drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / zonefs / super.c
blob8bc6ef82d693e06f0dc0da790db63cda8364f989
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Simple file system for zoned block devices exposing zones as files.
5 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6 */
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
24 #include "zonefs.h"
26 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
27 unsigned int flags, struct iomap *iomap,
28 struct iomap *srcmap)
30 struct zonefs_inode_info *zi = ZONEFS_I(inode);
31 struct super_block *sb = inode->i_sb;
32 loff_t isize;
34 /* All I/Os should always be within the file maximum size */
35 if (WARN_ON_ONCE(offset + length > zi->i_max_size))
36 return -EIO;
39 * Sequential zones can only accept direct writes. This is already
40 * checked when writes are issued, so warn if we see a page writeback
41 * operation.
43 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
44 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
45 return -EIO;
48 * For conventional zones, all blocks are always mapped. For sequential
49 * zones, all blocks after always mapped below the inode size (zone
50 * write pointer) and unwriten beyond.
52 mutex_lock(&zi->i_truncate_mutex);
53 isize = i_size_read(inode);
54 if (offset >= isize)
55 iomap->type = IOMAP_UNWRITTEN;
56 else
57 iomap->type = IOMAP_MAPPED;
58 if (flags & IOMAP_WRITE)
59 length = zi->i_max_size - offset;
60 else
61 length = min(length, isize - offset);
62 mutex_unlock(&zi->i_truncate_mutex);
64 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
65 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
66 iomap->bdev = inode->i_sb->s_bdev;
67 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
69 return 0;
72 static const struct iomap_ops zonefs_iomap_ops = {
73 .iomap_begin = zonefs_iomap_begin,
76 static int zonefs_readpage(struct file *unused, struct page *page)
78 return iomap_readpage(page, &zonefs_iomap_ops);
81 static int zonefs_readpages(struct file *unused, struct address_space *mapping,
82 struct list_head *pages, unsigned int nr_pages)
84 return iomap_readpages(mapping, pages, nr_pages, &zonefs_iomap_ops);
88 * Map blocks for page writeback. This is used only on conventional zone files,
89 * which implies that the page range can only be within the fixed inode size.
91 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
92 struct inode *inode, loff_t offset)
94 struct zonefs_inode_info *zi = ZONEFS_I(inode);
96 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
97 return -EIO;
98 if (WARN_ON_ONCE(offset >= i_size_read(inode)))
99 return -EIO;
101 /* If the mapping is already OK, nothing needs to be done */
102 if (offset >= wpc->iomap.offset &&
103 offset < wpc->iomap.offset + wpc->iomap.length)
104 return 0;
106 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
107 IOMAP_WRITE, &wpc->iomap, NULL);
110 static const struct iomap_writeback_ops zonefs_writeback_ops = {
111 .map_blocks = zonefs_map_blocks,
114 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
116 struct iomap_writepage_ctx wpc = { };
118 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
121 static int zonefs_writepages(struct address_space *mapping,
122 struct writeback_control *wbc)
124 struct iomap_writepage_ctx wpc = { };
126 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
129 static const struct address_space_operations zonefs_file_aops = {
130 .readpage = zonefs_readpage,
131 .readpages = zonefs_readpages,
132 .writepage = zonefs_writepage,
133 .writepages = zonefs_writepages,
134 .set_page_dirty = iomap_set_page_dirty,
135 .releasepage = iomap_releasepage,
136 .invalidatepage = iomap_invalidatepage,
137 .migratepage = iomap_migrate_page,
138 .is_partially_uptodate = iomap_is_partially_uptodate,
139 .error_remove_page = generic_error_remove_page,
140 .direct_IO = noop_direct_IO,
143 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
145 struct super_block *sb = inode->i_sb;
146 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
147 loff_t old_isize = i_size_read(inode);
148 loff_t nr_blocks;
150 if (new_isize == old_isize)
151 return;
153 spin_lock(&sbi->s_lock);
156 * This may be called for an update after an IO error.
157 * So beware of the values seen.
159 if (new_isize < old_isize) {
160 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
161 if (sbi->s_used_blocks > nr_blocks)
162 sbi->s_used_blocks -= nr_blocks;
163 else
164 sbi->s_used_blocks = 0;
165 } else {
166 sbi->s_used_blocks +=
167 (new_isize - old_isize) >> sb->s_blocksize_bits;
168 if (sbi->s_used_blocks > sbi->s_blocks)
169 sbi->s_used_blocks = sbi->s_blocks;
172 spin_unlock(&sbi->s_lock);
176 * Check a zone condition and adjust its file inode access permissions for
177 * offline and readonly zones. Return the inode size corresponding to the
178 * amount of readable data in the zone.
