assign_grant_head(&head
->grant
, 1, 0);
175 INIT_LIST_HEAD(&head
->waiters
);
176 spin_lock_init(&head
->lock
);
180 xlog_grant_head_wake_all(
181 struct xlog_grant_head
*head
)
183 struct xlog_ticket
*tic
;
185 spin_lock(&head
->lock
);
186 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
187 wake_up_process(tic
->t_task
);
188 spin_unlock(&head
->lock
);
192 xlog_ticket_reservation(
194 struct xlog_grant_head
*head
,
195 struct xlog_ticket
*tic
)
197 if (head
== &log
->l_write_head
) {
198 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
199 return tic
->t_unit_res
;
201 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
202 return tic
->t_unit_res
* tic
->t_cnt
;
204 return tic
->t_unit_res
;
209 xlog_grant_head_wake(
211 struct xlog_grant_head
*head
,
214 struct xlog_ticket
*tic
;
216 bool woken_task
= false;
218 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
221 * There is a chance that the size of the CIL checkpoints in
222 * progress at the last AIL push target calculation resulted in
223 * limiting the target to the log head (l_last_sync_lsn) at the
224 * time. This may not reflect where the log head is now as the
225 * CIL checkpoints may have completed.
227 * Hence when we are woken here, it may be that the head of the
228 * log that has moved rather than the tail. As the tail didn't
229 * move, there still won't be space available for the
230 * reservation we require. However, if the AIL has already
231 * pushed to the target defined by the old log head location, we
232 * will hang here waiting for something else to update the AIL
235 * Therefore, if there isn't space to wake the first waiter on
236 * the grant head, we need to push the AIL again to ensure the
237 * target reflects both the current log tail and log head
238 * position before we wait for the tail to move again.
241 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
242 if (*free_bytes
< need_bytes
) {
244 xlog_grant_push_ail(log
, need_bytes
);
248 *free_bytes
-= need_bytes
;
249 trace_xfs_log_grant_wake_up(log
, tic
);
250 wake_up_process(tic
->t_task
);
258 xlog_grant_head_wait(
260 struct xlog_grant_head
*head
,
261 struct xlog_ticket
*tic
,
262 int need_bytes
) __releases(&head
->lock
)
263 __acquires(&head
->lock
)
265 list_add_tail(&tic
->t_queue
, &head
->waiters
);
268 if (XLOG_FORCED_SHUTDOWN(log
))
270 xlog_grant_push_ail(log
, need_bytes
);
272 __set_current_state(TASK_UNINTERRUPTIBLE
);
273 spin_unlock(&head
->lock
);
275 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
277 trace_xfs_log_grant_sleep(log
, tic
);
279 trace_xfs_log_grant_wake(log
, tic
);
281 spin_lock(&head
->lock
);
282 if (XLOG_FORCED_SHUTDOWN(log
))
284 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
286 list_del_init(&tic
->t_queue
);
289 list_del_init(&tic
->t_queue
);
294 * Atomically get the log space required for a log ticket.
296 * Once a ticket gets put onto head->waiters, it will only return after the
297 * needed reservation is satisfied.
299 * This function is structured so that it has a lock free fast path. This is
300 * necessary because every new transaction reservation will come through this
301 * path. Hence any lock will be globally hot if we take it unconditionally on
304 * As tickets are only ever moved on and off head->waiters under head->lock, we
305 * only need to take that lock if we are going to add the ticket to the queue
306 * and sleep. We can avoid taking the lock if the ticket was never added to
307 * head->waiters because the t_queue list head will be empty and we hold the
308 * only reference to it so it can safely be checked unlocked.
311 xlog_grant_head_check(
313 struct xlog_grant_head
*head
,
314 struct xlog_ticket
*tic
,
320 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
323 * If there are other waiters on the queue then give them a chance at
324 * logspace before us. Wake up the first waiters, if we do not wake
325 * up all the waiters then go to sleep waiting for more free space,
326 * otherwise try to get some space for this transaction.
328 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
329 free_bytes
= xlog_space_left(log
, &head
->grant
);
330 if (!list_empty_careful(&head
->waiters
)) {
331 spin_lock(&head
->lock
);
332 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
333 free_bytes
< *need_bytes
) {
334 error
= xlog_grant_head_wait(log
, head
, tic
,
337 spin_unlock(&head
->lock
);
338 } else if (free_bytes
< *need_bytes
) {
339 spin_lock(&head
->lock
);
340 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
341 spin_unlock(&head
->lock
);
348 xlog_tic_reset_res(xlog_ticket_t
*tic
)
351 tic
->t_res_arr_sum
= 0;
352 tic
->t_res_num_ophdrs
= 0;
356 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
358 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
359 /* add to overflow and start again */
360 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
362 tic
->t_res_arr_sum
= 0;
365 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
366 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
367 tic
->t_res_arr_sum
+= len
;
372 * Replenish the byte reservation required by moving the grant write head.
376 struct xfs_mount
*mp
,
377 struct xlog_ticket
*tic
)
379 struct xlog
*log
= mp
->m_log
;
383 if (XLOG_FORCED_SHUTDOWN(log
))
386 XFS_STATS_INC(mp
, xs_try_logspace
);
389 * This is a new transaction on the ticket, so we need to change the
390 * transaction ID so that the next transaction has a different TID in
391 * the log. Just add one to the existing tid so that we can see chains
392 * of rolling transactions in the log easily.
396 xlog_grant_push_ail(log
, tic
->t_unit_res
);
398 tic
->t_curr_res
= tic
->t_unit_res
;
399 xlog_tic_reset_res(tic
);
404 trace_xfs_log_regrant(log
, tic
);
406 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
411 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
412 trace_xfs_log_regrant_exit(log
, tic
);
413 xlog_verify_grant_tail(log
);
418 * If we are failing, make sure the ticket doesn't have any current
419 * reservations. We don't want to add this back when the ticket/
420 * transaction gets cancelled.
423 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
428 * Reserve log space and return a ticket corresponding to the reservation.
430 * Each reservation is going to reserve extra space for a log record header.
431 * When writes happen to the on-disk log, we don't subtract the length of the
432 * log record header from any reservation. By wasting space in each
433 * reservation, we prevent over allocation problems.
437 struct xfs_mount
*mp
,
440 struct xlog_ticket
**ticp
,
444 struct xlog
*log
= mp
->m_log
;
445 struct xlog_ticket
*tic
;
449 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
451 if (XLOG_FORCED_SHUTDOWN(log
))
454 XFS_STATS_INC(mp
, xs_try_logspace
);
456 ASSERT(*ticp
== NULL
);
457 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
, 0);
460 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
463 trace_xfs_log_reserve(log
, tic
);
465 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
470 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
471 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
472 trace_xfs_log_reserve_exit(log
, tic
);
473 xlog_verify_grant_tail(log
);
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
483 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
511 struct xfs_mount
*mp
,
512 struct xlog_ticket
*ticket
,
513 struct xlog_in_core
**iclog
,
516 struct xlog
*log
= mp
->m_log
;
519 if (XLOG_FORCED_SHUTDOWN(log
) ||
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
524 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
525 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
526 lsn
= (xfs_lsn_t
) -1;
532 trace_xfs_log_done_nonperm(log
, ticket
);
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
538 xlog_ungrant_log_space(log
, ticket
);
540 trace_xfs_log_done_perm(log
, ticket
);
542 xlog_regrant_reserve_log_space(log
, ticket
);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
547 ticket
->t_flags
|= XLOG_TIC_INITED
;
550 xfs_log_ticket_put(ticket
);
555 __xlog_state_release_iclog(
557 struct xlog_in_core
*iclog
)
559 lockdep_assert_held(&log
->l_icloglock
);
561 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
562 /* update tail before writing to iclog */
563 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
565 iclog
->ic_state
= XLOG_STATE_SYNCING
;
566 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
567 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
568 /* cycle incremented when incrementing curr_block */
572 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
577 * Flush iclog to disk if this is the last reference to the given iclog and the
578 * it is in the WANT_SYNC state.
581 xlog_state_release_iclog(
583 struct xlog_in_core
*iclog
)
585 lockdep_assert_held(&log
->l_icloglock
);
587 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
590 if (atomic_dec_and_test(&iclog
->ic_refcnt
) &&
591 __xlog_state_release_iclog(log
, iclog
)) {
592 spin_unlock(&log
->l_icloglock
);
593 xlog_sync(log
, iclog
);
594 spin_lock(&log
->l_icloglock
);
601 xfs_log_release_iclog(
602 struct xfs_mount
*mp
,
603 struct xlog_in_core
*iclog
)
605 struct xlog
*log
= mp
->m_log
;
608 if (iclog
->ic_state
== XLOG_STATE_IOERROR
) {
609 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
613 if (atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
)) {
614 sync
= __xlog_state_release_iclog(log
, iclog
);
615 spin_unlock(&log
->l_icloglock
);
617 xlog_sync(log
, iclog
);
623 * Mount a log filesystem
625 * mp - ubiquitous xfs mount point structure
626 * log_target - buftarg of on-disk log device
627 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
628 * num_bblocks - Number of BBSIZE blocks in on-disk log
630 * Return error or zero.
635 xfs_buftarg_t
*log_target
,
636 xfs_daddr_t blk_offset
,
639 bool fatal
= xfs_sb_version_hascrc(&mp
->m_sb
);
643 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
644 xfs_notice(mp
, "Mounting V%d Filesystem",
645 XFS_SB_VERSION_NUM(&mp
->m_sb
));
648 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
649 XFS_SB_VERSION_NUM(&mp
->m_sb
));
650 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
653 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
654 if (IS_ERR(mp
->m_log
)) {
655 error
= PTR_ERR(mp
->m_log
);
660 * Validate the given log space and drop a critical message via syslog
661 * if the log size is too small that would lead to some unexpected
662 * situations in transaction log space reservation stage.
664 * Note: we can't just reject the mount if the validation fails. This
665 * would mean that people would have to downgrade their kernel just to
666 * remedy the situation as there is no way to grow the log (short of
667 * black magic surgery with xfs_db).
669 * We can, however, reject mounts for CRC format filesystems, as the
670 * mkfs binary being used to make the filesystem should never create a
671 * filesystem with a log that is too small.
673 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
675 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
677 "Log size %d blocks too small, minimum size is %d blocks",
678 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
680 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
682 "Log size %d blocks too large, maximum size is %lld blocks",
683 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
685 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
687 "log size %lld bytes too large, maximum size is %lld bytes",
688 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
691 } else if (mp
->m_sb
.sb_logsunit
> 1 &&
692 mp
->m_sb
.sb_logsunit
% mp
->m_sb
.sb_blocksize
) {
694 "log stripe unit %u bytes must be a multiple of block size",
695 mp
->m_sb
.sb_logsunit
);
701 * Log check errors are always fatal on v5; or whenever bad
702 * metadata leads to a crash.
705 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
709 xfs_crit(mp
, "Log size out of supported range.");
711 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
715 * Initialize the AIL now we have a log.
717 error
= xfs_trans_ail_init(mp
);
719 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
722 mp
->m_log
->l_ailp
= mp
->m_ail
;
725 * skip log recovery on a norecovery mount. pretend it all
728 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
729 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
732 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
734 error
= xlog_recover(mp
->m_log
);
737 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
739 xfs_warn(mp
, "log mount/recovery failed: error %d",
741 xlog_recover_cancel(mp
->m_log
);
742 goto out_destroy_ail
;
746 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
749 goto out_destroy_ail
;
751 /* Normal transactions can now occur */
752 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
755 * Now the log has been fully initialised and we know were our
756 * space grant counters are, we can initialise the permanent ticket
757 * needed for delayed logging to work.
