1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
36 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
37 static int xfs_uuid_table_size
;
38 static uuid_t
*xfs_uuid_table
;
41 xfs_uuid_table_free(void)
43 if (xfs_uuid_table_size
== 0)
45 kmem_free(xfs_uuid_table
);
46 xfs_uuid_table
= NULL
;
47 xfs_uuid_table_size
= 0;
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
58 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp
->m_super
->s_uuid
, uuid
);
64 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
67 if (uuid_is_null(uuid
)) {
68 xfs_warn(mp
, "Filesystem has null UUID - can't mount");
72 mutex_lock(&xfs_uuid_table_mutex
);
73 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
74 if (uuid_is_null(&xfs_uuid_table
[i
])) {
78 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
83 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
84 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
86 hole
= xfs_uuid_table_size
++;
88 xfs_uuid_table
[hole
] = *uuid
;
89 mutex_unlock(&xfs_uuid_table_mutex
);
94 mutex_unlock(&xfs_uuid_table_mutex
);
95 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
101 struct xfs_mount
*mp
)
103 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
106 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
109 mutex_lock(&xfs_uuid_table_mutex
);
110 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
111 if (uuid_is_null(&xfs_uuid_table
[i
]))
113 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
115 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
118 ASSERT(i
< xfs_uuid_table_size
);
119 mutex_unlock(&xfs_uuid_table_mutex
);
125 struct rcu_head
*head
)
127 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
129 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
134 * Free up the per-ag resources associated with the mount structure.
141 struct xfs_perag
*pag
;
143 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
144 spin_lock(&mp
->m_perag_lock
);
145 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
146 spin_unlock(&mp
->m_perag_lock
);
148 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
149 xfs_iunlink_destroy(pag
);
150 xfs_buf_hash_destroy(pag
);
151 mutex_destroy(&pag
->pag_ici_reclaim_lock
);
152 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
157 * Check size of device based on the (data/realtime) block count.
158 * Note: this check is used by the growfs code as well as mount.
161 xfs_sb_validate_fsb_count(
165 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
166 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
168 /* Limited by ULONG_MAX of page cache index */
169 if (nblocks
>> (PAGE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
175 xfs_initialize_perag(
177 xfs_agnumber_t agcount
,
178 xfs_agnumber_t
*maxagi
)
180 xfs_agnumber_t index
;
181 xfs_agnumber_t first_initialised
= NULLAGNUMBER
;
186 * Walk the current per-ag tree so we don't try to initialise AGs
187 * that already exist (growfs case). Allocate and insert all the
188 * AGs we don't find ready for initialisation.
190 for (index
= 0; index
< agcount
; index
++) {
191 pag
= xfs_perag_get(mp
, index
);
197 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
199 goto out_unwind_new_pags
;
200 pag
->pag_agno
= index
;
202 spin_lock_init(&pag
->pag_ici_lock
);
203 mutex_init(&pag
->pag_ici_reclaim_lock
);
204 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
205 if (xfs_buf_hash_init(pag
))
207 init_waitqueue_head(&pag
->pagb_wait
);
208 spin_lock_init(&pag
->pagb_lock
);
210 pag
->pagb_tree
= RB_ROOT
;
212 if (radix_tree_preload(GFP_NOFS
))
213 goto out_hash_destroy
;
215 spin_lock(&mp
->m_perag_lock
);
216 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
218 spin_unlock(&mp
->m_perag_lock
);
219 radix_tree_preload_end();
221 goto out_hash_destroy
;
223 spin_unlock(&mp
->m_perag_lock
);
224 radix_tree_preload_end();
225 /* first new pag is fully initialized */
226 if (first_initialised
== NULLAGNUMBER
)
227 first_initialised
= index
;
228 error
= xfs_iunlink_init(pag
);
230 goto out_hash_destroy
;
231 spin_lock_init(&pag
->pag_state_lock
);
234 index
= xfs_set_inode_alloc(mp
, agcount
);
239 mp
->m_ag_prealloc_blocks
= xfs_prealloc_blocks(mp
);
243 xfs_buf_hash_destroy(pag
);
245 mutex_destroy(&pag
->pag_ici_reclaim_lock
);
248 /* unwind any prior newly initialized pags */
249 for (index
= first_initialised
; index
< agcount
; index
++) {
250 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
253 xfs_buf_hash_destroy(pag
);
254 xfs_iunlink_destroy(pag
);
255 mutex_destroy(&pag
->pag_ici_reclaim_lock
);
264 * Does the initial read of the superblock.
