drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / xfs / xfs_log_recover.c
blob25cfc85dbaa7bd5e6f54d3fdcb050bac579d928d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_inode_item.h"
22 #include "xfs_extfree_item.h"
23 #include "xfs_trans_priv.h"
24 #include "xfs_alloc.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_quota.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_error.h"
31 #include "xfs_dir2.h"
32 #include "xfs_rmap_item.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_refcount_item.h"
35 #include "xfs_bmap_item.h"
37 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
39 STATIC int
40 xlog_find_zeroed(
41 struct xlog *,
42 xfs_daddr_t *);
43 STATIC int
44 xlog_clear_stale_blocks(
45 struct xlog *,
46 xfs_lsn_t);
47 #if defined(DEBUG)
48 STATIC void
49 xlog_recover_check_summary(
50 struct xlog *);
51 #else
52 #define xlog_recover_check_summary(log)
53 #endif
54 STATIC int
55 xlog_do_recovery_pass(
56 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
59 * This structure is used during recovery to record the buf log items which
60 * have been canceled and should not be replayed.
62 struct xfs_buf_cancel {
63 xfs_daddr_t bc_blkno;
64 uint bc_len;
65 int bc_refcount;
66 struct list_head bc_list;
70 * Sector aligned buffer routines for buffer create/read/write/access
74 * Verify the log-relative block number and length in basic blocks are valid for
75 * an operation involving the given XFS log buffer. Returns true if the fields
76 * are valid, false otherwise.
78 static inline bool
79 xlog_verify_bno(
80 struct xlog *log,
81 xfs_daddr_t blk_no,
82 int bbcount)
84 if (blk_no < 0 || blk_no >= log->l_logBBsize)
85 return false;
86 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
87 return false;
88 return true;
92 * Allocate a buffer to hold log data. The buffer needs to be able to map to
93 * a range of nbblks basic blocks at any valid offset within the log.
95 static char *
96 xlog_alloc_buffer(
97 struct xlog *log,
98 int nbblks)
100 int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
103 * Pass log block 0 since we don't have an addr yet, buffer will be
104 * verified on read.
106 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 nbblks);
109 return NULL;
113 * We do log I/O in units of log sectors (a power-of-2 multiple of the
114 * basic block size), so we round up the requested size to accommodate
115 * the basic blocks required for complete log sectors.
117 * In addition, the buffer may be used for a non-sector-aligned block
118 * offset, in which case an I/O of the requested size could extend
119 * beyond the end of the buffer. If the requested size is only 1 basic
120 * block it will never straddle a sector boundary, so this won't be an
121 * issue. Nor will this be a problem if the log I/O is done in basic
122 * blocks (sector size 1). But otherwise we extend the buffer by one
123 * extra log sector to ensure there's space to accommodate this
124 * possibility.
126 if (nbblks > 1 && log->l_sectBBsize > 1)
127 nbblks += log->l_sectBBsize;
128 nbblks = round_up(nbblks, log->l_sectBBsize);
129 return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
133 * Return the address of the start of the given block number's data
134 * in a log buffer. The buffer covers a log sector-aligned region.
136 static inline unsigned int
137 xlog_align(
138 struct xlog *log,
139 xfs_daddr_t blk_no)
141 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
144 static int
145 xlog_do_io(
146 struct xlog *log,
147 xfs_daddr_t blk_no,
148 unsigned int nbblks,
149 char *data,
150 unsigned int op)
152 int error;
154 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
155 xfs_warn(log->l_mp,
156 "Invalid log block/length (0x%llx, 0x%x) for buffer",
157 blk_no, nbblks);
158 return -EFSCORRUPTED;
161 blk_no = round_down(blk_no, log->l_sectBBsize);
162 nbblks = round_up(nbblks, log->l_sectBBsize);
163 ASSERT(nbblks > 0);
165 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
166 BBTOB(nbblks), data, op);
167 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
168 xfs_alert(log->l_mp,
169 "log recovery %s I/O error at daddr 0x%llx len %d error %d",
170 op == REQ_OP_WRITE ? "write" : "read",
171 blk_no, nbblks, error);
173 return error;
176 STATIC int
177 xlog_bread_noalign(
178 struct xlog *log,
179 xfs_daddr_t blk_no,
180 int nbblks,
181 char *data)
183 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
186 STATIC int
187 xlog_bread(
188 struct xlog *log,
189 xfs_daddr_t blk_no,
190 int nbblks,
191 char *data,
192 char **offset)
194 int error;
196 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
197 if (!error)
198 *offset = data + xlog_align(log, blk_no);
199 return error;
202 STATIC int
203 xlog_bwrite(
204 struct xlog *log,
205 xfs_daddr_t blk_no,
206 int nbblks,
207 char *data)
209 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
212 #ifdef DEBUG
214 * dump debug superblock and log record information
216 STATIC void
217 xlog_header_check_dump(
218 xfs_mount_t *mp,
219 xlog_rec_header_t *head)
221 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
222 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
223 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
224 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
226 #else
227 #define xlog_header_check_dump(mp, head)
228 #endif
231 * check log record header for recovery
233 STATIC int
234 xlog_header_check_recover(
235 xfs_mount_t *mp,
236 xlog_rec_header_t *head)
238 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
241 * IRIX doesn't write the h_fmt field and leaves it zeroed
242 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
243 * a dirty log created in IRIX.
245 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
246 xfs_warn(mp,
247 "dirty log written in incompatible format - can't recover");
248 xlog_header_check_dump(mp, head);
249 return -EFSCORRUPTED;
251 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
252 &head->h_fs_uuid))) {
253 xfs_warn(mp,
254 "dirty log entry has mismatched uuid - can't recover");
255 xlog_header_check_dump(mp, head);
256 return -EFSCORRUPTED;
258 return 0;
262 * read the head block of the log and check the header
264 STATIC int
265 xlog_header_check_mount(
266 xfs_mount_t *mp,
267 xlog_rec_header_t *head)
269 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
271 if (uuid_is_null(&head->h_fs_uuid)) {
273 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
274 * h_fs_uuid is null, we assume this log was last mounted
275 * by IRIX and continue.
277 xfs_warn(mp, "null uuid in log - IRIX style log");
278 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
279 &head->h_fs_uuid))) {
280 xfs_warn(mp, "log has mismatched uuid - can't recover");
281 xlog_header_check_dump(mp, head);
282 return -EFSCORRUPTED;
284 return 0;
287 STATIC void
288 xlog_recover_iodone(
289 struct xfs_buf *bp)
291 if (bp->b_error) {
293 * We're not going to bother about retrying
294 * this during recovery. One strike!
296 if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) {
297 xfs_buf_ioerror_alert(bp, __this_address);
298 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
303 * On v5 supers, a bli could be attached to update the metadata LSN.
304 * Clean it up.
306 if (bp->b_log_item)
307 xfs_buf_item_relse(bp);
308 ASSERT(bp->b_log_item == NULL);
310 bp->b_iodone = NULL;
311 xfs_buf_ioend(bp);
315 * This routine finds (to an approximation) the first block in the physical
316 * log which contains the given cycle. It uses a binary search algorithm.
317 * Note that the algorithm can not be perfect because the disk will not
318 * necessarily be perfect.
320 STATIC int
321 xlog_find_cycle_start(
322 struct xlog *log,
323 char *buffer,
324 xfs_daddr_t first_blk,
325 xfs_daddr_t *last_blk,
326 uint cycle)
328 char *offset;
329 xfs_daddr_t mid_blk;
330 xfs_daddr_t end_blk;
331 uint mid_cycle;
332 int error;
334 end_blk = *last_blk;
335 mid_blk = BLK_AVG(first_blk, end_blk);
336 while (mid_blk != first_blk && mid_blk != end_blk) {
337 error = xlog_bread(log, mid_blk, 1, buffer, &offset);
338 if (error)
339 return error;
340 mid_cycle = xlog_get_cycle(offset);
341 if (mid_cycle == cycle)
342 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
343 else
344 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
345 mid_blk = BLK_AVG(first_blk, end_blk);
347 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
348 (mid_blk == end_blk && mid_blk-1 == first_blk));
350 *last_blk = end_blk;
352 return 0;
356 * Check that a range of blocks does not contain stop_on_cycle_no.
357 * Fill in *new_blk with the block offset where such a block is
358 * found, or with -1 (an invalid block number) if there is no such
359 * block in the range. The scan needs to occur from front to back
360 * and the pointer into the region must be updated since a later
361 * routine will need to perform another test.
363 STATIC int
364 xlog_find_verify_cycle(
365 struct xlog *log,
366 xfs_daddr_t start_blk,
367 int nbblks,
368 uint stop_on_cycle_no,
369 xfs_daddr_t *new_blk)
371 xfs_daddr_t i, j;
372 uint cycle;
373 char *buffer;
374 xfs_daddr_t bufblks;
375 char *buf = NULL;
376 int error = 0;
379 * Greedily allocate a buffer big enough to handle the full
380 * range of basic blocks we'll be examining. If that fails,
381 * try a smaller size. We need to be able to read at least
382 * a log sector, or we're out of luck.
384 bufblks = 1 << ffs(nbblks);
385 while (bufblks > log->l_logBBsize)
386 bufblks >>= 1;
387 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
388 bufblks >>= 1;
389 if (bufblks < log->l_sectBBsize)
390 return -ENOMEM;
393 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
394 int bcount;
396 bcount = min(bufblks, (start_blk + nbblks - i));
398 error = xlog_bread(log, i, bcount, buffer, &buf);
399 if (error)
400 goto out;
402 for (j = 0; j < bcount; j++) {
403 cycle = xlog_get_cycle(buf);
404 if (cycle == stop_on_cycle_no) {
405 *new_blk = i+j;
406 goto out;
409 buf += BBSIZE;
413 *new_blk = -1;
415 out:
416 kmem_free(buffer);
417 return error;
421 * Potentially backup over partial log record write.
423 * In the typical case, last_blk is the number of the block directly after
424 * a good log record. Therefore, we subtract one to get the block number
425 * of the last block in the given buffer. extra_bblks contains the number
426 * of blocks we would have read on a previous read. This happens when the
427 * last log record is split over the end of the physical log.
429 * extra_bblks is the number of blocks potentially verified on a previous
430 * call to this routine.
432 STATIC int
433 xlog_find_verify_log_record(
434 struct xlog *log,
435 xfs_daddr_t start_blk,
436 xfs_daddr_t *last_blk,
437 int extra_bblks)
439 xfs_daddr_t i;
440 char *buffer;
441 char *offset = NULL;
442 xlog_rec_header_t *head = NULL;
443 int error = 0;
444 int smallmem = 0;
445 int num_blks = *last_blk - start_blk;
446 int xhdrs;
448 ASSERT(start_blk != 0 || *last_blk != start_blk);
450 buffer = xlog_alloc_buffer(log, num_blks);
451 if (!buffer) {
452 buffer = xlog_alloc_buffer(log, 1);
453 if (!buffer)
454 return -ENOMEM;
455 smallmem = 1;
456 } else {
457 error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
458 if (error)
459 goto out;
460 offset += ((num_blks - 1) << BBSHIFT);
463 for (i = (*last_blk) - 1; i >= 0; i--) {
464 if (i < start_blk) {
465 /* valid log record not found */
466 xfs_warn(log->l_mp,
467 "Log inconsistent (didn't find previous header)");
468 ASSERT(0);
469 error = -EFSCORRUPTED;
470 goto out;
473 if (smallmem) {
474 error = xlog_bread(log, i, 1, buffer, &offset);
475 if (error)
476 goto out;
479 head = (xlog_rec_header_t *)offset;
481 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
482 break;
484 if (!smallmem)
485 offset -= BBSIZE;
489 * We hit the beginning of the physical log & still no header. Return
490 * to caller. If caller can handle a return of -1, then this routine
491 * will be called again for the end of the physical log.
493 if (i == -1) {
494 error = 1;
495 goto out;
499 * We have the final block of the good log (the first block
500 * of the log record _before_ the head. So we check the uuid.
502 if ((error = xlog_header_check_mount(log->l_mp, head)))
503 goto out;
506 * We may have found a log record header before we expected one.
507 * last_blk will be the 1st block # with a given cycle #. We may end
508 * up reading an entire log record. In this case, we don't want to
509 * reset last_blk. Only when last_blk points in the middle of a log
510 * record do we update last_blk.
512 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
513 uint h_size = be32_to_cpu(head->h_size);
515 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
516 if (h_size % XLOG_HEADER_CYCLE_SIZE)
517 xhdrs++;
518 } else {
519 xhdrs = 1;
522 if (*last_blk - i + extra_bblks !=
523 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
524 *last_blk = i;
526 out:
527 kmem_free(buffer);
528 return error;
532 * Head is defined to be the point of the log where the next log write
533 * could go. This means that incomplete LR writes at the end are
534 * eliminated when calculating the head. We aren't guaranteed that previous
535 * LR have complete transactions. We only know that a cycle number of
536 * current cycle number -1 won't be present in the log if we start writing
537 * from our current block number.
539 * last_blk contains the block number of the first block with a given
540 * cycle number.
542 * Return: zero if normal, non-zero if error.
544 STATIC int
545 xlog_find_head(
546 struct xlog *log,
547 xfs_daddr_t *return_head_blk)
549 char *buffer;
550 char *offset;
551 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
552 int num_scan_bblks;
553 uint first_half_cycle, last_half_cycle;
554 uint stop_on_cycle;
555 int error, log_bbnum = log->l_logBBsize;
557 /* Is the end of the log device zeroed? */
558 error = xlog_find_zeroed(log, &first_blk);
559 if (error < 0) {
560 xfs_warn(log->l_mp, "empty log check failed");
561 return error;
563 if (error == 1) {
564 *return_head_blk = first_blk;
566 /* Is the whole lot zeroed? */
567 if (!first_blk) {
568 /* Linux XFS shouldn't generate totally zeroed logs -
569 * mkfs etc write a dummy unmount record to a fresh
570 * log so we can store the uuid in there
572 xfs_warn(log->l_mp, "totally zeroed log");
575 return 0;
578 first_blk = 0; /* get cycle # of 1st block */
579 buffer = xlog_alloc_buffer(log, 1);
580 if (!buffer)
581 return -ENOMEM;
583 error = xlog_bread(log, 0, 1, buffer, &offset);
584 if (error)
585 goto out_free_buffer;
587 first_half_cycle = xlog_get_cycle(offset);
589 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
590 error = xlog_bread(log, last_blk, 1, buffer, &offset);
591 if (error)
592 goto out_free_buffer;
594 last_half_cycle = xlog_get_cycle(offset);
595 ASSERT(last_half_cycle != 0);
598 * If the 1st half cycle number is equal to the last half cycle number,
599 * then the entire log is stamped with the same cycle number. In this
600 * case, head_blk can't be set to zero (which makes sense). The below
601 * math doesn't work out properly with head_blk equal to zero. Instead,
602 * we set it to log_bbnum which is an invalid block number, but this
603 * value makes the math correct. If head_blk doesn't changed through
604 * all the tests below, *head_blk is set to zero at the very end rather
605 * than log_bbnum. In a sense, log_bbnum and zero are the same block
606 * in a circular file.
608 if (first_half_cycle == last_half_cycle) {
610 * In this case we believe that the entire log should have
611 * cycle number last_half_cycle. We need to scan backwards
612 * from the end verifying that there are no holes still
613 * containing last_half_cycle - 1. If we find such a hole,
614 * then the start of that hole will be the new head. The
615 * simple case looks like
616 * x | x ... | x - 1 | x
617 * Another case that fits this picture would be
618 * x | x + 1 | x ... | x
619 * In this case the head really is somewhere at the end of the
620 * log, as one of the latest writes at the beginning was
621 * incomplete.
622 * One more case is
623 * x | x + 1 | x ... | x - 1 | x
624 * This is really the combination of the above two cases, and
625 * the head has to end up at the start of the x-1 hole at the
626 * end of the log.
628 * In the 256k log case, we will read from the beginning to the
629 * end of the log and search for cycle numbers equal to x-1.
630 * We don't worry about the x+1 blocks that we encounter,
631 * because we know that they cannot be the head since the log
632 * started with x.
634 head_blk = log_bbnum;
635 stop_on_cycle = last_half_cycle - 1;
636 } else {
638 * In this case we want to find the first block with cycle
639 * number matching last_half_cycle. We expect the log to be
640 * some variation on
641 * x + 1 ... | x ... | x
642 * The first block with cycle number x (last_half_cycle) will
643 * be where the new head belongs. First we do a binary search
644 * for the first occurrence of last_half_cycle. The binary
645 * search may not be totally accurate, so then we scan back
646 * from there looking for occurrences of last_half_cycle before
647 * us. If that backwards scan wraps around the beginning of
648 * the log, then we look for occurrences of last_half_cycle - 1
649 * at the end of the log. The cases we're looking for look
650 * like
651 * v binary search stopped here
652 * x + 1 ... | x | x + 1 | x ... | x
653 * ^ but we want to locate this spot
654 * or
655 * <---------> less than scan distance
656 * x + 1 ... | x ... | x - 1 | x
657 * ^ we want to locate this spot
659 stop_on_cycle = last_half_cycle;
660 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
661 last_half_cycle);
662 if (error)
663 goto out_free_buffer;
667 * Now validate the answer. Scan back some number of maximum possible
668 * blocks and make sure each one has the expected cycle number. The
669 * maximum is determined by the total possible amount of buffering
670 * in the in-core log. The following number can be made tighter if
671 * we actually look at the block size of the filesystem.
673 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
674 if (head_blk >= num_scan_bblks) {
676 * We are guaranteed that the entire check can be performed
677 * in one buffer.
679 start_blk = head_blk - num_scan_bblks;
680 if ((error = xlog_find_verify_cycle(log,
681 start_blk, num_scan_bblks,
682 stop_on_cycle, &new_blk)))
683 goto out_free_buffer;
684 if (new_blk != -1)
685 head_blk = new_blk;
686 } else { /* need to read 2 parts of log */
688 * We are going to scan backwards in the log in two parts.
689 * First we scan the physical end of the log. In this part
690 * of the log, we are looking for blocks with cycle number
691 * last_half_cycle - 1.
692 * If we find one, then we know that the log starts there, as
693 * we've found a hole that didn't get written in going around
694 * the end of the physical log. The simple case for this is
695 * x + 1 ... | x ... | x - 1 | x
696 * <---------> less than scan distance
697 * If all of the blocks at the end of the log have cycle number
698 * last_half_cycle, then we check the blocks at the start of
699 * the log looking for occurrences of last_half_cycle. If we
700 * find one, then our current estimate for the location of the
701 * first occurrence of last_half_cycle is wrong and we move
702 * back to the hole we've found. This case looks like
703 * x + 1 ... | x | x + 1 | x ...
704 * ^ binary search stopped here
705 * Another case we need to handle that only occurs in 256k
706 * logs is
707 * x + 1 ... | x ... | x+1 | x ...
708 * ^ binary search stops here
709 * In a 256k log, the scan at the end of the log will see the
710 * x + 1 blocks. We need to skip past those since that is
711 * certainly not the head of the log. By searching for
712 * last_half_cycle-1 we accomplish that.
714 ASSERT(head_blk <= INT_MAX &&
715 (xfs_daddr_t) num_scan_bblks >= head_blk);
716 start_blk = log_bbnum - (num_scan_bblks - head_blk);
717 if ((error = xlog_find_verify_cycle(log, start_blk,
718 num_scan_bblks - (int)head_blk,
719 (stop_on_cycle - 1), &new_blk)))
720 goto out_free_buffer;
721 if (new_blk != -1) {
722 head_blk = new_blk;
723 goto validate_head;
727 * Scan beginning of log now. The last part of the physical
728 * log is good. This scan needs to verify that it doesn't find
729 * the last_half_cycle.
731 start_blk = 0;
732 ASSERT(head_blk <= INT_MAX);
733 if ((error = xlog_find_verify_cycle(log,
734 start_blk, (int)head_blk,
735 stop_on_cycle, &new_blk)))
736 goto out_free_buffer;
737 if (new_blk != -1)
738 head_blk = new_blk;
741 validate_head:
743 * Now we need to make sure head_blk is not pointing to a block in
744 * the middle of a log record.
746 num_scan_bblks = XLOG_REC_SHIFT(log);
747 if (head_blk >= num_scan_bblks) {
748 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
750 /* start ptr at last block ptr before head_blk */
751 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
752 if (error == 1)
753 error = -EIO;
754 if (error)
755 goto out_free_buffer;
756 } else {
757 start_blk = 0;
758 ASSERT(head_blk <= INT_MAX);
759 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
760 if (error < 0)
761 goto out_free_buffer;
762 if (error == 1) {
763 /* We hit the beginning of the log during our search */
764 start_blk = log_bbnum - (num_scan_bblks - head_blk);
765 new_blk = log_bbnum;
766 ASSERT(start_blk <= INT_MAX &&
767 (xfs_daddr_t) log_bbnum-start_blk >= 0);
768 ASSERT(head_blk <= INT_MAX);
769 error = xlog_find_verify_log_record(log, start_blk,
770 &new_blk, (int)head_blk);
771 if (error == 1)
772 error = -EIO;
773 if (error)
774 goto out_free_buffer;
775 if (new_blk != log_bbnum)
776 head_blk = new_blk;
777 } else if (error)
778 goto out_free_buffer;
781 kmem_free(buffer);
782 if (head_blk == log_bbnum)
783 *return_head_blk = 0;
784 else
785 *return_head_blk = head_blk;
787 * When returning here, we have a good block number. Bad block
788 * means that during a previous crash, we didn't have a clean break
789 * from cycle number N to cycle number N-1. In this case, we need
790 * to find the first block with cycle number N-1.