759 xlog_cil_init_post_recovery(mp
->m_log
);
764 xfs_trans_ail_destroy(mp
);
766 xlog_dealloc_log(mp
->m_log
);
772 * Finish the recovery of the file system. This is separate from the
773 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
774 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
777 * If we finish recovery successfully, start the background log work. If we are
778 * not doing recovery, then we have a RO filesystem and we don't need to start
782 xfs_log_mount_finish(
783 struct xfs_mount
*mp
)
786 bool readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
787 bool recovered
= mp
->m_log
->l_flags
& XLOG_RECOVERY_NEEDED
;
789 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
790 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
792 } else if (readonly
) {
793 /* Allow unlinked processing to proceed */
794 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
798 * During the second phase of log recovery, we need iget and
799 * iput to behave like they do for an active filesystem.
800 * xfs_fs_drop_inode needs to be able to prevent the deletion
801 * of inodes before we're done replaying log items on those
802 * inodes. Turn it off immediately after recovery finishes
803 * so that we don't leak the quota inodes if subsequent mount
806 * We let all inodes involved in redo item processing end up on
807 * the LRU instead of being evicted immediately so that if we do
808 * something to an unlinked inode, the irele won't cause
809 * premature truncation and freeing of the inode, which results
810 * in log recovery failure. We have to evict the unreferenced
811 * lru inodes after clearing SB_ACTIVE because we don't
812 * otherwise clean up the lru if there's a subsequent failure in
813 * xfs_mountfs, which leads to us leaking the inodes if nothing
814 * else (e.g. quotacheck) references the inodes before the
815 * mount failure occurs.
817 mp
->m_super
->s_flags
|= SB_ACTIVE
;
818 error
= xlog_recover_finish(mp
->m_log
);
820 xfs_log_work_queue(mp
);
821 mp
->m_super
->s_flags
&= ~SB_ACTIVE
;
822 evict_inodes(mp
->m_super
);
825 * Drain the buffer LRU after log recovery. This is required for v4
826 * filesystems to avoid leaving around buffers with NULL verifier ops,
827 * but we do it unconditionally to make sure we're always in a clean
828 * cache state after mount.
830 * Don't push in the error case because the AIL may have pending intents
831 * that aren't removed until recovery is cancelled.
833 if (!error
&& recovered
) {
834 xfs_log_force(mp
, XFS_LOG_SYNC
);
835 xfs_ail_push_all_sync(mp
->m_ail
);
837 xfs_wait_buftarg(mp
->m_ddev_targp
);
840 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
846 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
850 xfs_log_mount_cancel(
851 struct xfs_mount
*mp
)
853 xlog_recover_cancel(mp
->m_log
);
858 * Final log writes as part of unmount.
860 * Mark the filesystem clean as unmount happens. Note that during relocation
861 * this routine needs to be executed as part of source-bag while the
862 * deallocation must not be done until source-end.
865 /* Actually write the unmount record to disk. */
867 xfs_log_write_unmount_record(
868 struct xfs_mount
*mp
)
870 /* the data section must be 32 bit size aligned */
871 struct xfs_unmount_log_format magic
= {
872 .magic
= XLOG_UNMOUNT_TYPE
,
874 struct xfs_log_iovec reg
= {
876 .i_len
= sizeof(magic
),
877 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
879 struct xfs_log_vec vec
= {
883 struct xlog
*log
= mp
->m_log
;
884 struct xlog_in_core
*iclog
;
885 struct xlog_ticket
*tic
= NULL
;
887 uint flags
= XLOG_UNMOUNT_TRANS
;
890 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
895 * If we think the summary counters are bad, clear the unmount header
896 * flag in the unmount record so that the summary counters will be
897 * recalculated during log recovery at next mount. Refer to
898 * xlog_check_unmount_rec for more details.
900 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp
, XFS_SICK_FS_COUNTERS
), mp
,
901 XFS_ERRTAG_FORCE_SUMMARY_RECALC
)) {
902 xfs_alert(mp
, "%s: will fix summary counters at next mount",
904 flags
&= ~XLOG_UNMOUNT_TRANS
;
907 /* remove inited flag, and account for space used */
909 tic
->t_curr_res
-= sizeof(magic
);
910 error
= xlog_write(log
, &vec
, tic
, &lsn
, NULL
, flags
);
912 * At this point, we're umounting anyway, so there's no point in
913 * transitioning log state to IOERROR. Just continue...
917 xfs_alert(mp
, "%s: unmount record failed", __func__
);
919 spin_lock(&log
->l_icloglock
);
920 iclog
= log
->l_iclog
;
921 atomic_inc(&iclog
->ic_refcnt
);
922 xlog_state_want_sync(log
, iclog
);
923 error
= xlog_state_release_iclog(log
, iclog
);
924 switch (iclog
->ic_state
) {
926 if (!XLOG_FORCED_SHUTDOWN(log
)) {
927 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
931 case XLOG_STATE_ACTIVE
:
932 case XLOG_STATE_DIRTY
:
933 spin_unlock(&log
->l_icloglock
);
938 trace_xfs_log_umount_write(log
, tic
);
939 xlog_ungrant_log_space(log
, tic
);
940 xfs_log_ticket_put(tic
);
945 * Unmount record used to have a string "Unmount filesystem--" in the
946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
947 * We just write the magic number now since that particular field isn't
948 * currently architecture converted and "Unmount" is a bit foo.
949 * As far as I know, there weren't any dependencies on the old behaviour.
953 xfs_log_unmount_write(xfs_mount_t
*mp
)
955 struct xlog
*log
= mp
->m_log
;
956 xlog_in_core_t
*iclog
;
958 xlog_in_core_t
*first_iclog
;
963 * Don't write out unmount record on norecovery mounts or ro devices.
964 * Or, if we are doing a forced umount (typically because of IO errors).
966 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
||
967 xfs_readonly_buftarg(log
->l_targ
)) {
968 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
972 error
= xfs_log_force(mp
, XFS_LOG_SYNC
);
973 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
976 first_iclog
= iclog
= log
->l_iclog
;
978 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
979 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
980 ASSERT(iclog
->ic_offset
== 0);
982 iclog
= iclog
->ic_next
;
983 } while (iclog
!= first_iclog
);
985 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
986 xfs_log_write_unmount_record(mp
);
989 * We're already in forced_shutdown mode, couldn't
990 * even attempt to write out the unmount transaction.
992 * Go through the motions of sync'ing and releasing
993 * the iclog, even though no I/O will actually happen,
994 * we need to wait for other log I/Os that may already
995 * be in progress. Do this as a separate section of
996 * code so we'll know if we ever get stuck here that
997 * we're in this odd situation of trying to unmount
998 * a file system that went into forced_shutdown as
999 * the result of an unmount..
1001 spin_lock(&log
->l_icloglock
);
1002 iclog
= log
->l_iclog
;
1003 atomic_inc(&iclog
->ic_refcnt
);
1004 xlog_state_want_sync(log
, iclog
);
1005 error
= xlog_state_release_iclog(log
, iclog
);
1006 switch (iclog
->ic_state
) {
1007 case XLOG_STATE_ACTIVE
:
1008 case XLOG_STATE_DIRTY
:
1009 case XLOG_STATE_IOERROR
:
1010 spin_unlock(&log
->l_icloglock
);
1013 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
1019 } /* xfs_log_unmount_write */
1022 * Empty the log for unmount/freeze.
1024 * To do this, we first need to shut down the background log work so it is not
1025 * trying to cover the log as we clean up. We then need to unpin all objects in
1026 * the log so we can then flush them out. Once they have completed their IO and
1027 * run the callbacks removing themselves from the AIL, we can write the unmount
1032 struct xfs_mount
*mp
)
1034 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
1035 xfs_log_force(mp
, XFS_LOG_SYNC
);
1038 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1039 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1040 * xfs_buf_iowait() cannot be used because it was pushed with the
1041 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1042 * the IO to complete.
1044 xfs_ail_push_all_sync(mp
->m_ail
);
1045 xfs_wait_buftarg(mp
->m_ddev_targp
);
1046 xfs_buf_lock(mp
->m_sb_bp
);
1047 xfs_buf_unlock(mp
->m_sb_bp
);
1049 xfs_log_unmount_write(mp
);
1053 * Shut down and release the AIL and Log.
1055 * During unmount, we need to ensure we flush all the dirty metadata objects
1056 * from the AIL so that the log is empty before we write the unmount record to
1057 * the log. Once this is done, we can tear down the AIL and the log.
1061 struct xfs_mount
*mp
)
1063 xfs_log_quiesce(mp
);
1065 xfs_trans_ail_destroy(mp
);
1067 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
1069 xlog_dealloc_log(mp
->m_log
);
1074 struct xfs_mount
*mp
,
1075 struct xfs_log_item
*item
,
1077 const struct xfs_item_ops
*ops
)
1079 item
->li_mountp
= mp
;
1080 item
->li_ailp
= mp
->m_ail
;
1081 item
->li_type
= type
;
1085 INIT_LIST_HEAD(&item
->li_ail
);
1086 INIT_LIST_HEAD(&item
->li_cil
);
1087 INIT_LIST_HEAD(&item
->li_bio_list
);
1088 INIT_LIST_HEAD(&item
->li_trans
);
1092 * Wake up processes waiting for log space after we have moved the log tail.
1096 struct xfs_mount
*mp
)
1098 struct xlog
*log
= mp
->m_log
;
1101 if (XLOG_FORCED_SHUTDOWN(log
))
1104 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1105 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1107 spin_lock(&log
->l_write_head
.lock
);
1108 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1109 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1110 spin_unlock(&log
->l_write_head
.lock
);
1113 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1114 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1116 spin_lock(&log
->l_reserve_head
.lock
);
1117 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1118 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1119 spin_unlock(&log
->l_reserve_head
.lock
);
1124 * Determine if we have a transaction that has gone to disk that needs to be
1125 * covered. To begin the transition to the idle state firstly the log needs to
1126 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1127 * we start attempting to cover the log.
1129 * Only if we are then in a state where covering is needed, the caller is
1130 * informed that dummy transactions are required to move the log into the idle
1133 * If there are any items in the AIl or CIL, then we do not want to attempt to
1134 * cover the log as we may be in a situation where there isn't log space
1135 * available to run a dummy transaction and this can lead to deadlocks when the
1136 * tail of the log is pinned by an item that is modified in the CIL. Hence
1137 * there's no point in running a dummy transaction at this point because we
1138 * can't start trying to idle the log until both the CIL and AIL are empty.
1141 xfs_log_need_covered(xfs_mount_t
*mp
)
1143 struct xlog
*log
= mp
->m_log
;
1146 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1149 if (!xlog_cil_empty(log
))
1152 spin_lock(&log
->l_icloglock
);
1153 switch (log
->l_covered_state
) {
1154 case XLOG_STATE_COVER_DONE
:
1155 case XLOG_STATE_COVER_DONE2
:
1156 case XLOG_STATE_COVER_IDLE
:
1158 case XLOG_STATE_COVER_NEED
:
1159 case XLOG_STATE_COVER_NEED2
:
1160 if (xfs_ail_min_lsn(log
->l_ailp
))
1162 if (!xlog_iclogs_empty(log
))
1166 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1167 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1169 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1175 spin_unlock(&log
->l_icloglock
);
1180 * We may be holding the log iclog lock upon entering this routine.
1183 xlog_assign_tail_lsn_locked(
1184 struct xfs_mount
*mp
)
1186 struct xlog
*log
= mp
->m_log
;
1187 struct xfs_log_item
*lip
;
1190 assert_spin_locked(&mp
->m_ail
->ail_lock
);
1193 * To make sure we always have a valid LSN for the log tail we keep
1194 * track of the last LSN which was committed in log->l_last_sync_lsn,
1195 * and use that when the AIL was empty.
