drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / include / drm / drm_drv.h
blobcf13470810a5e036d27ba26f258817b4486bd2c2
1 /*
2 * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
3 * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
4 * Copyright (c) 2009-2010, Code Aurora Forum.
5 * Copyright 2016 Intel Corp.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
27 #ifndef _DRM_DRV_H_
28 #define _DRM_DRV_H_
30 #include <linux/list.h>
31 #include <linux/irqreturn.h>
33 #include <drm/drm_device.h>
35 struct drm_file;
36 struct drm_gem_object;
37 struct drm_master;
38 struct drm_minor;
39 struct dma_buf_attachment;
40 struct drm_display_mode;
41 struct drm_mode_create_dumb;
42 struct drm_printer;
44 /**
45 * enum drm_driver_feature - feature flags
47 * See &drm_driver.driver_features, drm_device.driver_features and
48 * drm_core_check_feature().
50 enum drm_driver_feature {
51 /**
52 * @DRIVER_GEM:
54 * Driver use the GEM memory manager. This should be set for all modern
55 * drivers.
57 DRIVER_GEM = BIT(0),
58 /**
59 * @DRIVER_MODESET:
61 * Driver supports mode setting interfaces (KMS).
63 DRIVER_MODESET = BIT(1),
64 /**
65 * @DRIVER_RENDER:
67 * Driver supports dedicated render nodes. See also the :ref:`section on
68 * render nodes <drm_render_node>` for details.
70 DRIVER_RENDER = BIT(3),
71 /**
72 * @DRIVER_ATOMIC:
74 * Driver supports the full atomic modesetting userspace API. Drivers
75 * which only use atomic internally, but do not the support the full
76 * userspace API (e.g. not all properties converted to atomic, or
77 * multi-plane updates are not guaranteed to be tear-free) should not
78 * set this flag.
80 DRIVER_ATOMIC = BIT(4),
81 /**
82 * @DRIVER_SYNCOBJ:
84 * Driver supports &drm_syncobj for explicit synchronization of command
85 * submission.
87 DRIVER_SYNCOBJ = BIT(5),
88 /**
89 * @DRIVER_SYNCOBJ_TIMELINE:
91 * Driver supports the timeline flavor of &drm_syncobj for explicit
92 * synchronization of command submission.
94 DRIVER_SYNCOBJ_TIMELINE = BIT(6),
96 /* IMPORTANT: Below are all the legacy flags, add new ones above. */
98 /**
99 * @DRIVER_USE_AGP:
101 * Set up DRM AGP support, see drm_agp_init(), the DRM core will manage
102 * AGP resources. New drivers don't need this.
104 DRIVER_USE_AGP = BIT(25),
106 * @DRIVER_LEGACY:
108 * Denote a legacy driver using shadow attach. Do not use.
110 DRIVER_LEGACY = BIT(26),
112 * @DRIVER_PCI_DMA:
114 * Driver is capable of PCI DMA, mapping of PCI DMA buffers to userspace
115 * will be enabled. Only for legacy drivers. Do not use.
117 DRIVER_PCI_DMA = BIT(27),
119 * @DRIVER_SG:
121 * Driver can perform scatter/gather DMA, allocation and mapping of
122 * scatter/gather buffers will be enabled. Only for legacy drivers. Do
123 * not use.
125 DRIVER_SG = BIT(28),
128 * @DRIVER_HAVE_DMA:
130 * Driver supports DMA, the userspace DMA API will be supported. Only
131 * for legacy drivers. Do not use.
133 DRIVER_HAVE_DMA = BIT(29),
135 * @DRIVER_HAVE_IRQ:
137 * Legacy irq support. Only for legacy drivers. Do not use.
139 * New drivers can either use the drm_irq_install() and
140 * drm_irq_uninstall() helper functions, or roll their own irq support
141 * code by calling request_irq() directly.
143 DRIVER_HAVE_IRQ = BIT(30),
145 * @DRIVER_KMS_LEGACY_CONTEXT:
147 * Used only by nouveau for backwards compatibility with existing
148 * userspace. Do not use.
150 DRIVER_KMS_LEGACY_CONTEXT = BIT(31),
154 * struct drm_driver - DRM driver structure
156 * This structure represent the common code for a family of cards. There will be
157 * one &struct drm_device for each card present in this family. It contains lots
158 * of vfunc entries, and a pile of those probably should be moved to more
159 * appropriate places like &drm_mode_config_funcs or into a new operations
160 * structure for GEM drivers.