268 struct xfs_mount
*mp
,
271 unsigned int sector_size
;
273 struct xfs_sb
*sbp
= &mp
->m_sb
;
275 int loud
= !(flags
& XFS_MFSI_QUIET
);
276 const struct xfs_buf_ops
*buf_ops
;
278 ASSERT(mp
->m_sb_bp
== NULL
);
279 ASSERT(mp
->m_ddev_targp
!= NULL
);
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
288 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
298 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
299 BTOBB(sector_size
), XBF_NO_IOACCT
, &bp
,
303 xfs_warn(mp
, "SB validate failed with error %d.", error
);
304 /* bad CRC means corrupted metadata */
305 if (error
== -EFSBADCRC
)
306 error
= -EFSCORRUPTED
;
311 * Initialize the mount structure from the superblock.
313 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
319 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
321 xfs_warn(mp
, "Invalid superblock magic number");
327 * We must be able to do sector-sized and sector-aligned IO.
329 if (sector_size
> sbp
->sb_sectsize
) {
331 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
332 sector_size
, sbp
->sb_sectsize
);
337 if (buf_ops
== NULL
) {
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
343 sector_size
= sbp
->sb_sectsize
;
344 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
348 xfs_reinit_percpu_counters(mp
);
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp
->b_ops
= &xfs_sb_buf_ops
;
363 * If the sunit/swidth change would move the precomputed root inode value, we
364 * must reject the ondisk change because repair will stumble over that.
365 * However, we allow the mount to proceed because we never rejected this
366 * combination before. Returns true to update the sb, false otherwise.
369 xfs_check_new_dalign(
370 struct xfs_mount
*mp
,
374 struct xfs_sb
*sbp
= &mp
->m_sb
;
377 calc_ino
= xfs_ialloc_calc_rootino(mp
, new_dalign
);
378 trace_xfs_check_new_dalign(mp
, new_dalign
, calc_ino
);
380 if (sbp
->sb_rootino
== calc_ino
) {
386 "Cannot change stripe alignment; would require moving root inode.");
389 * XXX: Next time we add a new incompat feature, this should start
390 * returning -EINVAL to fail the mount. Until then, spit out a warning
391 * that we're ignoring the administrator's instructions.
393 xfs_warn(mp
, "Skipping superblock stripe alignment update.");
399 * If we were provided with new sunit/swidth values as mount options, make sure
400 * that they pass basic alignment and superblock feature checks, and convert
401 * them into the same units (FSB) that everything else expects. This step
402 * /must/ be done before computing the inode geometry.
405 xfs_validate_new_dalign(
406 struct xfs_mount
*mp
)
408 if (mp
->m_dalign
== 0)
412 * If stripe unit and stripe width are not multiples
413 * of the fs blocksize turn off alignment.
415 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
416 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
418 "alignment check failed: sunit/swidth vs. blocksize(%d)",
419 mp
->m_sb
.sb_blocksize
);
423 * Convert the stripe unit and width to FSBs.
425 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
426 if (mp
->m_dalign
&& (mp
->m_sb
.sb_agblocks
% mp
->m_dalign
)) {
428 "alignment check failed: sunit/swidth vs. agsize(%d)",
429 mp
->m_sb
.sb_agblocks
);
431 } else if (mp
->m_dalign
) {
432 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
435 "alignment check failed: sunit(%d) less than bsize(%d)",
436 mp
->m_dalign
, mp
->m_sb
.sb_blocksize
);
441 if (!xfs_sb_version_hasdalign(&mp
->m_sb
)) {
443 "cannot change alignment: superblock does not support data alignment");
450 /* Update alignment values based on mount options and sb values. */
452 xfs_update_alignment(
453 struct xfs_mount
*mp
)
455 struct xfs_sb
*sbp
= &mp
->m_sb
;
461 if (sbp
->sb_unit
== mp
->m_dalign
&&
462 sbp
->sb_width
== mp
->m_swidth
)
465 error
= xfs_check_new_dalign(mp
, mp
->m_dalign
, &update_sb
);
466 if (error
|| !update_sb
)
469 sbp
->sb_unit
= mp
->m_dalign
;
470 sbp
->sb_width
= mp
->m_swidth
;
471 mp
->m_update_sb
= true;
472 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
473 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
474 mp
->m_dalign
= sbp
->sb_unit
;
475 mp
->m_swidth
= sbp
->sb_width
;
482 * precalculate the low space thresholds for dynamic speculative preallocation.