1197 lip
= xfs_ail_min(mp
->m_ail
);
1199 tail_lsn
= lip
->li_lsn
;
1201 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1202 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1203 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1208 xlog_assign_tail_lsn(
1209 struct xfs_mount
*mp
)
1213 spin_lock(&mp
->m_ail
->ail_lock
);
1214 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1215 spin_unlock(&mp
->m_ail
->ail_lock
);
1221 * Return the space in the log between the tail and the head. The head
1222 * is passed in the cycle/bytes formal parms. In the special case where
1223 * the reserve head has wrapped passed the tail, this calculation is no
1224 * longer valid. In this case, just return 0 which means there is no space
1225 * in the log. This works for all places where this function is called
1226 * with the reserve head. Of course, if the write head were to ever
1227 * wrap the tail, we should blow up. Rather than catch this case here,
1228 * we depend on other ASSERTions in other parts of the code. XXXmiken
1230 * This code also handles the case where the reservation head is behind
1231 * the tail. The details of this case are described below, but the end
1232 * result is that we return the size of the log as the amount of space left.
1245 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1246 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1247 tail_bytes
= BBTOB(tail_bytes
);
1248 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1249 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1250 else if (tail_cycle
+ 1 < head_cycle
)
1252 else if (tail_cycle
< head_cycle
) {
1253 ASSERT(tail_cycle
== (head_cycle
- 1));
1254 free_bytes
= tail_bytes
- head_bytes
;
1257 * The reservation head is behind the tail.
1258 * In this case we just want to return the size of the
1259 * log as the amount of space left.
1261 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1262 xfs_alert(log
->l_mp
,
1263 " tail_cycle = %d, tail_bytes = %d",
1264 tail_cycle
, tail_bytes
);
1265 xfs_alert(log
->l_mp
,
1266 " GH cycle = %d, GH bytes = %d",
1267 head_cycle
, head_bytes
);
1269 free_bytes
= log
->l_logsize
;
1277 struct work_struct
*work
)
1279 struct xlog_in_core
*iclog
=
1280 container_of(work
, struct xlog_in_core
, ic_end_io_work
);
1281 struct xlog
*log
= iclog
->ic_log
;
1282 bool aborted
= false;
1285 error
= blk_status_to_errno(iclog
->ic_bio
.bi_status
);
1287 /* treat writes with injected CRC errors as failed */
1288 if (iclog
->ic_fail_crc
)
1293 * Race to shutdown the filesystem if we see an error.
1295 if (XFS_TEST_ERROR(error
, log
->l_mp
, XFS_ERRTAG_IODONE_IOERR
)) {
1296 xfs_alert(log
->l_mp
, "log I/O error %d", error
);
1297 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1299 * This flag will be propagated to the trans-committed
1300 * callback routines to let them know that the log-commit
1304 } else if (iclog
->ic_state
== XLOG_STATE_IOERROR
) {
1308 xlog_state_done_syncing(iclog
, aborted
);
1309 bio_uninit(&iclog
->ic_bio
);
1312 * Drop the lock to signal that we are done. Nothing references the
1313 * iclog after this, so an unmount waiting on this lock can now tear it
1314 * down safely. As such, it is unsafe to reference the iclog after the
1315 * unlock as we could race with it being freed.
1317 up(&iclog
->ic_sema
);
1321 * Return size of each in-core log record buffer.
1323 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1325 * If the filesystem blocksize is too large, we may need to choose a
1326 * larger size since the directory code currently logs entire blocks.
1329 xlog_get_iclog_buffer_size(
1330 struct xfs_mount
*mp
,
1333 if (mp
->m_logbufs
<= 0)
1334 mp
->m_logbufs
= XLOG_MAX_ICLOGS
;
1335 if (mp
->m_logbsize
<= 0)
1336 mp
->m_logbsize
= XLOG_BIG_RECORD_BSIZE
;
1338 log
->l_iclog_bufs
= mp
->m_logbufs
;
1339 log
->l_iclog_size
= mp
->m_logbsize
;
1342 * # headers = size / 32k - one header holds cycles from 32k of data.
1344 log
->l_iclog_heads
=
1345 DIV_ROUND_UP(mp
->m_logbsize
, XLOG_HEADER_CYCLE_SIZE
);
1346 log
->l_iclog_hsize
= log
->l_iclog_heads
<< BBSHIFT
;
1351 struct xfs_mount
*mp
)
1353 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1354 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1358 * Every sync period we need to unpin all items in the AIL and push them to
1359 * disk. If there is nothing dirty, then we might need to cover the log to
1360 * indicate that the filesystem is idle.
1364 struct work_struct
*work
)
1366 struct xlog
*log
= container_of(to_delayed_work(work
),
1367 struct xlog
, l_work
);
1368 struct xfs_mount
*mp
= log
->l_mp
;
1370 /* dgc: errors ignored - not fatal and nowhere to report them */
1371 if (xfs_log_need_covered(mp
)) {
1373 * Dump a transaction into the log that contains no real change.
1374 * This is needed to stamp the current tail LSN into the log
1375 * during the covering operation.
1377 * We cannot use an inode here for this - that will push dirty
1378 * state back up into the VFS and then periodic inode flushing
1379 * will prevent log covering from making progress. Hence we
1380 * synchronously log the superblock instead to ensure the
1381 * superblock is immediately unpinned and can be written back.
1383 xfs_sync_sb(mp
, true);
1385 xfs_log_force(mp
, 0);
1387 /* start pushing all the metadata that is currently dirty */
1388 xfs_ail_push_all(mp
->m_ail
);
1390 /* queue us up again */
1391 xfs_log_work_queue(mp
);
1395 * This routine initializes some of the log structure for a given mount point.
1396 * Its primary purpose is to fill in enough, so recovery can occur. However,
1397 * some other stuff may be filled in too.
1399 STATIC
struct xlog
*
1401 struct xfs_mount
*mp
,
1402 struct xfs_buftarg
*log_target
,
1403 xfs_daddr_t blk_offset
,
1407 xlog_rec_header_t
*head
;
1408 xlog_in_core_t
**iclogp
;
1409 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1411 int error
= -ENOMEM
;
1414 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1416 xfs_warn(mp
, "Log allocation failed: No memory!");
1421 log
->l_targ
= log_target
;
1422 log
->l_logsize
= BBTOB(num_bblks
);
1423 log
->l_logBBstart
= blk_offset
;
1424 log
->l_logBBsize
= num_bblks
;
1425 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1426 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1427 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1429 log
->l_prev_block
= -1;
1430 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1431 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1432 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1433 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1435 xlog_grant_head_init(&log
->l_reserve_head
);
1436 xlog_grant_head_init(&log
->l_write_head
);
1438 error
= -EFSCORRUPTED
;
1439 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1440 log2_size
= mp
->m_sb
.sb_logsectlog
;
1441 if (log2_size
< BBSHIFT
) {
1442 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1443 log2_size
, BBSHIFT
);
1447 log2_size
-= BBSHIFT
;
1448 if (log2_size
> mp
->m_sectbb_log
) {
1449 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1450 log2_size
, mp
->m_sectbb_log
);
1454 /* for larger sector sizes, must have v2 or external log */
1455 if (log2_size
&& log
->l_logBBstart
> 0 &&
1456 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1458 "log sector size (0x%x) invalid for configuration.",
1463 log
->l_sectBBsize
= 1 << log2_size
;
1465 xlog_get_iclog_buffer_size(mp
, log
);
1467 spin_lock_init(&log
->l_icloglock
);
1468 init_waitqueue_head(&log
->l_flush_wait
);
1470 iclogp
= &log
->l_iclog
;
1472 * The amount of memory to allocate for the iclog structure is
1473 * rather funky due to the way the structure is defined. It is
1474 * done this way so that we can use different sizes for machines
1475 * with different amounts of memory. See the definition of
1476 * xlog_in_core_t in xfs_log_priv.h for details.
1478 ASSERT(log
->l_iclog_size
>= 4096);
1479 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1480 int align_mask
= xfs_buftarg_dma_alignment(mp
->m_logdev_targp
);
1481 size_t bvec_size
= howmany(log
->l_iclog_size
, PAGE_SIZE
) *
1482 sizeof(struct bio_vec
);
1484 iclog
= kmem_zalloc(sizeof(*iclog
) + bvec_size
, KM_MAYFAIL
);
1486 goto out_free_iclog
;
1489 iclog
->ic_prev
= prev_iclog
;
1492 iclog
->ic_data
= kmem_alloc_io(log
->l_iclog_size
, align_mask
,
1493 KM_MAYFAIL
| KM_ZERO
);
1494 if (!iclog
->ic_data
)
1495 goto out_free_iclog
;
1497 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1499 head
= &iclog
->ic_header
;
1500 memset(head
, 0, sizeof(xlog_rec_header_t
));
1501 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1502 head
->h_version
= cpu_to_be32(
1503 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1504 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1506 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1507 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1509 iclog
->ic_size
= log
->l_iclog_size
- log
->l_iclog_hsize
;
1510 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1511 iclog
->ic_log
= log
;
1512 atomic_set(&iclog
->ic_refcnt
, 0);
1513 spin_lock_init(&iclog
->ic_callback_lock
);
1514 INIT_LIST_HEAD(&iclog
->ic_callbacks
);
1515 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1517 init_waitqueue_head(&iclog
->ic_force_wait
);
1518 init_waitqueue_head(&iclog
->ic_write_wait
);
1519 INIT_WORK(&iclog
->ic_end_io_work
, xlog_ioend_work
);
1520 sema_init(&iclog
->ic_sema
, 1);
1522 iclogp
= &iclog
->ic_next
;
1524 *iclogp
= log
->l_iclog
; /* complete ring */
1525 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1527 log
->l_ioend_workqueue
= alloc_workqueue("xfs-log/%s",
1528 WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_HIGHPRI
, 0,
1530 if (!log
->l_ioend_workqueue
)
1531 goto out_free_iclog
;
1533 error
= xlog_cil_init(log
);
1535 goto out_destroy_workqueue
;
1538 out_destroy_workqueue
:
1539 destroy_workqueue(log
->l_ioend_workqueue
);
1541 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1542 prev_iclog
= iclog
->ic_next
;
1543 kmem_free(iclog
->ic_data
);
1545 if (prev_iclog
== log
->l_iclog
)
1551 return ERR_PTR(error
);
1552 } /* xlog_alloc_log */
1556 * Write out the commit record of a transaction associated with the given
1557 * ticket. Return the lsn of the commit record.
1562 struct xlog_ticket
*ticket
,
1563 struct xlog_in_core
**iclog
,
1564 xfs_lsn_t
*commitlsnp
)
1566 struct xfs_mount
*mp
= log
->l_mp
;
1568 struct xfs_log_iovec reg
= {
1571 .i_type
= XLOG_REG_TYPE_COMMIT
,
1573 struct xfs_log_vec vec
= {
1578 ASSERT_ALWAYS(iclog
);
1579 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1582 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1587 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1588 * log space. This code pushes on the lsn which would supposedly free up
1589 * the 25% which we want to leave free. We may need to adopt a policy which
1590 * pushes on an lsn which is further along in the log once we reach the high
1591 * water mark. In this manner, we would be creating a low water mark.
1594 xlog_grant_push_ail(
1598 xfs_lsn_t threshold_lsn
= 0;
1599 xfs_lsn_t last_sync_lsn
;
1602 int threshold_block
;
1603 int threshold_cycle
;
1606 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1608 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1609 free_blocks
= BTOBBT(free_bytes
);
1612 * Set the threshold for the minimum number of free blocks in the
1613 * log to the maximum of what the caller needs, one quarter of the
1614 * log, and 256 blocks.