792 return 0;
794 out_free_buffer:
795 kmem_free(buffer);
796 if (error)
797 xfs_warn(log->l_mp, "failed to find log head");
798 return error;
802 * Seek backwards in the log for log record headers.
804 * Given a starting log block, walk backwards until we find the provided number
805 * of records or hit the provided tail block. The return value is the number of
806 * records encountered or a negative error code. The log block and buffer
807 * pointer of the last record seen are returned in rblk and rhead respectively.
809 STATIC int
810 xlog_rseek_logrec_hdr(
811 struct xlog *log,
812 xfs_daddr_t head_blk,
813 xfs_daddr_t tail_blk,
814 int count,
815 char *buffer,
816 xfs_daddr_t *rblk,
817 struct xlog_rec_header **rhead,
818 bool *wrapped)
820 int i;
821 int error;
822 int found = 0;
823 char *offset = NULL;
824 xfs_daddr_t end_blk;
826 *wrapped = false;
829 * Walk backwards from the head block until we hit the tail or the first
830 * block in the log.
832 end_blk = head_blk > tail_blk ? tail_blk : 0;
833 for (i = (int) head_blk - 1; i >= end_blk; i--) {
834 error = xlog_bread(log, i, 1, buffer, &offset);
835 if (error)
836 goto out_error;
838 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
839 *rblk = i;
840 *rhead = (struct xlog_rec_header *) offset;
841 if (++found == count)
842 break;
847 * If we haven't hit the tail block or the log record header count,
848 * start looking again from the end of the physical log. Note that
849 * callers can pass head == tail if the tail is not yet known.
851 if (tail_blk >= head_blk && found != count) {
852 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
853 error = xlog_bread(log, i, 1, buffer, &offset);
854 if (error)
855 goto out_error;
857 if (*(__be32 *)offset ==
858 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
859 *wrapped = true;
860 *rblk = i;
861 *rhead = (struct xlog_rec_header *) offset;
862 if (++found == count)
863 break;
868 return found;
870 out_error:
871 return error;
875 * Seek forward in the log for log record headers.
877 * Given head and tail blocks, walk forward from the tail block until we find
878 * the provided number of records or hit the head block. The return value is the
879 * number of records encountered or a negative error code. The log block and
880 * buffer pointer of the last record seen are returned in rblk and rhead
881 * respectively.
883 STATIC int
884 xlog_seek_logrec_hdr(
885 struct xlog *log,
886 xfs_daddr_t head_blk,
887 xfs_daddr_t tail_blk,
888 int count,
889 char *buffer,
890 xfs_daddr_t *rblk,
891 struct xlog_rec_header **rhead,
892 bool *wrapped)
894 int i;
895 int error;
896 int found = 0;
897 char *offset = NULL;
898 xfs_daddr_t end_blk;
900 *wrapped = false;
903 * Walk forward from the tail block until we hit the head or the last
904 * block in the log.
906 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
907 for (i = (int) tail_blk; i <= end_blk; i++) {
908 error = xlog_bread(log, i, 1, buffer, &offset);
909 if (error)
910 goto out_error;
912 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
913 *rblk = i;
914 *rhead = (struct xlog_rec_header *) offset;
915 if (++found == count)
916 break;
921 * If we haven't hit the head block or the log record header count,
922 * start looking again from the start of the physical log.
924 if (tail_blk > head_blk && found != count) {
925 for (i = 0; i < (int) head_blk; i++) {
926 error = xlog_bread(log, i, 1, buffer, &offset);
927 if (error)
928 goto out_error;
930 if (*(__be32 *)offset ==
931 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
932 *wrapped = true;
933 *rblk = i;
934 *rhead = (struct xlog_rec_header *) offset;
935 if (++found == count)
936 break;
941 return found;
943 out_error:
944 return error;
948 * Calculate distance from head to tail (i.e., unused space in the log).
950 static inline int
951 xlog_tail_distance(
952 struct xlog *log,
953 xfs_daddr_t head_blk,
954 xfs_daddr_t tail_blk)
956 if (head_blk < tail_blk)
957 return tail_blk - head_blk;
959 return tail_blk + (log->l_logBBsize - head_blk);
963 * Verify the log tail. This is particularly important when torn or incomplete
964 * writes have been detected near the front of the log and the head has been
965 * walked back accordingly.
967 * We also have to handle the case where the tail was pinned and the head
968 * blocked behind the tail right before a crash. If the tail had been pushed
969 * immediately prior to the crash and the subsequent checkpoint was only
970 * partially written, it's possible it overwrote the last referenced tail in the
971 * log with garbage. This is not a coherency problem because the tail must have
972 * been pushed before it can be overwritten, but appears as log corruption to
973 * recovery because we have no way to know the tail was updated if the
974 * subsequent checkpoint didn't write successfully.
976 * Therefore, CRC check the log from tail to head. If a failure occurs and the
977 * offending record is within max iclog bufs from the head, walk the tail
978 * forward and retry until a valid tail is found or corruption is detected out
979 * of the range of a possible overwrite.
981 STATIC int
982 xlog_verify_tail(
983 struct xlog *log,
984 xfs_daddr_t head_blk,
985 xfs_daddr_t *tail_blk,
986 int hsize)
988 struct xlog_rec_header *thead;
989 char *buffer;
990 xfs_daddr_t first_bad;
991 int error = 0;
992 bool wrapped;
993 xfs_daddr_t tmp_tail;
994 xfs_daddr_t orig_tail = *tail_blk;
996 buffer = xlog_alloc_buffer(log, 1);
997 if (!buffer)
998 return -ENOMEM;
1001 * Make sure the tail points to a record (returns positive count on
1002 * success).
1004 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
1005 &tmp_tail, &thead, &wrapped);
1006 if (error < 0)
1007 goto out;
1008 if (*tail_blk != tmp_tail)
1009 *tail_blk = tmp_tail;
1012 * Run a CRC check from the tail to the head. We can't just check
1013 * MAX_ICLOGS records past the tail because the tail may point to stale
1014 * blocks cleared during the search for the head/tail. These blocks are
1015 * overwritten with zero-length records and thus record count is not a
1016 * reliable indicator of the iclog state before a crash.
1018 first_bad = 0;
1019 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1020 XLOG_RECOVER_CRCPASS, &first_bad);
1021 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1022 int tail_distance;
1025 * Is corruption within range of the head? If so, retry from
1026 * the next record. Otherwise return an error.
1028 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1029 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1030 break;
1032 /* skip to the next record; returns positive count on success */
1033 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
1034 buffer, &tmp_tail, &thead, &wrapped);
1035 if (error < 0)
1036 goto out;
1038 *tail_blk = tmp_tail;
1039 first_bad = 0;
1040 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1041 XLOG_RECOVER_CRCPASS, &first_bad);
1044 if (!error && *tail_blk != orig_tail)
1045 xfs_warn(log->l_mp,
1046 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1047 orig_tail, *tail_blk);
1048 out:
1049 kmem_free(buffer);
1050 return error;
1054 * Detect and trim torn writes from the head of the log.
1056 * Storage without sector atomicity guarantees can result in torn writes in the
1057 * log in the event of a crash. Our only means to detect this scenario is via
1058 * CRC verification. While we can't always be certain that CRC verification
1059 * failure is due to a torn write vs. an unrelated corruption, we do know that
1060 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1061 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1062 * the log and treat failures in this range as torn writes as a matter of
1063 * policy. In the event of CRC failure, the head is walked back to the last good
1064 * record in the log and the tail is updated from that record and verified.
1066 STATIC int
1067 xlog_verify_head(
1068 struct xlog *log,
1069 xfs_daddr_t *head_blk, /* in/out: unverified head */
1070 xfs_daddr_t *tail_blk, /* out: tail block */
1071 char *buffer,
1072 xfs_daddr_t *rhead_blk, /* start blk of last record */
1073 struct xlog_rec_header **rhead, /* ptr to last record */
1074 bool *wrapped) /* last rec. wraps phys. log */
1076 struct xlog_rec_header *tmp_rhead;
1077 char *tmp_buffer;
1078 xfs_daddr_t first_bad;
1079 xfs_daddr_t tmp_rhead_blk;
1080 int found;
1081 int error;
1082 bool tmp_wrapped;
1085 * Check the head of the log for torn writes. Search backwards from the
1086 * head until we hit the tail or the maximum number of log record I/Os
1087 * that could have been in flight at one time. Use a temporary buffer so
1088 * we don't trash the rhead/buffer pointers from the caller.
1090 tmp_buffer = xlog_alloc_buffer(log, 1);
1091 if (!tmp_buffer)
1092 return -ENOMEM;
1093 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1094 XLOG_MAX_ICLOGS, tmp_buffer,
1095 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1096 kmem_free(tmp_buffer);
1097 if (error < 0)
1098 return error;
1101 * Now run a CRC verification pass over the records starting at the
1102 * block found above to the current head. If a CRC failure occurs, the
1103 * log block of the first bad record is saved in first_bad.
1105 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1106 XLOG_RECOVER_CRCPASS, &first_bad);
1107 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1109 * We've hit a potential torn write. Reset the error and warn
1110 * about it.
1112 error = 0;
1113 xfs_warn(log->l_mp,
1114 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1115 first_bad, *head_blk);
1118 * Get the header block and buffer pointer for the last good
1119 * record before the bad record.
1121 * Note that xlog_find_tail() clears the blocks at the new head
1122 * (i.e., the records with invalid CRC) if the cycle number
1123 * matches the the current cycle.
1125 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1126 buffer, rhead_blk, rhead, wrapped);
1127 if (found < 0)
1128 return found;
1129 if (found == 0) /* XXX: right thing to do here? */
1130 return -EIO;
1133 * Reset the head block to the starting block of the first bad
1134 * log record and set the tail block based on the last good
1135 * record.
1137 * Bail out if the updated head/tail match as this indicates
1138 * possible corruption outside of the acceptable
1139 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1141 *head_blk = first_bad;
1142 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1143 if (*head_blk == *tail_blk) {
1144 ASSERT(0);
1145 return 0;
1148 if (error)
1149 return error;
1151 return xlog_verify_tail(log, *head_blk, tail_blk,
1152 be32_to_cpu((*rhead)->h_size));
1156 * We need to make sure we handle log wrapping properly, so we can't use the
1157 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1158 * log.
1160 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1161 * operation here and cast it back to a 64 bit daddr on return.
1163 static inline xfs_daddr_t
1164 xlog_wrap_logbno(
1165 struct xlog *log,
1166 xfs_daddr_t bno)
1168 int mod;
1170 div_s64_rem(bno, log->l_logBBsize, &mod);
1171 return mod;
1175 * Check whether the head of the log points to an unmount record. In other
1176 * words, determine whether the log is clean. If so, update the in-core state
1177 * appropriately.
1179 static int
1180 xlog_check_unmount_rec(
1181 struct xlog *log,
1182 xfs_daddr_t *head_blk,
1183 xfs_daddr_t *tail_blk,
1184 struct xlog_rec_header *rhead,
1185 xfs_daddr_t rhead_blk,
1186 char *buffer,
1187 bool *clean)
1189 struct xlog_op_header *op_head;
1190 xfs_daddr_t umount_data_blk;
1191 xfs_daddr_t after_umount_blk;
1192 int hblks;
1193 int error;
1194 char *offset;
1196 *clean = false;
1199 * Look for unmount record. If we find it, then we know there was a
1200 * clean unmount. Since 'i' could be the last block in the physical
1201 * log, we convert to a log block before comparing to the head_blk.
1203 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1204 * below. We won't want to clear the unmount record if there is one, so
1205 * we pass the lsn of the unmount record rather than the block after it.
1207 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1208 int h_size = be32_to_cpu(rhead->h_size);
1209 int h_version = be32_to_cpu(rhead->h_version);
1211 if ((h_version & XLOG_VERSION_2) &&
1212 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1213 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1214 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1215 hblks++;
1216 } else {
1217 hblks = 1;
1219 } else {
1220 hblks = 1;
1223 after_umount_blk = xlog_wrap_logbno(log,
1224 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1226 if (*head_blk == after_umount_blk &&
1227 be32_to_cpu(rhead->h_num_logops) == 1) {
1228 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1229 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1230 if (error)
1231 return error;
1233 op_head = (struct xlog_op_header *)offset;
1234 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1236 * Set tail and last sync so that newly written log
1237 * records will point recovery to after the current
1238 * unmount record.
1240 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1241 log->l_curr_cycle, after_umount_blk);
1242 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1243 log->l_curr_cycle, after_umount_blk);
1244 *tail_blk = after_umount_blk;
1246 *clean = true;
1250 return 0;
1253 static void
1254 xlog_set_state(
1255 struct xlog *log,
1256 xfs_daddr_t head_blk,
1257 struct xlog_rec_header *rhead,
1258 xfs_daddr_t rhead_blk,
1259 bool bump_cycle)
1262 * Reset log values according to the state of the log when we
1263 * crashed. In the case where head_blk == 0, we bump curr_cycle
1264 * one because the next write starts a new cycle rather than
1265 * continuing the cycle of the last good log record. At this
1266 * point we have guaranteed that all partial log records have been
1267 * accounted for. Therefore, we know that the last good log record
1268 * written was complete and ended exactly on the end boundary
1269 * of the physical log.
1271 log->l_prev_block = rhead_blk;
1272 log->l_curr_block = (int)head_blk;
1273 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1274 if (bump_cycle)
1275 log->l_curr_cycle++;
1276 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1277 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1278 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1279 BBTOB(log->l_curr_block));
1280 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1281 BBTOB(log->l_curr_block));
1285 * Find the sync block number or the tail of the log.
1287 * This will be the block number of the last record to have its
1288 * associated buffers synced to disk. Every log record header has
1289 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1290 * to get a sync block number. The only concern is to figure out which
1291 * log record header to believe.
1293 * The following algorithm uses the log record header with the largest
1294 * lsn. The entire log record does not need to be valid. We only care
1295 * that the header is valid.
1297 * We could speed up search by using current head_blk buffer, but it is not
1298 * available.
1300 STATIC int
1301 xlog_find_tail(
1302 struct xlog *log,
1303 xfs_daddr_t *head_blk,
1304 xfs_daddr_t *tail_blk)
1306 xlog_rec_header_t *rhead;
1307 char *offset = NULL;
1308 char *buffer;
1309 int error;
1310 xfs_daddr_t rhead_blk;
1311 xfs_lsn_t tail_lsn;
1312 bool wrapped = false;
1313 bool clean = false;
1316 * Find previous log record
1318 if ((error = xlog_find_head(log, head_blk)))
1319 return error;
1320 ASSERT(*head_blk < INT_MAX);
1322 buffer = xlog_alloc_buffer(log, 1);
1323 if (!buffer)
1324 return -ENOMEM;
1325 if (*head_blk == 0) { /* special case */
1326 error = xlog_bread(log, 0, 1, buffer, &offset);
1327 if (error)
1328 goto done;
1330 if (xlog_get_cycle(offset) == 0) {
1331 *tail_blk = 0;
1332 /* leave all other log inited values alone */
1333 goto done;
1338 * Search backwards through the log looking for the log record header
1339 * block. This wraps all the way back around to the head so something is
1340 * seriously wrong if we can't find it.
1342 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1343 &rhead_blk, &rhead, &wrapped);
1344 if (error < 0)
1345 goto done;
1346 if (!error) {
1347 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1348 error = -EFSCORRUPTED;
1349 goto done;
1351 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1354 * Set the log state based on the current head record.
1356 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1357 tail_lsn = atomic64_read(&log->l_tail_lsn);
1360 * Look for an unmount record at the head of the log. This sets the log
1361 * state to determine whether recovery is necessary.
1363 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1364 rhead_blk, buffer, &clean);
1365 if (error)
1366 goto done;
1369 * Verify the log head if the log is not clean (e.g., we have anything
1370 * but an unmount record at the head). This uses CRC verification to
1371 * detect and trim torn writes. If discovered, CRC failures are
1372 * considered torn writes and the log head is trimmed accordingly.
1374 * Note that we can only run CRC verification when the log is dirty
1375 * because there's no guarantee that the log data behind an unmount
1376 * record is compatible with the current architecture.
1378 if (!clean) {
1379 xfs_daddr_t orig_head = *head_blk;
1381 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1382 &rhead_blk, &rhead, &wrapped);
1383 if (error)
1384 goto done;
1386 /* update in-core state again if the head changed */
1387 if (*head_blk != orig_head) {
1388 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1389 wrapped);
1390 tail_lsn = atomic64_read(&log->l_tail_lsn);
1391 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1392 rhead, rhead_blk, buffer,
1393 &clean);
1394 if (error)
1395 goto done;
1400 * Note that the unmount was clean. If the unmount was not clean, we
1401 * need to know this to rebuild the superblock counters from the perag
1402 * headers if we have a filesystem using non-persistent counters.
1404 if (clean)
1405 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1408 * Make sure that there are no blocks in front of the head
1409 * with the same cycle number as the head. This can happen
1410 * because we allow multiple outstanding log writes concurrently,
1411 * and the later writes might make it out before earlier ones.
1413 * We use the lsn from before modifying it so that we'll never
1414 * overwrite the unmount record after a clean unmount.
1416 * Do this only if we are going to recover the filesystem
1418 * NOTE: This used to say "if (!readonly)"
1419 * However on Linux, we can & do recover a read-only filesystem.
1420 * We only skip recovery if NORECOVERY is specified on mount,
1421 * in which case we would not be here.
1423 * But... if the -device- itself is readonly, just skip this.
1424 * We can't recover this device anyway, so it won't matter.
1426 if (!xfs_readonly_buftarg(log->l_targ))
1427 error = xlog_clear_stale_blocks(log, tail_lsn);
1429 done:
1430 kmem_free(buffer);
1432 if (error)
1433 xfs_warn(log->l_mp, "failed to locate log tail");
1434 return error;
1438 * Is the log zeroed at all?
1440 * The last binary search should be changed to perform an X block read
1441 * once X becomes small enough. You can then search linearly through
1442 * the X blocks. This will cut down on the number of reads we need to do.
1444 * If the log is partially zeroed, this routine will pass back the blkno
1445 * of the first block with cycle number 0. It won't have a complete LR
1446 * preceding it.
1448 * Return:
1449 * 0 => the log is completely written to
1450 * 1 => use *blk_no as the first block of the log
1451 * <0 => error has occurred
1453 STATIC int
1454 xlog_find_zeroed(
1455 struct xlog *log,
1456 xfs_daddr_t *blk_no)
1458 char *buffer;
1459 char *offset;
1460 uint first_cycle, last_cycle;
1461 xfs_daddr_t new_blk, last_blk, start_blk;
1462 xfs_daddr_t num_scan_bblks;
1463 int error, log_bbnum = log->l_logBBsize;
1465 *blk_no = 0;
1467 /* check totally zeroed log */
1468 buffer = xlog_alloc_buffer(log, 1);
1469 if (!buffer)
1470 return -ENOMEM;
1471 error = xlog_bread(log, 0, 1, buffer, &offset);
1472 if (error)
1473 goto out_free_buffer;
1475 first_cycle = xlog_get_cycle(offset);
1476 if (first_cycle == 0) { /* completely zeroed log */
1477 *blk_no = 0;
1478 kmem_free(buffer);
1479 return 1;
1482 /* check partially zeroed log */
1483 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1484 if (error)
1485 goto out_free_buffer;
1487 last_cycle = xlog_get_cycle(offset);
1488 if (last_cycle != 0) { /* log completely written to */
1489 kmem_free(buffer);
1490 return 0;
1493 /* we have a partially zeroed log */
1494 last_blk = log_bbnum-1;
1495 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1496 if (error)
1497 goto out_free_buffer;
1500 * Validate the answer. Because there is no way to guarantee that
1501 * the entire log is made up of log records which are the same size,
1502 * we scan over the defined maximum blocks. At this point, the maximum
1503 * is not chosen to mean anything special. XXXmiken
1505 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1506 ASSERT(num_scan_bblks <= INT_MAX);
1508 if (last_blk < num_scan_bblks)
1509 num_scan_bblks = last_blk;
1510 start_blk = last_blk - num_scan_bblks;
1513 * We search for any instances of cycle number 0 that occur before
1514 * our current estimate of the head. What we're trying to detect is
1515 * 1 ... | 0 | 1 | 0...