485 xfs_set_low_space_thresholds(
486 struct xfs_mount
*mp
)
490 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
491 uint64_t space
= mp
->m_sb
.sb_dblocks
;
494 mp
->m_low_space
[i
] = space
* (i
+ 1);
499 * Check that the data (and log if separate) is an ok size.
503 struct xfs_mount
*mp
)
509 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
510 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
511 xfs_warn(mp
, "filesystem size mismatch detected");
514 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
515 d
- XFS_FSS_TO_BB(mp
, 1),
516 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
518 xfs_warn(mp
, "last sector read failed");
523 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
526 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
527 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
528 xfs_warn(mp
, "log size mismatch detected");
531 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
532 d
- XFS_FSB_TO_BB(mp
, 1),
533 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
535 xfs_warn(mp
, "log device read failed");
543 * Clear the quotaflags in memory and in the superblock.
546 xfs_mount_reset_sbqflags(
547 struct xfs_mount
*mp
)
551 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
552 if (mp
->m_sb
.sb_qflags
== 0)
554 spin_lock(&mp
->m_sb_lock
);
555 mp
->m_sb
.sb_qflags
= 0;
556 spin_unlock(&mp
->m_sb_lock
);
558 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
561 return xfs_sync_sb(mp
, false);
565 xfs_default_resblks(xfs_mount_t
*mp
)
570 * We default to 5% or 8192 fsbs of space reserved, whichever is
571 * smaller. This is intended to cover concurrent allocation
572 * transactions when we initially hit enospc. These each require a 4
573 * block reservation. Hence by default we cover roughly 2000 concurrent
574 * allocation reservations.
576 resblks
= mp
->m_sb
.sb_dblocks
;
578 resblks
= min_t(uint64_t, resblks
, 8192);
582 /* Ensure the summary counts are correct. */
584 xfs_check_summary_counts(
585 struct xfs_mount
*mp
)
588 * The AG0 superblock verifier rejects in-progress filesystems,
589 * so we should never see the flag set this far into mounting.
591 if (mp
->m_sb
.sb_inprogress
) {
592 xfs_err(mp
, "sb_inprogress set after log recovery??");
594 return -EFSCORRUPTED
;
598 * Now the log is mounted, we know if it was an unclean shutdown or
599 * not. If it was, with the first phase of recovery has completed, we
600 * have consistent AG blocks on disk. We have not recovered EFIs yet,
601 * but they are recovered transactionally in the second recovery phase
604 * If the log was clean when we mounted, we can check the summary
605 * counters. If any of them are obviously incorrect, we can recompute
606 * them from the AGF headers in the next step.
608 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
609 (mp
->m_sb
.sb_fdblocks
> mp
->m_sb
.sb_dblocks
||
610 !xfs_verify_icount(mp
, mp
->m_sb
.sb_icount
) ||
611 mp
->m_sb
.sb_ifree
> mp
->m_sb
.sb_icount
))
612 xfs_fs_mark_sick(mp
, XFS_SICK_FS_COUNTERS
);
615 * We can safely re-initialise incore superblock counters from the
616 * per-ag data. These may not be correct if the filesystem was not
617 * cleanly unmounted, so we waited for recovery to finish before doing
620 * If the filesystem was cleanly unmounted or the previous check did
621 * not flag anything weird, then we can trust the values in the
622 * superblock to be correct and we don't need to do anything here.
623 * Otherwise, recalculate the summary counters.