1616 free_threshold
= BTOBB(need_bytes
);
1617 free_threshold
= max(free_threshold
, (log
->l_logBBsize
>> 2));
1618 free_threshold
= max(free_threshold
, 256);
1619 if (free_blocks
>= free_threshold
)
1622 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1624 threshold_block
+= free_threshold
;
1625 if (threshold_block
>= log
->l_logBBsize
) {
1626 threshold_block
-= log
->l_logBBsize
;
1627 threshold_cycle
+= 1;
1629 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1632 * Don't pass in an lsn greater than the lsn of the last
1633 * log record known to be on disk. Use a snapshot of the last sync lsn
1634 * so that it doesn't change between the compare and the set.
1636 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1637 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1638 threshold_lsn
= last_sync_lsn
;
1641 * Get the transaction layer to kick the dirty buffers out to
1642 * disk asynchronously. No point in trying to do this if
1643 * the filesystem is shutting down.
1645 if (!XLOG_FORCED_SHUTDOWN(log
))
1646 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1650 * Stamp cycle number in every block
1655 struct xlog_in_core
*iclog
,
1659 int size
= iclog
->ic_offset
+ roundoff
;
1663 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1665 dp
= iclog
->ic_datap
;
1666 for (i
= 0; i
< BTOBB(size
); i
++) {
1667 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1669 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1670 *(__be32
*)dp
= cycle_lsn
;
1674 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1675 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1677 for ( ; i
< BTOBB(size
); i
++) {
1678 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1679 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1680 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1681 *(__be32
*)dp
= cycle_lsn
;
1685 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1686 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1691 * Calculate the checksum for a log buffer.
1693 * This is a little more complicated than it should be because the various
1694 * headers and the actual data are non-contiguous.
1699 struct xlog_rec_header
*rhead
,
1705 /* first generate the crc for the record header ... */
1706 crc
= xfs_start_cksum_update((char *)rhead
,
1707 sizeof(struct xlog_rec_header
),
1708 offsetof(struct xlog_rec_header
, h_crc
));
1710 /* ... then for additional cycle data for v2 logs ... */
1711 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1712 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1716 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1717 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1720 for (i
= 1; i
< xheads
; i
++) {
1721 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1722 sizeof(struct xlog_rec_ext_header
));
1726 /* ... and finally for the payload */
1727 crc
= crc32c(crc
, dp
, size
);
1729 return xfs_end_cksum(crc
);
1736 struct xlog_in_core
*iclog
= bio
->bi_private
;
1738 queue_work(iclog
->ic_log
->l_ioend_workqueue
,
1739 &iclog
->ic_end_io_work
);
1743 xlog_map_iclog_data(
1749 struct page
*page
= kmem_to_page(data
);
1750 unsigned int off
= offset_in_page(data
);
1751 size_t len
= min_t(size_t, count
, PAGE_SIZE
- off
);
1753 WARN_ON_ONCE(bio_add_page(bio
, page
, len
, off
) != len
);
1763 struct xlog_in_core
*iclog
,
1768 ASSERT(bno
< log
->l_logBBsize
);
1771 * We lock the iclogbufs here so that we can serialise against I/O
1772 * completion during unmount. We might be processing a shutdown
1773 * triggered during unmount, and that can occur asynchronously to the
1774 * unmount thread, and hence we need to ensure that completes before
1775 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1776 * across the log IO to archieve that.
1778 down(&iclog
->ic_sema
);
1779 if (unlikely(iclog
->ic_state
== XLOG_STATE_IOERROR
)) {
1781 * It would seem logical to return EIO here, but we rely on
1782 * the log state machine to propagate I/O errors instead of
1783 * doing it here. We kick of the state machine and unlock
1784 * the buffer manually, the code needs to be kept in sync
1785 * with the I/O completion path.
1787 xlog_state_done_syncing(iclog
, true);
1788 up(&iclog
->ic_sema
);
1792 bio_init(&iclog
->ic_bio
, iclog
->ic_bvec
, howmany(count
, PAGE_SIZE
));
1793 bio_set_dev(&iclog
->ic_bio
, log
->l_targ
->bt_bdev
);
1794 iclog
->ic_bio
.bi_iter
.bi_sector
= log
->l_logBBstart
+ bno
;
1795 iclog
->ic_bio
.bi_end_io
= xlog_bio_end_io
;
1796 iclog
->ic_bio
.bi_private
= iclog
;
1797 iclog
->ic_bio
.bi_opf
= REQ_OP_WRITE
| REQ_META
| REQ_SYNC
| REQ_FUA
;
1799 iclog
->ic_bio
.bi_opf
|= REQ_PREFLUSH
;
1801 xlog_map_iclog_data(&iclog
->ic_bio
, iclog
->ic_data
, count
);
1802 if (is_vmalloc_addr(iclog
->ic_data
))
1803 flush_kernel_vmap_range(iclog
->ic_data
, count
);
1806 * If this log buffer would straddle the end of the log we will have
1807 * to split it up into two bios, so that we can continue at the start.
1809 if (bno
+ BTOBB(count
) > log
->l_logBBsize
) {
1812 split
= bio_split(&iclog
->ic_bio
, log
->l_logBBsize
- bno
,
1813 GFP_NOIO
, &fs_bio_set
);
1814 bio_chain(split
, &iclog
->ic_bio
);
1817 /* restart at logical offset zero for the remainder */
1818 iclog
->ic_bio
.bi_iter
.bi_sector
= log
->l_logBBstart
;
1821 submit_bio(&iclog
->ic_bio
);
1825 * We need to bump cycle number for the part of the iclog that is
1826 * written to the start of the log. Watch out for the header magic
1827 * number case, though.
1836 unsigned int split_offset
= BBTOB(log
->l_logBBsize
- bno
);
1839 for (i
= split_offset
; i
< count
; i
+= BBSIZE
) {
1840 uint32_t cycle
= get_unaligned_be32(data
+ i
);
1842 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1844 put_unaligned_be32(cycle
, data
+ i
);
1849 xlog_calc_iclog_size(
1851 struct xlog_in_core
*iclog
,
1854 uint32_t count_init
, count
;
1857 use_lsunit
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
1858 log
->l_mp
->m_sb
.sb_logsunit
> 1;
1860 /* Add for LR header */
1861 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1863 /* Round out the log write size */
1865 /* we have a v2 stripe unit to use */
1866 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1868 count
= BBTOB(BTOBB(count_init
));
1871 ASSERT(count
>= count_init
);
1872 *roundoff
= count
- count_init
;
1875 ASSERT(*roundoff
< log
->l_mp
->m_sb
.sb_logsunit
);
1877 ASSERT(*roundoff
< BBTOB(1));
1882 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1883 * fashion. Previously, we should have moved the current iclog
1884 * ptr in the log to point to the next available iclog. This allows further
1885 * write to continue while this code syncs out an iclog ready to go.
1886 * Before an in-core log can be written out, the data section must be scanned
1887 * to save away the 1st word of each BBSIZE block into the header. We replace
1888 * it with the current cycle count. Each BBSIZE block is tagged with the
1889 * cycle count because there in an implicit assumption that drives will
1890 * guarantee that entire 512 byte blocks get written at once. In other words,
1891 * we can't have part of a 512 byte block written and part not written. By
1892 * tagging each block, we will know which blocks are valid when recovering
1893 * after an unclean shutdown.
1895 * This routine is single threaded on the iclog. No other thread can be in
1896 * this routine with the same iclog. Changing contents of iclog can there-
1897 * fore be done without grabbing the state machine lock. Updating the global
1898 * log will require grabbing the lock though.
1900 * The entire log manager uses a logical block numbering scheme. Only
1901 * xlog_write_iclog knows about the fact that the log may not start with
1902 * block zero on a given device.
1907 struct xlog_in_core
*iclog
)
1909 unsigned int count
; /* byte count of bwrite */
1910 unsigned int roundoff
; /* roundoff to BB or stripe */
1913 bool need_flush
= true, split
= false;
1915 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1917 count
= xlog_calc_iclog_size(log
, iclog
, &roundoff
);
1919 /* move grant heads by roundoff in sync */
1920 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1921 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1923 /* put cycle number in every block */
1924 xlog_pack_data(log
, iclog
, roundoff
);
1926 /* real byte length */
1927 size
= iclog
->ic_offset
;
1928 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
))
1930 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1932 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1933 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1935 bno
= BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
));
1937 /* Do we need to split this write into 2 parts? */
1938 if (bno
+ BTOBB(count
) > log
->l_logBBsize
) {
1939 xlog_split_iclog(log
, &iclog
->ic_header
, bno
, count
);
1943 /* calculcate the checksum */
1944 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1945 iclog
->ic_datap
, size
);
1947 * Intentionally corrupt the log record CRC based on the error injection
1948 * frequency, if defined. This facilitates testing log recovery in the
1949 * event of torn writes. Hence, set the IOABORT state to abort the log
1950 * write on I/O completion and shutdown the fs. The subsequent mount
1951 * detects the bad CRC and attempts to recover.
1954 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1955 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1956 iclog
->ic_fail_crc
= true;
1958 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1959 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1964 * Flush the data device before flushing the log to make sure all meta
1965 * data written back from the AIL actually made it to disk before
1966 * stamping the new log tail LSN into the log buffer. For an external
1967 * log we need to issue the flush explicitly, and unfortunately
1968 * synchronously here; for an internal log we can simply use the block
1969 * layer state machine for preflushes.
1971 if (log
->l_targ
!= log
->l_mp
->m_ddev_targp
|| split
) {
1972 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1976 xlog_verify_iclog(log
, iclog
, count
);
1977 xlog_write_iclog(log
, iclog
, bno
, count
, need_flush
);
1981 * Deallocate a log structure
1987 xlog_in_core_t
*iclog
, *next_iclog
;
1990 xlog_cil_destroy(log
);
1993 * Cycle all the iclogbuf locks to make sure all log IO completion
1994 * is done before we tear down these buffers.
1996 iclog
= log
->l_iclog
;
1997 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1998 down(&iclog
->ic_sema
);
1999 up(&iclog
->ic_sema
);
2000 iclog
= iclog
->ic_next
;
2003 iclog
= log
->l_iclog
;
2004 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
2005 next_iclog
= iclog
->ic_next
;
2006 kmem_free(iclog
->ic_data
);
2011 log
->l_mp
->m_log
= NULL
;
2012 destroy_workqueue(log
->l_ioend_workqueue
);
2014 } /* xlog_dealloc_log */
2017 * Update counters atomically now that memcpy is done.
2020 xlog_state_finish_copy(
2022 struct xlog_in_core
*iclog
,
2026 lockdep_assert_held(&log
->l_icloglock
);
2028 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
2029 iclog
->ic_offset
+= copy_bytes
;
2033 * print out info relating to regions written which consume
2038 struct xfs_mount
*mp
,
2039 struct xlog_ticket
*ticket
)
2042 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
2044 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2045 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2046 static char *res_type_str
[] = {
2047 REG_TYPE_STR(BFORMAT
, "bformat"),
2048 REG_TYPE_STR(BCHUNK
, "bchunk"),
2049 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
2050 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
2051 REG_TYPE_STR(IFORMAT
, "iformat"),
2052 REG_TYPE_STR(ICORE
, "icore"),
2053 REG_TYPE_STR(IEXT
, "iext"),
2054 REG_TYPE_STR(IBROOT
, "ibroot"),
2055 REG_TYPE_STR(ILOCAL
, "ilocal"),
2056 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
2057 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
2058 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
2059 REG_TYPE_STR(QFORMAT
, "qformat"),
2060 REG_TYPE_STR(DQUOT
, "dquot"),
2061 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
2062 REG_TYPE_STR(LRHEADER
, "LR header"),
2063 REG_TYPE_STR(UNMOUNT
, "unmount"),
2064 REG_TYPE_STR(COMMIT
, "commit"),
2065 REG_TYPE_STR(TRANSHDR
, "trans header"),
2066 REG_TYPE_STR(ICREATE
, "inode create"),
2067 REG_TYPE_STR(RUI_FORMAT
, "rui_format"),
2068 REG_TYPE_STR(RUD_FORMAT
, "rud_format"),
2069 REG_TYPE_STR(CUI_FORMAT
, "cui_format"),
2070 REG_TYPE_STR(CUD_FORMAT
, "cud_format"),
2071 REG_TYPE_STR(BUI_FORMAT
, "bui_format"),
2072 REG_TYPE_STR(BUD_FORMAT
, "bud_format"),
2074 BUILD_BUG_ON(ARRAY_SIZE(res_type_str
) != XLOG_REG_TYPE_MAX
+ 1);
2077 xfs_warn(mp
, "ticket reservation summary:");
2078 xfs_warn(mp
, " unit res = %d bytes",
2079 ticket
->t_unit_res
);
2080 xfs_warn(mp
, " current res = %d bytes",
2081 ticket
->t_curr_res
);
2082 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
2083 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
2084 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
2085 ticket
->t_res_num_ophdrs
, ophdr_spc
);
2086 xfs_warn(mp
, " ophdr + reg = %u bytes",
2087 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
2088 xfs_warn(mp
, " num regions = %u",
2091 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2092 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2093 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2094 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2095 "bad-rtype" : res_type_str
[r_type
]),
2096 ticket
->t_res_arr
[i
].r_len
);
2101 * Print a summary of the transaction.