162 struct drm_driver {
164 * @load:
166 * Backward-compatible driver callback to complete
167 * initialization steps after the driver is registered. For
168 * this reason, may suffer from race conditions and its use is
169 * deprecated for new drivers. It is therefore only supported
170 * for existing drivers not yet converted to the new scheme.
171 * See drm_dev_init() and drm_dev_register() for proper and
172 * race-free way to set up a &struct drm_device.
174 * This is deprecated, do not use!
176 * Returns:
178 * Zero on success, non-zero value on failure.
180 int (*load) (struct drm_device *, unsigned long flags);
183 * @open:
185 * Driver callback when a new &struct drm_file is opened. Useful for
186 * setting up driver-private data structures like buffer allocators,
187 * execution contexts or similar things. Such driver-private resources
188 * must be released again in @postclose.
190 * Since the display/modeset side of DRM can only be owned by exactly
191 * one &struct drm_file (see &drm_file.is_master and &drm_device.master)
192 * there should never be a need to set up any modeset related resources
193 * in this callback. Doing so would be a driver design bug.
195 * Returns:
197 * 0 on success, a negative error code on failure, which will be
198 * promoted to userspace as the result of the open() system call.
200 int (*open) (struct drm_device *, struct drm_file *);
203 * @postclose:
205 * One of the driver callbacks when a new &struct drm_file is closed.
206 * Useful for tearing down driver-private data structures allocated in
207 * @open like buffer allocators, execution contexts or similar things.
209 * Since the display/modeset side of DRM can only be owned by exactly
210 * one &struct drm_file (see &drm_file.is_master and &drm_device.master)
211 * there should never be a need to tear down any modeset related
212 * resources in this callback. Doing so would be a driver design bug.
214 void (*postclose) (struct drm_device *, struct drm_file *);
217 * @lastclose:
219 * Called when the last &struct drm_file has been closed and there's
220 * currently no userspace client for the &struct drm_device.
222 * Modern drivers should only use this to force-restore the fbdev
223 * framebuffer using drm_fb_helper_restore_fbdev_mode_unlocked().
224 * Anything else would indicate there's something seriously wrong.
225 * Modern drivers can also use this to execute delayed power switching
226 * state changes, e.g. in conjunction with the :ref:`vga_switcheroo`
227 * infrastructure.
229 * This is called after @postclose hook has been called.
231 * NOTE:
233 * All legacy drivers use this callback to de-initialize the hardware.
234 * This is purely because of the shadow-attach model, where the DRM
235 * kernel driver does not really own the hardware. Instead ownershipe is
236 * handled with the help of userspace through an inheritedly racy dance
237 * to set/unset the VT into raw mode.
239 * Legacy drivers initialize the hardware in the @firstopen callback,
240 * which isn't even called for modern drivers.
242 void (*lastclose) (struct drm_device *);
245 * @unload:
247 * Reverse the effects of the driver load callback. Ideally,
248 * the clean up performed by the driver should happen in the
249 * reverse order of the initialization. Similarly to the load
250 * hook, this handler is deprecated and its usage should be
251 * dropped in favor of an open-coded teardown function at the
252 * driver layer. See drm_dev_unregister() and drm_dev_put()
253 * for the proper way to remove a &struct drm_device.
255 * The unload() hook is called right after unregistering
256 * the device.
259 void (*unload) (struct drm_device *);
262 * @release:
264 * Optional callback for destroying device data after the final
265 * reference is released, i.e. the device is being destroyed. Drivers
266 * using this callback are responsible for calling drm_dev_fini()
267 * to finalize the device and then freeing the struct themselves.
269 void (*release) (struct drm_device *);
272 * @get_vblank_counter:
274 * Driver callback for fetching a raw hardware vblank counter for the
275 * CRTC specified with the pipe argument. If a device doesn't have a
276 * hardware counter, the driver can simply leave the hook as NULL.
277 * The DRM core will account for missed vblank events while interrupts
278 * where disabled based on system timestamps.
280 * Wraparound handling and loss of events due to modesetting is dealt
281 * with in the DRM core code, as long as drivers call
282 * drm_crtc_vblank_off() and drm_crtc_vblank_on() when disabling or
283 * enabling a CRTC.
285 * This is deprecated and should not be used by new drivers.
286 * Use &drm_crtc_funcs.get_vblank_counter instead.
288 * Returns:
290 * Raw vblank counter value.