180 static loff_t zonefs_check_zone_condition(struct inode *inode,
181 struct blk_zone *zone, bool warn)
183 struct zonefs_inode_info *zi = ZONEFS_I(inode);
185 switch (zone->cond) {
186 case BLK_ZONE_COND_OFFLINE:
188 * Dead zone: make the inode immutable, disable all accesses
189 * and set the file size to 0 (zone wp set to zone start).
191 if (warn)
192 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
193 inode->i_ino);
194 inode->i_flags |= S_IMMUTABLE;
195 inode->i_mode &= ~0777;
196 zone->wp = zone->start;
197 return 0;
198 case BLK_ZONE_COND_READONLY:
199 /* Do not allow writes in read-only zones */
200 if (warn)
201 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
202 inode->i_ino);
203 inode->i_flags |= S_IMMUTABLE;
204 inode->i_mode &= ~0222;
205 /* fallthrough */
206 default:
207 if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
208 return zi->i_max_size;
209 return (zone->wp - zone->start) << SECTOR_SHIFT;
213 struct zonefs_ioerr_data {
214 struct inode *inode;
215 bool write;
218 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
219 void *data)
221 struct zonefs_ioerr_data *err = data;
222 struct inode *inode = err->inode;
223 struct zonefs_inode_info *zi = ZONEFS_I(inode);
224 struct super_block *sb = inode->i_sb;
225 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
226 loff_t isize, data_size;
229 * Check the zone condition: if the zone is not "bad" (offline or
230 * read-only), read errors are simply signaled to the IO issuer as long
231 * as there is no inconsistency between the inode size and the amount of
232 * data writen in the zone (data_size).
234 data_size = zonefs_check_zone_condition(inode, zone, true);
235 isize = i_size_read(inode);
236 if (zone->cond != BLK_ZONE_COND_OFFLINE &&
237 zone->cond != BLK_ZONE_COND_READONLY &&
238 !err->write && isize == data_size)
239 return 0;
242 * At this point, we detected either a bad zone or an inconsistency
243 * between the inode size and the amount of data written in the zone.
244 * For the latter case, the cause may be a write IO error or an external
245 * action on the device. Two error patterns exist:
246 * 1) The inode size is lower than the amount of data in the zone:
247 * a write operation partially failed and data was writen at the end
248 * of the file. This can happen in the case of a large direct IO
249 * needing several BIOs and/or write requests to be processed.
250 * 2) The inode size is larger than the amount of data in the zone:
251 * this can happen with a deferred write error with the use of the
252 * device side write cache after getting successful write IO
253 * completions. Other possibilities are (a) an external corruption,
254 * e.g. an application reset the zone directly, or (b) the device
255 * has a serious problem (e.g. firmware bug).
257 * In all cases, warn about inode size inconsistency and handle the
258 * IO error according to the zone condition and to the mount options.
260 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
261 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
262 inode->i_ino, isize, data_size);
265 * First handle bad zones signaled by hardware. The mount options
266 * errors=zone-ro and errors=zone-offline result in changing the
267 * zone condition to read-only and offline respectively, as if the
268 * condition was signaled by the hardware.
270 if (zone->cond == BLK_ZONE_COND_OFFLINE ||
271 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
272 zonefs_warn(sb, "inode %lu: read/write access disabled\n",
273 inode->i_ino);
274 if (zone->cond != BLK_ZONE_COND_OFFLINE) {
275 zone->cond = BLK_ZONE_COND_OFFLINE;
276 data_size = zonefs_check_zone_condition(inode, zone,
277 false);
279 } else if (zone->cond == BLK_ZONE_COND_READONLY ||
280 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
281 zonefs_warn(sb, "inode %lu: write access disabled\n",
282 inode->i_ino);
283 if (zone->cond != BLK_ZONE_COND_READONLY) {
284 zone->cond = BLK_ZONE_COND_READONLY;
285 data_size = zonefs_check_zone_condition(inode, zone,
286 false);
291 * If error=remount-ro was specified, any error result in remounting
292 * the volume as read-only.
294 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
295 zonefs_warn(sb, "remounting filesystem read-only\n");
296 sb->s_flags |= SB_RDONLY;
300 * Update block usage stats and the inode size to prevent access to
301 * invalid data.
303 zonefs_update_stats(inode, data_size);
304 i_size_write(inode, data_size);
305 zi->i_wpoffset = data_size;
307 return 0;
311 * When an file IO error occurs, check the file zone to see if there is a change
312 * in the zone condition (e.g. offline or read-only). For a failed write to a
313 * sequential zone, the zone write pointer position must also be checked to
314 * eventually correct the file size and zonefs inode write pointer offset
315 * (which can be out of sync with the drive due to partial write failures).