2105 struct xfs_trans
*tp
)
2107 struct xfs_mount
*mp
= tp
->t_mountp
;
2108 struct xfs_log_item
*lip
;
2110 /* dump core transaction and ticket info */
2111 xfs_warn(mp
, "transaction summary:");
2112 xfs_warn(mp
, " log res = %d", tp
->t_log_res
);
2113 xfs_warn(mp
, " log count = %d", tp
->t_log_count
);
2114 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
2116 xlog_print_tic_res(mp
, tp
->t_ticket
);
2118 /* dump each log item */
2119 list_for_each_entry(lip
, &tp
->t_items
, li_trans
) {
2120 struct xfs_log_vec
*lv
= lip
->li_lv
;
2121 struct xfs_log_iovec
*vec
;
2124 xfs_warn(mp
, "log item: ");
2125 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
2126 xfs_warn(mp
, " flags = 0x%lx", lip
->li_flags
);
2129 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
2130 xfs_warn(mp
, " size = %d", lv
->lv_size
);
2131 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
2132 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
2134 /* dump each iovec for the log item */
2135 vec
= lv
->lv_iovecp
;
2136 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2137 int dumplen
= min(vec
->i_len
, 32);
2139 xfs_warn(mp
, " iovec[%d]", i
);
2140 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
2141 xfs_warn(mp
, " len = %d", vec
->i_len
);
2142 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
2143 xfs_hex_dump(vec
->i_addr
, dumplen
);
2151 * Calculate the potential space needed by the log vector. Each region gets
2152 * its own xlog_op_header_t and may need to be double word aligned.
2155 xlog_write_calc_vec_length(
2156 struct xlog_ticket
*ticket
,
2157 struct xfs_log_vec
*log_vector
)
2159 struct xfs_log_vec
*lv
;
2164 /* acct for start rec of xact */
2165 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2168 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2169 /* we don't write ordered log vectors */
2170 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2173 headers
+= lv
->lv_niovecs
;
2175 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2176 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2179 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2183 ticket
->t_res_num_ophdrs
+= headers
;
2184 len
+= headers
* sizeof(struct xlog_op_header
);
2190 * If first write for transaction, insert start record We can't be trying to
2191 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2194 xlog_write_start_rec(
2195 struct xlog_op_header
*ophdr
,
2196 struct xlog_ticket
*ticket
)
2198 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2201 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2202 ophdr
->oh_clientid
= ticket
->t_clientid
;
2204 ophdr
->oh_flags
= XLOG_START_TRANS
;
2207 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2209 return sizeof(struct xlog_op_header
);
2212 static xlog_op_header_t
*
2213 xlog_write_setup_ophdr(
2215 struct xlog_op_header
*ophdr
,
2216 struct xlog_ticket
*ticket
,
2219 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2220 ophdr
->oh_clientid
= ticket
->t_clientid
;
2223 /* are we copying a commit or unmount record? */
2224 ophdr
->oh_flags
= flags
;
2227 * We've seen logs corrupted with bad transaction client ids. This
2228 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2229 * and shut down the filesystem.
2231 switch (ophdr
->oh_clientid
) {
2232 case XFS_TRANSACTION
:
2238 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT
,
2239 ophdr
->oh_clientid
, ticket
);
2247 * Set up the parameters of the region copy into the log. This has
2248 * to handle region write split across multiple log buffers - this
2249 * state is kept external to this function so that this code can
2250 * be written in an obvious, self documenting manner.
2253 xlog_write_setup_copy(
2254 struct xlog_ticket
*ticket
,
2255 struct xlog_op_header
*ophdr
,
2256 int space_available
,
2260 int *last_was_partial_copy
,
2261 int *bytes_consumed
)
2265 still_to_copy
= space_required
- *bytes_consumed
;
2266 *copy_off
= *bytes_consumed
;
2268 if (still_to_copy
<= space_available
) {
2269 /* write of region completes here */
2270 *copy_len
= still_to_copy
;
2271 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2272 if (*last_was_partial_copy
)
2273 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2274 *last_was_partial_copy
= 0;
2275 *bytes_consumed
= 0;
2279 /* partial write of region, needs extra log op header reservation */
2280 *copy_len
= space_available
;
2281 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2282 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2283 if (*last_was_partial_copy
)
2284 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2285 *bytes_consumed
+= *copy_len
;
2286 (*last_was_partial_copy
)++;
2288 /* account for new log op header */
2289 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2290 ticket
->t_res_num_ophdrs
++;
2292 return sizeof(struct xlog_op_header
);
2296 xlog_write_copy_finish(
2298 struct xlog_in_core
*iclog
,
2303 int *partial_copy_len
,
2305 struct xlog_in_core
**commit_iclog
)
2309 if (*partial_copy
) {
2311 * This iclog has already been marked WANT_SYNC by
2312 * xlog_state_get_iclog_space.
2314 spin_lock(&log
->l_icloglock
);
2315 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2322 *partial_copy_len
= 0;
2324 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2325 /* no more space in this iclog - push it. */
2326 spin_lock(&log
->l_icloglock
);
2327 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2331 xlog_state_want_sync(log
, iclog
);
2334 spin_unlock(&log
->l_icloglock
);
2335 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2336 *commit_iclog
= iclog
;
2342 error
= xlog_state_release_iclog(log
, iclog
);
2343 spin_unlock(&log
->l_icloglock
);
2348 * Write some region out to in-core log
2350 * This will be called when writing externally provided regions or when
2351 * writing out a commit record for a given transaction.
2353 * General algorithm:
2354 * 1. Find total length of this write. This may include adding to the
2355 * lengths passed in.
2356 * 2. Check whether we violate the tickets reservation.
2357 * 3. While writing to this iclog
2358 * A. Reserve as much space in this iclog as can get
2359 * B. If this is first write, save away start lsn
2360 * C. While writing this region:
2361 * 1. If first write of transaction, write start record
2362 * 2. Write log operation header (header per region)
2363 * 3. Find out if we can fit entire region into this iclog
2364 * 4. Potentially, verify destination memcpy ptr
2365 * 5. Memcpy (partial) region
2366 * 6. If partial copy, release iclog; otherwise, continue
2367 * copying more regions into current iclog
2368 * 4. Mark want sync bit (in simulation mode)
2369 * 5. Release iclog for potential flush to on-disk log.
2372 * 1. Panic if reservation is overrun. This should never happen since
2373 * reservation amounts are generated internal to the filesystem.
2375 * 1. Tickets are single threaded data structures.
2376 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2377 * syncing routine. When a single log_write region needs to span
2378 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2379 * on all log operation writes which don't contain the end of the
2380 * region. The XLOG_END_TRANS bit is used for the in-core log
2381 * operation which contains the end of the continued log_write region.
2382 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2383 * we don't really know exactly how much space will be used. As a result,
2384 * we don't update ic_offset until the end when we know exactly how many
2385 * bytes have been written out.
2390 struct xfs_log_vec
*log_vector
,
2391 struct xlog_ticket
*ticket
,
2392 xfs_lsn_t
*start_lsn
,
2393 struct xlog_in_core
**commit_iclog
,
2396 struct xlog_in_core
*iclog
= NULL
;
2397 struct xfs_log_iovec
*vecp
;
2398 struct xfs_log_vec
*lv
;
2401 int partial_copy
= 0;
2402 int partial_copy_len
= 0;
2410 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2413 * Region headers and bytes are already accounted for.
2414 * We only need to take into account start records and
2415 * split regions in this function.
2417 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2418 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2421 * Commit record headers need to be accounted for. These
2422 * come in as separate writes so are easy to detect.
2424 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2425 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2427 if (ticket
->t_curr_res
< 0) {
2428 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2429 "ctx ticket reservation ran out. Need to up reservation");
2430 xlog_print_tic_res(log
->l_mp
, ticket
);
2431 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
2436 vecp
= lv
->lv_iovecp
;
2437 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2441 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2442 &contwr
, &log_offset
);
2446 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2447 ptr
= iclog
->ic_datap
+ log_offset
;
2449 /* start_lsn is the first lsn written to. That's all we need. */
2451 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2454 * This loop writes out as many regions as can fit in the amount
2455 * of space which was allocated by xlog_state_get_iclog_space().
2457 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2458 struct xfs_log_iovec
*reg
;
2459 struct xlog_op_header
*ophdr
;
2463 bool ordered
= false;
2465 /* ordered log vectors have no regions to write */
2466 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2467 ASSERT(lv
->lv_niovecs
== 0);
2473 ASSERT(reg
->i_len
% sizeof(int32_t) == 0);
2474 ASSERT((unsigned long)ptr
% sizeof(int32_t) == 0);
2476 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2477 if (start_rec_copy
) {
2479 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2483 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2487 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2488 sizeof(struct xlog_op_header
));
2490 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2491 iclog
->ic_size
-log_offset
,
2493 ©_off
, ©_len
,
2496 xlog_verify_dest_ptr(log
, ptr
);
2501 * Unmount records just log an opheader, so can have
2502 * empty payloads with no data region to copy. Hence we
2503 * only copy the payload if the vector says it has data
2506 ASSERT(copy_len
>= 0);
2508 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2509 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2512 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2514 data_cnt
+= contwr
? copy_len
: 0;
2516 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2517 &record_cnt
, &data_cnt
,
2526 * if we had a partial copy, we need to get more iclog
2527 * space but we don't want to increment the region
2528 * index because there is still more is this region to
2531 * If we completed writing this region, and we flushed
2532 * the iclog (indicated by resetting of the record
2533 * count), then we also need to get more log space. If
2534 * this was the last record, though, we are done and
2540 if (++index
== lv
->lv_niovecs
) {
2545 vecp
= lv
->lv_iovecp
;
2547 if (record_cnt
== 0 && !ordered
) {
2557 spin_lock(&log
->l_icloglock
);
2558 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2560 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2561 *commit_iclog
= iclog
;
2563 error
= xlog_state_release_iclog(log
, iclog
);
2565 spin_unlock(&log
->l_icloglock
);
2571 /*****************************************************************************
2573 * State Machine functions
2575 *****************************************************************************
2579 * An iclog has just finished IO completion processing, so we need to update
2580 * the iclog state and propagate that up into the overall log state. Hence we
2581 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2582 * starting from the head, and then wake up any threads that are waiting for the
2583 * iclog to be marked clean.
2585 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2586 * doesn't become ACTIVE beyond one that is SYNCING. This is also required to
2587 * maintain the notion that we use a ordered wait queue to hold off would be
2588 * writers to the log when every iclog is trying to sync to disk.
