1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
31 #include "xfs_ag_resv.h"
34 * Copy on Write of Shared Blocks
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
129 xfs_reflink_find_shared(
130 struct xfs_mount
*mp
,
131 struct xfs_trans
*tp
,
137 bool find_end_of_shared
)
139 struct xfs_buf
*agbp
;
140 struct xfs_btree_cur
*cur
;
143 error
= xfs_alloc_read_agf(mp
, tp
, agno
, 0, &agbp
);
147 cur
= xfs_refcountbt_init_cursor(mp
, tp
, agbp
, agno
);
149 error
= xfs_refcount_find_shared(cur
, agbno
, aglen
, fbno
, flen
,
152 xfs_btree_del_cursor(cur
, error
);
154 xfs_trans_brelse(tp
, agbp
);
159 * Trim the mapping to the next block where there's a change in the
160 * shared/unshared status. More specifically, this means that we
161 * find the lowest-numbered extent of shared blocks that coincides with
162 * the given block mapping. If the shared extent overlaps the start of
163 * the mapping, trim the mapping to the end of the shared extent. If
164 * the shared region intersects the mapping, trim the mapping to the
165 * start of the shared extent. If there are no shared regions that
166 * overlap, just return the original extent.
169 xfs_reflink_trim_around_shared(
170 struct xfs_inode
*ip
,
171 struct xfs_bmbt_irec
*irec
,
181 /* Holes, unwritten, and delalloc extents cannot be shared */
182 if (!xfs_is_cow_inode(ip
) || !xfs_bmap_is_real_extent(irec
)) {
187 trace_xfs_reflink_trim_around_shared(ip
, irec
);
189 agno
= XFS_FSB_TO_AGNO(ip
->i_mount
, irec
->br_startblock
);
190 agbno
= XFS_FSB_TO_AGBNO(ip
->i_mount
, irec
->br_startblock
);
191 aglen
= irec
->br_blockcount
;
193 error
= xfs_reflink_find_shared(ip
->i_mount
, NULL
, agno
, agbno
,
194 aglen
, &fbno
, &flen
, true);
199 if (fbno
== NULLAGBLOCK
) {
200 /* No shared blocks at all. */
202 } else if (fbno
== agbno
) {
204 * The start of this extent is shared. Truncate the
205 * mapping at the end of the shared region so that a
206 * subsequent iteration starts at the start of the
209 irec
->br_blockcount
= flen
;
214 * There's a shared extent midway through this extent.
215 * Truncate the mapping at the start of the shared
216 * extent so that a subsequent iteration starts at the
217 * start of the shared region.
219 irec
->br_blockcount
= fbno
- agbno
;
226 struct xfs_inode
*ip
,
227 struct xfs_bmbt_irec
*imap
,
230 /* We can't update any real extents in always COW mode. */
231 if (xfs_is_always_cow_inode(ip
) &&
232 !isnullstartblock(imap
->br_startblock
)) {
237 /* Trim the mapping to the nearest shared extent boundary. */
238 return xfs_reflink_trim_around_shared(ip
, imap
, shared
);
242 xfs_reflink_convert_cow_locked(
243 struct xfs_inode
*ip
,
244 xfs_fileoff_t offset_fsb
,
245 xfs_filblks_t count_fsb
)
247 struct xfs_iext_cursor icur
;
248 struct xfs_bmbt_irec got
;
249 struct xfs_btree_cur
*dummy_cur
= NULL
;
253 if (!xfs_iext_lookup_extent(ip
, ip
->i_cowfp
, offset_fsb
, &icur
, &got
))
257 if (got
.br_startoff
>= offset_fsb
+ count_fsb
)
259 if (got
.br_state
== XFS_EXT_NORM
)
261 if (WARN_ON_ONCE(isnullstartblock(got
.br_startblock
)))
264 xfs_trim_extent(&got
, offset_fsb
, count_fsb
);
265 if (!got
.br_blockcount
)
268 got
.br_state
= XFS_EXT_NORM
;
269 error
= xfs_bmap_add_extent_unwritten_real(NULL
, ip
,
270 XFS_COW_FORK
, &icur
, &dummy_cur
, &got
,
274 } while (xfs_iext_next_extent(ip
->i_cowfp
, &icur
, &got
));
279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
281 xfs_reflink_convert_cow(
282 struct xfs_inode
*ip
,
286 struct xfs_mount
*mp
= ip
->i_mount
;
287 xfs_fileoff_t offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
288 xfs_fileoff_t end_fsb
= XFS_B_TO_FSB(mp
, offset
+ count
);
289 xfs_filblks_t count_fsb
= end_fsb
- offset_fsb
;
294 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
295 error
= xfs_reflink_convert_cow_locked(ip
, offset_fsb
, count_fsb
);
296 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
301 * Find the extent that maps the given range in the COW fork. Even if the extent
302 * is not shared we might have a preallocation for it in the COW fork. If so we
303 * use it that rather than trigger a new allocation.
306 xfs_find_trim_cow_extent(
307 struct xfs_inode
*ip
,
308 struct xfs_bmbt_irec
*imap
,
309 struct xfs_bmbt_irec
*cmap
,
313 xfs_fileoff_t offset_fsb
= imap
->br_startoff
;
314 xfs_filblks_t count_fsb
= imap
->br_blockcount
;
315 struct xfs_iext_cursor icur
;
320 * If we don't find an overlapping extent, trim the range we need to
321 * allocate to fit the hole we found.