317 static void zonefs_io_error(struct inode *inode, bool write)
319 struct zonefs_inode_info *zi = ZONEFS_I(inode);
320 struct super_block *sb = inode->i_sb;
321 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
322 unsigned int noio_flag;
323 unsigned int nr_zones =
324 zi->i_max_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
325 struct zonefs_ioerr_data err = {
326 .inode = inode,
327 .write = write,
329 int ret;
331 mutex_lock(&zi->i_truncate_mutex);
334 * Memory allocations in blkdev_report_zones() can trigger a memory
335 * reclaim which may in turn cause a recursion into zonefs as well as
336 * struct request allocations for the same device. The former case may
337 * end up in a deadlock on the inode truncate mutex, while the latter
338 * may prevent IO forward progress. Executing the report zones under
339 * the GFP_NOIO context avoids both problems.
341 noio_flag = memalloc_noio_save();
342 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
343 zonefs_io_error_cb, &err);
344 if (ret != nr_zones)
345 zonefs_err(sb, "Get inode %lu zone information failed %d\n",
346 inode->i_ino, ret);
347 memalloc_noio_restore(noio_flag);
349 mutex_unlock(&zi->i_truncate_mutex);
352 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
354 struct zonefs_inode_info *zi = ZONEFS_I(inode);
355 loff_t old_isize;
356 enum req_opf op;
357 int ret = 0;
360 * Only sequential zone files can be truncated and truncation is allowed
361 * only down to a 0 size, which is equivalent to a zone reset, and to
362 * the maximum file size, which is equivalent to a zone finish.
364 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
365 return -EPERM;
367 if (!isize)
368 op = REQ_OP_ZONE_RESET;
369 else if (isize == zi->i_max_size)
370 op = REQ_OP_ZONE_FINISH;
371 else
372 return -EPERM;
374 inode_dio_wait(inode);
376 /* Serialize against page faults */
377 down_write(&zi->i_mmap_sem);
379 /* Serialize against zonefs_iomap_begin() */
380 mutex_lock(&zi->i_truncate_mutex);
382 old_isize = i_size_read(inode);
383 if (isize == old_isize)
384 goto unlock;
386 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
387 zi->i_max_size >> SECTOR_SHIFT, GFP_NOFS);
388 if (ret) {
389 zonefs_err(inode->i_sb,
390 "Zone management operation at %llu failed %d",
391 zi->i_zsector, ret);
392 goto unlock;
395 zonefs_update_stats(inode, isize);
396 truncate_setsize(inode, isize);
397 zi->i_wpoffset = isize;
399 unlock:
400 mutex_unlock(&zi->i_truncate_mutex);
401 up_write(&zi->i_mmap_sem);
403 return ret;
406 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr)
408 struct inode *inode = d_inode(dentry);
409 int ret;
411 if (unlikely(IS_IMMUTABLE(inode)))
412 return -EPERM;
414 ret = setattr_prepare(dentry, iattr);
415 if (ret)
416 return ret;
419 * Since files and directories cannot be created nor deleted, do not
420 * allow setting any write attributes on the sub-directories grouping
421 * files by zone type.
423 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
424 (iattr->ia_mode & 0222))
425 return -EPERM;
427 if (((iattr->ia_valid & ATTR_UID) &&
428 !uid_eq(iattr->ia_uid, inode->i_uid)) ||
429 ((iattr->ia_valid & ATTR_GID) &&
430 !gid_eq(iattr->ia_gid, inode->i_gid))) {
431 ret = dquot_transfer(inode, iattr);
432 if (ret)
433 return ret;
436 if (iattr->ia_valid & ATTR_SIZE) {
437 ret = zonefs_file_truncate(inode, iattr->ia_size);
438 if (ret)
439 return ret;
442 setattr_copy(inode, iattr);
444 return 0;
447 static const struct inode_operations zonefs_file_inode_operations = {
448 .setattr = zonefs_inode_setattr,
451 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
452 int datasync)
454 struct inode *inode = file_inode(file);
455 int ret = 0;
457 if (unlikely(IS_IMMUTABLE(inode)))
458 return -EPERM;
461 * Since only direct writes are allowed in sequential files, page cache
462 * flush is needed only for conventional zone files.
464 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
465 ret = file_write_and_wait_range(file, start, end);
466 if (!ret)
467 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
469 if (ret)
470 zonefs_io_error(inode, true);
472 return ret;
475 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf)
477 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file));
478 vm_fault_t ret;
480 down_read(&zi->i_mmap_sem);
481 ret = filemap_fault(vmf);
482 up_read(&zi->i_mmap_sem);
484 return ret;
487 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
489 struct inode *inode = file_inode(vmf->vma->vm_file);
490 struct zonefs_inode_info *zi = ZONEFS_I(inode);
491 vm_fault_t ret;
493 if (unlikely(IS_IMMUTABLE(inode)))
494 return VM_FAULT_SIGBUS;
497 * Sanity check: only conventional zone files can have shared
498 * writeable mappings.