1516 * ^ binary search ends here
1518 if ((error = xlog_find_verify_cycle(log, start_blk,
1519 (int)num_scan_bblks, 0, &new_blk)))
1520 goto out_free_buffer;
1521 if (new_blk != -1)
1522 last_blk = new_blk;
1525 * Potentially backup over partial log record write. We don't need
1526 * to search the end of the log because we know it is zero.
1528 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1529 if (error == 1)
1530 error = -EIO;
1531 if (error)
1532 goto out_free_buffer;
1534 *blk_no = last_blk;
1535 out_free_buffer:
1536 kmem_free(buffer);
1537 if (error)
1538 return error;
1539 return 1;
1543 * These are simple subroutines used by xlog_clear_stale_blocks() below
1544 * to initialize a buffer full of empty log record headers and write
1545 * them into the log.
1547 STATIC void
1548 xlog_add_record(
1549 struct xlog *log,
1550 char *buf,
1551 int cycle,
1552 int block,
1553 int tail_cycle,
1554 int tail_block)
1556 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1558 memset(buf, 0, BBSIZE);
1559 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1560 recp->h_cycle = cpu_to_be32(cycle);
1561 recp->h_version = cpu_to_be32(
1562 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1563 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1564 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1565 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1566 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1569 STATIC int
1570 xlog_write_log_records(
1571 struct xlog *log,
1572 int cycle,
1573 int start_block,
1574 int blocks,
1575 int tail_cycle,
1576 int tail_block)
1578 char *offset;
1579 char *buffer;
1580 int balign, ealign;
1581 int sectbb = log->l_sectBBsize;
1582 int end_block = start_block + blocks;
1583 int bufblks;
1584 int error = 0;
1585 int i, j = 0;
1588 * Greedily allocate a buffer big enough to handle the full
1589 * range of basic blocks to be written. If that fails, try
1590 * a smaller size. We need to be able to write at least a
1591 * log sector, or we're out of luck.
1593 bufblks = 1 << ffs(blocks);
1594 while (bufblks > log->l_logBBsize)
1595 bufblks >>= 1;
1596 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1597 bufblks >>= 1;
1598 if (bufblks < sectbb)
1599 return -ENOMEM;
1602 /* We may need to do a read at the start to fill in part of
1603 * the buffer in the starting sector not covered by the first
1604 * write below.
1606 balign = round_down(start_block, sectbb);
1607 if (balign != start_block) {
1608 error = xlog_bread_noalign(log, start_block, 1, buffer);
1609 if (error)
1610 goto out_free_buffer;
1612 j = start_block - balign;
1615 for (i = start_block; i < end_block; i += bufblks) {
1616 int bcount, endcount;
1618 bcount = min(bufblks, end_block - start_block);
1619 endcount = bcount - j;
1621 /* We may need to do a read at the end to fill in part of
1622 * the buffer in the final sector not covered by the write.
1623 * If this is the same sector as the above read, skip it.
1625 ealign = round_down(end_block, sectbb);
1626 if (j == 0 && (start_block + endcount > ealign)) {
1627 error = xlog_bread_noalign(log, ealign, sectbb,
1628 buffer + BBTOB(ealign - start_block));
1629 if (error)
1630 break;
1634 offset = buffer + xlog_align(log, start_block);
1635 for (; j < endcount; j++) {
1636 xlog_add_record(log, offset, cycle, i+j,
1637 tail_cycle, tail_block);
1638 offset += BBSIZE;
1640 error = xlog_bwrite(log, start_block, endcount, buffer);
1641 if (error)
1642 break;
1643 start_block += endcount;
1644 j = 0;
1647 out_free_buffer:
1648 kmem_free(buffer);
1649 return error;
1653 * This routine is called to blow away any incomplete log writes out
1654 * in front of the log head. We do this so that we won't become confused
1655 * if we come up, write only a little bit more, and then crash again.
1656 * If we leave the partial log records out there, this situation could
1657 * cause us to think those partial writes are valid blocks since they
1658 * have the current cycle number. We get rid of them by overwriting them
1659 * with empty log records with the old cycle number rather than the
1660 * current one.
1662 * The tail lsn is passed in rather than taken from
1663 * the log so that we will not write over the unmount record after a
1664 * clean unmount in a 512 block log. Doing so would leave the log without
1665 * any valid log records in it until a new one was written. If we crashed
1666 * during that time we would not be able to recover.
1668 STATIC int
1669 xlog_clear_stale_blocks(
1670 struct xlog *log,
1671 xfs_lsn_t tail_lsn)
1673 int tail_cycle, head_cycle;
1674 int tail_block, head_block;
1675 int tail_distance, max_distance;
1676 int distance;
1677 int error;
1679 tail_cycle = CYCLE_LSN(tail_lsn);
1680 tail_block = BLOCK_LSN(tail_lsn);
1681 head_cycle = log->l_curr_cycle;
1682 head_block = log->l_curr_block;
1685 * Figure out the distance between the new head of the log
1686 * and the tail. We want to write over any blocks beyond the
1687 * head that we may have written just before the crash, but
1688 * we don't want to overwrite the tail of the log.
1690 if (head_cycle == tail_cycle) {
1692 * The tail is behind the head in the physical log,
1693 * so the distance from the head to the tail is the
1694 * distance from the head to the end of the log plus
1695 * the distance from the beginning of the log to the
1696 * tail.
1698 if (XFS_IS_CORRUPT(log->l_mp,
1699 head_block < tail_block ||
1700 head_block >= log->l_logBBsize))
1701 return -EFSCORRUPTED;
1702 tail_distance = tail_block + (log->l_logBBsize - head_block);
1703 } else {
1705 * The head is behind the tail in the physical log,
1706 * so the distance from the head to the tail is just
1707 * the tail block minus the head block.
1709 if (XFS_IS_CORRUPT(log->l_mp,
1710 head_block >= tail_block ||
1711 head_cycle != tail_cycle + 1))
1712 return -EFSCORRUPTED;
1713 tail_distance = tail_block - head_block;
1717 * If the head is right up against the tail, we can't clear
1718 * anything.
1720 if (tail_distance <= 0) {
1721 ASSERT(tail_distance == 0);
1722 return 0;
1725 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1727 * Take the smaller of the maximum amount of outstanding I/O
1728 * we could have and the distance to the tail to clear out.
1729 * We take the smaller so that we don't overwrite the tail and
1730 * we don't waste all day writing from the head to the tail
1731 * for no reason.
1733 max_distance = min(max_distance, tail_distance);
1735 if ((head_block + max_distance) <= log->l_logBBsize) {
1737 * We can stomp all the blocks we need to without
1738 * wrapping around the end of the log. Just do it
1739 * in a single write. Use the cycle number of the
1740 * current cycle minus one so that the log will look like:
1741 * n ... | n - 1 ...
1743 error = xlog_write_log_records(log, (head_cycle - 1),
1744 head_block, max_distance, tail_cycle,
1745 tail_block);
1746 if (error)
1747 return error;
1748 } else {
1750 * We need to wrap around the end of the physical log in
1751 * order to clear all the blocks. Do it in two separate
1752 * I/Os. The first write should be from the head to the
1753 * end of the physical log, and it should use the current
1754 * cycle number minus one just like above.
1756 distance = log->l_logBBsize - head_block;
1757 error = xlog_write_log_records(log, (head_cycle - 1),
1758 head_block, distance, tail_cycle,
1759 tail_block);
1761 if (error)
1762 return error;
1765 * Now write the blocks at the start of the physical log.
1766 * This writes the remainder of the blocks we want to clear.
1767 * It uses the current cycle number since we're now on the
1768 * same cycle as the head so that we get:
1769 * n ... n ... | n - 1 ...
1770 * ^^^^^ blocks we're writing
1772 distance = max_distance - (log->l_logBBsize - head_block);
1773 error = xlog_write_log_records(log, head_cycle, 0, distance,
1774 tail_cycle, tail_block);
1775 if (error)
1776 return error;
1779 return 0;
1782 /******************************************************************************
1784 * Log recover routines
1786 ******************************************************************************
1790 * Sort the log items in the transaction.
1792 * The ordering constraints are defined by the inode allocation and unlink
1793 * behaviour. The rules are:
1795 * 1. Every item is only logged once in a given transaction. Hence it
1796 * represents the last logged state of the item. Hence ordering is
1797 * dependent on the order in which operations need to be performed so
1798 * required initial conditions are always met.
1800 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1801 * there's nothing to replay from them so we can simply cull them
1802 * from the transaction. However, we can't do that until after we've
1803 * replayed all the other items because they may be dependent on the
1804 * cancelled buffer and replaying the cancelled buffer can remove it
1805 * form the cancelled buffer table. Hence they have tobe done last.
1807 * 3. Inode allocation buffers must be replayed before inode items that
1808 * read the buffer and replay changes into it. For filesystems using the
1809 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1810 * treated the same as inode allocation buffers as they create and
1811 * initialise the buffers directly.
1813 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1814 * This ensures that inodes are completely flushed to the inode buffer
1815 * in a "free" state before we remove the unlinked inode list pointer.
1817 * Hence the ordering needs to be inode allocation buffers first, inode items
1818 * second, inode unlink buffers third and cancelled buffers last.
1820 * But there's a problem with that - we can't tell an inode allocation buffer
1821 * apart from a regular buffer, so we can't separate them. We can, however,
1822 * tell an inode unlink buffer from the others, and so we can separate them out
1823 * from all the other buffers and move them to last.
1825 * Hence, 4 lists, in order from head to tail:
1826 * - buffer_list for all buffers except cancelled/inode unlink buffers
1827 * - item_list for all non-buffer items
1828 * - inode_buffer_list for inode unlink buffers
1829 * - cancel_list for the cancelled buffers
1831 * Note that we add objects to the tail of the lists so that first-to-last
1832 * ordering is preserved within the lists. Adding objects to the head of the
1833 * list means when we traverse from the head we walk them in last-to-first
1834 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1835 * but for all other items there may be specific ordering that we need to
1836 * preserve.
1838 STATIC int
1839 xlog_recover_reorder_trans(
1840 struct xlog *log,
1841 struct xlog_recover *trans,
1842 int pass)
1844 xlog_recover_item_t *item, *n;
1845 int error = 0;
1846 LIST_HEAD(sort_list);
1847 LIST_HEAD(cancel_list);
1848 LIST_HEAD(buffer_list);
1849 LIST_HEAD(inode_buffer_list);
1850 LIST_HEAD(inode_list);
1852 list_splice_init(&trans->r_itemq, &sort_list);
1853 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1854 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1856 switch (ITEM_TYPE(item)) {
1857 case XFS_LI_ICREATE:
1858 list_move_tail(&item->ri_list, &buffer_list);
1859 break;
1860 case XFS_LI_BUF:
1861 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1862 trace_xfs_log_recover_item_reorder_head(log,
1863 trans, item, pass);
1864 list_move(&item->ri_list, &cancel_list);
1865 break;
1867 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1868 list_move(&item->ri_list, &inode_buffer_list);
1869 break;
1871 list_move_tail(&item->ri_list, &buffer_list);
1872 break;
1873 case XFS_LI_INODE:
1874 case XFS_LI_DQUOT:
1875 case XFS_LI_QUOTAOFF:
1876 case XFS_LI_EFD:
1877 case XFS_LI_EFI:
1878 case XFS_LI_RUI:
1879 case XFS_LI_RUD:
1880 case XFS_LI_CUI:
1881 case XFS_LI_CUD:
1882 case XFS_LI_BUI:
1883 case XFS_LI_BUD:
1884 trace_xfs_log_recover_item_reorder_tail(log,
1885 trans, item, pass);
1886 list_move_tail(&item->ri_list, &inode_list);
1887 break;
1888 default:
1889 xfs_warn(log->l_mp,
1890 "%s: unrecognized type of log operation",
1891 __func__);
1892 ASSERT(0);
1894 * return the remaining items back to the transaction
1895 * item list so they can be freed in caller.
1897 if (!list_empty(&sort_list))
1898 list_splice_init(&sort_list, &trans->r_itemq);
1899 error = -EIO;
1900 goto out;
1903 out:
1904 ASSERT(list_empty(&sort_list));
1905 if (!list_empty(&buffer_list))
1906 list_splice(&buffer_list, &trans->r_itemq);
1907 if (!list_empty(&inode_list))
1908 list_splice_tail(&inode_list, &trans->r_itemq);
1909 if (!list_empty(&inode_buffer_list))
1910 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1911 if (!list_empty(&cancel_list))
1912 list_splice_tail(&cancel_list, &trans->r_itemq);
1913 return error;
1917 * Build up the table of buf cancel records so that we don't replay
1918 * cancelled data in the second pass. For buffer records that are
1919 * not cancel records, there is nothing to do here so we just return.
1921 * If we get a cancel record which is already in the table, this indicates
1922 * that the buffer was cancelled multiple times. In order to ensure
1923 * that during pass 2 we keep the record in the table until we reach its
1924 * last occurrence in the log, we keep a reference count in the cancel
1925 * record in the table to tell us how many times we expect to see this
1926 * record during the second pass.
1928 STATIC int
1929 xlog_recover_buffer_pass1(
1930 struct xlog *log,
1931 struct xlog_recover_item *item)
1933 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1934 struct list_head *bucket;
1935 struct xfs_buf_cancel *bcp;
1937 if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
1938 xfs_err(log->l_mp, "bad buffer log item size (%d)",
1939 item->ri_buf[0].i_len);
1940 return -EFSCORRUPTED;
1944 * If this isn't a cancel buffer item, then just return.
1946 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1947 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1948 return 0;
1952 * Insert an xfs_buf_cancel record into the hash table of them.
1953 * If there is already an identical record, bump its reference count.
1955 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1956 list_for_each_entry(bcp, bucket, bc_list) {
1957 if (bcp->bc_blkno == buf_f->blf_blkno &&
1958 bcp->bc_len == buf_f->blf_len) {
1959 bcp->bc_refcount++;
1960 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1961 return 0;
1965 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
1966 bcp->bc_blkno = buf_f->blf_blkno;
1967 bcp->bc_len = buf_f->blf_len;
1968 bcp->bc_refcount = 1;
1969 list_add_tail(&bcp->bc_list, bucket);
1971 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1972 return 0;
1976 * Check to see whether the buffer being recovered has a corresponding
1977 * entry in the buffer cancel record table. If it is, return the cancel
1978 * buffer structure to the caller.
1980 STATIC struct xfs_buf_cancel *
1981 xlog_peek_buffer_cancelled(
1982 struct xlog *log,
1983 xfs_daddr_t blkno,
1984 uint len,
1985 unsigned short flags)
1987 struct list_head *bucket;
1988 struct xfs_buf_cancel *bcp;
1990 if (!log->l_buf_cancel_table) {
1991 /* empty table means no cancelled buffers in the log */
1992 ASSERT(!(flags & XFS_BLF_CANCEL));
1993 return NULL;
1996 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1997 list_for_each_entry(bcp, bucket, bc_list) {
1998 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1999 return bcp;
2003 * We didn't find a corresponding entry in the table, so return 0 so
2004 * that the buffer is NOT cancelled.
2006 ASSERT(!(flags & XFS_BLF_CANCEL));
2007 return NULL;
2011 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2012 * otherwise return 0. If the buffer is actually a buffer cancel item
2013 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2014 * table and remove it from the table if this is the last reference.
2016 * We remove the cancel record from the table when we encounter its last
2017 * occurrence in the log so that if the same buffer is re-used again after its
2018 * last cancellation we actually replay the changes made at that point.
2020 STATIC int
2021 xlog_check_buffer_cancelled(
2022 struct xlog *log,
2023 xfs_daddr_t blkno,
2024 uint len,
2025 unsigned short flags)
2027 struct xfs_buf_cancel *bcp;
2029 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2030 if (!bcp)
2031 return 0;
2034 * We've go a match, so return 1 so that the recovery of this buffer
2035 * is cancelled. If this buffer is actually a buffer cancel log
2036 * item, then decrement the refcount on the one in the table and
2037 * remove it if this is the last reference.
2039 if (flags & XFS_BLF_CANCEL) {
2040 if (--bcp->bc_refcount == 0) {
2041 list_del(&bcp->bc_list);
2042 kmem_free(bcp);
2045 return 1;
2049 * Perform recovery for a buffer full of inodes. In these buffers, the only
2050 * data which should be recovered is that which corresponds to the
2051 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2052 * data for the inodes is always logged through the inodes themselves rather
2053 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2055 * The only time when buffers full of inodes are fully recovered is when the
2056 * buffer is full of newly allocated inodes. In this case the buffer will
2057 * not be marked as an inode buffer and so will be sent to
2058 * xlog_recover_do_reg_buffer() below during recovery.
2060 STATIC int
2061 xlog_recover_do_inode_buffer(
2062 struct xfs_mount *mp,
2063 xlog_recover_item_t *item,
2064 struct xfs_buf *bp,
2065 xfs_buf_log_format_t *buf_f)
2067 int i;
2068 int item_index = 0;
2069 int bit = 0;
2070 int nbits = 0;
2071 int reg_buf_offset = 0;
2072 int reg_buf_bytes = 0;
2073 int next_unlinked_offset;
2074 int inodes_per_buf;
2075 xfs_agino_t *logged_nextp;
2076 xfs_agino_t *buffer_nextp;
2078 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2081 * Post recovery validation only works properly on CRC enabled
2082 * filesystems.
2084 if (xfs_sb_version_hascrc(&mp->m_sb))
2085 bp->b_ops = &xfs_inode_buf_ops;
2087 inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
2088 for (i = 0; i < inodes_per_buf; i++) {
2089 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2090 offsetof(xfs_dinode_t, di_next_unlinked);
2092 while (next_unlinked_offset >=
2093 (reg_buf_offset + reg_buf_bytes)) {
2095 * The next di_next_unlinked field is beyond
2096 * the current logged region. Find the next
2097 * logged region that contains or is beyond
2098 * the current di_next_unlinked field.
2100 bit += nbits;
2101 bit = xfs_next_bit(buf_f->blf_data_map,
2102 buf_f->blf_map_size, bit);
2105 * If there are no more logged regions in the
2106 * buffer, then we're done.
2108 if (bit == -1)
2109 return 0;
2111 nbits = xfs_contig_bits(buf_f->blf_data_map,
2112 buf_f->blf_map_size, bit);
2113 ASSERT(nbits > 0);
2114 reg_buf_offset = bit << XFS_BLF_SHIFT;
2115 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2116 item_index++;
2120 * If the current logged region starts after the current
2121 * di_next_unlinked field, then move on to the next
2122 * di_next_unlinked field.
2124 if (next_unlinked_offset < reg_buf_offset)
2125 continue;
2127 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2128 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2129 ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
2132 * The current logged region contains a copy of the
2133 * current di_next_unlinked field. Extract its value
2134 * and copy it to the buffer copy.
2136 logged_nextp = item->ri_buf[item_index].i_addr +
2137 next_unlinked_offset - reg_buf_offset;
2138 if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
2139 xfs_alert(mp,
2140 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2141 "Trying to replay bad (0) inode di_next_unlinked field.",
2142 item, bp);
2143 return -EFSCORRUPTED;
2146 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2147 *buffer_nextp = *logged_nextp;
2150 * If necessary, recalculate the CRC in the on-disk inode. We
2151 * have to leave the inode in a consistent state for whoever
2152 * reads it next....
2154 xfs_dinode_calc_crc(mp,
2155 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2159 return 0;
2163 * V5 filesystems know the age of the buffer on disk being recovered. We can
2164 * have newer objects on disk than we are replaying, and so for these cases we
2165 * don't want to replay the current change as that will make the buffer contents
2166 * temporarily invalid on disk.
2168 * The magic number might not match the buffer type we are going to recover
2169 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2170 * extract the LSN of the existing object in the buffer based on it's current
2171 * magic number. If we don't recognise the magic number in the buffer, then
2172 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2173 * so can recover the buffer.
2175 * Note: we cannot rely solely on magic number matches to determine that the
2176 * buffer has a valid LSN - we also need to verify that it belongs to this
2177 * filesystem, so we need to extract the object's LSN and compare it to that
2178 * which we read from the superblock. If the UUIDs don't match, then we've got a
2179 * stale metadata block from an old filesystem instance that we need to recover
2180 * over the top of.