625 if ((!xfs_sb_version_haslazysbcount(&mp
->m_sb
) ||
626 XFS_LAST_UNMOUNT_WAS_CLEAN(mp
)) &&
627 !xfs_fs_has_sickness(mp
, XFS_SICK_FS_COUNTERS
))
630 return xfs_initialize_perag_data(mp
, mp
->m_sb
.sb_agcount
);
634 * This function does the following on an initial mount of a file system:
635 * - reads the superblock from disk and init the mount struct
636 * - if we're a 32-bit kernel, do a size check on the superblock
637 * so we don't mount terabyte filesystems
638 * - init mount struct realtime fields
639 * - allocate inode hash table for fs
640 * - init directory manager
641 * - perform recovery and init the log manager
645 struct xfs_mount
*mp
)
647 struct xfs_sb
*sbp
= &(mp
->m_sb
);
648 struct xfs_inode
*rip
;
649 struct xfs_ino_geometry
*igeo
= M_IGEO(mp
);
655 xfs_sb_mount_common(mp
, sbp
);
658 * Check for a mismatched features2 values. Older kernels read & wrote
659 * into the wrong sb offset for sb_features2 on some platforms due to
660 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
661 * which made older superblock reading/writing routines swap it as a
664 * For backwards compatibility, we make both slots equal.
666 * If we detect a mismatched field, we OR the set bits into the existing
667 * features2 field in case it has already been modified; we don't want
668 * to lose any features. We then update the bad location with the ORed
669 * value so that older kernels will see any features2 flags. The
670 * superblock writeback code ensures the new sb_features2 is copied to
671 * sb_bad_features2 before it is logged or written to disk.
673 if (xfs_sb_has_mismatched_features2(sbp
)) {
674 xfs_warn(mp
, "correcting sb_features alignment problem");
675 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
676 mp
->m_update_sb
= true;
679 * Re-check for ATTR2 in case it was found in bad_features2
682 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
683 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
684 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
687 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
688 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
689 xfs_sb_version_removeattr2(&mp
->m_sb
);
690 mp
->m_update_sb
= true;
692 /* update sb_versionnum for the clearing of the morebits */
693 if (!sbp
->sb_features2
)
694 mp
->m_update_sb
= true;
697 /* always use v2 inodes by default now */
698 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
699 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
700 mp
->m_update_sb
= true;
704 * If we were given new sunit/swidth options, do some basic validation
705 * checks and convert the incore dalign and swidth values to the
706 * same units (FSB) that everything else uses. This /must/ happen
707 * before computing the inode geometry.
709 error
= xfs_validate_new_dalign(mp
);
713 xfs_alloc_compute_maxlevels(mp
);
714 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
715 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
716 xfs_ialloc_setup_geometry(mp
);
717 xfs_rmapbt_compute_maxlevels(mp
);
718 xfs_refcountbt_compute_maxlevels(mp
);
721 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
722 * is NOT aligned turn off m_dalign since allocator alignment is within
723 * an ag, therefore ag has to be aligned at stripe boundary. Note that
724 * we must compute the free space and rmap btree geometry before doing
727 error
= xfs_update_alignment(mp
);
731 /* enable fail_at_unmount as default */
732 mp
->m_fail_unmount
= true;
734 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
,
735 NULL
, mp
->m_super
->s_id
);
739 error
= xfs_sysfs_init(&mp
->m_stats
.xs_kobj
, &xfs_stats_ktype
,
740 &mp
->m_kobj
, "stats");
742 goto out_remove_sysfs
;
744 error
= xfs_error_sysfs_init(mp
);
748 error
= xfs_errortag_init(mp
);
750 goto out_remove_error_sysfs
;
752 error
= xfs_uuid_mount(mp
);
754 goto out_remove_errortag
;
757 * Update the preferred write size based on the information from the
758 * on-disk superblock.