500 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
501 return VM_FAULT_NOPAGE;
503 sb_start_pagefault(inode->i_sb);
504 file_update_time(vmf->vma->vm_file);
506 /* Serialize against truncates */
507 down_read(&zi->i_mmap_sem);
508 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
509 up_read(&zi->i_mmap_sem);
511 sb_end_pagefault(inode->i_sb);
512 return ret;
515 static const struct vm_operations_struct zonefs_file_vm_ops = {
516 .fault = zonefs_filemap_fault,
517 .map_pages = filemap_map_pages,
518 .page_mkwrite = zonefs_filemap_page_mkwrite,
521 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
524 * Conventional zones accept random writes, so their files can support
525 * shared writable mappings. For sequential zone files, only read
526 * mappings are possible since there are no guarantees for write
527 * ordering between msync() and page cache writeback.
529 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
530 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
531 return -EINVAL;
533 file_accessed(file);
534 vma->vm_ops = &zonefs_file_vm_ops;
536 return 0;
539 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
541 loff_t isize = i_size_read(file_inode(file));
544 * Seeks are limited to below the zone size for conventional zones
545 * and below the zone write pointer for sequential zones. In both
546 * cases, this limit is the inode size.
548 return generic_file_llseek_size(file, offset, whence, isize, isize);
551 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
552 int error, unsigned int flags)
554 struct inode *inode = file_inode(iocb->ki_filp);
555 struct zonefs_inode_info *zi = ZONEFS_I(inode);
557 if (error) {
558 zonefs_io_error(inode, true);
559 return error;
562 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
564 * Note that we may be seeing completions out of order,
565 * but that is not a problem since a write completed
566 * successfully necessarily means that all preceding writes
567 * were also successful. So we can safely increase the inode
568 * size to the write end location.
570 mutex_lock(&zi->i_truncate_mutex);
571 if (i_size_read(inode) < iocb->ki_pos + size) {
572 zonefs_update_stats(inode, iocb->ki_pos + size);
573 i_size_write(inode, iocb->ki_pos + size);
575 mutex_unlock(&zi->i_truncate_mutex);
578 return 0;
581 static const struct iomap_dio_ops zonefs_write_dio_ops = {
582 .end_io = zonefs_file_write_dio_end_io,
586 * Handle direct writes. For sequential zone files, this is the only possible
587 * write path. For these files, check that the user is issuing writes
588 * sequentially from the end of the file. This code assumes that the block layer
589 * delivers write requests to the device in sequential order. This is always the
590 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
591 * elevator feature is being used (e.g. mq-deadline). The block layer always
592 * automatically select such an elevator for zoned block devices during the
593 * device initialization.
595 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
597 struct inode *inode = file_inode(iocb->ki_filp);
598 struct zonefs_inode_info *zi = ZONEFS_I(inode);
599 struct super_block *sb = inode->i_sb;
600 size_t count;
601 ssize_t ret;
604 * For async direct IOs to sequential zone files, ignore IOCB_NOWAIT
605 * as this can cause write reordering (e.g. the first aio gets EAGAIN
606 * on the inode lock but the second goes through but is now unaligned).
608 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !is_sync_kiocb(iocb)
609 && (iocb->ki_flags & IOCB_NOWAIT))
610 iocb->ki_flags &= ~IOCB_NOWAIT;
612 if (iocb->ki_flags & IOCB_NOWAIT) {
613 if (!inode_trylock(inode))
614 return -EAGAIN;
615 } else {
616 inode_lock(inode);
619 ret = generic_write_checks(iocb, from);
620 if (ret <= 0)
621 goto inode_unlock;
623 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos);
624 count = iov_iter_count(from);
626 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
627 ret = -EINVAL;
628 goto inode_unlock;
631 /* Enforce sequential writes (append only) in sequential zones */
632 mutex_lock(&zi->i_truncate_mutex);
633 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && iocb->ki_pos != zi->i_wpoffset) {
634 mutex_unlock(&zi->i_truncate_mutex);
635 ret = -EINVAL;
636 goto inode_unlock;
638 mutex_unlock(&zi->i_truncate_mutex);
640 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
641 &zonefs_write_dio_ops, is_sync_kiocb(iocb));
642 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
643 (ret > 0 || ret == -EIOCBQUEUED)) {
644 if (ret > 0)
645 count = ret;
646 mutex_lock(&zi->i_truncate_mutex);
647 zi->i_wpoffset += count;
648 mutex_unlock(&zi->i_truncate_mutex);
651 inode_unlock:
652 inode_unlock(inode);
654 return ret;
657 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
658 struct iov_iter *from)
660 struct inode *inode = file_inode(iocb->ki_filp);
661 struct zonefs_inode_info *zi = ZONEFS_I(inode);
662 ssize_t ret;
665 * Direct IO writes are mandatory for sequential zone files so that the
666 * write IO issuing order is preserved.