2590 * Caller must hold the icloglock before calling us.
2592 * State Change: !IOERROR -> DIRTY -> ACTIVE
2595 xlog_state_clean_iclog(
2597 struct xlog_in_core
*dirty_iclog
)
2599 struct xlog_in_core
*iclog
;
2602 /* Prepare the completed iclog. */
2603 if (dirty_iclog
->ic_state
!= XLOG_STATE_IOERROR
)
2604 dirty_iclog
->ic_state
= XLOG_STATE_DIRTY
;
2606 /* Walk all the iclogs to update the ordered active state. */
2607 iclog
= log
->l_iclog
;
2609 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2610 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2611 iclog
->ic_offset
= 0;
2612 ASSERT(list_empty_careful(&iclog
->ic_callbacks
));
2614 * If the number of ops in this iclog indicate it just
2615 * contains the dummy transaction, we can
2616 * change state into IDLE (the second time around).
2617 * Otherwise we should change the state into
2619 * We don't need to cover the dummy.
2622 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2627 * We have two dirty iclogs so start over
2628 * This could also be num of ops indicates
2629 * this is not the dummy going out.
2633 iclog
->ic_header
.h_num_logops
= 0;
2634 memset(iclog
->ic_header
.h_cycle_data
, 0,
2635 sizeof(iclog
->ic_header
.h_cycle_data
));
2636 iclog
->ic_header
.h_lsn
= 0;
2637 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2640 break; /* stop cleaning */
2641 iclog
= iclog
->ic_next
;
2642 } while (iclog
!= log
->l_iclog
);
2646 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2649 wake_up_all(&dirty_iclog
->ic_force_wait
);
2652 * Change state for the dummy log recording.
2653 * We usually go to NEED. But we go to NEED2 if the changed indicates
2654 * we are done writing the dummy record.
2655 * If we are done with the second dummy recored (DONE2), then
2659 switch (log
->l_covered_state
) {
2660 case XLOG_STATE_COVER_IDLE
:
2661 case XLOG_STATE_COVER_NEED
:
2662 case XLOG_STATE_COVER_NEED2
:
2663 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2666 case XLOG_STATE_COVER_DONE
:
2668 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2670 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2673 case XLOG_STATE_COVER_DONE2
:
2675 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2677 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2687 xlog_get_lowest_lsn(
2690 struct xlog_in_core
*iclog
= log
->l_iclog
;
2691 xfs_lsn_t lowest_lsn
= 0, lsn
;
2694 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2695 iclog
->ic_state
== XLOG_STATE_DIRTY
)
2698 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2699 if ((lsn
&& !lowest_lsn
) || XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)
2701 } while ((iclog
= iclog
->ic_next
) != log
->l_iclog
);
2707 * Completion of a iclog IO does not imply that a transaction has completed, as
2708 * transactions can be large enough to span many iclogs. We cannot change the
2709 * tail of the log half way through a transaction as this may be the only
2710 * transaction in the log and moving the tail to point to the middle of it
2711 * will prevent recovery from finding the start of the transaction. Hence we
2712 * should only update the last_sync_lsn if this iclog contains transaction
2713 * completion callbacks on it.
2715 * We have to do this before we drop the icloglock to ensure we are the only one
2716 * that can update it.
2718 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2719 * the reservation grant head pushing. This is due to the fact that the push
2720 * target is bound by the current last_sync_lsn value. Hence if we have a large
2721 * amount of log space bound up in this committing transaction then the
2722 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2723 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2724 * should push the AIL to ensure the push target (and hence the grant head) is
2725 * no longer bound by the old log head location and can move forwards and make
2729 xlog_state_set_callback(
2731 struct xlog_in_core
*iclog
,
2732 xfs_lsn_t header_lsn
)
2734 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2736 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2739 if (list_empty_careful(&iclog
->ic_callbacks
))
2742 atomic64_set(&log
->l_last_sync_lsn
, header_lsn
);
2743 xlog_grant_push_ail(log
, 0);
2747 * Return true if we need to stop processing, false to continue to the next
2748 * iclog. The caller will need to run callbacks if the iclog is returned in the
2749 * XLOG_STATE_CALLBACK state.
2752 xlog_state_iodone_process_iclog(
2754 struct xlog_in_core
*iclog
,
2757 xfs_lsn_t lowest_lsn
;
2758 xfs_lsn_t header_lsn
;
2760 switch (iclog
->ic_state
) {
2761 case XLOG_STATE_ACTIVE
:
2762 case XLOG_STATE_DIRTY
:
2764 * Skip all iclogs in the ACTIVE & DIRTY states:
2767 case XLOG_STATE_IOERROR
:
2769 * Between marking a filesystem SHUTDOWN and stopping the log,
2770 * we do flush all iclogs to disk (if there wasn't a log I/O
2771 * error). So, we do want things to go smoothly in case of just
2772 * a SHUTDOWN w/o a LOG_IO_ERROR.
2776 case XLOG_STATE_DONE_SYNC
:
2778 * Now that we have an iclog that is in the DONE_SYNC state, do
2779 * one more check here to see if we have chased our tail around.
2780 * If this is not the lowest lsn iclog, then we will leave it
2781 * for another completion to process.
2783 header_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2784 lowest_lsn
= xlog_get_lowest_lsn(log
);
2785 if (lowest_lsn
&& XFS_LSN_CMP(lowest_lsn
, header_lsn
) < 0)
2787 xlog_state_set_callback(log
, iclog
, header_lsn
);
2791 * Can only perform callbacks in order. Since this iclog is not
2792 * in the DONE_SYNC state, we skip the rest and just try to
2800 * Keep processing entries in the iclog callback list until we come around and
2801 * it is empty. We need to atomically see that the list is empty and change the
2802 * state to DIRTY so that we don't miss any more callbacks being added.
2804 * This function is called with the icloglock held and returns with it held. We
2805 * drop it while running callbacks, however, as holding it over thousands of
2806 * callbacks is unnecessary and causes excessive contention if we do.
2809 xlog_state_do_iclog_callbacks(
2811 struct xlog_in_core
*iclog
,
2813 __releases(&log
->l_icloglock
)
2814 __acquires(&log
->l_icloglock
)
2816 spin_unlock(&log
->l_icloglock
);
2817 spin_lock(&iclog
->ic_callback_lock
);
2818 while (!list_empty(&iclog
->ic_callbacks
)) {
2821 list_splice_init(&iclog
->ic_callbacks
, &tmp
);
2823 spin_unlock(&iclog
->ic_callback_lock
);
2824 xlog_cil_process_committed(&tmp
, aborted
);
2825 spin_lock(&iclog
->ic_callback_lock
);
2829 * Pick up the icloglock while still holding the callback lock so we
2830 * serialise against anyone trying to add more callbacks to this iclog
2831 * now we've finished processing.
2833 spin_lock(&log
->l_icloglock
);
2834 spin_unlock(&iclog
->ic_callback_lock
);
2838 xlog_state_do_callback(
2842 struct xlog_in_core
*iclog
;
2843 struct xlog_in_core
*first_iclog
;
2844 bool cycled_icloglock
;
2849 spin_lock(&log
->l_icloglock
);
2852 * Scan all iclogs starting with the one pointed to by the
2853 * log. Reset this starting point each time the log is
2854 * unlocked (during callbacks).
2856 * Keep looping through iclogs until one full pass is made
2857 * without running any callbacks.
2859 first_iclog
= log
->l_iclog
;
2860 iclog
= log
->l_iclog
;
2861 cycled_icloglock
= false;
2866 if (xlog_state_iodone_process_iclog(log
, iclog
,
2870 if (iclog
->ic_state
!= XLOG_STATE_CALLBACK
&&
2871 iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2872 iclog
= iclog
->ic_next
;
2877 * Running callbacks will drop the icloglock which means
2878 * we'll have to run at least one more complete loop.
2880 cycled_icloglock
= true;
2881 xlog_state_do_iclog_callbacks(log
, iclog
, aborted
);
2883 xlog_state_clean_iclog(log
, iclog
);
2884 iclog
= iclog
->ic_next
;
2885 } while (first_iclog
!= iclog
);
2887 if (repeats
> 5000) {
2888 flushcnt
+= repeats
;
2891 "%s: possible infinite loop (%d iterations)",
2892 __func__
, flushcnt
);
2894 } while (!ioerror
&& cycled_icloglock
);
2896 if (log
->l_iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2897 log
->l_iclog
->ic_state
== XLOG_STATE_IOERROR
)
2898 wake_up_all(&log
->l_flush_wait
);
2900 spin_unlock(&log
->l_icloglock
);
2905 * Finish transitioning this iclog to the dirty state.
2907 * Make sure that we completely execute this routine only when this is
2908 * the last call to the iclog. There is a good chance that iclog flushes,
2909 * when we reach the end of the physical log, get turned into 2 separate
2910 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2911 * routine. By using the reference count bwritecnt, we guarantee that only
2912 * the second completion goes through.
2914 * Callbacks could take time, so they are done outside the scope of the
2915 * global state machine log lock.
2918 xlog_state_done_syncing(
2919 struct xlog_in_core
*iclog
,
2922 struct xlog
*log
= iclog
->ic_log
;
2924 spin_lock(&log
->l_icloglock
);
2926 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2929 * If we got an error, either on the first buffer, or in the case of
2930 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2931 * and none should ever be attempted to be written to disk
2934 if (iclog
->ic_state
== XLOG_STATE_SYNCING
)
2935 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2937 ASSERT(iclog
->ic_state
== XLOG_STATE_IOERROR
);
2940 * Someone could be sleeping prior to writing out the next
2941 * iclog buffer, we wake them all, one will get to do the
2942 * I/O, the others get to wait for the result.
2944 wake_up_all(&iclog
->ic_write_wait
);
2945 spin_unlock(&log
->l_icloglock
);
2946 xlog_state_do_callback(log
, aborted
); /* also cleans log */
2947 } /* xlog_state_done_syncing */
2951 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2952 * sleep. We wait on the flush queue on the head iclog as that should be
2953 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2954 * we will wait here and all new writes will sleep until a sync completes.
2956 * The in-core logs are used in a circular fashion. They are not used
2957 * out-of-order even when an iclog past the head is free.
2960 * * log_offset where xlog_write() can start writing into the in-core
2962 * * in-core log pointer to which xlog_write() should write.
2963 * * boolean indicating this is a continued write to an in-core log.
2964 * If this is the last write, then the in-core log's offset field
2965 * needs to be incremented, depending on the amount of data which
2969 xlog_state_get_iclog_space(
2972 struct xlog_in_core
**iclogp
,
2973 struct xlog_ticket
*ticket
,
2974 int *continued_write
,
2978 xlog_rec_header_t
*head
;
2979 xlog_in_core_t
*iclog
;
2982 spin_lock(&log
->l_icloglock
);
2983 if (XLOG_FORCED_SHUTDOWN(log
)) {
2984 spin_unlock(&log
->l_icloglock
);
2988 iclog
= log
->l_iclog
;
2989 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2990 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
2992 /* Wait for log writes to have flushed */
2993 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2997 head
= &iclog
->ic_header
;
2999 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
3000 log_offset
= iclog
->ic_offset
;
3002 /* On the 1st write to an iclog, figure out lsn. This works
3003 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3004 * committing to. If the offset is set, that's how many blocks
3007 if (log_offset
== 0) {
3008 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
3009 xlog_tic_add_region(ticket
,
3011 XLOG_REG_TYPE_LRHEADER
);
3012 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
3013 head
->h_lsn
= cpu_to_be64(
3014 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
3015 ASSERT(log
->l_curr_block
>= 0);
3018 /* If there is enough room to write everything, then do it. Otherwise,
3019 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3020 * bit is on, so this will get flushed out. Don't update ic_offset
3021 * until you know exactly how many bytes get copied. Therefore, wait
3022 * until later to update ic_offset.