2182 static xfs_lsn_t
2183 xlog_recover_get_buf_lsn(
2184 struct xfs_mount *mp,
2185 struct xfs_buf *bp)
2187 uint32_t magic32;
2188 uint16_t magic16;
2189 uint16_t magicda;
2190 void *blk = bp->b_addr;
2191 uuid_t *uuid;
2192 xfs_lsn_t lsn = -1;
2194 /* v4 filesystems always recover immediately */
2195 if (!xfs_sb_version_hascrc(&mp->m_sb))
2196 goto recover_immediately;
2198 magic32 = be32_to_cpu(*(__be32 *)blk);
2199 switch (magic32) {
2200 case XFS_ABTB_CRC_MAGIC:
2201 case XFS_ABTC_CRC_MAGIC:
2202 case XFS_ABTB_MAGIC:
2203 case XFS_ABTC_MAGIC:
2204 case XFS_RMAP_CRC_MAGIC:
2205 case XFS_REFC_CRC_MAGIC:
2206 case XFS_IBT_CRC_MAGIC:
2207 case XFS_IBT_MAGIC: {
2208 struct xfs_btree_block *btb = blk;
2210 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2211 uuid = &btb->bb_u.s.bb_uuid;
2212 break;
2214 case XFS_BMAP_CRC_MAGIC:
2215 case XFS_BMAP_MAGIC: {
2216 struct xfs_btree_block *btb = blk;
2218 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2219 uuid = &btb->bb_u.l.bb_uuid;
2220 break;
2222 case XFS_AGF_MAGIC:
2223 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2224 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2225 break;
2226 case XFS_AGFL_MAGIC:
2227 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2228 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2229 break;
2230 case XFS_AGI_MAGIC:
2231 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2232 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2233 break;
2234 case XFS_SYMLINK_MAGIC:
2235 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2236 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2237 break;
2238 case XFS_DIR3_BLOCK_MAGIC:
2239 case XFS_DIR3_DATA_MAGIC:
2240 case XFS_DIR3_FREE_MAGIC:
2241 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2242 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2243 break;
2244 case XFS_ATTR3_RMT_MAGIC:
2246 * Remote attr blocks are written synchronously, rather than
2247 * being logged. That means they do not contain a valid LSN
2248 * (i.e. transactionally ordered) in them, and hence any time we
2249 * see a buffer to replay over the top of a remote attribute
2250 * block we should simply do so.
2252 goto recover_immediately;
2253 case XFS_SB_MAGIC:
2255 * superblock uuids are magic. We may or may not have a
2256 * sb_meta_uuid on disk, but it will be set in the in-core
2257 * superblock. We set the uuid pointer for verification
2258 * according to the superblock feature mask to ensure we check
2259 * the relevant UUID in the superblock.
2261 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2262 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2263 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2264 else
2265 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2266 break;
2267 default:
2268 break;
2271 if (lsn != (xfs_lsn_t)-1) {
2272 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2273 goto recover_immediately;
2274 return lsn;
2277 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2278 switch (magicda) {
2279 case XFS_DIR3_LEAF1_MAGIC:
2280 case XFS_DIR3_LEAFN_MAGIC:
2281 case XFS_DA3_NODE_MAGIC:
2282 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2283 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2284 break;
2285 default:
2286 break;
2289 if (lsn != (xfs_lsn_t)-1) {
2290 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2291 goto recover_immediately;
2292 return lsn;
2296 * We do individual object checks on dquot and inode buffers as they
2297 * have their own individual LSN records. Also, we could have a stale
2298 * buffer here, so we have to at least recognise these buffer types.
2300 * A notd complexity here is inode unlinked list processing - it logs
2301 * the inode directly in the buffer, but we don't know which inodes have
2302 * been modified, and there is no global buffer LSN. Hence we need to
2303 * recover all inode buffer types immediately. This problem will be
2304 * fixed by logical logging of the unlinked list modifications.
2306 magic16 = be16_to_cpu(*(__be16 *)blk);
2307 switch (magic16) {
2308 case XFS_DQUOT_MAGIC:
2309 case XFS_DINODE_MAGIC:
2310 goto recover_immediately;
2311 default:
2312 break;
2315 /* unknown buffer contents, recover immediately */
2317 recover_immediately:
2318 return (xfs_lsn_t)-1;
2323 * Validate the recovered buffer is of the correct type and attach the
2324 * appropriate buffer operations to them for writeback. Magic numbers are in a
2325 * few places:
2326 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2327 * the first 32 bits of the buffer (most blocks),
2328 * inside a struct xfs_da_blkinfo at the start of the buffer.
2330 static void
2331 xlog_recover_validate_buf_type(
2332 struct xfs_mount *mp,
2333 struct xfs_buf *bp,
2334 xfs_buf_log_format_t *buf_f,
2335 xfs_lsn_t current_lsn)
2337 struct xfs_da_blkinfo *info = bp->b_addr;
2338 uint32_t magic32;
2339 uint16_t magic16;
2340 uint16_t magicda;
2341 char *warnmsg = NULL;
2344 * We can only do post recovery validation on items on CRC enabled
2345 * fielsystems as we need to know when the buffer was written to be able
2346 * to determine if we should have replayed the item. If we replay old
2347 * metadata over a newer buffer, then it will enter a temporarily
2348 * inconsistent state resulting in verification failures. Hence for now
2349 * just avoid the verification stage for non-crc filesystems
2351 if (!xfs_sb_version_hascrc(&mp->m_sb))
2352 return;
2354 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2355 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2356 magicda = be16_to_cpu(info->magic);
2357 switch (xfs_blft_from_flags(buf_f)) {
2358 case XFS_BLFT_BTREE_BUF:
2359 switch (magic32) {
2360 case XFS_ABTB_CRC_MAGIC:
2361 case XFS_ABTB_MAGIC:
2362 bp->b_ops = &xfs_bnobt_buf_ops;
2363 break;
2364 case XFS_ABTC_CRC_MAGIC:
2365 case XFS_ABTC_MAGIC:
2366 bp->b_ops = &xfs_cntbt_buf_ops;
2367 break;
2368 case XFS_IBT_CRC_MAGIC:
2369 case XFS_IBT_MAGIC:
2370 bp->b_ops = &xfs_inobt_buf_ops;
2371 break;
2372 case XFS_FIBT_CRC_MAGIC:
2373 case XFS_FIBT_MAGIC:
2374 bp->b_ops = &xfs_finobt_buf_ops;
2375 break;
2376 case XFS_BMAP_CRC_MAGIC:
2377 case XFS_BMAP_MAGIC:
2378 bp->b_ops = &xfs_bmbt_buf_ops;
2379 break;
2380 case XFS_RMAP_CRC_MAGIC:
2381 bp->b_ops = &xfs_rmapbt_buf_ops;
2382 break;
2383 case XFS_REFC_CRC_MAGIC:
2384 bp->b_ops = &xfs_refcountbt_buf_ops;
2385 break;
2386 default:
2387 warnmsg = "Bad btree block magic!";
2388 break;
2390 break;
2391 case XFS_BLFT_AGF_BUF:
2392 if (magic32 != XFS_AGF_MAGIC) {
2393 warnmsg = "Bad AGF block magic!";
2394 break;
2396 bp->b_ops = &xfs_agf_buf_ops;
2397 break;
2398 case XFS_BLFT_AGFL_BUF:
2399 if (magic32 != XFS_AGFL_MAGIC) {
2400 warnmsg = "Bad AGFL block magic!";
2401 break;
2403 bp->b_ops = &xfs_agfl_buf_ops;
2404 break;
2405 case XFS_BLFT_AGI_BUF:
2406 if (magic32 != XFS_AGI_MAGIC) {
2407 warnmsg = "Bad AGI block magic!";
2408 break;
2410 bp->b_ops = &xfs_agi_buf_ops;
2411 break;
2412 case XFS_BLFT_UDQUOT_BUF:
2413 case XFS_BLFT_PDQUOT_BUF:
2414 case XFS_BLFT_GDQUOT_BUF:
2415 #ifdef CONFIG_XFS_QUOTA
2416 if (magic16 != XFS_DQUOT_MAGIC) {
2417 warnmsg = "Bad DQUOT block magic!";
2418 break;
2420 bp->b_ops = &xfs_dquot_buf_ops;
2421 #else
2422 xfs_alert(mp,
2423 "Trying to recover dquots without QUOTA support built in!");
2424 ASSERT(0);
2425 #endif
2426 break;
2427 case XFS_BLFT_DINO_BUF:
2428 if (magic16 != XFS_DINODE_MAGIC) {
2429 warnmsg = "Bad INODE block magic!";
2430 break;
2432 bp->b_ops = &xfs_inode_buf_ops;
2433 break;
2434 case XFS_BLFT_SYMLINK_BUF:
2435 if (magic32 != XFS_SYMLINK_MAGIC) {
2436 warnmsg = "Bad symlink block magic!";
2437 break;
2439 bp->b_ops = &xfs_symlink_buf_ops;
2440 break;
2441 case XFS_BLFT_DIR_BLOCK_BUF:
2442 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2443 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2444 warnmsg = "Bad dir block magic!";
2445 break;
2447 bp->b_ops = &xfs_dir3_block_buf_ops;
2448 break;
2449 case XFS_BLFT_DIR_DATA_BUF:
2450 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2451 magic32 != XFS_DIR3_DATA_MAGIC) {
2452 warnmsg = "Bad dir data magic!";
2453 break;
2455 bp->b_ops = &xfs_dir3_data_buf_ops;
2456 break;
2457 case XFS_BLFT_DIR_FREE_BUF:
2458 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2459 magic32 != XFS_DIR3_FREE_MAGIC) {
2460 warnmsg = "Bad dir3 free magic!";
2461 break;
2463 bp->b_ops = &xfs_dir3_free_buf_ops;
2464 break;
2465 case XFS_BLFT_DIR_LEAF1_BUF:
2466 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2467 magicda != XFS_DIR3_LEAF1_MAGIC) {
2468 warnmsg = "Bad dir leaf1 magic!";
2469 break;
2471 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2472 break;
2473 case XFS_BLFT_DIR_LEAFN_BUF:
2474 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2475 magicda != XFS_DIR3_LEAFN_MAGIC) {
2476 warnmsg = "Bad dir leafn magic!";
2477 break;
2479 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2480 break;
2481 case XFS_BLFT_DA_NODE_BUF:
2482 if (magicda != XFS_DA_NODE_MAGIC &&
2483 magicda != XFS_DA3_NODE_MAGIC) {
2484 warnmsg = "Bad da node magic!";
2485 break;
2487 bp->b_ops = &xfs_da3_node_buf_ops;
2488 break;
2489 case XFS_BLFT_ATTR_LEAF_BUF:
2490 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2491 magicda != XFS_ATTR3_LEAF_MAGIC) {
2492 warnmsg = "Bad attr leaf magic!";
2493 break;
2495 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2496 break;
2497 case XFS_BLFT_ATTR_RMT_BUF:
2498 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2499 warnmsg = "Bad attr remote magic!";
2500 break;
2502 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2503 break;
2504 case XFS_BLFT_SB_BUF:
2505 if (magic32 != XFS_SB_MAGIC) {
2506 warnmsg = "Bad SB block magic!";
2507 break;
2509 bp->b_ops = &xfs_sb_buf_ops;
2510 break;
2511 #ifdef CONFIG_XFS_RT
2512 case XFS_BLFT_RTBITMAP_BUF:
2513 case XFS_BLFT_RTSUMMARY_BUF:
2514 /* no magic numbers for verification of RT buffers */
2515 bp->b_ops = &xfs_rtbuf_ops;
2516 break;
2517 #endif /* CONFIG_XFS_RT */
2518 default:
2519 xfs_warn(mp, "Unknown buffer type %d!",
2520 xfs_blft_from_flags(buf_f));
2521 break;
2525 * Nothing else to do in the case of a NULL current LSN as this means
2526 * the buffer is more recent than the change in the log and will be
2527 * skipped.
2529 if (current_lsn == NULLCOMMITLSN)
2530 return;
2532 if (warnmsg) {
2533 xfs_warn(mp, warnmsg);
2534 ASSERT(0);
2538 * We must update the metadata LSN of the buffer as it is written out to
2539 * ensure that older transactions never replay over this one and corrupt
2540 * the buffer. This can occur if log recovery is interrupted at some
2541 * point after the current transaction completes, at which point a
2542 * subsequent mount starts recovery from the beginning.
2544 * Write verifiers update the metadata LSN from log items attached to
2545 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2546 * the verifier. We'll clean it up in our ->iodone() callback.
2548 if (bp->b_ops) {
2549 struct xfs_buf_log_item *bip;
2551 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2552 bp->b_iodone = xlog_recover_iodone;
2553 xfs_buf_item_init(bp, mp);
2554 bip = bp->b_log_item;
2555 bip->bli_item.li_lsn = current_lsn;
2560 * Perform a 'normal' buffer recovery. Each logged region of the
2561 * buffer should be copied over the corresponding region in the
2562 * given buffer. The bitmap in the buf log format structure indicates
2563 * where to place the logged data.
2565 STATIC void
2566 xlog_recover_do_reg_buffer(
2567 struct xfs_mount *mp,
2568 xlog_recover_item_t *item,
2569 struct xfs_buf *bp,
2570 xfs_buf_log_format_t *buf_f,
2571 xfs_lsn_t current_lsn)
2573 int i;
2574 int bit;
2575 int nbits;
2576 xfs_failaddr_t fa;
2577 const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot);
2579 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2581 bit = 0;
2582 i = 1; /* 0 is the buf format structure */
2583 while (1) {
2584 bit = xfs_next_bit(buf_f->blf_data_map,
2585 buf_f->blf_map_size, bit);
2586 if (bit == -1)
2587 break;
2588 nbits = xfs_contig_bits(buf_f->blf_data_map,
2589 buf_f->blf_map_size, bit);
2590 ASSERT(nbits > 0);
2591 ASSERT(item->ri_buf[i].i_addr != NULL);
2592 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2593 ASSERT(BBTOB(bp->b_length) >=
2594 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2597 * The dirty regions logged in the buffer, even though
2598 * contiguous, may span multiple chunks. This is because the
2599 * dirty region may span a physical page boundary in a buffer
2600 * and hence be split into two separate vectors for writing into
2601 * the log. Hence we need to trim nbits back to the length of
2602 * the current region being copied out of the log.
2604 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2605 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2608 * Do a sanity check if this is a dquot buffer. Just checking
2609 * the first dquot in the buffer should do. XXXThis is
2610 * probably a good thing to do for other buf types also.
2612 fa = NULL;
2613 if (buf_f->blf_flags &
2614 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2615 if (item->ri_buf[i].i_addr == NULL) {
2616 xfs_alert(mp,
2617 "XFS: NULL dquot in %s.", __func__);
2618 goto next;
2620 if (item->ri_buf[i].i_len < size_disk_dquot) {
2621 xfs_alert(mp,
2622 "XFS: dquot too small (%d) in %s.",
2623 item->ri_buf[i].i_len, __func__);
2624 goto next;
2626 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2627 -1, 0);
2628 if (fa) {
2629 xfs_alert(mp,
2630 "dquot corrupt at %pS trying to replay into block 0x%llx",
2631 fa, bp->b_bn);
2632 goto next;
2636 memcpy(xfs_buf_offset(bp,
2637 (uint)bit << XFS_BLF_SHIFT), /* dest */
2638 item->ri_buf[i].i_addr, /* source */
2639 nbits<<XFS_BLF_SHIFT); /* length */
2640 next:
2641 i++;
2642 bit += nbits;
2645 /* Shouldn't be any more regions */
2646 ASSERT(i == item->ri_total);
2648 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2652 * Perform a dquot buffer recovery.
2653 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2654 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2655 * Else, treat it as a regular buffer and do recovery.
2657 * Return false if the buffer was tossed and true if we recovered the buffer to
2658 * indicate to the caller if the buffer needs writing.
2660 STATIC bool
2661 xlog_recover_do_dquot_buffer(
2662 struct xfs_mount *mp,
2663 struct xlog *log,
2664 struct xlog_recover_item *item,
2665 struct xfs_buf *bp,
2666 struct xfs_buf_log_format *buf_f)
2668 uint type;
2670 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2673 * Filesystems are required to send in quota flags at mount time.
2675 if (!mp->m_qflags)
2676 return false;
2678 type = 0;
2679 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2680 type |= XFS_DQ_USER;
2681 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2682 type |= XFS_DQ_PROJ;
2683 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2684 type |= XFS_DQ_GROUP;
2686 * This type of quotas was turned off, so ignore this buffer
2688 if (log->l_quotaoffs_flag & type)
2689 return false;
2691 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2692 return true;
2696 * This routine replays a modification made to a buffer at runtime.
2697 * There are actually two types of buffer, regular and inode, which
2698 * are handled differently. Inode buffers are handled differently
2699 * in that we only recover a specific set of data from them, namely
2700 * the inode di_next_unlinked fields. This is because all other inode
2701 * data is actually logged via inode records and any data we replay
2702 * here which overlaps that may be stale.
2704 * When meta-data buffers are freed at run time we log a buffer item
2705 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2706 * of the buffer in the log should not be replayed at recovery time.
2707 * This is so that if the blocks covered by the buffer are reused for
2708 * file data before we crash we don't end up replaying old, freed
2709 * meta-data into a user's file.
2711 * To handle the cancellation of buffer log items, we make two passes
2712 * over the log during recovery. During the first we build a table of
2713 * those buffers which have been cancelled, and during the second we
2714 * only replay those buffers which do not have corresponding cancel
2715 * records in the table. See xlog_recover_buffer_pass[1,2] above
2716 * for more details on the implementation of the table of cancel records.
2718 STATIC int
2719 xlog_recover_buffer_pass2(
2720 struct xlog *log,
2721 struct list_head *buffer_list,
2722 struct xlog_recover_item *item,
2723 xfs_lsn_t current_lsn)
2725 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2726 xfs_mount_t *mp = log->l_mp;
2727 xfs_buf_t *bp;
2728 int error;
2729 uint buf_flags;
2730 xfs_lsn_t lsn;
2733 * In this pass we only want to recover all the buffers which have
2734 * not been cancelled and are not cancellation buffers themselves.
2736 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2737 buf_f->blf_len, buf_f->blf_flags)) {
2738 trace_xfs_log_recover_buf_cancel(log, buf_f);
2739 return 0;
2742 trace_xfs_log_recover_buf_recover(log, buf_f);
2744 buf_flags = 0;
2745 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2746 buf_flags |= XBF_UNMAPPED;
2748 error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2749 buf_flags, &bp, NULL);
2750 if (error)
2751 return error;
2754 * Recover the buffer only if we get an LSN from it and it's less than
2755 * the lsn of the transaction we are replaying.
2757 * Note that we have to be extremely careful of readahead here.
2758 * Readahead does not attach verfiers to the buffers so if we don't
2759 * actually do any replay after readahead because of the LSN we found
2760 * in the buffer if more recent than that current transaction then we
2761 * need to attach the verifier directly. Failure to do so can lead to
2762 * future recovery actions (e.g. EFI and unlinked list recovery) can
2763 * operate on the buffers and they won't get the verifier attached. This
2764 * can lead to blocks on disk having the correct content but a stale
2765 * CRC.
2767 * It is safe to assume these clean buffers are currently up to date.
2768 * If the buffer is dirtied by a later transaction being replayed, then
2769 * the verifier will be reset to match whatever recover turns that
2770 * buffer into.
2772 lsn = xlog_recover_get_buf_lsn(mp, bp);
2773 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2774 trace_xfs_log_recover_buf_skip(log, buf_f);
2775 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2776 goto out_release;
2779 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2780 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2781 if (error)
2782 goto out_release;
2783 } else if (buf_f->blf_flags &
2784 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2785 bool dirty;
2787 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2788 if (!dirty)
2789 goto out_release;
2790 } else {
2791 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2795 * Perform delayed write on the buffer. Asynchronous writes will be
2796 * slower when taking into account all the buffers to be flushed.
2798 * Also make sure that only inode buffers with good sizes stay in
2799 * the buffer cache. The kernel moves inodes in buffers of 1 block
2800 * or inode_cluster_size bytes, whichever is bigger. The inode
2801 * buffers in the log can be a different size if the log was generated
2802 * by an older kernel using unclustered inode buffers or a newer kernel
2803 * running with a different inode cluster size. Regardless, if the
2804 * the inode buffer size isn't max(blocksize, inode_cluster_size)
2805 * for *our* value of inode_cluster_size, then we need to keep
2806 * the buffer out of the buffer cache so that the buffer won't
2807 * overlap with future reads of those inodes.
2809 if (XFS_DINODE_MAGIC ==
2810 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2811 (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
2812 xfs_buf_stale(bp);
2813 error = xfs_bwrite(bp);
2814 } else {
2815 ASSERT(bp->b_mount == mp);
2816 bp->b_iodone = xlog_recover_iodone;
2817 xfs_buf_delwri_queue(bp, buffer_list);
2820 out_release:
2821 xfs_buf_relse(bp);
2822 return error;
2826 * Inode fork owner changes
2828 * If we have been told that we have to reparent the inode fork, it's because an
2829 * extent swap operation on a CRC enabled filesystem has been done and we are
2830 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2831 * owners of it.
2833 * The complexity here is that we don't have an inode context to work with, so
2834 * after we've replayed the inode we need to instantiate one. This is where the
2835 * fun begins.
2837 * We are in the middle of log recovery, so we can't run transactions. That
2838 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2839 * that will result in the corresponding iput() running the inode through
2840 * xfs_inactive(). If we've just replayed an inode core that changes the link
2841 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2842 * transactions (bad!).
2844 * So, to avoid this, we instantiate an inode directly from the inode core we've
2845 * just recovered. We have the buffer still locked, and all we really need to
2846 * instantiate is the inode core and the forks being modified. We can do this
2847 * manually, then run the inode btree owner change, and then tear down the
2848 * xfs_inode without having to run any transactions at all.
2850 * Also, because we don't have a transaction context available here but need to
2851 * gather all the buffers we modify for writeback so we pass the buffer_list
2852 * instead for the operation to use.