668 if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
669 return -EIO;
671 if (iocb->ki_flags & IOCB_NOWAIT) {
672 if (!inode_trylock(inode))
673 return -EAGAIN;
674 } else {
675 inode_lock(inode);
678 ret = generic_write_checks(iocb, from);
679 if (ret <= 0)
680 goto inode_unlock;
682 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos);
684 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
685 if (ret > 0)
686 iocb->ki_pos += ret;
687 else if (ret == -EIO)
688 zonefs_io_error(inode, true);
690 inode_unlock:
691 inode_unlock(inode);
692 if (ret > 0)
693 ret = generic_write_sync(iocb, ret);
695 return ret;
698 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
700 struct inode *inode = file_inode(iocb->ki_filp);
702 if (unlikely(IS_IMMUTABLE(inode)))
703 return -EPERM;
705 if (sb_rdonly(inode->i_sb))
706 return -EROFS;
708 /* Write operations beyond the zone size are not allowed */
709 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
710 return -EFBIG;
712 if (iocb->ki_flags & IOCB_DIRECT)
713 return zonefs_file_dio_write(iocb, from);
715 return zonefs_file_buffered_write(iocb, from);
718 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
719 int error, unsigned int flags)
721 if (error) {
722 zonefs_io_error(file_inode(iocb->ki_filp), false);
723 return error;
726 return 0;
729 static const struct iomap_dio_ops zonefs_read_dio_ops = {
730 .end_io = zonefs_file_read_dio_end_io,
733 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
735 struct inode *inode = file_inode(iocb->ki_filp);
736 struct zonefs_inode_info *zi = ZONEFS_I(inode);
737 struct super_block *sb = inode->i_sb;
738 loff_t isize;
739 ssize_t ret;
741 /* Offline zones cannot be read */
742 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
743 return -EPERM;
745 if (iocb->ki_pos >= zi->i_max_size)
746 return 0;
748 if (iocb->ki_flags & IOCB_NOWAIT) {
749 if (!inode_trylock_shared(inode))
750 return -EAGAIN;
751 } else {
752 inode_lock_shared(inode);
755 /* Limit read operations to written data */
756 mutex_lock(&zi->i_truncate_mutex);
757 isize = i_size_read(inode);
758 if (iocb->ki_pos >= isize) {
759 mutex_unlock(&zi->i_truncate_mutex);
760 ret = 0;
761 goto inode_unlock;
763 iov_iter_truncate(to, isize - iocb->ki_pos);
764 mutex_unlock(&zi->i_truncate_mutex);
766 if (iocb->ki_flags & IOCB_DIRECT) {
767 size_t count = iov_iter_count(to);
769 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
770 ret = -EINVAL;
771 goto inode_unlock;
773 file_accessed(iocb->ki_filp);
774 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
775 &zonefs_read_dio_ops, is_sync_kiocb(iocb));
776 } else {
777 ret = generic_file_read_iter(iocb, to);
778 if (ret == -EIO)
779 zonefs_io_error(inode, false);
782 inode_unlock:
783 inode_unlock_shared(inode);
785 return ret;
788 static const struct file_operations zonefs_file_operations = {
789 .open = generic_file_open,
790 .fsync = zonefs_file_fsync,
791 .mmap = zonefs_file_mmap,
792 .llseek = zonefs_file_llseek,
793 .read_iter = zonefs_file_read_iter,
794 .write_iter = zonefs_file_write_iter,
795 .splice_read = generic_file_splice_read,
796 .splice_write = iter_file_splice_write,
797 .iopoll = iomap_dio_iopoll,
800 static struct kmem_cache *zonefs_inode_cachep;
802 static struct inode *zonefs_alloc_inode(struct super_block *sb)
804 struct zonefs_inode_info *zi;
806 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
807 if (!zi)
808 return NULL;
810 inode_init_once(&zi->i_vnode);
811 mutex_init(&zi->i_truncate_mutex);
812 init_rwsem(&zi->i_mmap_sem);
814 return &zi->i_vnode;
817 static void zonefs_free_inode(struct inode *inode)
819 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
823 * File system stat.