3024 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3025 * can fit into remaining data section.
3027 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
3030 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3033 * If we are the only one writing to this iclog, sync it to
3034 * disk. We need to do an atomic compare and decrement here to
3035 * avoid racing with concurrent atomic_dec_and_lock() calls in
3036 * xlog_state_release_iclog() when there is more than one
3037 * reference to the iclog.
3039 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1))
3040 error
= xlog_state_release_iclog(log
, iclog
);
3041 spin_unlock(&log
->l_icloglock
);
3047 /* Do we have enough room to write the full amount in the remainder
3048 * of this iclog? Or must we continue a write on the next iclog and
3049 * mark this iclog as completely taken? In the case where we switch
3050 * iclogs (to mark it taken), this particular iclog will release/sync
3051 * to disk in xlog_write().
3053 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
3054 *continued_write
= 0;
3055 iclog
->ic_offset
+= len
;
3057 *continued_write
= 1;
3058 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3062 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
3063 spin_unlock(&log
->l_icloglock
);
3065 *logoffsetp
= log_offset
;
3067 } /* xlog_state_get_iclog_space */
3069 /* The first cnt-1 times through here we don't need to
3070 * move the grant write head because the permanent
3071 * reservation has reserved cnt times the unit amount.
3072 * Release part of current permanent unit reservation and
3073 * reset current reservation to be one units worth. Also
3074 * move grant reservation head forward.
3077 xlog_regrant_reserve_log_space(
3079 struct xlog_ticket
*ticket
)
3081 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
3083 if (ticket
->t_cnt
> 0)
3086 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
3087 ticket
->t_curr_res
);
3088 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
3089 ticket
->t_curr_res
);
3090 ticket
->t_curr_res
= ticket
->t_unit_res
;
3091 xlog_tic_reset_res(ticket
);
3093 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3095 /* just return if we still have some of the pre-reserved space */
3096 if (ticket
->t_cnt
> 0)
3099 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3100 ticket
->t_unit_res
);
3102 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3104 ticket
->t_curr_res
= ticket
->t_unit_res
;
3105 xlog_tic_reset_res(ticket
);
3106 } /* xlog_regrant_reserve_log_space */
3110 * Give back the space left from a reservation.
3112 * All the information we need to make a correct determination of space left
3113 * is present. For non-permanent reservations, things are quite easy. The
3114 * count should have been decremented to zero. We only need to deal with the
3115 * space remaining in the current reservation part of the ticket. If the
3116 * ticket contains a permanent reservation, there may be left over space which
3117 * needs to be released. A count of N means that N-1 refills of the current
3118 * reservation can be done before we need to ask for more space. The first
3119 * one goes to fill up the first current reservation. Once we run out of
3120 * space, the count will stay at zero and the only space remaining will be
3121 * in the current reservation field.
3124 xlog_ungrant_log_space(
3126 struct xlog_ticket
*ticket
)
3130 if (ticket
->t_cnt
> 0)
3133 trace_xfs_log_ungrant_enter(log
, ticket
);
3134 trace_xfs_log_ungrant_sub(log
, ticket
);
3137 * If this is a permanent reservation ticket, we may be able to free
3138 * up more space based on the remaining count.
3140 bytes
= ticket
->t_curr_res
;
3141 if (ticket
->t_cnt
> 0) {
3142 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3143 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3146 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3147 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3149 trace_xfs_log_ungrant_exit(log
, ticket
);
3151 xfs_log_space_wake(log
->l_mp
);
3155 * This routine will mark the current iclog in the ring as WANT_SYNC
3156 * and move the current iclog pointer to the next iclog in the ring.
3157 * When this routine is called from xlog_state_get_iclog_space(), the
3158 * exact size of the iclog has not yet been determined. All we know is
3159 * that every data block. We have run out of space in this log record.
3162 xlog_state_switch_iclogs(
3164 struct xlog_in_core
*iclog
,
3167 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3169 eventual_size
= iclog
->ic_offset
;
3170 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3171 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3172 log
->l_prev_block
= log
->l_curr_block
;
3173 log
->l_prev_cycle
= log
->l_curr_cycle
;
3175 /* roll log?: ic_offset changed later */
3176 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3178 /* Round up to next log-sunit */
3179 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3180 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3181 uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3182 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3185 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3187 * Rewind the current block before the cycle is bumped to make
3188 * sure that the combined LSN never transiently moves forward
3189 * when the log wraps to the next cycle. This is to support the
3190 * unlocked sample of these fields from xlog_valid_lsn(). Most
3191 * other cases should acquire l_icloglock.
3193 log
->l_curr_block
-= log
->l_logBBsize
;
3194 ASSERT(log
->l_curr_block
>= 0);
3196 log
->l_curr_cycle
++;
3197 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3198 log
->l_curr_cycle
++;
3200 ASSERT(iclog
== log
->l_iclog
);
3201 log
->l_iclog
= iclog
->ic_next
;
3202 } /* xlog_state_switch_iclogs */
3205 * Write out all data in the in-core log as of this exact moment in time.
3207 * Data may be written to the in-core log during this call. However,
3208 * we don't guarantee this data will be written out. A change from past
3209 * implementation means this routine will *not* write out zero length LRs.
3211 * Basically, we try and perform an intelligent scan of the in-core logs.
3212 * If we determine there is no flushable data, we just return. There is no
3213 * flushable data if:
3215 * 1. the current iclog is active and has no data; the previous iclog
3216 * is in the active or dirty state.
3217 * 2. the current iclog is drity, and the previous iclog is in the
3218 * active or dirty state.
3222 * 1. the current iclog is not in the active nor dirty state.
3223 * 2. the current iclog dirty, and the previous iclog is not in the
3224 * active nor dirty state.
3225 * 3. the current iclog is active, and there is another thread writing
3226 * to this particular iclog.
3227 * 4. a) the current iclog is active and has no other writers
3228 * b) when we return from flushing out this iclog, it is still
3229 * not in the active nor dirty state.
3233 struct xfs_mount
*mp
,
3236 struct xlog
*log
= mp
->m_log
;
3237 struct xlog_in_core
*iclog
;
3240 XFS_STATS_INC(mp
, xs_log_force
);
3241 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3243 xlog_cil_force(log
);
3245 spin_lock(&log
->l_icloglock
);
3246 iclog
= log
->l_iclog
;
3247 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3250 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3251 (iclog
->ic_state
== XLOG_STATE_ACTIVE
&&
3252 atomic_read(&iclog
->ic_refcnt
) == 0 && iclog
->ic_offset
== 0)) {
3254 * If the head is dirty or (active and empty), then we need to
3255 * look at the previous iclog.
3257 * If the previous iclog is active or dirty we are done. There
3258 * is nothing to sync out. Otherwise, we attach ourselves to the
3259 * previous iclog and go to sleep.
3261 iclog
= iclog
->ic_prev
;
3262 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3263 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3265 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3266 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3268 * We are the only one with access to this iclog.
3270 * Flush it out now. There should be a roundoff of zero
3271 * to show that someone has already taken care of the
3272 * roundoff from the previous sync.
3274 atomic_inc(&iclog
->ic_refcnt
);
3275 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3276 xlog_state_switch_iclogs(log
, iclog
, 0);
3277 if (xlog_state_release_iclog(log
, iclog
))
3280 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
||
3281 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3285 * Someone else is writing to this iclog.
3287 * Use its call to flush out the data. However, the
3288 * other thread may not force out this LR, so we mark
3291 xlog_state_switch_iclogs(log
, iclog
, 0);
3295 * If the head iclog is not active nor dirty, we just attach
3296 * ourselves to the head and go to sleep if necessary.
3301 if (!(flags
& XFS_LOG_SYNC
))
3304 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3306 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3307 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3308 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3313 spin_unlock(&log
->l_icloglock
);
3316 spin_unlock(&log
->l_icloglock
);
3321 __xfs_log_force_lsn(
3322 struct xfs_mount
*mp
,
3328 struct xlog
*log
= mp
->m_log
;
3329 struct xlog_in_core
*iclog
;
3331 spin_lock(&log
->l_icloglock
);
3332 iclog
= log
->l_iclog
;
3333 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3336 while (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3337 iclog
= iclog
->ic_next
;
3338 if (iclog
== log
->l_iclog
)
3342 if (iclog
->ic_state
== XLOG_STATE_DIRTY
)
3345 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3347 * We sleep here if we haven't already slept (e.g. this is the
3348 * first time we've looked at the correct iclog buf) and the
3349 * buffer before us is going to be sync'ed. The reason for this
3350 * is that if we are doing sync transactions here, by waiting
3351 * for the previous I/O to complete, we can allow a few more
3352 * transactions into this iclog before we close it down.
3354 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3355 * refcnt so we can release the log (which drops the ref count).
3356 * The state switch keeps new transaction commits from using
3357 * this buffer. When the current commits finish writing into
3358 * the buffer, the refcount will drop to zero and the buffer
3361 if (!already_slept
&&
3362 (iclog
->ic_prev
->ic_state
== XLOG_STATE_WANT_SYNC
||
3363 iclog
->ic_prev
->ic_state
== XLOG_STATE_SYNCING
)) {
3364 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3366 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3370 atomic_inc(&iclog
->ic_refcnt
);
3371 xlog_state_switch_iclogs(log
, iclog
, 0);
3372 if (xlog_state_release_iclog(log
, iclog
))
3378 if (!(flags
& XFS_LOG_SYNC
) ||
3379 (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3380 iclog
->ic_state
== XLOG_STATE_DIRTY
))
3383 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3386 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3387 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3388 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3393 spin_unlock(&log
->l_icloglock
);
3396 spin_unlock(&log
->l_icloglock
);
3401 * Force the in-core log to disk for a specific LSN.
3403 * Find in-core log with lsn.
3404 * If it is in the DIRTY state, just return.
3405 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3406 * state and go to sleep or return.
3407 * If it is in any other state, go to sleep or return.
3409 * Synchronous forces are implemented with a wait queue. All callers trying
3410 * to force a given lsn to disk must wait on the queue attached to the
3411 * specific in-core log. When given in-core log finally completes its write
3412 * to disk, that thread will wake up all threads waiting on the queue.
3416 struct xfs_mount
*mp
,
3424 XFS_STATS_INC(mp
, xs_log_force
);
3425 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3427 lsn
= xlog_cil_force_lsn(mp
->m_log
, lsn
);
3428 if (lsn
== NULLCOMMITLSN
)
3431 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, false);
3433 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, true);
3438 * Called when we want to mark the current iclog as being ready to sync to
3442 xlog_state_want_sync(
3444 struct xlog_in_core
*iclog
)
3446 assert_spin_locked(&log
->l_icloglock
);
3448 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3449 xlog_state_switch_iclogs(log
, iclog
, 0);
3451 ASSERT(iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
3452 iclog
->ic_state
== XLOG_STATE_IOERROR
);
3457 /*****************************************************************************
3461 *****************************************************************************
3465 * Free a used ticket when its refcount falls to zero.
3469 xlog_ticket_t
*ticket
)
3471 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3472 if (atomic_dec_and_test(&ticket
->t_ref
))
3473 kmem_cache_free(xfs_log_ticket_zone
, ticket
);
3478 xlog_ticket_t
*ticket
)
3480 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3481 atomic_inc(&ticket
->t_ref
);
3486 * Figure out the total log space unit (in bytes) that would be
3487 * required for a log ticket.
3490 xfs_log_calc_unit_res(
3491 struct xfs_mount
*mp
,
3494 struct xlog
*log
= mp
->m_log
;
3499 * Permanent reservations have up to 'cnt'-1 active log operations
3500 * in the log. A unit in this case is the amount of space for one
3501 * of these log operations. Normal reservations have a cnt of 1
3502 * and their unit amount is the total amount of space required.