2855 STATIC int
2856 xfs_recover_inode_owner_change(
2857 struct xfs_mount *mp,
2858 struct xfs_dinode *dip,
2859 struct xfs_inode_log_format *in_f,
2860 struct list_head *buffer_list)
2862 struct xfs_inode *ip;
2863 int error;
2865 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2867 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2868 if (!ip)
2869 return -ENOMEM;
2871 /* instantiate the inode */
2872 xfs_inode_from_disk(ip, dip);
2873 ASSERT(ip->i_d.di_version >= 3);
2875 error = xfs_iformat_fork(ip, dip);
2876 if (error)
2877 goto out_free_ip;
2879 if (!xfs_inode_verify_forks(ip)) {
2880 error = -EFSCORRUPTED;
2881 goto out_free_ip;
2884 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2885 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2886 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2887 ip->i_ino, buffer_list);
2888 if (error)
2889 goto out_free_ip;
2892 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2893 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2894 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2895 ip->i_ino, buffer_list);
2896 if (error)
2897 goto out_free_ip;
2900 out_free_ip:
2901 xfs_inode_free(ip);
2902 return error;
2905 STATIC int
2906 xlog_recover_inode_pass2(
2907 struct xlog *log,
2908 struct list_head *buffer_list,
2909 struct xlog_recover_item *item,
2910 xfs_lsn_t current_lsn)
2912 struct xfs_inode_log_format *in_f;
2913 xfs_mount_t *mp = log->l_mp;
2914 xfs_buf_t *bp;
2915 xfs_dinode_t *dip;
2916 int len;
2917 char *src;
2918 char *dest;
2919 int error;
2920 int attr_index;
2921 uint fields;
2922 struct xfs_log_dinode *ldip;
2923 uint isize;
2924 int need_free = 0;
2926 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
2927 in_f = item->ri_buf[0].i_addr;
2928 } else {
2929 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0);
2930 need_free = 1;
2931 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2932 if (error)
2933 goto error;
2937 * Inode buffers can be freed, look out for it,
2938 * and do not replay the inode.
2940 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2941 in_f->ilf_len, 0)) {
2942 error = 0;
2943 trace_xfs_log_recover_inode_cancel(log, in_f);
2944 goto error;
2946 trace_xfs_log_recover_inode_recover(log, in_f);
2948 error = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2949 0, &bp, &xfs_inode_buf_ops);
2950 if (error)
2951 goto error;
2952 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2953 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2956 * Make sure the place we're flushing out to really looks
2957 * like an inode!
2959 if (XFS_IS_CORRUPT(mp, !xfs_verify_magic16(bp, dip->di_magic))) {
2960 xfs_alert(mp,
2961 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
2962 __func__, dip, bp, in_f->ilf_ino);
2963 error = -EFSCORRUPTED;
2964 goto out_release;
2966 ldip = item->ri_buf[1].i_addr;
2967 if (XFS_IS_CORRUPT(mp, ldip->di_magic != XFS_DINODE_MAGIC)) {
2968 xfs_alert(mp,
2969 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
2970 __func__, item, in_f->ilf_ino);
2971 error = -EFSCORRUPTED;
2972 goto out_release;
2976 * If the inode has an LSN in it, recover the inode only if it's less
2977 * than the lsn of the transaction we are replaying. Note: we still
2978 * need to replay an owner change even though the inode is more recent
2979 * than the transaction as there is no guarantee that all the btree
2980 * blocks are more recent than this transaction, too.
2982 if (dip->di_version >= 3) {
2983 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2985 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2986 trace_xfs_log_recover_inode_skip(log, in_f);
2987 error = 0;
2988 goto out_owner_change;
2993 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2994 * are transactional and if ordering is necessary we can determine that
2995 * more accurately by the LSN field in the V3 inode core. Don't trust
2996 * the inode versions we might be changing them here - use the
2997 * superblock flag to determine whether we need to look at di_flushiter
2998 * to skip replay when the on disk inode is newer than the log one
3000 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3001 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3003 * Deal with the wrap case, DI_MAX_FLUSH is less
3004 * than smaller numbers
3006 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3007 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3008 /* do nothing */
3009 } else {
3010 trace_xfs_log_recover_inode_skip(log, in_f);
3011 error = 0;
3012 goto out_release;
3016 /* Take the opportunity to reset the flush iteration count */
3017 ldip->di_flushiter = 0;
3019 if (unlikely(S_ISREG(ldip->di_mode))) {
3020 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3021 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3022 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3023 XFS_ERRLEVEL_LOW, mp, ldip,
3024 sizeof(*ldip));
3025 xfs_alert(mp,
3026 "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3027 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3028 __func__, item, dip, bp, in_f->ilf_ino);
3029 error = -EFSCORRUPTED;
3030 goto out_release;
3032 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3033 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3034 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3035 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3036 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3037 XFS_ERRLEVEL_LOW, mp, ldip,
3038 sizeof(*ldip));
3039 xfs_alert(mp,
3040 "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3041 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3042 __func__, item, dip, bp, in_f->ilf_ino);
3043 error = -EFSCORRUPTED;
3044 goto out_release;
3047 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3048 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3049 XFS_ERRLEVEL_LOW, mp, ldip,
3050 sizeof(*ldip));
3051 xfs_alert(mp,
3052 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3053 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3054 __func__, item, dip, bp, in_f->ilf_ino,
3055 ldip->di_nextents + ldip->di_anextents,
3056 ldip->di_nblocks);
3057 error = -EFSCORRUPTED;
3058 goto out_release;
3060 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3061 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3062 XFS_ERRLEVEL_LOW, mp, ldip,
3063 sizeof(*ldip));
3064 xfs_alert(mp,
3065 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3066 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3067 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3068 error = -EFSCORRUPTED;
3069 goto out_release;
3071 isize = xfs_log_dinode_size(ldip->di_version);
3072 if (unlikely(item->ri_buf[1].i_len > isize)) {
3073 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3074 XFS_ERRLEVEL_LOW, mp, ldip,
3075 sizeof(*ldip));
3076 xfs_alert(mp,
3077 "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3078 __func__, item->ri_buf[1].i_len, item);
3079 error = -EFSCORRUPTED;
3080 goto out_release;
3083 /* recover the log dinode inode into the on disk inode */
3084 xfs_log_dinode_to_disk(ldip, dip);
3086 fields = in_f->ilf_fields;
3087 if (fields & XFS_ILOG_DEV)
3088 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3090 if (in_f->ilf_size == 2)
3091 goto out_owner_change;
3092 len = item->ri_buf[2].i_len;
3093 src = item->ri_buf[2].i_addr;
3094 ASSERT(in_f->ilf_size <= 4);
3095 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3096 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3097 (len == in_f->ilf_dsize));
3099 switch (fields & XFS_ILOG_DFORK) {
3100 case XFS_ILOG_DDATA:
3101 case XFS_ILOG_DEXT:
3102 memcpy(XFS_DFORK_DPTR(dip), src, len);
3103 break;
3105 case XFS_ILOG_DBROOT:
3106 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3107 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3108 XFS_DFORK_DSIZE(dip, mp));
3109 break;
3111 default:
3113 * There are no data fork flags set.
3115 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3116 break;
3120 * If we logged any attribute data, recover it. There may or
3121 * may not have been any other non-core data logged in this
3122 * transaction.
3124 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3125 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3126 attr_index = 3;
3127 } else {
3128 attr_index = 2;
3130 len = item->ri_buf[attr_index].i_len;
3131 src = item->ri_buf[attr_index].i_addr;
3132 ASSERT(len == in_f->ilf_asize);
3134 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3135 case XFS_ILOG_ADATA:
3136 case XFS_ILOG_AEXT:
3137 dest = XFS_DFORK_APTR(dip);
3138 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3139 memcpy(dest, src, len);
3140 break;
3142 case XFS_ILOG_ABROOT:
3143 dest = XFS_DFORK_APTR(dip);
3144 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3145 len, (xfs_bmdr_block_t*)dest,
3146 XFS_DFORK_ASIZE(dip, mp));
3147 break;
3149 default:
3150 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3151 ASSERT(0);
3152 error = -EFSCORRUPTED;
3153 goto out_release;
3157 out_owner_change:
3158 /* Recover the swapext owner change unless inode has been deleted */
3159 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3160 (dip->di_mode != 0))
3161 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3162 buffer_list);
3163 /* re-generate the checksum. */
3164 xfs_dinode_calc_crc(log->l_mp, dip);
3166 ASSERT(bp->b_mount == mp);
3167 bp->b_iodone = xlog_recover_iodone;
3168 xfs_buf_delwri_queue(bp, buffer_list);
3170 out_release:
3171 xfs_buf_relse(bp);
3172 error:
3173 if (need_free)
3174 kmem_free(in_f);
3175 return error;
3179 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3180 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3181 * of that type.
3183 STATIC int
3184 xlog_recover_quotaoff_pass1(
3185 struct xlog *log,
3186 struct xlog_recover_item *item)
3188 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3189 ASSERT(qoff_f);
3192 * The logitem format's flag tells us if this was user quotaoff,
3193 * group/project quotaoff or both.
3195 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3196 log->l_quotaoffs_flag |= XFS_DQ_USER;
3197 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3198 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3199 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3200 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3202 return 0;
3206 * Recover a dquot record
3208 STATIC int
3209 xlog_recover_dquot_pass2(
3210 struct xlog *log,
3211 struct list_head *buffer_list,
3212 struct xlog_recover_item *item,
3213 xfs_lsn_t current_lsn)
3215 xfs_mount_t *mp = log->l_mp;
3216 xfs_buf_t *bp;
3217 struct xfs_disk_dquot *ddq, *recddq;
3218 xfs_failaddr_t fa;
3219 int error;
3220 xfs_dq_logformat_t *dq_f;
3221 uint type;
3225 * Filesystems are required to send in quota flags at mount time.
3227 if (mp->m_qflags == 0)
3228 return 0;
3230 recddq = item->ri_buf[1].i_addr;
3231 if (recddq == NULL) {
3232 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3233 return -EFSCORRUPTED;
3235 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) {
3236 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3237 item->ri_buf[1].i_len, __func__);
3238 return -EFSCORRUPTED;
3242 * This type of quotas was turned off, so ignore this record.
3244 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3245 ASSERT(type);
3246 if (log->l_quotaoffs_flag & type)
3247 return 0;
3250 * At this point we know that quota was _not_ turned off.
3251 * Since the mount flags are not indicating to us otherwise, this
3252 * must mean that quota is on, and the dquot needs to be replayed.
3253 * Remember that we may not have fully recovered the superblock yet,
3254 * so we can't do the usual trick of looking at the SB quota bits.
3256 * The other possibility, of course, is that the quota subsystem was
3257 * removed since the last mount - ENOSYS.
3259 dq_f = item->ri_buf[0].i_addr;
3260 ASSERT(dq_f);
3261 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3262 if (fa) {
3263 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3264 dq_f->qlf_id, fa);
3265 return -EFSCORRUPTED;
3267 ASSERT(dq_f->qlf_len == 1);
3270 * At this point we are assuming that the dquots have been allocated
3271 * and hence the buffer has valid dquots stamped in it. It should,
3272 * therefore, pass verifier validation. If the dquot is bad, then the
3273 * we'll return an error here, so we don't need to specifically check
3274 * the dquot in the buffer after the verifier has run.
3276 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3277 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3278 &xfs_dquot_buf_ops);
3279 if (error)
3280 return error;
3282 ASSERT(bp);
3283 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3286 * If the dquot has an LSN in it, recover the dquot only if it's less
3287 * than the lsn of the transaction we are replaying.
3289 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3290 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3291 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3293 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3294 goto out_release;
3298 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3299 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3300 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3301 XFS_DQUOT_CRC_OFF);
3304 ASSERT(dq_f->qlf_size == 2);
3305 ASSERT(bp->b_mount == mp);
3306 bp->b_iodone = xlog_recover_iodone;
3307 xfs_buf_delwri_queue(bp, buffer_list);
3309 out_release:
3310 xfs_buf_relse(bp);
3311 return 0;
3315 * This routine is called to create an in-core extent free intent
3316 * item from the efi format structure which was logged on disk.
3317 * It allocates an in-core efi, copies the extents from the format
3318 * structure into it, and adds the efi to the AIL with the given
3319 * LSN.
3321 STATIC int
3322 xlog_recover_efi_pass2(
3323 struct xlog *log,
3324 struct xlog_recover_item *item,
3325 xfs_lsn_t lsn)
3327 int error;
3328 struct xfs_mount *mp = log->l_mp;
3329 struct xfs_efi_log_item *efip;
3330 struct xfs_efi_log_format *efi_formatp;
3332 efi_formatp = item->ri_buf[0].i_addr;
3334 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3335 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3336 if (error) {
3337 xfs_efi_item_free(efip);
3338 return error;
3340 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3342 spin_lock(&log->l_ailp->ail_lock);
3344 * The EFI has two references. One for the EFD and one for EFI to ensure
3345 * it makes it into the AIL. Insert the EFI into the AIL directly and
3346 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3347 * AIL lock.
3349 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3350 xfs_efi_release(efip);
3351 return 0;
3356 * This routine is called when an EFD format structure is found in a committed
3357 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3358 * was still in the log. To do this it searches the AIL for the EFI with an id
3359 * equal to that in the EFD format structure. If we find it we drop the EFD
3360 * reference, which removes the EFI from the AIL and frees it.
3362 STATIC int
3363 xlog_recover_efd_pass2(
3364 struct xlog *log,
3365 struct xlog_recover_item *item)
3367 xfs_efd_log_format_t *efd_formatp;
3368 xfs_efi_log_item_t *efip = NULL;
3369 struct xfs_log_item *lip;
3370 uint64_t efi_id;
3371 struct xfs_ail_cursor cur;
3372 struct xfs_ail *ailp = log->l_ailp;
3374 efd_formatp = item->ri_buf[0].i_addr;
3375 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3376 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3377 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3378 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3379 efi_id = efd_formatp->efd_efi_id;
3382 * Search for the EFI with the id in the EFD format structure in the
3383 * AIL.
3385 spin_lock(&ailp->ail_lock);
3386 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3387 while (lip != NULL) {
3388 if (lip->li_type == XFS_LI_EFI) {
3389 efip = (xfs_efi_log_item_t *)lip;
3390 if (efip->efi_format.efi_id == efi_id) {
3392 * Drop the EFD reference to the EFI. This
3393 * removes the EFI from the AIL and frees it.
3395 spin_unlock(&ailp->ail_lock);
3396 xfs_efi_release(efip);
3397 spin_lock(&ailp->ail_lock);
3398 break;
3401 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3404 xfs_trans_ail_cursor_done(&cur);
3405 spin_unlock(&ailp->ail_lock);
3407 return 0;
3411 * This routine is called to create an in-core extent rmap update
3412 * item from the rui format structure which was logged on disk.
3413 * It allocates an in-core rui, copies the extents from the format
3414 * structure into it, and adds the rui to the AIL with the given
3415 * LSN.
3417 STATIC int
3418 xlog_recover_rui_pass2(
3419 struct xlog *log,
3420 struct xlog_recover_item *item,
3421 xfs_lsn_t lsn)
3423 int error;
3424 struct xfs_mount *mp = log->l_mp;
3425 struct xfs_rui_log_item *ruip;
3426 struct xfs_rui_log_format *rui_formatp;
3428 rui_formatp = item->ri_buf[0].i_addr;
3430 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3431 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3432 if (error) {
3433 xfs_rui_item_free(ruip);
3434 return error;
3436 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3438 spin_lock(&log->l_ailp->ail_lock);
3440 * The RUI has two references. One for the RUD and one for RUI to ensure
3441 * it makes it into the AIL. Insert the RUI into the AIL directly and
3442 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3443 * AIL lock.
3445 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3446 xfs_rui_release(ruip);
3447 return 0;
3452 * This routine is called when an RUD format structure is found in a committed
3453 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3454 * was still in the log. To do this it searches the AIL for the RUI with an id
3455 * equal to that in the RUD format structure. If we find it we drop the RUD
3456 * reference, which removes the RUI from the AIL and frees it.
3458 STATIC int
3459 xlog_recover_rud_pass2(
3460 struct xlog *log,
3461 struct xlog_recover_item *item)
3463 struct xfs_rud_log_format *rud_formatp;
3464 struct xfs_rui_log_item *ruip = NULL;
3465 struct xfs_log_item *lip;
3466 uint64_t rui_id;
3467 struct xfs_ail_cursor cur;
3468 struct xfs_ail *ailp = log->l_ailp;
3470 rud_formatp = item->ri_buf[0].i_addr;
3471 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3472 rui_id = rud_formatp->rud_rui_id;
3475 * Search for the RUI with the id in the RUD format structure in the
3476 * AIL.
3478 spin_lock(&ailp->ail_lock);
3479 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3480 while (lip != NULL) {
3481 if (lip->li_type == XFS_LI_RUI) {
3482 ruip = (struct xfs_rui_log_item *)lip;
3483 if (ruip->rui_format.rui_id == rui_id) {
3485 * Drop the RUD reference to the RUI. This
3486 * removes the RUI from the AIL and frees it.
3488 spin_unlock(&ailp->ail_lock);
3489 xfs_rui_release(ruip);
3490 spin_lock(&ailp->ail_lock);
3491 break;
3494 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3497 xfs_trans_ail_cursor_done(&cur);
3498 spin_unlock(&ailp->ail_lock);
3500 return 0;
3504 * Copy an CUI format buffer from the given buf, and into the destination
3505 * CUI format structure. The CUI/CUD items were designed not to need any
3506 * special alignment handling.
3508 static int
3509 xfs_cui_copy_format(
3510 struct xfs_log_iovec *buf,
3511 struct xfs_cui_log_format *dst_cui_fmt)
3513 struct xfs_cui_log_format *src_cui_fmt;
3514 uint len;
3516 src_cui_fmt = buf->i_addr;
3517 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3519 if (buf->i_len == len) {
3520 memcpy(dst_cui_fmt, src_cui_fmt, len);
3521 return 0;
3523 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
3524 return -EFSCORRUPTED;
3528 * This routine is called to create an in-core extent refcount update
3529 * item from the cui format structure which was logged on disk.
3530 * It allocates an in-core cui, copies the extents from the format
3531 * structure into it, and adds the cui to the AIL with the given
3532 * LSN.
3534 STATIC int
3535 xlog_recover_cui_pass2(
3536 struct xlog *log,
3537 struct xlog_recover_item *item,
3538 xfs_lsn_t lsn)
3540 int error;
3541 struct xfs_mount *mp = log->l_mp;
3542 struct xfs_cui_log_item *cuip;
3543 struct xfs_cui_log_format *cui_formatp;
3545 cui_formatp = item->ri_buf[0].i_addr;
3547 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3548 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3549 if (error) {
3550 xfs_cui_item_free(cuip);
3551 return error;
3553 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3555 spin_lock(&log->l_ailp->ail_lock);
3557 * The CUI has two references. One for the CUD and one for CUI to ensure
3558 * it makes it into the AIL. Insert the CUI into the AIL directly and
3559 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3560 * AIL lock.
3562 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3563 xfs_cui_release(cuip);
3564 return 0;
3569 * This routine is called when an CUD format structure is found in a committed
3570 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3571 * was still in the log. To do this it searches the AIL for the CUI with an id
3572 * equal to that in the CUD format structure. If we find it we drop the CUD
3573 * reference, which removes the CUI from the AIL and frees it.
3575 STATIC int
3576 xlog_recover_cud_pass2(
3577 struct xlog *log,
3578 struct xlog_recover_item *item)
3580 struct xfs_cud_log_format *cud_formatp;
3581 struct xfs_cui_log_item *cuip = NULL;
3582 struct xfs_log_item *lip;
3583 uint64_t cui_id;
3584 struct xfs_ail_cursor cur;
3585 struct xfs_ail *ailp = log->l_ailp;
3587 cud_formatp = item->ri_buf[0].i_addr;
3588 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
3589 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3590 return -EFSCORRUPTED;
3592 cui_id = cud_formatp->cud_cui_id;
3595 * Search for the CUI with the id in the CUD format structure in the
3596 * AIL.
3598 spin_lock(&ailp->ail_lock);
3599 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3600 while (lip != NULL) {
3601 if (lip->li_type == XFS_LI_CUI) {
3602 cuip = (struct xfs_cui_log_item *)lip;
3603 if (cuip->cui_format.cui_id == cui_id) {
3605 * Drop the CUD reference to the CUI. This
3606 * removes the CUI from the AIL and frees it.
3608 spin_unlock(&ailp->ail_lock);
3609 xfs_cui_release(cuip);
3610 spin_lock(&ailp->ail_lock);
3611 break;
3614 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3617 xfs_trans_ail_cursor_done(&cur);
3618 spin_unlock(&ailp->ail_lock);
3620 return 0;
3624 * Copy an BUI format buffer from the given buf, and into the destination
3625 * BUI format structure. The BUI/BUD items were designed not to need any
3626 * special alignment handling.