292 u32 (*get_vblank_counter) (struct drm_device *dev, unsigned int pipe);
295 * @enable_vblank:
297 * Enable vblank interrupts for the CRTC specified with the pipe
298 * argument.
300 * This is deprecated and should not be used by new drivers.
301 * Use &drm_crtc_funcs.enable_vblank instead.
303 * Returns:
305 * Zero on success, appropriate errno if the given @crtc's vblank
306 * interrupt cannot be enabled.
308 int (*enable_vblank) (struct drm_device *dev, unsigned int pipe);
311 * @disable_vblank:
313 * Disable vblank interrupts for the CRTC specified with the pipe
314 * argument.
316 * This is deprecated and should not be used by new drivers.
317 * Use &drm_crtc_funcs.disable_vblank instead.
319 void (*disable_vblank) (struct drm_device *dev, unsigned int pipe);
322 * @get_scanout_position:
324 * Called by vblank timestamping code.
326 * Returns the current display scanout position from a crtc, and an
327 * optional accurate ktime_get() timestamp of when position was
328 * measured. Note that this is a helper callback which is only used if a
329 * driver uses drm_calc_vbltimestamp_from_scanoutpos() for the
330 * @get_vblank_timestamp callback.
332 * Parameters:
334 * dev:
335 * DRM device.
336 * pipe:
337 * Id of the crtc to query.
338 * in_vblank_irq:
339 * True when called from drm_crtc_handle_vblank(). Some drivers
340 * need to apply some workarounds for gpu-specific vblank irq quirks
341 * if flag is set.
342 * vpos:
343 * Target location for current vertical scanout position.
344 * hpos:
345 * Target location for current horizontal scanout position.
346 * stime:
347 * Target location for timestamp taken immediately before
348 * scanout position query. Can be NULL to skip timestamp.
349 * etime:
350 * Target location for timestamp taken immediately after
351 * scanout position query. Can be NULL to skip timestamp.
352 * mode:
353 * Current display timings.
355 * Returns vpos as a positive number while in active scanout area.
356 * Returns vpos as a negative number inside vblank, counting the number
357 * of scanlines to go until end of vblank, e.g., -1 means "one scanline
358 * until start of active scanout / end of vblank."
360 * Returns:
362 * True on success, false if a reliable scanout position counter could
363 * not be read out.
365 * FIXME:
367 * Since this is a helper to implement @get_vblank_timestamp, we should
368 * move it to &struct drm_crtc_helper_funcs, like all the other
369 * helper-internal hooks.
371 bool (*get_scanout_position) (struct drm_device *dev, unsigned int pipe,
372 bool in_vblank_irq, int *vpos, int *hpos,
373 ktime_t *stime, ktime_t *etime,
374 const struct drm_display_mode *mode);
377 * @get_vblank_timestamp:
379 * Called by drm_get_last_vbltimestamp(). Should return a precise
380 * timestamp when the most recent VBLANK interval ended or will end.
382 * Specifically, the timestamp in @vblank_time should correspond as
383 * closely as possible to the time when the first video scanline of
384 * the video frame after the end of VBLANK will start scanning out,
385 * the time immediately after end of the VBLANK interval. If the
386 * @crtc is currently inside VBLANK, this will be a time in the future.
387 * If the @crtc is currently scanning out a frame, this will be the
388 * past start time of the current scanout. This is meant to adhere
389 * to the OpenML OML_sync_control extension specification.
391 * Paramters:
393 * dev:
394 * dev DRM device handle.
395 * pipe:
396 * crtc for which timestamp should be returned.
397 * max_error:
398 * Maximum allowable timestamp error in nanoseconds.
399 * Implementation should strive to provide timestamp
400 * with an error of at most max_error nanoseconds.
401 * Returns true upper bound on error for timestamp.
402 * vblank_time:
403 * Target location for returned vblank timestamp.
404 * in_vblank_irq:
405 * True when called from drm_crtc_handle_vblank(). Some drivers
406 * need to apply some workarounds for gpu-specific vblank irq quirks
407 * if flag is set.
409 * Returns:
411 * True on success, false on failure, which means the core should
412 * fallback to a simple timestamp taken in drm_crtc_handle_vblank().
414 * FIXME:
416 * We should move this hook to &struct drm_crtc_funcs like all the other
417 * vblank hooks.
419 bool (*get_vblank_timestamp) (struct drm_device *dev, unsigned int pipe,
420 int *max_error,
421 ktime_t *vblank_time,
422 bool in_vblank_irq);
425 * @irq_handler:
427 * Interrupt handler called when using drm_irq_install(). Not used by
428 * drivers which implement their own interrupt handling.