3504 * The following lines of code account for non-transaction data
3505 * which occupy space in the on-disk log.
3507 * Normal form of a transaction is:
3508 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3509 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3511 * We need to account for all the leadup data and trailer data
3512 * around the transaction data.
3513 * And then we need to account for the worst case in terms of using
3515 * The worst case will happen if:
3516 * - the placement of the transaction happens to be such that the
3517 * roundoff is at its maximum
3518 * - the transaction data is synced before the commit record is synced
3519 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3520 * Therefore the commit record is in its own Log Record.
3521 * This can happen as the commit record is called with its
3522 * own region to xlog_write().
3523 * This then means that in the worst case, roundoff can happen for
3524 * the commit-rec as well.
3525 * The commit-rec is smaller than padding in this scenario and so it is
3526 * not added separately.
3529 /* for trans header */
3530 unit_bytes
+= sizeof(xlog_op_header_t
);
3531 unit_bytes
+= sizeof(xfs_trans_header_t
);
3534 unit_bytes
+= sizeof(xlog_op_header_t
);
3537 * for LR headers - the space for data in an iclog is the size minus
3538 * the space used for the headers. If we use the iclog size, then we
3539 * undercalculate the number of headers required.
3541 * Furthermore - the addition of op headers for split-recs might
3542 * increase the space required enough to require more log and op
3543 * headers, so take that into account too.
3545 * IMPORTANT: This reservation makes the assumption that if this
3546 * transaction is the first in an iclog and hence has the LR headers
3547 * accounted to it, then the remaining space in the iclog is
3548 * exclusively for this transaction. i.e. if the transaction is larger
3549 * than the iclog, it will be the only thing in that iclog.
3550 * Fundamentally, this means we must pass the entire log vector to
3551 * xlog_write to guarantee this.
3553 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3554 num_headers
= howmany(unit_bytes
, iclog_space
);
3556 /* for split-recs - ophdrs added when data split over LRs */
3557 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3559 /* add extra header reservations if we overrun */
3560 while (!num_headers
||
3561 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3562 unit_bytes
+= sizeof(xlog_op_header_t
);
3565 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3567 /* for commit-rec LR header - note: padding will subsume the ophdr */
3568 unit_bytes
+= log
->l_iclog_hsize
;
3570 /* for roundoff padding for transaction data and one for commit record */
3571 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3572 /* log su roundoff */
3573 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3576 unit_bytes
+= 2 * BBSIZE
;
3583 * Allocate and initialise a new log ticket.
3585 struct xlog_ticket
*
3592 xfs_km_flags_t alloc_flags
)
3594 struct xlog_ticket
*tic
;
3597 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3601 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3603 atomic_set(&tic
->t_ref
, 1);
3604 tic
->t_task
= current
;
3605 INIT_LIST_HEAD(&tic
->t_queue
);
3606 tic
->t_unit_res
= unit_res
;
3607 tic
->t_curr_res
= unit_res
;
3610 tic
->t_tid
= prandom_u32();
3611 tic
->t_clientid
= client
;
3612 tic
->t_flags
= XLOG_TIC_INITED
;
3614 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3616 xlog_tic_reset_res(tic
);
3622 /******************************************************************************
3624 * Log debug routines
3626 ******************************************************************************
3630 * Make sure that the destination ptr is within the valid data region of
3631 * one of the iclogs. This uses backup pointers stored in a different
3632 * part of the log in case we trash the log structure.
3635 xlog_verify_dest_ptr(
3642 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3643 if (ptr
>= log
->l_iclog_bak
[i
] &&
3644 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3649 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3653 * Check to make sure the grant write head didn't just over lap the tail. If
3654 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3655 * the cycles differ by exactly one and check the byte count.
3657 * This check is run unlocked, so can give false positives. Rather than assert
3658 * on failures, use a warn-once flag and a panic tag to allow the admin to
3659 * determine if they want to panic the machine when such an error occurs. For
3660 * debug kernels this will have the same effect as using an assert but, unlinke
3661 * an assert, it can be turned off at runtime.
3664 xlog_verify_grant_tail(
3667 int tail_cycle
, tail_blocks
;
3670 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3671 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3672 if (tail_cycle
!= cycle
) {
3673 if (cycle
- 1 != tail_cycle
&&
3674 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3675 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3676 "%s: cycle - 1 != tail_cycle", __func__
);
3677 log
->l_flags
|= XLOG_TAIL_WARN
;
3680 if (space
> BBTOB(tail_blocks
) &&
3681 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3682 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3683 "%s: space > BBTOB(tail_blocks)", __func__
);
3684 log
->l_flags
|= XLOG_TAIL_WARN
;
3689 /* check if it will fit */
3691 xlog_verify_tail_lsn(
3693 struct xlog_in_core
*iclog
,
3698 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3700 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3701 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3702 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3704 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3706 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3707 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3709 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3710 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3711 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3713 } /* xlog_verify_tail_lsn */
3716 * Perform a number of checks on the iclog before writing to disk.
3718 * 1. Make sure the iclogs are still circular
3719 * 2. Make sure we have a good magic number
3720 * 3. Make sure we don't have magic numbers in the data
3721 * 4. Check fields of each log operation header for:
3722 * A. Valid client identifier
3723 * B. tid ptr value falls in valid ptr space (user space code)
3724 * C. Length in log record header is correct according to the
3725 * individual operation headers within record.
3726 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3727 * log, check the preceding blocks of the physical log to make sure all
3728 * the cycle numbers agree with the current cycle number.
3733 struct xlog_in_core
*iclog
,
3736 xlog_op_header_t
*ophead
;
3737 xlog_in_core_t
*icptr
;
3738 xlog_in_core_2_t
*xhdr
;
3739 void *base_ptr
, *ptr
, *p
;
3740 ptrdiff_t field_offset
;
3742 int len
, i
, j
, k
, op_len
;
3745 /* check validity of iclog pointers */
3746 spin_lock(&log
->l_icloglock
);
3747 icptr
= log
->l_iclog
;
3748 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3751 if (icptr
!= log
->l_iclog
)
3752 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3753 spin_unlock(&log
->l_icloglock
);
3755 /* check log magic numbers */
3756 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3757 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3759 base_ptr
= ptr
= &iclog
->ic_header
;
3760 p
= &iclog
->ic_header
;
3761 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3762 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3763 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3768 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3769 base_ptr
= ptr
= iclog
->ic_datap
;
3771 xhdr
= iclog
->ic_data
;
3772 for (i
= 0; i
< len
; i
++) {
3775 /* clientid is only 1 byte */
3776 p
= &ophead
->oh_clientid
;
3777 field_offset
= p
- base_ptr
;
3778 if (field_offset
& 0x1ff) {
3779 clientid
= ophead
->oh_clientid
;
3781 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3782 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3783 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3784 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3785 clientid
= xlog_get_client_id(
3786 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3788 clientid
= xlog_get_client_id(
3789 iclog
->ic_header
.h_cycle_data
[idx
]);
3792 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3794 "%s: invalid clientid %d op "PTR_FMT
" offset 0x%lx",
3795 __func__
, clientid
, ophead
,
3796 (unsigned long)field_offset
);
3799 p
= &ophead
->oh_len
;
3800 field_offset
= p
- base_ptr
;
3801 if (field_offset
& 0x1ff) {
3802 op_len
= be32_to_cpu(ophead
->oh_len
);
3804 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3805 (uintptr_t)iclog
->ic_datap
);
3806 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3807 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3808 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3809 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3811 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3814 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3816 } /* xlog_verify_iclog */
3820 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3826 xlog_in_core_t
*iclog
, *ic
;
3828 iclog
= log
->l_iclog
;
3829 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
3831 * Mark all the incore logs IOERROR.
3832 * From now on, no log flushes will result.
3836 ic
->ic_state
= XLOG_STATE_IOERROR
;
3838 } while (ic
!= iclog
);
3842 * Return non-zero, if state transition has already happened.
3848 * This is called from xfs_force_shutdown, when we're forcibly
3849 * shutting down the filesystem, typically because of an IO error.
3850 * Our main objectives here are to make sure that:
3851 * a. if !logerror, flush the logs to disk. Anything modified
3852 * after this is ignored.
3853 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3854 * parties to find out, 'atomically'.
3855 * c. those who're sleeping on log reservations, pinned objects and
3856 * other resources get woken up, and be told the bad news.
3857 * d. nothing new gets queued up after (b) and (c) are done.
3859 * Note: for the !logerror case we need to flush the regions held in memory out
3860 * to disk first. This needs to be done before the log is marked as shutdown,
3861 * otherwise the iclog writes will fail.
3864 xfs_log_force_umount(
3865 struct xfs_mount
*mp
,
3874 * If this happens during log recovery, don't worry about
3875 * locking; the log isn't open for business yet.
3878 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3879 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3881 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3886 * Somebody could've already done the hard work for us.
3887 * No need to get locks for this.
3889 if (logerror
&& log
->l_iclog
->ic_state
== XLOG_STATE_IOERROR
) {
3890 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3895 * Flush all the completed transactions to disk before marking the log
3896 * being shut down. We need to do it in this order to ensure that
3897 * completed operations are safely on disk before we shut down, and that
3898 * we don't have to issue any buffer IO after the shutdown flags are set
3899 * to guarantee this.
3902 xfs_log_force(mp
, XFS_LOG_SYNC
);
3905 * mark the filesystem and the as in a shutdown state and wake
3906 * everybody up to tell them the bad news.
3908 spin_lock(&log
->l_icloglock
);
3909 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3911 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3914 * Mark the log and the iclogs with IO error flags to prevent any
3915 * further log IO from being issued or completed.
3917 log
->l_flags
|= XLOG_IO_ERROR
;
3918 retval
= xlog_state_ioerror(log
);
3919 spin_unlock(&log
->l_icloglock
);
3922 * We don't want anybody waiting for log reservations after this. That
3923 * means we have to wake up everybody queued up on reserveq as well as
3924 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3925 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3926 * action is protected by the grant locks.
3928 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3929 xlog_grant_head_wake_all(&log
->l_write_head
);
3932 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3933 * as if the log writes were completed. The abort handling in the log
3934 * item committed callback functions will do this again under lock to
3937 spin_lock(&log
->l_cilp
->xc_push_lock
);
3938 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
3939 spin_unlock(&log
->l_cilp
->xc_push_lock
);
3940 xlog_state_do_callback(log
, true);
3942 /* return non-zero if log IOERROR transition had already happened */
3950 xlog_in_core_t
*iclog
;
3952 iclog
= log
->l_iclog
;
3954 /* endianness does not matter here, zero is zero in
3957 if (iclog
->ic_header
.h_num_logops
)
3959 iclog
= iclog
->ic_next
;
3960 } while (iclog
!= log
->l_iclog
);
3965 * Verify that an LSN stamped into a piece of metadata is valid. This is
3966 * intended for use in read verifiers on v5 superblocks.
3970 struct xfs_mount
*mp
,
3973 struct xlog
*log
= mp
->m_log
;
3977 * norecovery mode skips mount-time log processing and unconditionally
3978 * resets the in-core LSN. We can't validate in this mode, but
3979 * modifications are not allowed anyways so just return true.
3981 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
3985 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3986 * handled by recovery and thus safe to ignore here.
3988 if (lsn
== NULLCOMMITLSN
)
3991 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
3993 /* warn the user about what's gone wrong before verifier failure */
3995 spin_lock(&log
->l_icloglock
);
3997 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3998 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3999 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
4000 log
->l_curr_cycle
, log
->l_curr_block
);
4001 spin_unlock(&log
->l_icloglock
);
4008 xfs_log_in_recovery(
4009 struct xfs_mount
*mp
)
4011 struct xlog
*log
= mp
->m_log
;
4013 return log
->l_flags
& XLOG_ACTIVE_RECOVERY
;