3628 static int
3629 xfs_bui_copy_format(
3630 struct xfs_log_iovec *buf,
3631 struct xfs_bui_log_format *dst_bui_fmt)
3633 struct xfs_bui_log_format *src_bui_fmt;
3634 uint len;
3636 src_bui_fmt = buf->i_addr;
3637 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3639 if (buf->i_len == len) {
3640 memcpy(dst_bui_fmt, src_bui_fmt, len);
3641 return 0;
3643 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
3644 return -EFSCORRUPTED;
3648 * This routine is called to create an in-core extent bmap update
3649 * item from the bui format structure which was logged on disk.
3650 * It allocates an in-core bui, copies the extents from the format
3651 * structure into it, and adds the bui to the AIL with the given
3652 * LSN.
3654 STATIC int
3655 xlog_recover_bui_pass2(
3656 struct xlog *log,
3657 struct xlog_recover_item *item,
3658 xfs_lsn_t lsn)
3660 int error;
3661 struct xfs_mount *mp = log->l_mp;
3662 struct xfs_bui_log_item *buip;
3663 struct xfs_bui_log_format *bui_formatp;
3665 bui_formatp = item->ri_buf[0].i_addr;
3667 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) {
3668 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3669 return -EFSCORRUPTED;
3671 buip = xfs_bui_init(mp);
3672 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3673 if (error) {
3674 xfs_bui_item_free(buip);
3675 return error;
3677 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3679 spin_lock(&log->l_ailp->ail_lock);
3681 * The RUI has two references. One for the RUD and one for RUI to ensure
3682 * it makes it into the AIL. Insert the RUI into the AIL directly and
3683 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3684 * AIL lock.
3686 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3687 xfs_bui_release(buip);
3688 return 0;
3693 * This routine is called when an BUD format structure is found in a committed
3694 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3695 * was still in the log. To do this it searches the AIL for the BUI with an id
3696 * equal to that in the BUD format structure. If we find it we drop the BUD
3697 * reference, which removes the BUI from the AIL and frees it.
3699 STATIC int
3700 xlog_recover_bud_pass2(
3701 struct xlog *log,
3702 struct xlog_recover_item *item)
3704 struct xfs_bud_log_format *bud_formatp;
3705 struct xfs_bui_log_item *buip = NULL;
3706 struct xfs_log_item *lip;
3707 uint64_t bui_id;
3708 struct xfs_ail_cursor cur;
3709 struct xfs_ail *ailp = log->l_ailp;
3711 bud_formatp = item->ri_buf[0].i_addr;
3712 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) {
3713 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3714 return -EFSCORRUPTED;
3716 bui_id = bud_formatp->bud_bui_id;
3719 * Search for the BUI with the id in the BUD format structure in the
3720 * AIL.
3722 spin_lock(&ailp->ail_lock);
3723 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3724 while (lip != NULL) {
3725 if (lip->li_type == XFS_LI_BUI) {
3726 buip = (struct xfs_bui_log_item *)lip;
3727 if (buip->bui_format.bui_id == bui_id) {
3729 * Drop the BUD reference to the BUI. This
3730 * removes the BUI from the AIL and frees it.
3732 spin_unlock(&ailp->ail_lock);
3733 xfs_bui_release(buip);
3734 spin_lock(&ailp->ail_lock);
3735 break;
3738 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3741 xfs_trans_ail_cursor_done(&cur);
3742 spin_unlock(&ailp->ail_lock);
3744 return 0;
3748 * This routine is called when an inode create format structure is found in a
3749 * committed transaction in the log. It's purpose is to initialise the inodes
3750 * being allocated on disk. This requires us to get inode cluster buffers that
3751 * match the range to be initialised, stamped with inode templates and written
3752 * by delayed write so that subsequent modifications will hit the cached buffer
3753 * and only need writing out at the end of recovery.
3755 STATIC int
3756 xlog_recover_do_icreate_pass2(
3757 struct xlog *log,
3758 struct list_head *buffer_list,
3759 xlog_recover_item_t *item)
3761 struct xfs_mount *mp = log->l_mp;
3762 struct xfs_icreate_log *icl;
3763 struct xfs_ino_geometry *igeo = M_IGEO(mp);
3764 xfs_agnumber_t agno;
3765 xfs_agblock_t agbno;
3766 unsigned int count;
3767 unsigned int isize;
3768 xfs_agblock_t length;
3769 int bb_per_cluster;
3770 int cancel_count;
3771 int nbufs;
3772 int i;
3774 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3775 if (icl->icl_type != XFS_LI_ICREATE) {
3776 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3777 return -EINVAL;
3780 if (icl->icl_size != 1) {
3781 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3782 return -EINVAL;
3785 agno = be32_to_cpu(icl->icl_ag);
3786 if (agno >= mp->m_sb.sb_agcount) {
3787 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3788 return -EINVAL;
3790 agbno = be32_to_cpu(icl->icl_agbno);
3791 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3792 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3793 return -EINVAL;
3795 isize = be32_to_cpu(icl->icl_isize);
3796 if (isize != mp->m_sb.sb_inodesize) {
3797 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3798 return -EINVAL;
3800 count = be32_to_cpu(icl->icl_count);
3801 if (!count) {
3802 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3803 return -EINVAL;
3805 length = be32_to_cpu(icl->icl_length);
3806 if (!length || length >= mp->m_sb.sb_agblocks) {
3807 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3808 return -EINVAL;
3812 * The inode chunk is either full or sparse and we only support
3813 * m_ino_geo.ialloc_min_blks sized sparse allocations at this time.
3815 if (length != igeo->ialloc_blks &&
3816 length != igeo->ialloc_min_blks) {
3817 xfs_warn(log->l_mp,
3818 "%s: unsupported chunk length", __FUNCTION__);
3819 return -EINVAL;
3822 /* verify inode count is consistent with extent length */
3823 if ((count >> mp->m_sb.sb_inopblog) != length) {
3824 xfs_warn(log->l_mp,
3825 "%s: inconsistent inode count and chunk length",
3826 __FUNCTION__);
3827 return -EINVAL;
3831 * The icreate transaction can cover multiple cluster buffers and these
3832 * buffers could have been freed and reused. Check the individual
3833 * buffers for cancellation so we don't overwrite anything written after
3834 * a cancellation.
3836 bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
3837 nbufs = length / igeo->blocks_per_cluster;
3838 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3839 xfs_daddr_t daddr;
3841 daddr = XFS_AGB_TO_DADDR(mp, agno,
3842 agbno + i * igeo->blocks_per_cluster);
3843 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3844 cancel_count++;
3848 * We currently only use icreate for a single allocation at a time. This
3849 * means we should expect either all or none of the buffers to be
3850 * cancelled. Be conservative and skip replay if at least one buffer is
3851 * cancelled, but warn the user that something is awry if the buffers
3852 * are not consistent.
3854 * XXX: This must be refined to only skip cancelled clusters once we use
3855 * icreate for multiple chunk allocations.
3857 ASSERT(!cancel_count || cancel_count == nbufs);
3858 if (cancel_count) {
3859 if (cancel_count != nbufs)
3860 xfs_warn(mp,
3861 "WARNING: partial inode chunk cancellation, skipped icreate.");
3862 trace_xfs_log_recover_icreate_cancel(log, icl);
3863 return 0;
3866 trace_xfs_log_recover_icreate_recover(log, icl);
3867 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3868 length, be32_to_cpu(icl->icl_gen));
3871 STATIC void
3872 xlog_recover_buffer_ra_pass2(
3873 struct xlog *log,
3874 struct xlog_recover_item *item)
3876 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3877 struct xfs_mount *mp = log->l_mp;
3879 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3880 buf_f->blf_len, buf_f->blf_flags)) {
3881 return;
3884 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3885 buf_f->blf_len, NULL);
3888 STATIC void
3889 xlog_recover_inode_ra_pass2(
3890 struct xlog *log,
3891 struct xlog_recover_item *item)
3893 struct xfs_inode_log_format ilf_buf;
3894 struct xfs_inode_log_format *ilfp;
3895 struct xfs_mount *mp = log->l_mp;
3896 int error;
3898 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3899 ilfp = item->ri_buf[0].i_addr;
3900 } else {
3901 ilfp = &ilf_buf;
3902 memset(ilfp, 0, sizeof(*ilfp));
3903 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3904 if (error)
3905 return;
3908 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3909 return;
3911 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3912 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3915 STATIC void
3916 xlog_recover_dquot_ra_pass2(
3917 struct xlog *log,
3918 struct xlog_recover_item *item)
3920 struct xfs_mount *mp = log->l_mp;
3921 struct xfs_disk_dquot *recddq;
3922 struct xfs_dq_logformat *dq_f;
3923 uint type;
3924 int len;
3927 if (mp->m_qflags == 0)
3928 return;
3930 recddq = item->ri_buf[1].i_addr;
3931 if (recddq == NULL)
3932 return;
3933 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3934 return;
3936 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3937 ASSERT(type);
3938 if (log->l_quotaoffs_flag & type)
3939 return;
3941 dq_f = item->ri_buf[0].i_addr;
3942 ASSERT(dq_f);
3943 ASSERT(dq_f->qlf_len == 1);
3945 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3946 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3947 return;
3949 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3950 &xfs_dquot_buf_ra_ops);
3953 STATIC void
3954 xlog_recover_ra_pass2(
3955 struct xlog *log,
3956 struct xlog_recover_item *item)
3958 switch (ITEM_TYPE(item)) {
3959 case XFS_LI_BUF:
3960 xlog_recover_buffer_ra_pass2(log, item);
3961 break;
3962 case XFS_LI_INODE:
3963 xlog_recover_inode_ra_pass2(log, item);
3964 break;
3965 case XFS_LI_DQUOT:
3966 xlog_recover_dquot_ra_pass2(log, item);
3967 break;
3968 case XFS_LI_EFI:
3969 case XFS_LI_EFD:
3970 case XFS_LI_QUOTAOFF:
3971 case XFS_LI_RUI:
3972 case XFS_LI_RUD:
3973 case XFS_LI_CUI:
3974 case XFS_LI_CUD:
3975 case XFS_LI_BUI:
3976 case XFS_LI_BUD:
3977 default:
3978 break;
3982 STATIC int
3983 xlog_recover_commit_pass1(
3984 struct xlog *log,
3985 struct xlog_recover *trans,
3986 struct xlog_recover_item *item)
3988 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3990 switch (ITEM_TYPE(item)) {
3991 case XFS_LI_BUF:
3992 return xlog_recover_buffer_pass1(log, item);
3993 case XFS_LI_QUOTAOFF:
3994 return xlog_recover_quotaoff_pass1(log, item);
3995 case XFS_LI_INODE:
3996 case XFS_LI_EFI:
3997 case XFS_LI_EFD:
3998 case XFS_LI_DQUOT:
3999 case XFS_LI_ICREATE:
4000 case XFS_LI_RUI:
4001 case XFS_LI_RUD:
4002 case XFS_LI_CUI:
4003 case XFS_LI_CUD:
4004 case XFS_LI_BUI:
4005 case XFS_LI_BUD:
4006 /* nothing to do in pass 1 */
4007 return 0;
4008 default:
4009 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4010 __func__, ITEM_TYPE(item));
4011 ASSERT(0);
4012 return -EFSCORRUPTED;
4016 STATIC int
4017 xlog_recover_commit_pass2(
4018 struct xlog *log,
4019 struct xlog_recover *trans,
4020 struct list_head *buffer_list,
4021 struct xlog_recover_item *item)
4023 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4025 switch (ITEM_TYPE(item)) {
4026 case XFS_LI_BUF:
4027 return xlog_recover_buffer_pass2(log, buffer_list, item,
4028 trans->r_lsn);
4029 case XFS_LI_INODE:
4030 return xlog_recover_inode_pass2(log, buffer_list, item,
4031 trans->r_lsn);
4032 case XFS_LI_EFI:
4033 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4034 case XFS_LI_EFD:
4035 return xlog_recover_efd_pass2(log, item);
4036 case XFS_LI_RUI:
4037 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4038 case XFS_LI_RUD:
4039 return xlog_recover_rud_pass2(log, item);
4040 case XFS_LI_CUI:
4041 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4042 case XFS_LI_CUD:
4043 return xlog_recover_cud_pass2(log, item);
4044 case XFS_LI_BUI:
4045 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4046 case XFS_LI_BUD:
4047 return xlog_recover_bud_pass2(log, item);
4048 case XFS_LI_DQUOT:
4049 return xlog_recover_dquot_pass2(log, buffer_list, item,
4050 trans->r_lsn);
4051 case XFS_LI_ICREATE:
4052 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4053 case XFS_LI_QUOTAOFF:
4054 /* nothing to do in pass2 */
4055 return 0;
4056 default:
4057 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4058 __func__, ITEM_TYPE(item));
4059 ASSERT(0);
4060 return -EFSCORRUPTED;
4064 STATIC int
4065 xlog_recover_items_pass2(
4066 struct xlog *log,
4067 struct xlog_recover *trans,
4068 struct list_head *buffer_list,
4069 struct list_head *item_list)
4071 struct xlog_recover_item *item;
4072 int error = 0;
4074 list_for_each_entry(item, item_list, ri_list) {
4075 error = xlog_recover_commit_pass2(log, trans,
4076 buffer_list, item);
4077 if (error)
4078 return error;
4081 return error;
4085 * Perform the transaction.
4087 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4088 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4090 STATIC int
4091 xlog_recover_commit_trans(
4092 struct xlog *log,
4093 struct xlog_recover *trans,
4094 int pass,
4095 struct list_head *buffer_list)
4097 int error = 0;
4098 int items_queued = 0;
4099 struct xlog_recover_item *item;
4100 struct xlog_recover_item *next;
4101 LIST_HEAD (ra_list);
4102 LIST_HEAD (done_list);
4104 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4106 hlist_del_init(&trans->r_list);
4108 error = xlog_recover_reorder_trans(log, trans, pass);
4109 if (error)
4110 return error;
4112 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4113 switch (pass) {
4114 case XLOG_RECOVER_PASS1:
4115 error = xlog_recover_commit_pass1(log, trans, item);
4116 break;
4117 case XLOG_RECOVER_PASS2:
4118 xlog_recover_ra_pass2(log, item);
4119 list_move_tail(&item->ri_list, &ra_list);
4120 items_queued++;
4121 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4122 error = xlog_recover_items_pass2(log, trans,
4123 buffer_list, &ra_list);
4124 list_splice_tail_init(&ra_list, &done_list);
4125 items_queued = 0;
4128 break;
4129 default:
4130 ASSERT(0);
4133 if (error)
4134 goto out;
4137 out:
4138 if (!list_empty(&ra_list)) {
4139 if (!error)
4140 error = xlog_recover_items_pass2(log, trans,
4141 buffer_list, &ra_list);
4142 list_splice_tail_init(&ra_list, &done_list);
4145 if (!list_empty(&done_list))
4146 list_splice_init(&done_list, &trans->r_itemq);
4148 return error;
4151 STATIC void
4152 xlog_recover_add_item(
4153 struct list_head *head)
4155 xlog_recover_item_t *item;
4157 item = kmem_zalloc(sizeof(xlog_recover_item_t), 0);
4158 INIT_LIST_HEAD(&item->ri_list);
4159 list_add_tail(&item->ri_list, head);
4162 STATIC int
4163 xlog_recover_add_to_cont_trans(
4164 struct xlog *log,
4165 struct xlog_recover *trans,
4166 char *dp,
4167 int len)
4169 xlog_recover_item_t *item;
4170 char *ptr, *old_ptr;
4171 int old_len;
4174 * If the transaction is empty, the header was split across this and the
4175 * previous record. Copy the rest of the header.
4177 if (list_empty(&trans->r_itemq)) {
4178 ASSERT(len <= sizeof(struct xfs_trans_header));
4179 if (len > sizeof(struct xfs_trans_header)) {
4180 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4181 return -EFSCORRUPTED;
4184 xlog_recover_add_item(&trans->r_itemq);
4185 ptr = (char *)&trans->r_theader +
4186 sizeof(struct xfs_trans_header) - len;
4187 memcpy(ptr, dp, len);
4188 return 0;
4191 /* take the tail entry */
4192 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4194 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4195 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4197 ptr = kmem_realloc(old_ptr, len + old_len, 0);
4198 memcpy(&ptr[old_len], dp, len);
4199 item->ri_buf[item->ri_cnt-1].i_len += len;
4200 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4201 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4202 return 0;
4206 * The next region to add is the start of a new region. It could be
4207 * a whole region or it could be the first part of a new region. Because
4208 * of this, the assumption here is that the type and size fields of all
4209 * format structures fit into the first 32 bits of the structure.
4211 * This works because all regions must be 32 bit aligned. Therefore, we
4212 * either have both fields or we have neither field. In the case we have
4213 * neither field, the data part of the region is zero length. We only have
4214 * a log_op_header and can throw away the header since a new one will appear
4215 * later. If we have at least 4 bytes, then we can determine how many regions
4216 * will appear in the current log item.
4218 STATIC int
4219 xlog_recover_add_to_trans(
4220 struct xlog *log,
4221 struct xlog_recover *trans,
4222 char *dp,
4223 int len)
4225 struct xfs_inode_log_format *in_f; /* any will do */
4226 xlog_recover_item_t *item;
4227 char *ptr;
4229 if (!len)
4230 return 0;
4231 if (list_empty(&trans->r_itemq)) {
4232 /* we need to catch log corruptions here */
4233 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4234 xfs_warn(log->l_mp, "%s: bad header magic number",
4235 __func__);
4236 ASSERT(0);
4237 return -EFSCORRUPTED;
4240 if (len > sizeof(struct xfs_trans_header)) {
4241 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4242 ASSERT(0);
4243 return -EFSCORRUPTED;
4247 * The transaction header can be arbitrarily split across op
4248 * records. If we don't have the whole thing here, copy what we
4249 * do have and handle the rest in the next record.
4251 if (len == sizeof(struct xfs_trans_header))
4252 xlog_recover_add_item(&trans->r_itemq);
4253 memcpy(&trans->r_theader, dp, len);
4254 return 0;
4257 ptr = kmem_alloc(len, 0);
4258 memcpy(ptr, dp, len);
4259 in_f = (struct xfs_inode_log_format *)ptr;
4261 /* take the tail entry */
4262 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4263 if (item->ri_total != 0 &&
4264 item->ri_total == item->ri_cnt) {
4265 /* tail item is in use, get a new one */
4266 xlog_recover_add_item(&trans->r_itemq);
4267 item = list_entry(trans->r_itemq.prev,
4268 xlog_recover_item_t, ri_list);
4271 if (item->ri_total == 0) { /* first region to be added */
4272 if (in_f->ilf_size == 0 ||
4273 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4274 xfs_warn(log->l_mp,
4275 "bad number of regions (%d) in inode log format",
4276 in_f->ilf_size);
4277 ASSERT(0);
4278 kmem_free(ptr);
4279 return -EFSCORRUPTED;
4282 item->ri_total = in_f->ilf_size;
4283 item->ri_buf =
4284 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4288 if (item->ri_total <= item->ri_cnt) {
4289 xfs_warn(log->l_mp,
4290 "log item region count (%d) overflowed size (%d)",
4291 item->ri_cnt, item->ri_total);
4292 ASSERT(0);
4293 kmem_free(ptr);
4294 return -EFSCORRUPTED;
4297 /* Description region is ri_buf[0] */
4298 item->ri_buf[item->ri_cnt].i_addr = ptr;
4299 item->ri_buf[item->ri_cnt].i_len = len;
4300 item->ri_cnt++;
4301 trace_xfs_log_recover_item_add(log, trans, item, 0);
4302 return 0;
4306 * Free up any resources allocated by the transaction
4308 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4310 STATIC void
4311 xlog_recover_free_trans(
4312 struct xlog_recover *trans)
4314 xlog_recover_item_t *item, *n;
4315 int i;
4317 hlist_del_init(&trans->r_list);
4319 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4320 /* Free the regions in the item. */
4321 list_del(&item->ri_list);
4322 for (i = 0; i < item->ri_cnt; i++)
4323 kmem_free(item->ri_buf[i].i_addr);
4324 /* Free the item itself */
4325 kmem_free(item->ri_buf);
4326 kmem_free(item);
4328 /* Free the transaction recover structure */
4329 kmem_free(trans);
4333 * On error or completion, trans is freed.
4335 STATIC int
4336 xlog_recovery_process_trans(
4337 struct xlog *log,
4338 struct xlog_recover *trans,
4339 char *dp,
4340 unsigned int len,
4341 unsigned int flags,
4342 int pass,
4343 struct list_head *buffer_list)
4345 int error = 0;
4346 bool freeit = false;
4348 /* mask off ophdr transaction container flags */
4349 flags &= ~XLOG_END_TRANS;
4350 if (flags & XLOG_WAS_CONT_TRANS)
4351 flags &= ~XLOG_CONTINUE_TRANS;
4354 * Callees must not free the trans structure. We'll decide if we need to
4355 * free it or not based on the operation being done and it's result.