430 irqreturn_t(*irq_handler) (int irq, void *arg);
433 * @irq_preinstall:
435 * Optional callback used by drm_irq_install() which is called before
436 * the interrupt handler is registered. This should be used to clear out
437 * any pending interrupts (from e.g. firmware based drives) and reset
438 * the interrupt handling registers.
440 void (*irq_preinstall) (struct drm_device *dev);
443 * @irq_postinstall:
445 * Optional callback used by drm_irq_install() which is called after
446 * the interrupt handler is registered. This should be used to enable
447 * interrupt generation in the hardware.
449 int (*irq_postinstall) (struct drm_device *dev);
452 * @irq_uninstall:
454 * Optional callback used by drm_irq_uninstall() which is called before
455 * the interrupt handler is unregistered. This should be used to disable
456 * interrupt generation in the hardware.
458 void (*irq_uninstall) (struct drm_device *dev);
461 * @master_create:
463 * Called whenever a new master is created. Only used by vmwgfx.
465 int (*master_create)(struct drm_device *dev, struct drm_master *master);
468 * @master_destroy:
470 * Called whenever a master is destroyed. Only used by vmwgfx.
472 void (*master_destroy)(struct drm_device *dev, struct drm_master *master);
475 * @master_set:
477 * Called whenever the minor master is set. Only used by vmwgfx.
479 int (*master_set)(struct drm_device *dev, struct drm_file *file_priv,
480 bool from_open);
482 * @master_drop:
484 * Called whenever the minor master is dropped. Only used by vmwgfx.
486 void (*master_drop)(struct drm_device *dev, struct drm_file *file_priv);
489 * @debugfs_init:
491 * Allows drivers to create driver-specific debugfs files.
493 int (*debugfs_init)(struct drm_minor *minor);
496 * @gem_free_object: deconstructor for drm_gem_objects
498 * This is deprecated and should not be used by new drivers. Use
499 * &drm_gem_object_funcs.free instead.
501 void (*gem_free_object) (struct drm_gem_object *obj);
504 * @gem_free_object_unlocked: deconstructor for drm_gem_objects
506 * This is deprecated and should not be used by new drivers. Use
507 * &drm_gem_object_funcs.free instead.
508 * Compared to @gem_free_object this is not encumbered with
509 * &drm_device.struct_mutex legacy locking schemes.
511 void (*gem_free_object_unlocked) (struct drm_gem_object *obj);
514 * @gem_open_object:
516 * This callback is deprecated in favour of &drm_gem_object_funcs.open.
518 * Driver hook called upon gem handle creation
520 int (*gem_open_object) (struct drm_gem_object *, struct drm_file *);
523 * @gem_close_object:
525 * This callback is deprecated in favour of &drm_gem_object_funcs.close.
527 * Driver hook called upon gem handle release
529 void (*gem_close_object) (struct drm_gem_object *, struct drm_file *);
532 * @gem_print_info:
534 * This callback is deprecated in favour of
535 * &drm_gem_object_funcs.print_info.
537 * If driver subclasses struct &drm_gem_object, it can implement this
538 * optional hook for printing additional driver specific info.
540 * drm_printf_indent() should be used in the callback passing it the
541 * indent argument.
543 * This callback is called from drm_gem_print_info().
545 void (*gem_print_info)(struct drm_printer *p, unsigned int indent,
546 const struct drm_gem_object *obj);
549 * @gem_create_object: constructor for gem objects
551 * Hook for allocating the GEM object struct, for use by the CMA and
552 * SHMEM GEM helpers.
554 struct drm_gem_object *(*gem_create_object)(struct drm_device *dev,
555 size_t size);
557 * @prime_handle_to_fd:
559 * Main PRIME export function. Should be implemented with
560 * drm_gem_prime_handle_to_fd() for GEM based drivers.
562 * For an in-depth discussion see :ref:`PRIME buffer sharing
563 * documentation <prime_buffer_sharing>`.
565 int (*prime_handle_to_fd)(struct drm_device *dev, struct drm_file *file_priv,
566 uint32_t handle, uint32_t flags, int *prime_fd);
568 * @prime_fd_to_handle:
570 * Main PRIME import function. Should be implemented with
571 * drm_gem_prime_fd_to_handle() for GEM based drivers.
573 * For an in-depth discussion see :ref:`PRIME buffer sharing
574 * documentation <prime_buffer_sharing>`.