825 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
827 struct super_block *sb = dentry->d_sb;
828 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
829 enum zonefs_ztype t;
830 u64 fsid;
832 buf->f_type = ZONEFS_MAGIC;
833 buf->f_bsize = sb->s_blocksize;
834 buf->f_namelen = ZONEFS_NAME_MAX;
836 spin_lock(&sbi->s_lock);
838 buf->f_blocks = sbi->s_blocks;
839 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
840 buf->f_bfree = 0;
841 else
842 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
843 buf->f_bavail = buf->f_bfree;
845 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
846 if (sbi->s_nr_files[t])
847 buf->f_files += sbi->s_nr_files[t] + 1;
849 buf->f_ffree = 0;
851 spin_unlock(&sbi->s_lock);
853 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^
854 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64));
855 buf->f_fsid.val[0] = (u32)fsid;
856 buf->f_fsid.val[1] = (u32)(fsid >> 32);
858 return 0;
861 enum {
862 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
863 Opt_err,
866 static const match_table_t tokens = {
867 { Opt_errors_ro, "errors=remount-ro"},
868 { Opt_errors_zro, "errors=zone-ro"},
869 { Opt_errors_zol, "errors=zone-offline"},
870 { Opt_errors_repair, "errors=repair"},
871 { Opt_err, NULL}
874 static int zonefs_parse_options(struct super_block *sb, char *options)
876 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
877 substring_t args[MAX_OPT_ARGS];
878 char *p;
880 if (!options)
881 return 0;
883 while ((p = strsep(&options, ",")) != NULL) {
884 int token;
886 if (!*p)
887 continue;
889 token = match_token(p, tokens, args);
890 switch (token) {
891 case Opt_errors_ro:
892 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
893 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
894 break;
895 case Opt_errors_zro:
896 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
897 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
898 break;
899 case Opt_errors_zol:
900 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
901 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
902 break;
903 case Opt_errors_repair:
904 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
905 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
906 break;
907 default:
908 return -EINVAL;
912 return 0;
915 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
917 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
919 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
920 seq_puts(seq, ",errors=remount-ro");
921 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
922 seq_puts(seq, ",errors=zone-ro");
923 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
924 seq_puts(seq, ",errors=zone-offline");
925 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
926 seq_puts(seq, ",errors=repair");
928 return 0;
931 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
933 sync_filesystem(sb);
935 return zonefs_parse_options(sb, data);
938 static const struct super_operations zonefs_sops = {
939 .alloc_inode = zonefs_alloc_inode,
940 .free_inode = zonefs_free_inode,
941 .statfs = zonefs_statfs,
942 .remount_fs = zonefs_remount,
943 .show_options = zonefs_show_options,
946 static const struct inode_operations zonefs_dir_inode_operations = {
947 .lookup = simple_lookup,
948 .setattr = zonefs_inode_setattr,
951 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
952 enum zonefs_ztype type)
954 struct super_block *sb = parent->i_sb;
956 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
957 inode_init_owner(inode, parent, S_IFDIR | 0555);
958 inode->i_op = &zonefs_dir_inode_operations;
959 inode->i_fop = &simple_dir_operations;
960 set_nlink(inode, 2);
961 inc_nlink(parent);
964 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
965 enum zonefs_ztype type)
967 struct super_block *sb = inode->i_sb;
968 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
969 struct zonefs_inode_info *zi = ZONEFS_I(inode);
971 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
972 inode->i_mode = S_IFREG | sbi->s_perm;
974 zi->i_ztype = type;
975 zi->i_zsector = zone->start;
976 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
977 zone->len << SECTOR_SHIFT);
978 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true);
980 inode->i_uid = sbi->s_uid;
981 inode->i_gid = sbi->s_gid;
982 inode->i_size = zi->i_wpoffset;
983 inode->i_blocks = zone->len;
985 inode->i_op = &zonefs_file_inode_operations;
986 inode->i_fop = &zonefs_file_operations;
987 inode->i_mapping->a_ops = &zonefs_file_aops;
989 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
990 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
991 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
994 static struct dentry *zonefs_create_inode(struct dentry *parent,
995 const char *name, struct blk_zone *zone,
996 enum zonefs_ztype type)
998 struct inode *dir = d_inode(parent);
999 struct dentry *dentry;
1000 struct inode *inode;
1002 dentry = d_alloc_name(parent, name);
1003 if (!dentry)
1004 return NULL;
1006 inode = new_inode(parent->d_sb);
1007 if (!inode)
1008 goto dput;
1010 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1011 if (zone)
1012 zonefs_init_file_inode(inode, zone, type);
1013 else
1014 zonefs_init_dir_inode(dir, inode, type);
1015 d_add(dentry, inode);
1016 dir->i_size++;
1018 return dentry;
1020 dput:
1021 dput(dentry);
1023 return NULL;
1026 struct zonefs_zone_data {
1027 struct super_block *sb;
1028 unsigned int nr_zones[ZONEFS_ZTYPE_MAX];
1029 struct blk_zone *zones;
1033 * Create a zone group and populate it with zone files.
1035 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1036 enum zonefs_ztype type)
1038 struct super_block *sb = zd->sb;
1039 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1040 struct blk_zone *zone, *next, *end;
1041 const char *zgroup_name;
1042 char *file_name;
1043 struct dentry *dir;
1044 unsigned int n = 0;
1045 int ret = -ENOMEM;
1047 /* If the group is empty, there is nothing to do */
1048 if (!zd->nr_zones[type])
1049 return 0;
1051 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1052 if (!file_name)
1053 return -ENOMEM;
1055 if (type == ZONEFS_ZTYPE_CNV)
1056 zgroup_name = "cnv";
1057 else
1058 zgroup_name = "seq";
1060 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1061 if (!dir)
1062 goto free;
1065 * The first zone contains the super block: skip it.