760 mp
->m_allocsize_log
=
761 max_t(uint32_t, sbp
->sb_blocklog
, mp
->m_allocsize_log
);
762 mp
->m_allocsize_blocks
= 1U << (mp
->m_allocsize_log
- sbp
->sb_blocklog
);
764 /* set the low space thresholds for dynamic preallocation */
765 xfs_set_low_space_thresholds(mp
);
768 * If enabled, sparse inode chunk alignment is expected to match the
769 * cluster size. Full inode chunk alignment must match the chunk size,
770 * but that is checked on sb read verification...
772 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
) &&
773 mp
->m_sb
.sb_spino_align
!=
774 XFS_B_TO_FSBT(mp
, igeo
->inode_cluster_size_raw
)) {
776 "Sparse inode block alignment (%u) must match cluster size (%llu).",
777 mp
->m_sb
.sb_spino_align
,
778 XFS_B_TO_FSBT(mp
, igeo
->inode_cluster_size_raw
));
780 goto out_remove_uuid
;
784 * Check that the data (and log if separate) is an ok size.
786 error
= xfs_check_sizes(mp
);
788 goto out_remove_uuid
;
791 * Initialize realtime fields in the mount structure
793 error
= xfs_rtmount_init(mp
);
795 xfs_warn(mp
, "RT mount failed");
796 goto out_remove_uuid
;
800 * Copies the low order bits of the timestamp and the randomly
801 * set "sequence" number out of a UUID.
804 (get_unaligned_be16(&sbp
->sb_uuid
.b
[8]) << 16) |
805 get_unaligned_be16(&sbp
->sb_uuid
.b
[4]);
806 mp
->m_fixedfsid
[1] = get_unaligned_be32(&sbp
->sb_uuid
.b
[0]);
808 error
= xfs_da_mount(mp
);
810 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
811 goto out_remove_uuid
;
815 * Initialize the precomputed transaction reservations values.
820 * Allocate and initialize the per-ag data.
822 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
824 xfs_warn(mp
, "Failed per-ag init: %d", error
);
828 if (XFS_IS_CORRUPT(mp
, !sbp
->sb_logblocks
)) {
829 xfs_warn(mp
, "no log defined");
830 error
= -EFSCORRUPTED
;
835 * Log's mount-time initialization. The first part of recovery can place
836 * some items on the AIL, to be handled when recovery is finished or
839 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
840 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
841 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
843 xfs_warn(mp
, "log mount failed");
847 /* Make sure the summary counts are ok. */
848 error
= xfs_check_summary_counts(mp
);
850 goto out_log_dealloc
;
853 * Get and sanity-check the root inode.
854 * Save the pointer to it in the mount structure.
856 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, XFS_IGET_UNTRUSTED
,
857 XFS_ILOCK_EXCL
, &rip
);
860 "Failed to read root inode 0x%llx, error %d",
861 sbp
->sb_rootino
, -error
);
862 goto out_log_dealloc
;
867 if (XFS_IS_CORRUPT(mp
, !S_ISDIR(VFS_I(rip
)->i_mode
))) {
868 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
869 (unsigned long long)rip
->i_ino
);
870 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
871 error
= -EFSCORRUPTED
;
874 mp
->m_rootip
= rip
; /* save it */
876 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
879 * Initialize realtime inode pointers in the mount structure
881 error
= xfs_rtmount_inodes(mp
);
884 * Free up the root inode.
886 xfs_warn(mp
, "failed to read RT inodes");
891 * If this is a read-only mount defer the superblock updates until
892 * the next remount into writeable mode. Otherwise we would never
893 * perform the update e.g. for the root filesystem.
895 if (mp
->m_update_sb
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
896 error
= xfs_sync_sb(mp
, false);
898 xfs_warn(mp
, "failed to write sb changes");
904 * Initialise the XFS quota management subsystem for this mount
906 if (XFS_IS_QUOTA_RUNNING(mp
)) {
907 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
911 ASSERT(!XFS_IS_QUOTA_ON(mp
));
914 * If a file system had quotas running earlier, but decided to
915 * mount without -o uquota/pquota/gquota options, revoke the
916 * quotachecked license.