323 if (!xfs_iext_lookup_extent(ip
, ip
->i_cowfp
, offset_fsb
, &icur
, cmap
))
324 cmap
->br_startoff
= offset_fsb
+ count_fsb
;
325 if (cmap
->br_startoff
> offset_fsb
) {
326 xfs_trim_extent(imap
, imap
->br_startoff
,
327 cmap
->br_startoff
- imap
->br_startoff
);
328 return xfs_bmap_trim_cow(ip
, imap
, shared
);
332 if (isnullstartblock(cmap
->br_startblock
)) {
333 xfs_trim_extent(imap
, cmap
->br_startoff
, cmap
->br_blockcount
);
337 /* real extent found - no need to allocate */
338 xfs_trim_extent(cmap
, offset_fsb
, count_fsb
);
343 /* Allocate all CoW reservations covering a range of blocks in a file. */
345 xfs_reflink_allocate_cow(
346 struct xfs_inode
*ip
,
347 struct xfs_bmbt_irec
*imap
,
348 struct xfs_bmbt_irec
*cmap
,
353 struct xfs_mount
*mp
= ip
->i_mount
;
354 xfs_fileoff_t offset_fsb
= imap
->br_startoff
;
355 xfs_filblks_t count_fsb
= imap
->br_blockcount
;
356 struct xfs_trans
*tp
;
357 int nimaps
, error
= 0;
359 xfs_filblks_t resaligned
;
360 xfs_extlen_t resblks
= 0;
362 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
364 ASSERT(!xfs_is_reflink_inode(ip
));
365 xfs_ifork_init_cow(ip
);
368 error
= xfs_find_trim_cow_extent(ip
, imap
, cmap
, shared
, &found
);
369 if (error
|| !*shared
)
374 resaligned
= xfs_aligned_fsb_count(imap
->br_startoff
,
375 imap
->br_blockcount
, xfs_get_cowextsz_hint(ip
));
376 resblks
= XFS_DIOSTRAT_SPACE_RES(mp
, resaligned
);
378 xfs_iunlock(ip
, *lockmode
);
379 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, resblks
, 0, 0, &tp
);
380 *lockmode
= XFS_ILOCK_EXCL
;
381 xfs_ilock(ip
, *lockmode
);
386 error
= xfs_qm_dqattach_locked(ip
, false);
388 goto out_trans_cancel
;
391 * Check for an overlapping extent again now that we dropped the ilock.
393 error
= xfs_find_trim_cow_extent(ip
, imap
, cmap
, shared
, &found
);
394 if (error
|| !*shared
)
395 goto out_trans_cancel
;
397 xfs_trans_cancel(tp
);
401 error
= xfs_trans_reserve_quota_nblks(tp
, ip
, resblks
, 0,
402 XFS_QMOPT_RES_REGBLKS
);
404 goto out_trans_cancel
;
406 xfs_trans_ijoin(tp
, ip
, 0);
408 /* Allocate the entire reservation as unwritten blocks. */
410 error
= xfs_bmapi_write(tp
, ip
, imap
->br_startoff
, imap
->br_blockcount
,
411 XFS_BMAPI_COWFORK
| XFS_BMAPI_PREALLOC
, 0, cmap
,
416 xfs_inode_set_cowblocks_tag(ip
);
417 error
= xfs_trans_commit(tp
);
422 * Allocation succeeded but the requested range was not even partially
423 * satisfied? Bail out!
428 xfs_trim_extent(cmap
, offset_fsb
, count_fsb
);
430 * COW fork extents are supposed to remain unwritten until we're ready
431 * to initiate a disk write. For direct I/O we are going to write the
432 * data and need the conversion, but for buffered writes we're done.
434 if (!convert_now
|| cmap
->br_state
== XFS_EXT_NORM
)
436 trace_xfs_reflink_convert_cow(ip
, cmap
);
437 return xfs_reflink_convert_cow_locked(ip
, offset_fsb
, count_fsb
);
440 xfs_trans_unreserve_quota_nblks(tp
, ip
, (long)resblks
, 0,
441 XFS_QMOPT_RES_REGBLKS
);
443 xfs_trans_cancel(tp
);
448 * Cancel CoW reservations for some block range of an inode.
450 * If cancel_real is true this function cancels all COW fork extents for the
451 * inode; if cancel_real is false, real extents are not cleared.
453 * Caller must have already joined the inode to the current transaction. The
454 * inode will be joined to the transaction returned to the caller.