576 int (*prime_fd_to_handle)(struct drm_device *dev, struct drm_file *file_priv,
577 int prime_fd, uint32_t *handle);
579 * @gem_prime_export:
581 * Export hook for GEM drivers. Deprecated in favour of
582 * &drm_gem_object_funcs.export.
584 struct dma_buf * (*gem_prime_export)(struct drm_gem_object *obj,
585 int flags);
587 * @gem_prime_import:
589 * Import hook for GEM drivers.
591 * This defaults to drm_gem_prime_import() if not set.
593 struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
594 struct dma_buf *dma_buf);
597 * @gem_prime_pin:
599 * Deprecated hook in favour of &drm_gem_object_funcs.pin.
601 int (*gem_prime_pin)(struct drm_gem_object *obj);
604 * @gem_prime_unpin:
606 * Deprecated hook in favour of &drm_gem_object_funcs.unpin.
608 void (*gem_prime_unpin)(struct drm_gem_object *obj);
612 * @gem_prime_get_sg_table:
614 * Deprecated hook in favour of &drm_gem_object_funcs.get_sg_table.
616 struct sg_table *(*gem_prime_get_sg_table)(struct drm_gem_object *obj);
619 * @gem_prime_import_sg_table:
621 * Optional hook used by the PRIME helper functions
622 * drm_gem_prime_import() respectively drm_gem_prime_import_dev().
624 struct drm_gem_object *(*gem_prime_import_sg_table)(
625 struct drm_device *dev,
626 struct dma_buf_attachment *attach,
627 struct sg_table *sgt);
629 * @gem_prime_vmap:
631 * Deprecated vmap hook for GEM drivers. Please use
632 * &drm_gem_object_funcs.vmap instead.
634 void *(*gem_prime_vmap)(struct drm_gem_object *obj);
637 * @gem_prime_vunmap:
639 * Deprecated vunmap hook for GEM drivers. Please use
640 * &drm_gem_object_funcs.vunmap instead.
642 void (*gem_prime_vunmap)(struct drm_gem_object *obj, void *vaddr);
645 * @gem_prime_mmap:
647 * mmap hook for GEM drivers, used to implement dma-buf mmap in the
648 * PRIME helpers.
650 * FIXME: There's way too much duplication going on here, and also moved
651 * to &drm_gem_object_funcs.
653 int (*gem_prime_mmap)(struct drm_gem_object *obj,
654 struct vm_area_struct *vma);
657 * @dumb_create:
659 * This creates a new dumb buffer in the driver's backing storage manager (GEM,
660 * TTM or something else entirely) and returns the resulting buffer handle. This
661 * handle can then be wrapped up into a framebuffer modeset object.
663 * Note that userspace is not allowed to use such objects for render
664 * acceleration - drivers must create their own private ioctls for such a use
665 * case.
667 * Width, height and depth are specified in the &drm_mode_create_dumb
668 * argument. The callback needs to fill the handle, pitch and size for
669 * the created buffer.
671 * Called by the user via ioctl.
673 * Returns:
675 * Zero on success, negative errno on failure.
677 int (*dumb_create)(struct drm_file *file_priv,
678 struct drm_device *dev,
679 struct drm_mode_create_dumb *args);
681 * @dumb_map_offset:
683 * Allocate an offset in the drm device node's address space to be able to
684 * memory map a dumb buffer.
686 * The default implementation is drm_gem_create_mmap_offset(). GEM based
687 * drivers must not overwrite this.
689 * Called by the user via ioctl.
691 * Returns:
693 * Zero on success, negative errno on failure.
695 int (*dumb_map_offset)(struct drm_file *file_priv,
696 struct drm_device *dev, uint32_t handle,
697 uint64_t *offset);
699 * @dumb_destroy:
701 * This destroys the userspace handle for the given dumb backing storage buffer.
702 * Since buffer objects must be reference counted in the kernel a buffer object
703 * won't be immediately freed if a framebuffer modeset object still uses it.
705 * Called by the user via ioctl.
707 * The default implementation is drm_gem_dumb_destroy(). GEM based drivers
708 * must not overwrite this.
710 * Returns:
712 * Zero on success, negative errno on failure.
714 int (*dumb_destroy)(struct drm_file *file_priv,
715 struct drm_device *dev,
716 uint32_t handle);
719 * @gem_vm_ops: Driver private ops for this object
721 * For GEM drivers this is deprecated in favour of
722 * &drm_gem_object_funcs.vm_ops.