4357 switch (flags) {
4358 /* expected flag values */
4359 case 0:
4360 case XLOG_CONTINUE_TRANS:
4361 error = xlog_recover_add_to_trans(log, trans, dp, len);
4362 break;
4363 case XLOG_WAS_CONT_TRANS:
4364 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4365 break;
4366 case XLOG_COMMIT_TRANS:
4367 error = xlog_recover_commit_trans(log, trans, pass,
4368 buffer_list);
4369 /* success or fail, we are now done with this transaction. */
4370 freeit = true;
4371 break;
4373 /* unexpected flag values */
4374 case XLOG_UNMOUNT_TRANS:
4375 /* just skip trans */
4376 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4377 freeit = true;
4378 break;
4379 case XLOG_START_TRANS:
4380 default:
4381 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4382 ASSERT(0);
4383 error = -EFSCORRUPTED;
4384 break;
4386 if (error || freeit)
4387 xlog_recover_free_trans(trans);
4388 return error;
4392 * Lookup the transaction recovery structure associated with the ID in the
4393 * current ophdr. If the transaction doesn't exist and the start flag is set in
4394 * the ophdr, then allocate a new transaction for future ID matches to find.
4395 * Either way, return what we found during the lookup - an existing transaction
4396 * or nothing.
4398 STATIC struct xlog_recover *
4399 xlog_recover_ophdr_to_trans(
4400 struct hlist_head rhash[],
4401 struct xlog_rec_header *rhead,
4402 struct xlog_op_header *ohead)
4404 struct xlog_recover *trans;
4405 xlog_tid_t tid;
4406 struct hlist_head *rhp;
4408 tid = be32_to_cpu(ohead->oh_tid);
4409 rhp = &rhash[XLOG_RHASH(tid)];
4410 hlist_for_each_entry(trans, rhp, r_list) {
4411 if (trans->r_log_tid == tid)
4412 return trans;
4416 * skip over non-start transaction headers - we could be
4417 * processing slack space before the next transaction starts
4419 if (!(ohead->oh_flags & XLOG_START_TRANS))
4420 return NULL;
4422 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4425 * This is a new transaction so allocate a new recovery container to
4426 * hold the recovery ops that will follow.
4428 trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
4429 trans->r_log_tid = tid;
4430 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4431 INIT_LIST_HEAD(&trans->r_itemq);
4432 INIT_HLIST_NODE(&trans->r_list);
4433 hlist_add_head(&trans->r_list, rhp);
4436 * Nothing more to do for this ophdr. Items to be added to this new
4437 * transaction will be in subsequent ophdr containers.
4439 return NULL;
4442 STATIC int
4443 xlog_recover_process_ophdr(
4444 struct xlog *log,
4445 struct hlist_head rhash[],
4446 struct xlog_rec_header *rhead,
4447 struct xlog_op_header *ohead,
4448 char *dp,
4449 char *end,
4450 int pass,
4451 struct list_head *buffer_list)
4453 struct xlog_recover *trans;
4454 unsigned int len;
4455 int error;
4457 /* Do we understand who wrote this op? */
4458 if (ohead->oh_clientid != XFS_TRANSACTION &&
4459 ohead->oh_clientid != XFS_LOG) {
4460 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4461 __func__, ohead->oh_clientid);
4462 ASSERT(0);
4463 return -EFSCORRUPTED;
4467 * Check the ophdr contains all the data it is supposed to contain.
4469 len = be32_to_cpu(ohead->oh_len);
4470 if (dp + len > end) {
4471 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4472 WARN_ON(1);
4473 return -EFSCORRUPTED;
4476 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4477 if (!trans) {
4478 /* nothing to do, so skip over this ophdr */
4479 return 0;
4483 * The recovered buffer queue is drained only once we know that all
4484 * recovery items for the current LSN have been processed. This is
4485 * required because:
4487 * - Buffer write submission updates the metadata LSN of the buffer.
4488 * - Log recovery skips items with a metadata LSN >= the current LSN of
4489 * the recovery item.
4490 * - Separate recovery items against the same metadata buffer can share
4491 * a current LSN. I.e., consider that the LSN of a recovery item is
4492 * defined as the starting LSN of the first record in which its
4493 * transaction appears, that a record can hold multiple transactions,
4494 * and/or that a transaction can span multiple records.
4496 * In other words, we are allowed to submit a buffer from log recovery
4497 * once per current LSN. Otherwise, we may incorrectly skip recovery
4498 * items and cause corruption.
4500 * We don't know up front whether buffers are updated multiple times per
4501 * LSN. Therefore, track the current LSN of each commit log record as it
4502 * is processed and drain the queue when it changes. Use commit records
4503 * because they are ordered correctly by the logging code.
4505 if (log->l_recovery_lsn != trans->r_lsn &&
4506 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4507 error = xfs_buf_delwri_submit(buffer_list);
4508 if (error)
4509 return error;
4510 log->l_recovery_lsn = trans->r_lsn;
4513 return xlog_recovery_process_trans(log, trans, dp, len,
4514 ohead->oh_flags, pass, buffer_list);
4518 * There are two valid states of the r_state field. 0 indicates that the
4519 * transaction structure is in a normal state. We have either seen the
4520 * start of the transaction or the last operation we added was not a partial
4521 * operation. If the last operation we added to the transaction was a
4522 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4524 * NOTE: skip LRs with 0 data length.
4526 STATIC int
4527 xlog_recover_process_data(
4528 struct xlog *log,
4529 struct hlist_head rhash[],
4530 struct xlog_rec_header *rhead,
4531 char *dp,
4532 int pass,
4533 struct list_head *buffer_list)
4535 struct xlog_op_header *ohead;
4536 char *end;
4537 int num_logops;
4538 int error;
4540 end = dp + be32_to_cpu(rhead->h_len);
4541 num_logops = be32_to_cpu(rhead->h_num_logops);
4543 /* check the log format matches our own - else we can't recover */
4544 if (xlog_header_check_recover(log->l_mp, rhead))
4545 return -EIO;
4547 trace_xfs_log_recover_record(log, rhead, pass);
4548 while ((dp < end) && num_logops) {
4550 ohead = (struct xlog_op_header *)dp;
4551 dp += sizeof(*ohead);
4552 ASSERT(dp <= end);
4554 /* errors will abort recovery */
4555 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4556 dp, end, pass, buffer_list);
4557 if (error)
4558 return error;
4560 dp += be32_to_cpu(ohead->oh_len);
4561 num_logops--;
4563 return 0;
4566 /* Recover the EFI if necessary. */
4567 STATIC int
4568 xlog_recover_process_efi(
4569 struct xfs_mount *mp,
4570 struct xfs_ail *ailp,
4571 struct xfs_log_item *lip)
4573 struct xfs_efi_log_item *efip;
4574 int error;
4577 * Skip EFIs that we've already processed.
4579 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4580 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4581 return 0;
4583 spin_unlock(&ailp->ail_lock);
4584 error = xfs_efi_recover(mp, efip);
4585 spin_lock(&ailp->ail_lock);
4587 return error;
4590 /* Release the EFI since we're cancelling everything. */
4591 STATIC void
4592 xlog_recover_cancel_efi(
4593 struct xfs_mount *mp,
4594 struct xfs_ail *ailp,
4595 struct xfs_log_item *lip)
4597 struct xfs_efi_log_item *efip;
4599 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4601 spin_unlock(&ailp->ail_lock);
4602 xfs_efi_release(efip);
4603 spin_lock(&ailp->ail_lock);
4606 /* Recover the RUI if necessary. */
4607 STATIC int
4608 xlog_recover_process_rui(
4609 struct xfs_mount *mp,
4610 struct xfs_ail *ailp,
4611 struct xfs_log_item *lip)
4613 struct xfs_rui_log_item *ruip;
4614 int error;
4617 * Skip RUIs that we've already processed.
4619 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4620 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4621 return 0;
4623 spin_unlock(&ailp->ail_lock);
4624 error = xfs_rui_recover(mp, ruip);
4625 spin_lock(&ailp->ail_lock);
4627 return error;
4630 /* Release the RUI since we're cancelling everything. */
4631 STATIC void
4632 xlog_recover_cancel_rui(
4633 struct xfs_mount *mp,
4634 struct xfs_ail *ailp,
4635 struct xfs_log_item *lip)
4637 struct xfs_rui_log_item *ruip;
4639 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4641 spin_unlock(&ailp->ail_lock);
4642 xfs_rui_release(ruip);
4643 spin_lock(&ailp->ail_lock);
4646 /* Recover the CUI if necessary. */
4647 STATIC int
4648 xlog_recover_process_cui(
4649 struct xfs_trans *parent_tp,
4650 struct xfs_ail *ailp,
4651 struct xfs_log_item *lip)
4653 struct xfs_cui_log_item *cuip;
4654 int error;
4657 * Skip CUIs that we've already processed.
4659 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4660 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4661 return 0;
4663 spin_unlock(&ailp->ail_lock);
4664 error = xfs_cui_recover(parent_tp, cuip);
4665 spin_lock(&ailp->ail_lock);
4667 return error;
4670 /* Release the CUI since we're cancelling everything. */
4671 STATIC void
4672 xlog_recover_cancel_cui(
4673 struct xfs_mount *mp,
4674 struct xfs_ail *ailp,
4675 struct xfs_log_item *lip)
4677 struct xfs_cui_log_item *cuip;
4679 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4681 spin_unlock(&ailp->ail_lock);
4682 xfs_cui_release(cuip);
4683 spin_lock(&ailp->ail_lock);
4686 /* Recover the BUI if necessary. */
4687 STATIC int
4688 xlog_recover_process_bui(
4689 struct xfs_trans *parent_tp,
4690 struct xfs_ail *ailp,
4691 struct xfs_log_item *lip)
4693 struct xfs_bui_log_item *buip;
4694 int error;
4697 * Skip BUIs that we've already processed.
4699 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4700 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4701 return 0;
4703 spin_unlock(&ailp->ail_lock);
4704 error = xfs_bui_recover(parent_tp, buip);
4705 spin_lock(&ailp->ail_lock);
4707 return error;
4710 /* Release the BUI since we're cancelling everything. */
4711 STATIC void
4712 xlog_recover_cancel_bui(
4713 struct xfs_mount *mp,
4714 struct xfs_ail *ailp,
4715 struct xfs_log_item *lip)
4717 struct xfs_bui_log_item *buip;
4719 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4721 spin_unlock(&ailp->ail_lock);
4722 xfs_bui_release(buip);
4723 spin_lock(&ailp->ail_lock);
4726 /* Is this log item a deferred action intent? */
4727 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4729 switch (lip->li_type) {
4730 case XFS_LI_EFI:
4731 case XFS_LI_RUI:
4732 case XFS_LI_CUI:
4733 case XFS_LI_BUI:
4734 return true;
4735 default:
4736 return false;
4740 /* Take all the collected deferred ops and finish them in order. */
4741 static int
4742 xlog_finish_defer_ops(
4743 struct xfs_trans *parent_tp)
4745 struct xfs_mount *mp = parent_tp->t_mountp;
4746 struct xfs_trans *tp;
4747 int64_t freeblks;
4748 uint resblks;
4749 int error;
4752 * We're finishing the defer_ops that accumulated as a result of
4753 * recovering unfinished intent items during log recovery. We
4754 * reserve an itruncate transaction because it is the largest
4755 * permanent transaction type. Since we're the only user of the fs
4756 * right now, take 93% (15/16) of the available free blocks. Use
4757 * weird math to avoid a 64-bit division.
4759 freeblks = percpu_counter_sum(&mp->m_fdblocks);
4760 if (freeblks <= 0)
4761 return -ENOSPC;
4762 resblks = min_t(int64_t, UINT_MAX, freeblks);
4763 resblks = (resblks * 15) >> 4;
4764 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4765 0, XFS_TRANS_RESERVE, &tp);
4766 if (error)
4767 return error;
4768 /* transfer all collected dfops to this transaction */
4769 xfs_defer_move(tp, parent_tp);
4771 return xfs_trans_commit(tp);
4775 * When this is called, all of the log intent items which did not have
4776 * corresponding log done items should be in the AIL. What we do now
4777 * is update the data structures associated with each one.
4779 * Since we process the log intent items in normal transactions, they
4780 * will be removed at some point after the commit. This prevents us
4781 * from just walking down the list processing each one. We'll use a
4782 * flag in the intent item to skip those that we've already processed
4783 * and use the AIL iteration mechanism's generation count to try to
4784 * speed this up at least a bit.
4786 * When we start, we know that the intents are the only things in the
4787 * AIL. As we process them, however, other items are added to the
4788 * AIL.
4790 STATIC int
4791 xlog_recover_process_intents(
4792 struct xlog *log)
4794 struct xfs_trans *parent_tp;
4795 struct xfs_ail_cursor cur;
4796 struct xfs_log_item *lip;
4797 struct xfs_ail *ailp;
4798 int error;
4799 #if defined(DEBUG) || defined(XFS_WARN)
4800 xfs_lsn_t last_lsn;
4801 #endif
4804 * The intent recovery handlers commit transactions to complete recovery
4805 * for individual intents, but any new deferred operations that are
4806 * queued during that process are held off until the very end. The
4807 * purpose of this transaction is to serve as a container for deferred
4808 * operations. Each intent recovery handler must transfer dfops here
4809 * before its local transaction commits, and we'll finish the entire
4810 * list below.
4812 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4813 if (error)
4814 return error;
4816 ailp = log->l_ailp;
4817 spin_lock(&ailp->ail_lock);
4818 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4819 #if defined(DEBUG) || defined(XFS_WARN)
4820 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4821 #endif
4822 while (lip != NULL) {
4824 * We're done when we see something other than an intent.
4825 * There should be no intents left in the AIL now.
4827 if (!xlog_item_is_intent(lip)) {
4828 #ifdef DEBUG
4829 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4830 ASSERT(!xlog_item_is_intent(lip));
4831 #endif
4832 break;
4836 * We should never see a redo item with a LSN higher than
4837 * the last transaction we found in the log at the start
4838 * of recovery.
4840 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4843 * NOTE: If your intent processing routine can create more
4844 * deferred ops, you /must/ attach them to the dfops in this
4845 * routine or else those subsequent intents will get
4846 * replayed in the wrong order!
4848 switch (lip->li_type) {
4849 case XFS_LI_EFI:
4850 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4851 break;
4852 case XFS_LI_RUI:
4853 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4854 break;
4855 case XFS_LI_CUI:
4856 error = xlog_recover_process_cui(parent_tp, ailp, lip);
4857 break;
4858 case XFS_LI_BUI:
4859 error = xlog_recover_process_bui(parent_tp, ailp, lip);
4860 break;
4862 if (error)
4863 goto out;
4864 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4866 out:
4867 xfs_trans_ail_cursor_done(&cur);
4868 spin_unlock(&ailp->ail_lock);
4869 if (!error)
4870 error = xlog_finish_defer_ops(parent_tp);
4871 xfs_trans_cancel(parent_tp);
4873 return error;
4877 * A cancel occurs when the mount has failed and we're bailing out.
4878 * Release all pending log intent items so they don't pin the AIL.
4880 STATIC void
4881 xlog_recover_cancel_intents(
4882 struct xlog *log)
4884 struct xfs_log_item *lip;
4885 struct xfs_ail_cursor cur;
4886 struct xfs_ail *ailp;
4888 ailp = log->l_ailp;
4889 spin_lock(&ailp->ail_lock);
4890 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4891 while (lip != NULL) {
4893 * We're done when we see something other than an intent.
4894 * There should be no intents left in the AIL now.
4896 if (!xlog_item_is_intent(lip)) {
4897 #ifdef DEBUG
4898 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4899 ASSERT(!xlog_item_is_intent(lip));
4900 #endif
4901 break;
4904 switch (lip->li_type) {
4905 case XFS_LI_EFI:
4906 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4907 break;
4908 case XFS_LI_RUI:
4909 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4910 break;
4911 case XFS_LI_CUI:
4912 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4913 break;
4914 case XFS_LI_BUI:
4915 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4916 break;
4919 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4922 xfs_trans_ail_cursor_done(&cur);
4923 spin_unlock(&ailp->ail_lock);
4927 * This routine performs a transaction to null out a bad inode pointer
4928 * in an agi unlinked inode hash bucket.
4930 STATIC void
4931 xlog_recover_clear_agi_bucket(
4932 xfs_mount_t *mp,
4933 xfs_agnumber_t agno,
4934 int bucket)
4936 xfs_trans_t *tp;
4937 xfs_agi_t *agi;
4938 xfs_buf_t *agibp;
4939 int offset;
4940 int error;
4942 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4943 if (error)
4944 goto out_error;
4946 error = xfs_read_agi(mp, tp, agno, &agibp);
4947 if (error)
4948 goto out_abort;
4950 agi = XFS_BUF_TO_AGI(agibp);
4951 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4952 offset = offsetof(xfs_agi_t, agi_unlinked) +
4953 (sizeof(xfs_agino_t) * bucket);
4954 xfs_trans_log_buf(tp, agibp, offset,
4955 (offset + sizeof(xfs_agino_t) - 1));
4957 error = xfs_trans_commit(tp);
4958 if (error)
4959 goto out_error;
4960 return;
4962 out_abort:
4963 xfs_trans_cancel(tp);
4964 out_error:
4965 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4966 return;
4969 STATIC xfs_agino_t
4970 xlog_recover_process_one_iunlink(
4971 struct xfs_mount *mp,
4972 xfs_agnumber_t agno,
4973 xfs_agino_t agino,
4974 int bucket)
4976 struct xfs_buf *ibp;
4977 struct xfs_dinode *dip;
4978 struct xfs_inode *ip;
4979 xfs_ino_t ino;
4980 int error;
4982 ino = XFS_AGINO_TO_INO(mp, agno, agino);
4983 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4984 if (error)
4985 goto fail;
4988 * Get the on disk inode to find the next inode in the bucket.
4990 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4991 if (error)
4992 goto fail_iput;
4994 xfs_iflags_clear(ip, XFS_IRECOVERY);
4995 ASSERT(VFS_I(ip)->i_nlink == 0);
4996 ASSERT(VFS_I(ip)->i_mode != 0);
4998 /* setup for the next pass */
4999 agino = be32_to_cpu(dip->di_next_unlinked);
5000 xfs_buf_relse(ibp);
5003 * Prevent any DMAPI event from being sent when the reference on
5004 * the inode is dropped.
5006 ip->i_d.di_dmevmask = 0;
5008 xfs_irele(ip);
5009 return agino;
5011 fail_iput:
5012 xfs_irele(ip);
5013 fail:
5015 * We can't read in the inode this bucket points to, or this inode
5016 * is messed up. Just ditch this bucket of inodes. We will lose
5017 * some inodes and space, but at least we won't hang.
5019 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5020 * clear the inode pointer in the bucket.
5022 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5023 return NULLAGINO;
5027 * Recover AGI unlinked lists
5029 * This is called during recovery to process any inodes which we unlinked but
5030 * not freed when the system crashed. These inodes will be on the lists in the
5031 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
5032 * any inodes found on the lists. Each inode is removed from the lists when it
5033 * has been fully truncated and is freed. The freeing of the inode and its
5034 * removal from the list must be atomic.
5036 * If everything we touch in the agi processing loop is already in memory, this
5037 * loop can hold the cpu for a long time. It runs without lock contention,
5038 * memory allocation contention, the need wait for IO, etc, and so will run
5039 * until we either run out of inodes to process, run low on memory or we run out
5040 * of log space.
5042 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
5043 * and can prevent other filesytem work (such as CIL pushes) from running. This
5044 * can lead to deadlocks if the recovery process runs out of log reservation
5045 * space. Hence we need to yield the CPU when there is other kernel work
5046 * scheduled on this CPU to ensure other scheduled work can run without undue
5047 * latency.
5049 STATIC void
5050 xlog_recover_process_iunlinks(
5051 struct xlog *log)
5053 xfs_mount_t *mp;
5054 xfs_agnumber_t agno;
5055 xfs_agi_t *agi;
5056 xfs_buf_t *agibp;
5057 xfs_agino_t agino;
5058 int bucket;
5059 int error;
5061 mp = log->l_mp;
5063 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5065 * Find the agi for this ag.
5067 error = xfs_read_agi(mp, NULL, agno, &agibp);
5068 if (error) {
5070 * AGI is b0rked. Don't process it.
5072 * We should probably mark the filesystem as corrupt
5073 * after we've recovered all the ag's we can....
5075 continue;
5078 * Unlock the buffer so that it can be acquired in the normal
5079 * course of the transaction to truncate and free each inode.
5080 * Because we are not racing with anyone else here for the AGI
5081 * buffer, we don't even need to hold it locked to read the
5082 * initial unlinked bucket entries out of the buffer. We keep
5083 * buffer reference though, so that it stays pinned in memory
5084 * while we need the buffer.