457 xfs_reflink_cancel_cow_blocks(
458 struct xfs_inode
*ip
,
459 struct xfs_trans
**tpp
,
460 xfs_fileoff_t offset_fsb
,
461 xfs_fileoff_t end_fsb
,
464 struct xfs_ifork
*ifp
= XFS_IFORK_PTR(ip
, XFS_COW_FORK
);
465 struct xfs_bmbt_irec got
, del
;
466 struct xfs_iext_cursor icur
;
469 if (!xfs_inode_has_cow_data(ip
))
471 if (!xfs_iext_lookup_extent_before(ip
, ifp
, &end_fsb
, &icur
, &got
))
474 /* Walk backwards until we're out of the I/O range... */
475 while (got
.br_startoff
+ got
.br_blockcount
> offset_fsb
) {
477 xfs_trim_extent(&del
, offset_fsb
, end_fsb
- offset_fsb
);
479 /* Extent delete may have bumped ext forward */
480 if (!del
.br_blockcount
) {
481 xfs_iext_prev(ifp
, &icur
);
485 trace_xfs_reflink_cancel_cow(ip
, &del
);
487 if (isnullstartblock(del
.br_startblock
)) {
488 error
= xfs_bmap_del_extent_delay(ip
, XFS_COW_FORK
,
492 } else if (del
.br_state
== XFS_EXT_UNWRITTEN
|| cancel_real
) {
493 ASSERT((*tpp
)->t_firstblock
== NULLFSBLOCK
);
495 /* Free the CoW orphan record. */
496 xfs_refcount_free_cow_extent(*tpp
, del
.br_startblock
,
499 xfs_bmap_add_free(*tpp
, del
.br_startblock
,
500 del
.br_blockcount
, NULL
);
502 /* Roll the transaction */
503 error
= xfs_defer_finish(tpp
);
507 /* Remove the mapping from the CoW fork. */
508 xfs_bmap_del_extent_cow(ip
, &icur
, &got
, &del
);
510 /* Remove the quota reservation */
511 error
= xfs_trans_reserve_quota_nblks(NULL
, ip
,
512 -(long)del
.br_blockcount
, 0,
513 XFS_QMOPT_RES_REGBLKS
);
517 /* Didn't do anything, push cursor back. */
518 xfs_iext_prev(ifp
, &icur
);
521 if (!xfs_iext_get_extent(ifp
, &icur
, &got
))
525 /* clear tag if cow fork is emptied */
527 xfs_inode_clear_cowblocks_tag(ip
);
532 * Cancel CoW reservations for some byte range of an inode.
534 * If cancel_real is true this function cancels all COW fork extents for the
535 * inode; if cancel_real is false, real extents are not cleared.
538 xfs_reflink_cancel_cow_range(
539 struct xfs_inode
*ip
,
544 struct xfs_trans
*tp
;
545 xfs_fileoff_t offset_fsb
;
546 xfs_fileoff_t end_fsb
;
549 trace_xfs_reflink_cancel_cow_range(ip
, offset
, count
);
552 offset_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
553 if (count
== NULLFILEOFF
)
554 end_fsb
= NULLFILEOFF
;
556 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, offset
+ count
);
558 /* Start a rolling transaction to remove the mappings */
559 error
= xfs_trans_alloc(ip
->i_mount
, &M_RES(ip
->i_mount
)->tr_write
,
564 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
565 xfs_trans_ijoin(tp
, ip
, 0);
567 /* Scrape out the old CoW reservations */
568 error
= xfs_reflink_cancel_cow_blocks(ip
, &tp
, offset_fsb
, end_fsb
,
573 error
= xfs_trans_commit(tp
);
575 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
579 xfs_trans_cancel(tp
);
580 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
582 trace_xfs_reflink_cancel_cow_range_error(ip
, error
, _RET_IP_
);
587 * Remap part of the CoW fork into the data fork.
589 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
590 * into the data fork; this function will remap what it can (at the end of the
591 * range) and update @end_fsb appropriately. Each remap gets its own
592 * transaction because we can end up merging and splitting bmbt blocks for
593 * every remap operation and we'd like to keep the block reservation
594 * requirements as low as possible.
597 xfs_reflink_end_cow_extent(
598 struct xfs_inode
*ip
,
599 xfs_fileoff_t offset_fsb
,
600 xfs_fileoff_t
*end_fsb
)
602 struct xfs_bmbt_irec got
, del
;
603 struct xfs_iext_cursor icur
;
604 struct xfs_mount
*mp
= ip
->i_mount
;
605 struct xfs_trans
*tp
;
606 struct xfs_ifork
*ifp
= XFS_IFORK_PTR(ip
, XFS_COW_FORK
);
608 unsigned int resblks
;
611 /* No COW extents? That's easy! */
612 if (ifp
->if_bytes
== 0) {
613 *end_fsb
= offset_fsb
;
617 resblks
= XFS_EXTENTADD_SPACE_RES(mp
, XFS_DATA_FORK
);
618 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, resblks
, 0,
619 XFS_TRANS_RESERVE
, &tp
);
624 * Lock the inode. We have to ijoin without automatic unlock because
625 * the lead transaction is the refcountbt record deletion; the data
626 * fork update follows as a deferred log item.
628 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
629 xfs_trans_ijoin(tp
, ip
, 0);
632 * In case of racing, overlapping AIO writes no COW extents might be
633 * left by the time I/O completes for the loser of the race. In that
636 if (!xfs_iext_lookup_extent_before(ip
, ifp
, end_fsb
, &icur
, &got
) ||
637 got
.br_startoff
+ got
.br_blockcount
<= offset_fsb
) {
638 *end_fsb
= offset_fsb
;
643 * Structure copy @got into @del, then trim @del to the range that we
644 * were asked to remap. We preserve @got for the eventual CoW fork
645 * deletion; from now on @del represents the mapping that we're
646 * actually remapping.