724 const struct vm_operations_struct *gem_vm_ops;
726 /** @major: driver major number */
727 int major;
728 /** @minor: driver minor number */
729 int minor;
730 /** @patchlevel: driver patch level */
731 int patchlevel;
732 /** @name: driver name */
733 char *name;
734 /** @desc: driver description */
735 char *desc;
736 /** @date: driver date */
737 char *date;
740 * @driver_features:
741 * Driver features, see &enum drm_driver_feature. Drivers can disable
742 * some features on a per-instance basis using
743 * &drm_device.driver_features.
745 u32 driver_features;
748 * @ioctls:
750 * Array of driver-private IOCTL description entries. See the chapter on
751 * :ref:`IOCTL support in the userland interfaces
752 * chapter<drm_driver_ioctl>` for the full details.
755 const struct drm_ioctl_desc *ioctls;
756 /** @num_ioctls: Number of entries in @ioctls. */
757 int num_ioctls;
760 * @fops:
762 * File operations for the DRM device node. See the discussion in
763 * :ref:`file operations<drm_driver_fops>` for in-depth coverage and
764 * some examples.
766 const struct file_operations *fops;
768 /* Everything below here is for legacy driver, never use! */
769 /* private: */
771 /* List of devices hanging off this driver with stealth attach. */
772 struct list_head legacy_dev_list;
773 int (*firstopen) (struct drm_device *);
774 void (*preclose) (struct drm_device *, struct drm_file *file_priv);
775 int (*dma_ioctl) (struct drm_device *dev, void *data, struct drm_file *file_priv);
776 int (*dma_quiescent) (struct drm_device *);
777 int (*context_dtor) (struct drm_device *dev, int context);
778 int dev_priv_size;
781 int drm_dev_init(struct drm_device *dev,
782 struct drm_driver *driver,
783 struct device *parent);
784 int devm_drm_dev_init(struct device *parent,
785 struct drm_device *dev,
786 struct drm_driver *driver);
787 void drm_dev_fini(struct drm_device *dev);
789 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
790 struct device *parent);
791 int drm_dev_register(struct drm_device *dev, unsigned long flags);
792 void drm_dev_unregister(struct drm_device *dev);
794 void drm_dev_get(struct drm_device *dev);
795 void drm_dev_put(struct drm_device *dev);
796 void drm_put_dev(struct drm_device *dev);
797 bool drm_dev_enter(struct drm_device *dev, int *idx);
798 void drm_dev_exit(int idx);
799 void drm_dev_unplug(struct drm_device *dev);
802 * drm_dev_is_unplugged - is a DRM device unplugged
803 * @dev: DRM device
805 * This function can be called to check whether a hotpluggable is unplugged.
806 * Unplugging itself is singalled through drm_dev_unplug(). If a device is
807 * unplugged, these two functions guarantee that any store before calling
808 * drm_dev_unplug() is visible to callers of this function after it completes
810 * WARNING: This function fundamentally races against drm_dev_unplug(). It is
811 * recommended that drivers instead use the underlying drm_dev_enter() and
812 * drm_dev_exit() function pairs.
814 static inline bool drm_dev_is_unplugged(struct drm_device *dev)
816 int idx;
818 if (drm_dev_enter(dev, &idx)) {
819 drm_dev_exit(idx);
820 return false;
823 return true;
827 * drm_core_check_feature - check driver feature flags
828 * @dev: DRM device to check
829 * @feature: feature flag
831 * This checks @dev for driver features, see &drm_driver.driver_features,
832 * &drm_device.driver_features, and the various &enum drm_driver_feature flags.
834 * Returns true if the @feature is supported, false otherwise.
836 static inline bool drm_core_check_feature(const struct drm_device *dev, u32 feature)
838 return dev->driver->driver_features & dev->driver_features & feature;
842 * drm_drv_uses_atomic_modeset - check if the driver implements
843 * atomic_commit()
844 * @dev: DRM device
846 * This check is useful if drivers do not have DRIVER_ATOMIC set but
847 * have atomic modesetting internally implemented.
849 static inline bool drm_drv_uses_atomic_modeset(struct drm_device *dev)
851 return drm_core_check_feature(dev, DRIVER_ATOMIC) ||
852 (dev->mode_config.funcs && dev->mode_config.funcs->atomic_commit != NULL);
856 int drm_dev_set_unique(struct drm_device *dev, const char *name);
859 #endif