5086 agi = XFS_BUF_TO_AGI(agibp);
5087 xfs_buf_unlock(agibp);
5089 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5090 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5091 while (agino != NULLAGINO) {
5092 agino = xlog_recover_process_one_iunlink(mp,
5093 agno, agino, bucket);
5094 cond_resched();
5097 xfs_buf_rele(agibp);
5101 STATIC void
5102 xlog_unpack_data(
5103 struct xlog_rec_header *rhead,
5104 char *dp,
5105 struct xlog *log)
5107 int i, j, k;
5109 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5110 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5111 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5112 dp += BBSIZE;
5115 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5116 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5117 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5118 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5119 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5120 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5121 dp += BBSIZE;
5127 * CRC check, unpack and process a log record.
5129 STATIC int
5130 xlog_recover_process(
5131 struct xlog *log,
5132 struct hlist_head rhash[],
5133 struct xlog_rec_header *rhead,
5134 char *dp,
5135 int pass,
5136 struct list_head *buffer_list)
5138 __le32 old_crc = rhead->h_crc;
5139 __le32 crc;
5141 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5144 * Nothing else to do if this is a CRC verification pass. Just return
5145 * if this a record with a non-zero crc. Unfortunately, mkfs always
5146 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5147 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5148 * know precisely what failed.
5150 if (pass == XLOG_RECOVER_CRCPASS) {
5151 if (old_crc && crc != old_crc)
5152 return -EFSBADCRC;
5153 return 0;
5157 * We're in the normal recovery path. Issue a warning if and only if the
5158 * CRC in the header is non-zero. This is an advisory warning and the
5159 * zero CRC check prevents warnings from being emitted when upgrading
5160 * the kernel from one that does not add CRCs by default.
5162 if (crc != old_crc) {
5163 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5164 xfs_alert(log->l_mp,
5165 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5166 le32_to_cpu(old_crc),
5167 le32_to_cpu(crc));
5168 xfs_hex_dump(dp, 32);
5172 * If the filesystem is CRC enabled, this mismatch becomes a
5173 * fatal log corruption failure.
5175 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5176 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
5177 return -EFSCORRUPTED;
5181 xlog_unpack_data(rhead, dp, log);
5183 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5184 buffer_list);
5187 STATIC int
5188 xlog_valid_rec_header(
5189 struct xlog *log,
5190 struct xlog_rec_header *rhead,
5191 xfs_daddr_t blkno)
5193 int hlen;
5195 if (XFS_IS_CORRUPT(log->l_mp,
5196 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
5197 return -EFSCORRUPTED;
5198 if (XFS_IS_CORRUPT(log->l_mp,
5199 (!rhead->h_version ||
5200 (be32_to_cpu(rhead->h_version) &
5201 (~XLOG_VERSION_OKBITS))))) {
5202 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5203 __func__, be32_to_cpu(rhead->h_version));
5204 return -EFSCORRUPTED;
5207 /* LR body must have data or it wouldn't have been written */
5208 hlen = be32_to_cpu(rhead->h_len);
5209 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > INT_MAX))
5210 return -EFSCORRUPTED;
5211 if (XFS_IS_CORRUPT(log->l_mp,
5212 blkno > log->l_logBBsize || blkno > INT_MAX))
5213 return -EFSCORRUPTED;
5214 return 0;
5218 * Read the log from tail to head and process the log records found.
5219 * Handle the two cases where the tail and head are in the same cycle
5220 * and where the active portion of the log wraps around the end of
5221 * the physical log separately. The pass parameter is passed through
5222 * to the routines called to process the data and is not looked at
5223 * here.
5225 STATIC int
5226 xlog_do_recovery_pass(
5227 struct xlog *log,
5228 xfs_daddr_t head_blk,
5229 xfs_daddr_t tail_blk,
5230 int pass,
5231 xfs_daddr_t *first_bad) /* out: first bad log rec */
5233 xlog_rec_header_t *rhead;
5234 xfs_daddr_t blk_no, rblk_no;
5235 xfs_daddr_t rhead_blk;
5236 char *offset;
5237 char *hbp, *dbp;
5238 int error = 0, h_size, h_len;
5239 int error2 = 0;
5240 int bblks, split_bblks;
5241 int hblks, split_hblks, wrapped_hblks;
5242 int i;
5243 struct hlist_head rhash[XLOG_RHASH_SIZE];
5244 LIST_HEAD (buffer_list);
5246 ASSERT(head_blk != tail_blk);
5247 blk_no = rhead_blk = tail_blk;
5249 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5250 INIT_HLIST_HEAD(&rhash[i]);
5253 * Read the header of the tail block and get the iclog buffer size from
5254 * h_size. Use this to tell how many sectors make up the log header.
5256 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5258 * When using variable length iclogs, read first sector of
5259 * iclog header and extract the header size from it. Get a
5260 * new hbp that is the correct size.
5262 hbp = xlog_alloc_buffer(log, 1);
5263 if (!hbp)
5264 return -ENOMEM;
5266 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5267 if (error)
5268 goto bread_err1;
5270 rhead = (xlog_rec_header_t *)offset;
5271 error = xlog_valid_rec_header(log, rhead, tail_blk);
5272 if (error)
5273 goto bread_err1;
5276 * xfsprogs has a bug where record length is based on lsunit but
5277 * h_size (iclog size) is hardcoded to 32k. Now that we
5278 * unconditionally CRC verify the unmount record, this means the
5279 * log buffer can be too small for the record and cause an
5280 * overrun.
5282 * Detect this condition here. Use lsunit for the buffer size as
5283 * long as this looks like the mkfs case. Otherwise, return an
5284 * error to avoid a buffer overrun.
5286 h_size = be32_to_cpu(rhead->h_size);
5287 h_len = be32_to_cpu(rhead->h_len);
5288 if (h_len > h_size) {
5289 if (h_len <= log->l_mp->m_logbsize &&
5290 be32_to_cpu(rhead->h_num_logops) == 1) {
5291 xfs_warn(log->l_mp,
5292 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5293 h_size, log->l_mp->m_logbsize);
5294 h_size = log->l_mp->m_logbsize;
5295 } else {
5296 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW,
5297 log->l_mp);
5298 error = -EFSCORRUPTED;
5299 goto bread_err1;
5303 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5304 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5305 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5306 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5307 hblks++;
5308 kmem_free(hbp);
5309 hbp = xlog_alloc_buffer(log, hblks);
5310 } else {
5311 hblks = 1;
5313 } else {
5314 ASSERT(log->l_sectBBsize == 1);
5315 hblks = 1;
5316 hbp = xlog_alloc_buffer(log, 1);
5317 h_size = XLOG_BIG_RECORD_BSIZE;
5320 if (!hbp)
5321 return -ENOMEM;
5322 dbp = xlog_alloc_buffer(log, BTOBB(h_size));
5323 if (!dbp) {
5324 kmem_free(hbp);
5325 return -ENOMEM;
5328 memset(rhash, 0, sizeof(rhash));
5329 if (tail_blk > head_blk) {
5331 * Perform recovery around the end of the physical log.
5332 * When the head is not on the same cycle number as the tail,
5333 * we can't do a sequential recovery.
5335 while (blk_no < log->l_logBBsize) {
5337 * Check for header wrapping around physical end-of-log
5339 offset = hbp;
5340 split_hblks = 0;
5341 wrapped_hblks = 0;
5342 if (blk_no + hblks <= log->l_logBBsize) {
5343 /* Read header in one read */
5344 error = xlog_bread(log, blk_no, hblks, hbp,
5345 &offset);
5346 if (error)
5347 goto bread_err2;
5348 } else {
5349 /* This LR is split across physical log end */
5350 if (blk_no != log->l_logBBsize) {
5351 /* some data before physical log end */
5352 ASSERT(blk_no <= INT_MAX);
5353 split_hblks = log->l_logBBsize - (int)blk_no;
5354 ASSERT(split_hblks > 0);
5355 error = xlog_bread(log, blk_no,
5356 split_hblks, hbp,
5357 &offset);
5358 if (error)
5359 goto bread_err2;
5363 * Note: this black magic still works with
5364 * large sector sizes (non-512) only because:
5365 * - we increased the buffer size originally
5366 * by 1 sector giving us enough extra space
5367 * for the second read;
5368 * - the log start is guaranteed to be sector
5369 * aligned;
5370 * - we read the log end (LR header start)
5371 * _first_, then the log start (LR header end)
5372 * - order is important.
5374 wrapped_hblks = hblks - split_hblks;
5375 error = xlog_bread_noalign(log, 0,
5376 wrapped_hblks,
5377 offset + BBTOB(split_hblks));
5378 if (error)
5379 goto bread_err2;
5381 rhead = (xlog_rec_header_t *)offset;
5382 error = xlog_valid_rec_header(log, rhead,
5383 split_hblks ? blk_no : 0);
5384 if (error)
5385 goto bread_err2;
5387 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5388 blk_no += hblks;
5391 * Read the log record data in multiple reads if it
5392 * wraps around the end of the log. Note that if the
5393 * header already wrapped, blk_no could point past the
5394 * end of the log. The record data is contiguous in
5395 * that case.
5397 if (blk_no + bblks <= log->l_logBBsize ||
5398 blk_no >= log->l_logBBsize) {
5399 rblk_no = xlog_wrap_logbno(log, blk_no);
5400 error = xlog_bread(log, rblk_no, bblks, dbp,
5401 &offset);
5402 if (error)
5403 goto bread_err2;
5404 } else {
5405 /* This log record is split across the
5406 * physical end of log */
5407 offset = dbp;
5408 split_bblks = 0;
5409 if (blk_no != log->l_logBBsize) {
5410 /* some data is before the physical
5411 * end of log */
5412 ASSERT(!wrapped_hblks);
5413 ASSERT(blk_no <= INT_MAX);
5414 split_bblks =
5415 log->l_logBBsize - (int)blk_no;
5416 ASSERT(split_bblks > 0);
5417 error = xlog_bread(log, blk_no,
5418 split_bblks, dbp,
5419 &offset);
5420 if (error)
5421 goto bread_err2;
5425 * Note: this black magic still works with
5426 * large sector sizes (non-512) only because:
5427 * - we increased the buffer size originally
5428 * by 1 sector giving us enough extra space
5429 * for the second read;
5430 * - the log start is guaranteed to be sector
5431 * aligned;
5432 * - we read the log end (LR header start)
5433 * _first_, then the log start (LR header end)
5434 * - order is important.
5436 error = xlog_bread_noalign(log, 0,
5437 bblks - split_bblks,
5438 offset + BBTOB(split_bblks));
5439 if (error)
5440 goto bread_err2;
5443 error = xlog_recover_process(log, rhash, rhead, offset,
5444 pass, &buffer_list);
5445 if (error)
5446 goto bread_err2;
5448 blk_no += bblks;
5449 rhead_blk = blk_no;
5452 ASSERT(blk_no >= log->l_logBBsize);
5453 blk_no -= log->l_logBBsize;
5454 rhead_blk = blk_no;
5457 /* read first part of physical log */
5458 while (blk_no < head_blk) {
5459 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5460 if (error)
5461 goto bread_err2;
5463 rhead = (xlog_rec_header_t *)offset;
5464 error = xlog_valid_rec_header(log, rhead, blk_no);
5465 if (error)
5466 goto bread_err2;
5468 /* blocks in data section */
5469 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5470 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5471 &offset);
5472 if (error)
5473 goto bread_err2;
5475 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5476 &buffer_list);
5477 if (error)
5478 goto bread_err2;
5480 blk_no += bblks + hblks;
5481 rhead_blk = blk_no;
5484 bread_err2:
5485 kmem_free(dbp);
5486 bread_err1:
5487 kmem_free(hbp);
5490 * Submit buffers that have been added from the last record processed,
5491 * regardless of error status.
5493 if (!list_empty(&buffer_list))
5494 error2 = xfs_buf_delwri_submit(&buffer_list);
5496 if (error && first_bad)
5497 *first_bad = rhead_blk;
5500 * Transactions are freed at commit time but transactions without commit
5501 * records on disk are never committed. Free any that may be left in the
5502 * hash table.
5504 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5505 struct hlist_node *tmp;
5506 struct xlog_recover *trans;
5508 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5509 xlog_recover_free_trans(trans);
5512 return error ? error : error2;
5516 * Do the recovery of the log. We actually do this in two phases.
5517 * The two passes are necessary in order to implement the function
5518 * of cancelling a record written into the log. The first pass
5519 * determines those things which have been cancelled, and the
5520 * second pass replays log items normally except for those which
5521 * have been cancelled. The handling of the replay and cancellations
5522 * takes place in the log item type specific routines.
5524 * The table of items which have cancel records in the log is allocated
5525 * and freed at this level, since only here do we know when all of
5526 * the log recovery has been completed.
5528 STATIC int
5529 xlog_do_log_recovery(
5530 struct xlog *log,
5531 xfs_daddr_t head_blk,
5532 xfs_daddr_t tail_blk)
5534 int error, i;
5536 ASSERT(head_blk != tail_blk);
5539 * First do a pass to find all of the cancelled buf log items.
5540 * Store them in the buf_cancel_table for use in the second pass.
5542 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5543 sizeof(struct list_head),
5545 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5546 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5548 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5549 XLOG_RECOVER_PASS1, NULL);
5550 if (error != 0) {
5551 kmem_free(log->l_buf_cancel_table);
5552 log->l_buf_cancel_table = NULL;
5553 return error;
5556 * Then do a second pass to actually recover the items in the log.
5557 * When it is complete free the table of buf cancel items.
5559 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5560 XLOG_RECOVER_PASS2, NULL);
5561 #ifdef DEBUG
5562 if (!error) {
5563 int i;
5565 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5566 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5568 #endif /* DEBUG */
5570 kmem_free(log->l_buf_cancel_table);
5571 log->l_buf_cancel_table = NULL;
5573 return error;
5577 * Do the actual recovery
5579 STATIC int
5580 xlog_do_recover(
5581 struct xlog *log,
5582 xfs_daddr_t head_blk,
5583 xfs_daddr_t tail_blk)
5585 struct xfs_mount *mp = log->l_mp;
5586 int error;
5587 xfs_buf_t *bp;
5588 xfs_sb_t *sbp;
5590 trace_xfs_log_recover(log, head_blk, tail_blk);
5593 * First replay the images in the log.
5595 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5596 if (error)
5597 return error;
5600 * If IO errors happened during recovery, bail out.
5602 if (XFS_FORCED_SHUTDOWN(mp)) {
5603 return -EIO;
5607 * We now update the tail_lsn since much of the recovery has completed
5608 * and there may be space available to use. If there were no extent
5609 * or iunlinks, we can free up the entire log and set the tail_lsn to
5610 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5611 * lsn of the last known good LR on disk. If there are extent frees
5612 * or iunlinks they will have some entries in the AIL; so we look at
5613 * the AIL to determine how to set the tail_lsn.
5615 xlog_assign_tail_lsn(mp);
5618 * Now that we've finished replaying all buffer and inode
5619 * updates, re-read in the superblock and reverify it.
5621 bp = xfs_getsb(mp);
5622 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5623 ASSERT(!(bp->b_flags & XBF_WRITE));
5624 bp->b_flags |= XBF_READ;
5625 bp->b_ops = &xfs_sb_buf_ops;
5627 error = xfs_buf_submit(bp);
5628 if (error) {
5629 if (!XFS_FORCED_SHUTDOWN(mp)) {
5630 xfs_buf_ioerror_alert(bp, __this_address);
5631 ASSERT(0);
5633 xfs_buf_relse(bp);
5634 return error;
5637 /* Convert superblock from on-disk format */
5638 sbp = &mp->m_sb;
5639 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5640 xfs_buf_relse(bp);
5642 /* re-initialise in-core superblock and geometry structures */
5643 xfs_reinit_percpu_counters(mp);
5644 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5645 if (error) {
5646 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5647 return error;
5649 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5651 xlog_recover_check_summary(log);
5653 /* Normal transactions can now occur */
5654 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5655 return 0;
5659 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5661 * Return error or zero.
5664 xlog_recover(
5665 struct xlog *log)
5667 xfs_daddr_t head_blk, tail_blk;
5668 int error;
5670 /* find the tail of the log */
5671 error = xlog_find_tail(log, &head_blk, &tail_blk);
5672 if (error)
5673 return error;
5676 * The superblock was read before the log was available and thus the LSN
5677 * could not be verified. Check the superblock LSN against the current
5678 * LSN now that it's known.
5680 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5681 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5682 return -EINVAL;
5684 if (tail_blk != head_blk) {
5685 /* There used to be a comment here:
5687 * disallow recovery on read-only mounts. note -- mount
5688 * checks for ENOSPC and turns it into an intelligent
5689 * error message.
5690 * ...but this is no longer true. Now, unless you specify
5691 * NORECOVERY (in which case this function would never be
5692 * called), we just go ahead and recover. We do this all
5693 * under the vfs layer, so we can get away with it unless
5694 * the device itself is read-only, in which case we fail.
5696 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5697 return error;
5701 * Version 5 superblock log feature mask validation. We know the
5702 * log is dirty so check if there are any unknown log features
5703 * in what we need to recover. If there are unknown features
5704 * (e.g. unsupported transactions, then simply reject the
5705 * attempt at recovery before touching anything.
5707 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5708 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5709 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5710 xfs_warn(log->l_mp,
5711 "Superblock has unknown incompatible log features (0x%x) enabled.",
5712 (log->l_mp->m_sb.sb_features_log_incompat &
5713 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5714 xfs_warn(log->l_mp,
5715 "The log can not be fully and/or safely recovered by this kernel.");
5716 xfs_warn(log->l_mp,
5717 "Please recover the log on a kernel that supports the unknown features.");
5718 return -EINVAL;
5722 * Delay log recovery if the debug hook is set. This is debug
5723 * instrumention to coordinate simulation of I/O failures with
5724 * log recovery.
5726 if (xfs_globals.log_recovery_delay) {
5727 xfs_notice(log->l_mp,
5728 "Delaying log recovery for %d seconds.",
5729 xfs_globals.log_recovery_delay);
5730 msleep(xfs_globals.log_recovery_delay * 1000);
5733 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5734 log->l_mp->m_logname ? log->l_mp->m_logname
5735 : "internal");
5737 error = xlog_do_recover(log, head_blk, tail_blk);
5738 log->l_flags |= XLOG_RECOVERY_NEEDED;
5740 return error;
5744 * In the first part of recovery we replay inodes and buffers and build
5745 * up the list of extent free items which need to be processed. Here
5746 * we process the extent free items and clean up the on disk unlinked
5747 * inode lists. This is separated from the first part of recovery so
5748 * that the root and real-time bitmap inodes can be read in from disk in
5749 * between the two stages. This is necessary so that we can free space
5750 * in the real-time portion of the file system.
5753 xlog_recover_finish(
5754 struct xlog *log)
5757 * Now we're ready to do the transactions needed for the
5758 * rest of recovery. Start with completing all the extent
5759 * free intent records and then process the unlinked inode
5760 * lists. At this point, we essentially run in normal mode
5761 * except that we're still performing recovery actions
5762 * rather than accepting new requests.
5764 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5765 int error;
5766 error = xlog_recover_process_intents(log);
5767 if (error) {
5768 xfs_alert(log->l_mp, "Failed to recover intents");
5769 return error;
5773 * Sync the log to get all the intents out of the AIL.
5774 * This isn't absolutely necessary, but it helps in
5775 * case the unlink transactions would have problems
5776 * pushing the intents out of the way.
5778 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5780 xlog_recover_process_iunlinks(log);
5782 xlog_recover_check_summary(log);
5784 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5785 log->l_mp->m_logname ? log->l_mp->m_logname
5786 : "internal");
5787 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5788 } else {
5789 xfs_info(log->l_mp, "Ending clean mount");
5791 return 0;
5794 void
5795 xlog_recover_cancel(
5796 struct xlog *log)
5798 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5799 xlog_recover_cancel_intents(log);
5802 #if defined(DEBUG)
5804 * Read all of the agf and agi counters and check that they
5805 * are consistent with the superblock counters.
5807 STATIC void
5808 xlog_recover_check_summary(
5809 struct xlog *log)
5811 xfs_mount_t *mp;
5812 xfs_agf_t *agfp;
5813 xfs_buf_t *agfbp;
5814 xfs_buf_t *agibp;
5815 xfs_agnumber_t agno;
5816 uint64_t freeblks;
5817 uint64_t itotal;
5818 uint64_t ifree;
5819 int error;
5821 mp = log->l_mp;
5823 freeblks = 0LL;
5824 itotal = 0LL;
5825 ifree = 0LL;
5826 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5827 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5828 if (error) {
5829 xfs_alert(mp, "%s agf read failed agno %d error %d",
5830 __func__, agno, error);
5831 } else {
5832 agfp = XFS_BUF_TO_AGF(agfbp);
5833 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5834 be32_to_cpu(agfp->agf_flcount);
5835 xfs_buf_relse(agfbp);
5838 error = xfs_read_agi(mp, NULL, agno, &agibp);
5839 if (error) {
5840 xfs_alert(mp, "%s agi read failed agno %d error %d",
5841 __func__, agno, error);
5842 } else {
5843 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5845 itotal += be32_to_cpu(agi->agi_count);
5846 ifree += be32_to_cpu(agi->agi_freecount);
5847 xfs_buf_relse(agibp);
5851 #endif /* DEBUG */