918 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
919 xfs_notice(mp
, "resetting quota flags");
920 error
= xfs_mount_reset_sbqflags(mp
);
927 * Finish recovering the file system. This part needed to be delayed
928 * until after the root and real-time bitmap inodes were consistently
931 error
= xfs_log_mount_finish(mp
);
933 xfs_warn(mp
, "log mount finish failed");
938 * Now the log is fully replayed, we can transition to full read-only
939 * mode for read-only mounts. This will sync all the metadata and clean
940 * the log so that the recovery we just performed does not have to be
941 * replayed again on the next mount.
943 * We use the same quiesce mechanism as the rw->ro remount, as they are
944 * semantically identical operations.
946 if ((mp
->m_flags
& (XFS_MOUNT_RDONLY
|XFS_MOUNT_NORECOVERY
)) ==
948 xfs_quiesce_attr(mp
);
952 * Complete the quota initialisation, post-log-replay component.
955 ASSERT(mp
->m_qflags
== 0);
956 mp
->m_qflags
= quotaflags
;
958 xfs_qm_mount_quotas(mp
);
962 * Now we are mounted, reserve a small amount of unused space for
963 * privileged transactions. This is needed so that transaction
964 * space required for critical operations can dip into this pool
965 * when at ENOSPC. This is needed for operations like create with
966 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
967 * are not allowed to use this reserved space.
969 * This may drive us straight to ENOSPC on mount, but that implies
970 * we were already there on the last unmount. Warn if this occurs.
972 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
973 resblks
= xfs_default_resblks(mp
);
974 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
977 "Unable to allocate reserve blocks. Continuing without reserve pool.");
979 /* Recover any CoW blocks that never got remapped. */
980 error
= xfs_reflink_recover_cow(mp
);
983 "Error %d recovering leftover CoW allocations.", error
);
984 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
988 /* Reserve AG blocks for future btree expansion. */
989 error
= xfs_fs_reserve_ag_blocks(mp
);
990 if (error
&& error
!= -ENOSPC
)
997 xfs_fs_unreserve_ag_blocks(mp
);
999 xfs_qm_unmount_quotas(mp
);
1001 xfs_rtunmount_inodes(mp
);
1004 /* Clean out dquots that might be in memory after quotacheck. */
1007 * Cancel all delayed reclaim work and reclaim the inodes directly.
1008 * We have to do this /after/ rtunmount and qm_unmount because those
1009 * two will have scheduled delayed reclaim for the rt/quota inodes.
1011 * This is slightly different from the unmountfs call sequence
1012 * because we could be tearing down a partially set up mount. In
1013 * particular, if log_mount_finish fails we bail out without calling
1014 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1017 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1018 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1019 xfs_health_unmount(mp
);
1021 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1022 xfs_log_mount_cancel(mp
);
1024 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1025 xfs_wait_buftarg(mp
->m_logdev_targp
);
1026 xfs_wait_buftarg(mp
->m_ddev_targp
);
1032 xfs_uuid_unmount(mp
);
1033 out_remove_errortag
:
1034 xfs_errortag_del(mp
);
1035 out_remove_error_sysfs
:
1036 xfs_error_sysfs_del(mp
);
1038 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1040 xfs_sysfs_del(&mp
->m_kobj
);
1046 * This flushes out the inodes,dquots and the superblock, unmounts the
1047 * log and makes sure that incore structures are freed.
1051 struct xfs_mount
*mp
)
1056 xfs_stop_block_reaping(mp
);
1057 xfs_fs_unreserve_ag_blocks(mp
);
1058 xfs_qm_unmount_quotas(mp
);
1059 xfs_rtunmount_inodes(mp
);
1060 xfs_irele(mp
->m_rootip
);
1063 * We can potentially deadlock here if we have an inode cluster
1064 * that has been freed has its buffer still pinned in memory because
1065 * the transaction is still sitting in a iclog. The stale inodes
1066 * on that buffer will have their flush locks held until the
1067 * transaction hits the disk and the callbacks run. the inode
1068 * flush takes the flush lock unconditionally and with nothing to
1069 * push out the iclog we will never get that unlocked. hence we
1070 * need to force the log first.
1072 xfs_log_force(mp
, XFS_LOG_SYNC
);
1075 * Wait for all busy extents to be freed, including completion of
1076 * any discard operation.