649 xfs_trim_extent(&del
, offset_fsb
, *end_fsb
- offset_fsb
);
651 ASSERT(del
.br_blockcount
> 0);
654 * Only remap real extents that contain data. With AIO, speculative
655 * preallocations can leak into the range we are called upon, and we
658 if (!xfs_bmap_is_real_extent(&got
)) {
659 *end_fsb
= del
.br_startoff
;
663 /* Unmap the old blocks in the data fork. */
664 rlen
= del
.br_blockcount
;
665 error
= __xfs_bunmapi(tp
, ip
, del
.br_startoff
, &rlen
, 0, 1);
669 /* Trim the extent to whatever got unmapped. */
670 xfs_trim_extent(&del
, del
.br_startoff
+ rlen
, del
.br_blockcount
- rlen
);
671 trace_xfs_reflink_cow_remap(ip
, &del
);
673 /* Free the CoW orphan record. */
674 xfs_refcount_free_cow_extent(tp
, del
.br_startblock
, del
.br_blockcount
);
676 /* Map the new blocks into the data fork. */
677 xfs_bmap_map_extent(tp
, ip
, &del
);
679 /* Charge this new data fork mapping to the on-disk quota. */
680 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_DELBCOUNT
,
681 (long)del
.br_blockcount
);
683 /* Remove the mapping from the CoW fork. */
684 xfs_bmap_del_extent_cow(ip
, &icur
, &got
, &del
);
686 error
= xfs_trans_commit(tp
);
687 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
691 /* Update the caller about how much progress we made. */
692 *end_fsb
= del
.br_startoff
;
696 xfs_trans_cancel(tp
);
697 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
702 * Remap parts of a file's data fork after a successful CoW.
706 struct xfs_inode
*ip
,
710 xfs_fileoff_t offset_fsb
;
711 xfs_fileoff_t end_fsb
;
714 trace_xfs_reflink_end_cow(ip
, offset
, count
);
716 offset_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
717 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, offset
+ count
);
720 * Walk backwards until we're out of the I/O range. The loop function
721 * repeatedly cycles the ILOCK to allocate one transaction per remapped
724 * If we're being called by writeback then the the pages will still
725 * have PageWriteback set, which prevents races with reflink remapping
726 * and truncate. Reflink remapping prevents races with writeback by
727 * taking the iolock and mmaplock before flushing the pages and
728 * remapping, which means there won't be any further writeback or page
729 * cache dirtying until the reflink completes.
731 * We should never have two threads issuing writeback for the same file
732 * region. There are also have post-eof checks in the writeback
733 * preparation code so that we don't bother writing out pages that are
734 * about to be truncated.
736 * If we're being called as part of directio write completion, the dio
737 * count is still elevated, which reflink and truncate will wait for.
738 * Reflink remapping takes the iolock and mmaplock and waits for
739 * pending dio to finish, which should prevent any directio until the
740 * remap completes. Multiple concurrent directio writes to the same
741 * region are handled by end_cow processing only occurring for the
742 * threads which succeed; the outcome of multiple overlapping direct
743 * writes is not well defined anyway.
745 * It's possible that a buffered write and a direct write could collide
746 * here (the buffered write stumbles in after the dio flushes and
747 * invalidates the page cache and immediately queues writeback), but we
748 * have never supported this 100%. If either disk write succeeds the
749 * blocks will be remapped.
751 while (end_fsb
> offset_fsb
&& !error
)
752 error
= xfs_reflink_end_cow_extent(ip
, offset_fsb
, &end_fsb
);
755 trace_xfs_reflink_end_cow_error(ip
, error
, _RET_IP_
);
760 * Free leftover CoW reservations that didn't get cleaned out.
763 xfs_reflink_recover_cow(
764 struct xfs_mount
*mp
)
769 if (!xfs_sb_version_hasreflink(&mp
->m_sb
))
772 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
773 error
= xfs_refcount_recover_cow_leftovers(mp
, agno
);
782 * Reflinking (Block) Ranges of Two Files Together
784 * First, ensure that the reflink flag is set on both inodes. The flag is an
785 * optimization to avoid unnecessary refcount btree lookups in the write path.
787 * Now we can iteratively remap the range of extents (and holes) in src to the
788 * corresponding ranges in dest. Let drange and srange denote the ranges of
789 * logical blocks in dest and src touched by the reflink operation.
791 * While the length of drange is greater than zero,
792 * - Read src's bmbt at the start of srange ("imap")
793 * - If imap doesn't exist, make imap appear to start at the end of srange
795 * - If imap starts before srange, advance imap to start at srange.
796 * - If imap goes beyond srange, truncate imap to end at the end of srange.
797 * - Punch (imap start - srange start + imap len) blocks from dest at
798 * offset (drange start).
799 * - If imap points to a real range of pblks,
800 * > Increase the refcount of the imap's pblks
801 * > Map imap's pblks into dest at the offset
802 * (drange start + imap start - srange start)
803 * - Advance drange and srange by (imap start - srange start + imap len)
805 * Finally, if the reflink made dest longer, update both the in-core and
806 * on-disk file sizes.
808 * ASCII Art Demonstration:
810 * Let's say we want to reflink this source file:
812 * ----SSSSSSS-SSSSS----SSSSSS (src file)
813 * <-------------------->
815 * into this destination file:
817 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
818 * <-------------------->
819 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
820 * Observe that the range has different logical offsets in either file.
822 * Consider that the first extent in the source file doesn't line up with our
823 * reflink range. Unmapping and remapping are separate operations, so we can
824 * unmap more blocks from the destination file than we remap.