1067 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1068 for (zone = &zd->zones[1]; zone < end; zone = next) {
1070 next = zone + 1;
1071 if (zonefs_zone_type(zone) != type)
1072 continue;
1075 * For conventional zones, contiguous zones can be aggregated
1076 * together to form larger files. Note that this overwrites the
1077 * length of the first zone of the set of contiguous zones
1078 * aggregated together. If one offline or read-only zone is
1079 * found, assume that all zones aggregated have the same
1080 * condition.
1082 if (type == ZONEFS_ZTYPE_CNV &&
1083 (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1084 for (; next < end; next++) {
1085 if (zonefs_zone_type(next) != type)
1086 break;
1087 zone->len += next->len;
1088 if (next->cond == BLK_ZONE_COND_READONLY &&
1089 zone->cond != BLK_ZONE_COND_OFFLINE)
1090 zone->cond = BLK_ZONE_COND_READONLY;
1091 else if (next->cond == BLK_ZONE_COND_OFFLINE)
1092 zone->cond = BLK_ZONE_COND_OFFLINE;
1097 * Use the file number within its group as file name.
1099 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1100 if (!zonefs_create_inode(dir, file_name, zone, type))
1101 goto free;
1103 n++;
1106 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1107 zgroup_name, n, n > 1 ? "s" : "");
1109 sbi->s_nr_files[type] = n;
1110 ret = 0;
1112 free:
1113 kfree(file_name);
1115 return ret;
1118 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1119 void *data)
1121 struct zonefs_zone_data *zd = data;
1124 * Count the number of usable zones: the first zone at index 0 contains
1125 * the super block and is ignored.
1127 switch (zone->type) {
1128 case BLK_ZONE_TYPE_CONVENTIONAL:
1129 zone->wp = zone->start + zone->len;
1130 if (idx)
1131 zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1132 break;
1133 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1134 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1135 if (idx)
1136 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1137 break;
1138 default:
1139 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1140 zone->type);
1141 return -EIO;
1144 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1146 return 0;
1149 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1151 struct block_device *bdev = zd->sb->s_bdev;
1152 int ret;
1154 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1155 sizeof(struct blk_zone), GFP_KERNEL);
1156 if (!zd->zones)
1157 return -ENOMEM;
1159 /* Get zones information from the device */
1160 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1161 zonefs_get_zone_info_cb, zd);
1162 if (ret < 0) {
1163 zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1164 return ret;
1167 if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1168 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1169 ret, blkdev_nr_zones(bdev->bd_disk));
1170 return -EIO;
1173 return 0;
1176 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1178 kvfree(zd->zones);
1182 * Read super block information from the device.
1184 static int zonefs_read_super(struct super_block *sb)
1186 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1187 struct zonefs_super *super;
1188 u32 crc, stored_crc;
1189 struct page *page;
1190 struct bio_vec bio_vec;
1191 struct bio bio;
1192 int ret;
1194 page = alloc_page(GFP_KERNEL);
1195 if (!page)
1196 return -ENOMEM;
1198 bio_init(&bio, &bio_vec, 1);
1199 bio.bi_iter.bi_sector = 0;
1200 bio.bi_opf = REQ_OP_READ;
1201 bio_set_dev(&bio, sb->s_bdev);
1202 bio_add_page(&bio, page, PAGE_SIZE, 0);
1204 ret = submit_bio_wait(&bio);
1205 if (ret)
1206 goto free_page;
1208 super = kmap(page);
1210 ret = -EINVAL;
1211 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1212 goto unmap;
1214 stored_crc = le32_to_cpu(super->s_crc);
1215 super->s_crc = 0;
1216 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1217 if (crc != stored_crc) {
1218 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1219 crc, stored_crc);
1220 goto unmap;
1223 sbi->s_features = le64_to_cpu(super->s_features);
1224 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1225 zonefs_err(sb, "Unknown features set 0x%llx\n",
1226 sbi->s_features);
1227 goto unmap;
1230 if (sbi->s_features & ZONEFS_F_UID) {
1231 sbi->s_uid = make_kuid(current_user_ns(),
1232 le32_to_cpu(super->s_uid));
1233 if (!uid_valid(sbi->s_uid)) {
1234 zonefs_err(sb, "Invalid UID feature\n");
1235 goto unmap;
1239 if (sbi->s_features & ZONEFS_F_GID) {
1240 sbi->s_gid = make_kgid(current_user_ns(),
1241 le32_to_cpu(super->s_gid));
1242 if (!gid_valid(sbi->s_gid)) {
1243 zonefs_err(sb, "Invalid GID feature\n");
1244 goto unmap;
1248 if (sbi->s_features & ZONEFS_F_PERM)
1249 sbi->s_perm = le32_to_cpu(super->s_perm);
1251 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1252 zonefs_err(sb, "Reserved area is being used\n");
1253 goto unmap;
1256 uuid_copy(&sbi->s_uuid, (uuid_t *)super->s_uuid);
1257 ret = 0;
1259 unmap:
1260 kunmap(page);
1261 free_page:
1262 __free_page(page);
1264 return ret;
1268 * Check that the device is zoned. If it is, get the list of zones and create
1269 * sub-directories and files according to the device zone configuration and
1270 * format options.