1078 xfs_extent_busy_wait_all(mp
);
1079 flush_workqueue(xfs_discard_wq
);
1082 * We now need to tell the world we are unmounting. This will allow
1083 * us to detect that the filesystem is going away and we should error
1084 * out anything that we have been retrying in the background. This will
1085 * prevent neverending retries in AIL pushing from hanging the unmount.
1087 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1090 * Flush all pending changes from the AIL.
1092 xfs_ail_push_all_sync(mp
->m_ail
);
1095 * And reclaim all inodes. At this point there should be no dirty
1096 * inodes and none should be pinned or locked, but use synchronous
1097 * reclaim just to be sure. We can stop background inode reclaim
1098 * here as well if it is still running.
1100 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1101 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1102 xfs_health_unmount(mp
);
1107 * Unreserve any blocks we have so that when we unmount we don't account
1108 * the reserved free space as used. This is really only necessary for
1109 * lazy superblock counting because it trusts the incore superblock
1110 * counters to be absolutely correct on clean unmount.
1112 * We don't bother correcting this elsewhere for lazy superblock
1113 * counting because on mount of an unclean filesystem we reconstruct the
1114 * correct counter value and this is irrelevant.
1116 * For non-lazy counter filesystems, this doesn't matter at all because
1117 * we only every apply deltas to the superblock and hence the incore
1118 * value does not matter....
1121 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1123 xfs_warn(mp
, "Unable to free reserved block pool. "
1124 "Freespace may not be correct on next mount.");
1126 error
= xfs_log_sbcount(mp
);
1128 xfs_warn(mp
, "Unable to update superblock counters. "
1129 "Freespace may not be correct on next mount.");
1132 xfs_log_unmount(mp
);
1134 xfs_uuid_unmount(mp
);
1137 xfs_errortag_clearall(mp
);
1141 xfs_errortag_del(mp
);
1142 xfs_error_sysfs_del(mp
);
1143 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1144 xfs_sysfs_del(&mp
->m_kobj
);
1148 * Determine whether modifications can proceed. The caller specifies the minimum
1149 * freeze level for which modifications should not be allowed. This allows
1150 * certain operations to proceed while the freeze sequence is in progress, if
1155 struct xfs_mount
*mp
,
1158 ASSERT(level
> SB_UNFROZEN
);
1159 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1160 XFS_FORCED_SHUTDOWN(mp
) || (mp
->m_flags
& XFS_MOUNT_RDONLY
))
1169 * Sync the superblock counters to disk.
1171 * Note this code can be called during the process of freezing, so we use the
1172 * transaction allocator that does not block when the transaction subsystem is
1173 * in its frozen state.
1176 xfs_log_sbcount(xfs_mount_t
*mp
)
1178 /* allow this to proceed during the freeze sequence... */
1179 if (!xfs_fs_writable(mp
, SB_FREEZE_COMPLETE
))
1183 * we don't need to do this if we are updating the superblock
1184 * counters on every modification.
1186 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1189 return xfs_sync_sb(mp
, true);
1193 * Deltas for the inode count are +/-64, hence we use a large batch size
1194 * of 128 so we don't need to take the counter lock on every update.
1196 #define XFS_ICOUNT_BATCH 128
1199 struct xfs_mount
*mp
,
1202 percpu_counter_add_batch(&mp
->m_icount
, delta
, XFS_ICOUNT_BATCH
);
1203 if (__percpu_counter_compare(&mp
->m_icount
, 0, XFS_ICOUNT_BATCH
) < 0) {
1205 percpu_counter_add(&mp
->m_icount
, -delta
);
1213 struct xfs_mount
*mp
,
1216 percpu_counter_add(&mp
->m_ifree
, delta
);
1217 if (percpu_counter_compare(&mp
->m_ifree
, 0) < 0) {
1219 percpu_counter_add(&mp
->m_ifree
, -delta
);
1226 * Deltas for the block count can vary from 1 to very large, but lock contention
1227 * only occurs on frequent small block count updates such as in the delayed
1228 * allocation path for buffered writes (page a time updates). Hence we set
1229 * a large batch count (1024) to minimise global counter updates except when
1230 * we get near to ENOSPC and we have to be very accurate with our updates.