826 * ----SSSSSSS-SSSSS----SSSSSS
828 * --DDDDD---------DDDDD--DDD
831 * Now remap the source extent into the destination file:
833 * ----SSSSSSS-SSSSS----SSSSSS
835 * --DDDDD--SSSSSSSDDDDD--DDD
838 * Do likewise with the second hole and extent in our range. Holes in the
839 * unmap range don't affect our operation.
841 * ----SSSSSSS-SSSSS----SSSSSS
843 * --DDDDD--SSSSSSS-SSSSS-DDD
846 * Finally, unmap and remap part of the third extent. This will increase the
847 * size of the destination file.
849 * ----SSSSSSS-SSSSS----SSSSSS
851 * --DDDDD--SSSSSSS-SSSSS----SSS
854 * Once we update the destination file's i_size, we're done.
858 * Ensure the reflink bit is set in both inodes.
861 xfs_reflink_set_inode_flag(
862 struct xfs_inode
*src
,
863 struct xfs_inode
*dest
)
865 struct xfs_mount
*mp
= src
->i_mount
;
867 struct xfs_trans
*tp
;
869 if (xfs_is_reflink_inode(src
) && xfs_is_reflink_inode(dest
))
872 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ichange
, 0, 0, 0, &tp
);
876 /* Lock both files against IO */
877 if (src
->i_ino
== dest
->i_ino
)
878 xfs_ilock(src
, XFS_ILOCK_EXCL
);
880 xfs_lock_two_inodes(src
, XFS_ILOCK_EXCL
, dest
, XFS_ILOCK_EXCL
);
882 if (!xfs_is_reflink_inode(src
)) {
883 trace_xfs_reflink_set_inode_flag(src
);
884 xfs_trans_ijoin(tp
, src
, XFS_ILOCK_EXCL
);
885 src
->i_d
.di_flags2
|= XFS_DIFLAG2_REFLINK
;
886 xfs_trans_log_inode(tp
, src
, XFS_ILOG_CORE
);
887 xfs_ifork_init_cow(src
);
889 xfs_iunlock(src
, XFS_ILOCK_EXCL
);
891 if (src
->i_ino
== dest
->i_ino
)
894 if (!xfs_is_reflink_inode(dest
)) {
895 trace_xfs_reflink_set_inode_flag(dest
);
896 xfs_trans_ijoin(tp
, dest
, XFS_ILOCK_EXCL
);
897 dest
->i_d
.di_flags2
|= XFS_DIFLAG2_REFLINK
;
898 xfs_trans_log_inode(tp
, dest
, XFS_ILOG_CORE
);
899 xfs_ifork_init_cow(dest
);
901 xfs_iunlock(dest
, XFS_ILOCK_EXCL
);
904 error
= xfs_trans_commit(tp
);
910 trace_xfs_reflink_set_inode_flag_error(dest
, error
, _RET_IP_
);
915 * Update destination inode size & cowextsize hint, if necessary.
918 xfs_reflink_update_dest(
919 struct xfs_inode
*dest
,
921 xfs_extlen_t cowextsize
,
922 unsigned int remap_flags
)
924 struct xfs_mount
*mp
= dest
->i_mount
;
925 struct xfs_trans
*tp
;
928 if (newlen
<= i_size_read(VFS_I(dest
)) && cowextsize
== 0)
931 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ichange
, 0, 0, 0, &tp
);
935 xfs_ilock(dest
, XFS_ILOCK_EXCL
);
936 xfs_trans_ijoin(tp
, dest
, XFS_ILOCK_EXCL
);
938 if (newlen
> i_size_read(VFS_I(dest
))) {
939 trace_xfs_reflink_update_inode_size(dest
, newlen
);
940 i_size_write(VFS_I(dest
), newlen
);
941 dest
->i_d
.di_size
= newlen
;
945 dest
->i_d
.di_cowextsize
= cowextsize
;
946 dest
->i_d
.di_flags2
|= XFS_DIFLAG2_COWEXTSIZE
;
949 xfs_trans_log_inode(tp
, dest
, XFS_ILOG_CORE
);
951 error
= xfs_trans_commit(tp
);
957 trace_xfs_reflink_update_inode_size_error(dest
, error
, _RET_IP_
);
962 * Do we have enough reserve in this AG to handle a reflink? The refcount
963 * btree already reserved all the space it needs, but the rmap btree can grow
964 * infinitely, so we won't allow more reflinks when the AG is down to the
968 xfs_reflink_ag_has_free_space(
969 struct xfs_mount
*mp
,
972 struct xfs_perag
*pag
;
975 if (!xfs_sb_version_hasrmapbt(&mp
->m_sb
))
978 pag
= xfs_perag_get(mp
, agno
);
979 if (xfs_ag_resv_critical(pag
, XFS_AG_RESV_RMAPBT
) ||
980 xfs_ag_resv_critical(pag
, XFS_AG_RESV_METADATA
))
987 * Unmap a range of blocks from a file, then map other blocks into the hole.
988 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
989 * The extent irec is mapped into dest at irec->br_startoff.