1272 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1274 struct zonefs_zone_data zd;
1275 struct zonefs_sb_info *sbi;
1276 struct inode *inode;
1277 enum zonefs_ztype t;
1278 int ret;
1280 if (!bdev_is_zoned(sb->s_bdev)) {
1281 zonefs_err(sb, "Not a zoned block device\n");
1282 return -EINVAL;
1286 * Initialize super block information: the maximum file size is updated
1287 * when the zone files are created so that the format option
1288 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1289 * beyond the zone size is taken into account.
1291 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1292 if (!sbi)
1293 return -ENOMEM;
1295 spin_lock_init(&sbi->s_lock);
1296 sb->s_fs_info = sbi;
1297 sb->s_magic = ZONEFS_MAGIC;
1298 sb->s_maxbytes = 0;
1299 sb->s_op = &zonefs_sops;
1300 sb->s_time_gran = 1;
1303 * The block size is set to the device physical sector size to ensure
1304 * that write operations on 512e devices (512B logical block and 4KB
1305 * physical block) are always aligned to the device physical blocks,
1306 * as mandated by the ZBC/ZAC specifications.
1308 sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev));
1309 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1310 sbi->s_uid = GLOBAL_ROOT_UID;
1311 sbi->s_gid = GLOBAL_ROOT_GID;
1312 sbi->s_perm = 0640;
1313 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1315 ret = zonefs_read_super(sb);
1316 if (ret)
1317 return ret;
1319 ret = zonefs_parse_options(sb, data);
1320 if (ret)
1321 return ret;
1323 memset(&zd, 0, sizeof(struct zonefs_zone_data));
1324 zd.sb = sb;
1325 ret = zonefs_get_zone_info(&zd);
1326 if (ret)
1327 goto cleanup;
1329 zonefs_info(sb, "Mounting %u zones",
1330 blkdev_nr_zones(sb->s_bdev->bd_disk));
1332 /* Create root directory inode */
1333 ret = -ENOMEM;
1334 inode = new_inode(sb);
1335 if (!inode)
1336 goto cleanup;
1338 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1339 inode->i_mode = S_IFDIR | 0555;
1340 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1341 inode->i_op = &zonefs_dir_inode_operations;
1342 inode->i_fop = &simple_dir_operations;
1343 set_nlink(inode, 2);
1345 sb->s_root = d_make_root(inode);
1346 if (!sb->s_root)
1347 goto cleanup;
1349 /* Create and populate files in zone groups directories */
1350 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1351 ret = zonefs_create_zgroup(&zd, t);
1352 if (ret)
1353 break;
1356 cleanup:
1357 zonefs_cleanup_zone_info(&zd);
1359 return ret;
1362 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1363 int flags, const char *dev_name, void *data)
1365 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1368 static void zonefs_kill_super(struct super_block *sb)
1370 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1372 if (sb->s_root)
1373 d_genocide(sb->s_root);
1374 kill_block_super(sb);
1375 kfree(sbi);
1379 * File system definition and registration.
1381 static struct file_system_type zonefs_type = {
1382 .owner = THIS_MODULE,
1383 .name = "zonefs",
1384 .mount = zonefs_mount,
1385 .kill_sb = zonefs_kill_super,
1386 .fs_flags = FS_REQUIRES_DEV,
1389 static int __init zonefs_init_inodecache(void)
1391 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1392 sizeof(struct zonefs_inode_info), 0,
1393 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1394 NULL);
1395 if (zonefs_inode_cachep == NULL)
1396 return -ENOMEM;
1397 return 0;
1400 static void zonefs_destroy_inodecache(void)
1403 * Make sure all delayed rcu free inodes are flushed before we
1404 * destroy the inode cache.
1406 rcu_barrier();
1407 kmem_cache_destroy(zonefs_inode_cachep);
1410 static int __init zonefs_init(void)
1412 int ret;
1414 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1416 ret = zonefs_init_inodecache();
1417 if (ret)
1418 return ret;
1420 ret = register_filesystem(&zonefs_type);
1421 if (ret) {
1422 zonefs_destroy_inodecache();
1423 return ret;
1426 return 0;
1429 static void __exit zonefs_exit(void)
1431 zonefs_destroy_inodecache();
1432 unregister_filesystem(&zonefs_type);
1435 MODULE_AUTHOR("Damien Le Moal");
1436 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1437 MODULE_LICENSE("GPL");
1438 module_init(zonefs_init);
1439 module_exit(zonefs_exit);