1232 #define XFS_FDBLOCKS_BATCH 1024
1235 struct xfs_mount
*mp
,
1245 * If the reserve pool is depleted, put blocks back into it
1246 * first. Most of the time the pool is full.
1248 if (likely(mp
->m_resblks
== mp
->m_resblks_avail
)) {
1249 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1253 spin_lock(&mp
->m_sb_lock
);
1254 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1256 if (res_used
> delta
) {
1257 mp
->m_resblks_avail
+= delta
;
1260 mp
->m_resblks_avail
= mp
->m_resblks
;
1261 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1263 spin_unlock(&mp
->m_sb_lock
);
1268 * Taking blocks away, need to be more accurate the closer we
1271 * If the counter has a value of less than 2 * max batch size,
1272 * then make everything serialise as we are real close to
1275 if (__percpu_counter_compare(&mp
->m_fdblocks
, 2 * XFS_FDBLOCKS_BATCH
,
1276 XFS_FDBLOCKS_BATCH
) < 0)
1279 batch
= XFS_FDBLOCKS_BATCH
;
1281 percpu_counter_add_batch(&mp
->m_fdblocks
, delta
, batch
);
1282 if (__percpu_counter_compare(&mp
->m_fdblocks
, mp
->m_alloc_set_aside
,
1283 XFS_FDBLOCKS_BATCH
) >= 0) {
1289 * lock up the sb for dipping into reserves before releasing the space
1290 * that took us to ENOSPC.
1292 spin_lock(&mp
->m_sb_lock
);
1293 percpu_counter_add(&mp
->m_fdblocks
, -delta
);
1295 goto fdblocks_enospc
;
1297 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1298 if (lcounter
>= 0) {
1299 mp
->m_resblks_avail
= lcounter
;
1300 spin_unlock(&mp
->m_sb_lock
);
1303 printk_once(KERN_WARNING
1304 "Filesystem \"%s\": reserve blocks depleted! "
1305 "Consider increasing reserve pool size.",
1308 spin_unlock(&mp
->m_sb_lock
);
1314 struct xfs_mount
*mp
,
1320 spin_lock(&mp
->m_sb_lock
);
1321 lcounter
= mp
->m_sb
.sb_frextents
+ delta
;
1325 mp
->m_sb
.sb_frextents
= lcounter
;
1326 spin_unlock(&mp
->m_sb_lock
);
1331 * xfs_getsb() is called to obtain the buffer for the superblock.
1332 * The buffer is returned locked and read in from disk.
1333 * The buffer should be released with a call to xfs_brelse().
1337 struct xfs_mount
*mp
)
1339 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1343 ASSERT(bp
->b_flags
& XBF_DONE
);
1348 * Used to free the superblock along various error paths.
1352 struct xfs_mount
*mp
)
1354 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1362 * If the underlying (data/log/rt) device is readonly, there are some
1363 * operations that cannot proceed.
1366 xfs_dev_is_read_only(
1367 struct xfs_mount
*mp
,
1370 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1371 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1372 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1373 xfs_notice(mp
, "%s required on read-only device.", message
);
1374 xfs_notice(mp
, "write access unavailable, cannot proceed.");
1380 /* Force the summary counters to be recalculated at next mount. */
1382 xfs_force_summary_recalc(
1383 struct xfs_mount
*mp
)
1385 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1388 xfs_fs_mark_sick(mp
, XFS_SICK_FS_COUNTERS
);
1392 * Update the in-core delayed block counter.
1394 * We prefer to update the counter without having to take a spinlock for every
1395 * counter update (i.e. batching). Each change to delayed allocation
1396 * reservations can change can easily exceed the default percpu counter
1397 * batching, so we use a larger batch factor here.
1399 * Note that we don't currently have any callers requiring fast summation
1400 * (e.g. percpu_counter_read) so we can use a big batch value here.
1402 #define XFS_DELALLOC_BATCH (4096)
1405 struct xfs_mount
*mp
,
1408 percpu_counter_add_batch(&mp
->m_delalloc_blks
, delta
,
1409 XFS_DELALLOC_BATCH
);