992 xfs_reflink_remap_extent(
993 struct xfs_inode
*ip
,
994 struct xfs_bmbt_irec
*irec
,
995 xfs_fileoff_t destoff
,
998 struct xfs_mount
*mp
= ip
->i_mount
;
999 bool real_extent
= xfs_bmap_is_real_extent(irec
);
1000 struct xfs_trans
*tp
;
1001 unsigned int resblks
;
1002 struct xfs_bmbt_irec uirec
;
1004 xfs_filblks_t unmap_len
;
1008 unmap_len
= irec
->br_startoff
+ irec
->br_blockcount
- destoff
;
1009 trace_xfs_reflink_punch_range(ip
, destoff
, unmap_len
);
1011 /* No reflinking if we're low on space */
1013 error
= xfs_reflink_ag_has_free_space(mp
,
1014 XFS_FSB_TO_AGNO(mp
, irec
->br_startblock
));
1019 /* Start a rolling transaction to switch the mappings */
1020 resblks
= XFS_EXTENTADD_SPACE_RES(ip
->i_mount
, XFS_DATA_FORK
);
1021 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, resblks
, 0, 0, &tp
);
1025 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1026 xfs_trans_ijoin(tp
, ip
, 0);
1028 /* If we're not just clearing space, then do we have enough quota? */
1030 error
= xfs_trans_reserve_quota_nblks(tp
, ip
,
1031 irec
->br_blockcount
, 0, XFS_QMOPT_RES_REGBLKS
);
1036 trace_xfs_reflink_remap(ip
, irec
->br_startoff
,
1037 irec
->br_blockcount
, irec
->br_startblock
);
1039 /* Unmap the old blocks in the data fork. */
1042 ASSERT(tp
->t_firstblock
== NULLFSBLOCK
);
1043 error
= __xfs_bunmapi(tp
, ip
, destoff
, &rlen
, 0, 1);
1048 * Trim the extent to whatever got unmapped.
1049 * Remember, bunmapi works backwards.
1051 uirec
.br_startblock
= irec
->br_startblock
+ rlen
;
1052 uirec
.br_startoff
= irec
->br_startoff
+ rlen
;
1053 uirec
.br_blockcount
= unmap_len
- rlen
;
1056 /* If this isn't a real mapping, we're done. */
1057 if (!real_extent
|| uirec
.br_blockcount
== 0)
1060 trace_xfs_reflink_remap(ip
, uirec
.br_startoff
,
1061 uirec
.br_blockcount
, uirec
.br_startblock
);
1063 /* Update the refcount tree */
1064 xfs_refcount_increase_extent(tp
, &uirec
);
1066 /* Map the new blocks into the data fork. */
1067 xfs_bmap_map_extent(tp
, ip
, &uirec
);
1069 /* Update quota accounting. */
1070 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_BCOUNT
,
1071 uirec
.br_blockcount
);
1073 /* Update dest isize if needed. */
1074 newlen
= XFS_FSB_TO_B(mp
,
1075 uirec
.br_startoff
+ uirec
.br_blockcount
);
1076 newlen
= min_t(xfs_off_t
, newlen
, new_isize
);
1077 if (newlen
> i_size_read(VFS_I(ip
))) {
1078 trace_xfs_reflink_update_inode_size(ip
, newlen
);
1079 i_size_write(VFS_I(ip
), newlen
);
1080 ip
->i_d
.di_size
= newlen
;
1081 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1085 /* Process all the deferred stuff. */
1086 error
= xfs_defer_finish(&tp
);
1091 error
= xfs_trans_commit(tp
);
1092 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1098 xfs_trans_cancel(tp
);
1099 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1101 trace_xfs_reflink_remap_extent_error(ip
, error
, _RET_IP_
);
1106 * Iteratively remap one file's extents (and holes) to another's.
1109 xfs_reflink_remap_blocks(
1110 struct xfs_inode
*src
,
1112 struct xfs_inode
*dest
,
1117 struct xfs_bmbt_irec imap
;
1118 xfs_fileoff_t srcoff
;
1119 xfs_fileoff_t destoff
;
1121 xfs_filblks_t range_len
;
1122 xfs_filblks_t remapped_len
= 0;
1123 xfs_off_t new_isize
= pos_out
+ remap_len
;
1127 destoff
= XFS_B_TO_FSBT(src
->i_mount
, pos_out
);
1128 srcoff
= XFS_B_TO_FSBT(src
->i_mount
, pos_in
);
1129 len
= XFS_B_TO_FSB(src
->i_mount
, remap_len
);
1131 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1135 trace_xfs_reflink_remap_blocks_loop(src
, srcoff
, len
,
1138 /* Read extent from the source file */
1140 lock_mode
= xfs_ilock_data_map_shared(src
);
1141 error
= xfs_bmapi_read(src
, srcoff
, len
, &imap
, &nimaps
, 0);
1142 xfs_iunlock(src
, lock_mode
);
1145 ASSERT(nimaps
== 1);
1147 trace_xfs_reflink_remap_imap(src
, srcoff
, len
, XFS_DATA_FORK
,
1150 /* Translate imap into the destination file. */
1151 range_len
= imap
.br_startoff
+ imap
.br_blockcount
- srcoff
;
1152 imap
.br_startoff
+= destoff
- srcoff
;
1154 /* Clear dest from destoff to the end of imap and map it in. */
1155 error
= xfs_reflink_remap_extent(dest
, &imap
, destoff
,
1160 if (fatal_signal_pending(current
)) {
1165 /* Advance drange/srange */
1166 srcoff
+= range_len
;
1167 destoff
+= range_len
;
1169 remapped_len
+= range_len
;
1173 trace_xfs_reflink_remap_blocks_error(dest
, error
, _RET_IP_
);
1174 *remapped
= min_t(loff_t
, remap_len
,
1175 XFS_FSB_TO_B(src
->i_mount
, remapped_len
));
1180 * Grab the exclusive iolock for a data copy from src to dest, making sure to
1181 * abide vfs locking order (lowest pointer value goes first) and breaking the
1182 * layout leases before proceeding. The loop is needed because we cannot call
1183 * the blocking break_layout() with the iolocks held, and therefore have to
1184 * back out both locks.
1187 xfs_iolock_two_inodes_and_break_layout(
1197 /* Wait to break both inodes' layouts before we start locking. */
1198 error
= break_layout(src
, true);
1202 error
= break_layout(dest
, true);
1207 /* Lock one inode and make sure nobody got in and leased it. */
1209 error
= break_layout(src
, false);
1212 if (error
== -EWOULDBLOCK
)
1220 /* Lock the other inode and make sure nobody got in and leased it. */
1221 inode_lock_nested(dest
, I_MUTEX_NONDIR2
);
1222 error
= break_layout(dest
, false);
1226 if (error
== -EWOULDBLOCK
)
1234 /* Unlock both inodes after they've been prepped for a range clone. */
1236 xfs_reflink_remap_unlock(
1237 struct file
*file_in
,
1238 struct file
*file_out
)
1240 struct inode
*inode_in
= file_inode(file_in
);
1241 struct xfs_inode
*src
= XFS_I(inode_in
);
1242 struct inode
*inode_out
= file_inode(file_out
);
1243 struct xfs_inode
*dest
= XFS_I(inode_out
);
1244 bool same_inode
= (inode_in
== inode_out
);
1246 xfs_iunlock(dest
, XFS_MMAPLOCK_EXCL
);
1248 xfs_iunlock(src
, XFS_MMAPLOCK_EXCL
);
1249 inode_unlock(inode_out
);
1251 inode_unlock(inode_in
);
1255 * If we're reflinking to a point past the destination file's EOF, we must
1256 * zero any speculative post-EOF preallocations that sit between the old EOF
1257 * and the destination file offset.
1260 xfs_reflink_zero_posteof(
1261 struct xfs_inode
*ip
,
1264 loff_t isize
= i_size_read(VFS_I(ip
));
1269 trace_xfs_zero_eof(ip
, isize
, pos
- isize
);
1270 return iomap_zero_range(VFS_I(ip
), isize
, pos
- isize
, NULL
,
1271 &xfs_buffered_write_iomap_ops
);
1275 * Prepare two files for range cloning. Upon a successful return both inodes
1276 * will have the iolock and mmaplock held, the page cache of the out file will
1277 * be truncated, and any leases on the out file will have been broken. This
1278 * function borrows heavily from xfs_file_aio_write_checks.
1280 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1281 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1282 * EOF block in the source dedupe range because it's not a complete block match,
1283 * hence can introduce a corruption into the file that has it's block replaced.
1285 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1286 * "block aligned" for the purposes of cloning entire files. However, if the
1287 * source file range includes the EOF block and it lands within the existing EOF
1288 * of the destination file, then we can expose stale data from beyond the source
1289 * file EOF in the destination file.
1291 * XFS doesn't support partial block sharing, so in both cases we have check
1292 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1293 * down to the previous whole block and ignore the partial EOF block. While this
1294 * means we can't dedupe the last block of a file, this is an acceptible
1295 * tradeoff for simplicity on implementation.
1297 * For cloning, we want to share the partial EOF block if it is also the new EOF
1298 * block of the destination file. If the partial EOF block lies inside the
1299 * existing destination EOF, then we have to abort the clone to avoid exposing
1300 * stale data in the destination file. Hence we reject these clone attempts with
1301 * -EINVAL in this case.
1304 xfs_reflink_remap_prep(
1305 struct file
*file_in
,
1307 struct file
*file_out
,
1310 unsigned int remap_flags
)
1312 struct inode
*inode_in
= file_inode(file_in
);
1313 struct xfs_inode
*src
= XFS_I(inode_in
);
1314 struct inode
*inode_out
= file_inode(file_out
);
1315 struct xfs_inode
*dest
= XFS_I(inode_out
);
1316 bool same_inode
= (inode_in
== inode_out
);
1319 /* Lock both files against IO */
1320 ret
= xfs_iolock_two_inodes_and_break_layout(inode_in
, inode_out
);
1324 xfs_ilock(src
, XFS_MMAPLOCK_EXCL
);
1326 xfs_lock_two_inodes(src
, XFS_MMAPLOCK_EXCL
, dest
,
1329 /* Check file eligibility and prepare for block sharing. */
1331 /* Don't reflink realtime inodes */
1332 if (XFS_IS_REALTIME_INODE(src
) || XFS_IS_REALTIME_INODE(dest
))
1335 /* Don't share DAX file data for now. */
1336 if (IS_DAX(inode_in
) || IS_DAX(inode_out
))
1339 ret
= generic_remap_file_range_prep(file_in
, pos_in
, file_out
, pos_out
,
1341 if (ret
< 0 || *len
== 0)
1344 /* Attach dquots to dest inode before changing block map */
1345 ret
= xfs_qm_dqattach(dest
);
1350 * Zero existing post-eof speculative preallocations in the destination
1353 ret
= xfs_reflink_zero_posteof(dest
, pos_out
);
1357 /* Set flags and remap blocks. */
1358 ret
= xfs_reflink_set_inode_flag(src
, dest
);
1363 * If pos_out > EOF, we may have dirtied blocks between EOF and
1364 * pos_out. In that case, we need to extend the flush and unmap to cover
1365 * from EOF to the end of the copy length.
1367 if (pos_out
> XFS_ISIZE(dest
)) {
1368 loff_t flen
= *len
+ (pos_out
- XFS_ISIZE(dest
));
1369 ret
= xfs_flush_unmap_range(dest
, XFS_ISIZE(dest
), flen
);
1371 ret
= xfs_flush_unmap_range(dest
, pos_out
, *len
);
1378 xfs_reflink_remap_unlock(file_in
, file_out
);
1382 /* Does this inode need the reflink flag? */
1384 xfs_reflink_inode_has_shared_extents(
1385 struct xfs_trans
*tp
,
1386 struct xfs_inode
*ip
,
1389 struct xfs_bmbt_irec got
;
1390 struct xfs_mount
*mp
= ip
->i_mount
;
1391 struct xfs_ifork
*ifp
;
1392 xfs_agnumber_t agno
;
1393 xfs_agblock_t agbno
;
1397 struct xfs_iext_cursor icur
;
1401 ifp
= XFS_IFORK_PTR(ip
, XFS_DATA_FORK
);
1402 if (!(ifp
->if_flags
& XFS_IFEXTENTS
)) {
1403 error
= xfs_iread_extents(tp
, ip
, XFS_DATA_FORK
);
1408 *has_shared
= false;
1409 found
= xfs_iext_lookup_extent(ip
, ifp
, 0, &icur
, &got
);
1411 if (isnullstartblock(got
.br_startblock
) ||
1412 got
.br_state
!= XFS_EXT_NORM
)
1414 agno
= XFS_FSB_TO_AGNO(mp
, got
.br_startblock
);
1415 agbno
= XFS_FSB_TO_AGBNO(mp
, got
.br_startblock
);
1416 aglen
= got
.br_blockcount
;
1418 error
= xfs_reflink_find_shared(mp
, tp
, agno
, agbno
, aglen
,
1419 &rbno
, &rlen
, false);
1422 /* Is there still a shared block here? */
1423 if (rbno
!= NULLAGBLOCK
) {
1428 found
= xfs_iext_next_extent(ifp
, &icur
, &got
);
1435 * Clear the inode reflink flag if there are no shared extents.
1437 * The caller is responsible for joining the inode to the transaction passed in.
1438 * The inode will be joined to the transaction that is returned to the caller.
1441 xfs_reflink_clear_inode_flag(
1442 struct xfs_inode
*ip
,
1443 struct xfs_trans
**tpp
)
1448 ASSERT(xfs_is_reflink_inode(ip
));
1450 error
= xfs_reflink_inode_has_shared_extents(*tpp
, ip
, &needs_flag
);
1451 if (error
|| needs_flag
)
1455 * We didn't find any shared blocks so turn off the reflink flag.
1456 * First, get rid of any leftover CoW mappings.
1458 error
= xfs_reflink_cancel_cow_blocks(ip
, tpp
, 0, XFS_MAX_FILEOFF
,
1463 /* Clear the inode flag. */
1464 trace_xfs_reflink_unset_inode_flag(ip
);
1465 ip
->i_d
.di_flags2
&= ~XFS_DIFLAG2_REFLINK
;
1466 xfs_inode_clear_cowblocks_tag(ip
);
1467 xfs_trans_log_inode(*tpp
, ip
, XFS_ILOG_CORE
);
1473 * Clear the inode reflink flag if there are no shared extents and the size
1477 xfs_reflink_try_clear_inode_flag(
1478 struct xfs_inode
*ip
)
1480 struct xfs_mount
*mp
= ip
->i_mount
;
1481 struct xfs_trans
*tp
;
1484 /* Start a rolling transaction to remove the mappings */
1485 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, 0, 0, 0, &tp
);
1489 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1490 xfs_trans_ijoin(tp
, ip
, 0);
1492 error
= xfs_reflink_clear_inode_flag(ip
, &tp
);
1496 error
= xfs_trans_commit(tp
);
1500 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1503 xfs_trans_cancel(tp
);
1505 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1510 * Pre-COW all shared blocks within a given byte range of a file and turn off
1511 * the reflink flag if we unshare all of the file's blocks.
1514 xfs_reflink_unshare(
1515 struct xfs_inode
*ip
,
1519 struct inode
*inode
= VFS_I(ip
);
1522 if (!xfs_is_reflink_inode(ip
))
1525 trace_xfs_reflink_unshare(ip
, offset
, len
);
1527 inode_dio_wait(inode
);
1529 error
= iomap_file_unshare(inode
, offset
, len
,
1530 &xfs_buffered_write_iomap_ops
);
1533 error
= filemap_write_and_wait(inode
->i_mapping
);
1537 /* Turn off the reflink flag if possible. */
1538 error
= xfs_reflink_try_clear_inode_flag(ip
);
1544 trace_xfs_reflink_unshare_error(ip
, error
, _RET_IP_
);