drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / include / linux / mtd / rawnand.h
blob4ab9bccfcde0fe1d86961bd167690129aa7cc3d3
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4 * Steven J. Hill <sjhill@realitydiluted.com>
5 * Thomas Gleixner <tglx@linutronix.de>
7 * Info:
8 * Contains standard defines and IDs for NAND flash devices
10 * Changelog:
11 * See git changelog.
13 #ifndef __LINUX_MTD_RAWNAND_H
14 #define __LINUX_MTD_RAWNAND_H
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/flashchip.h>
18 #include <linux/mtd/bbm.h>
19 #include <linux/mtd/jedec.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/onfi.h>
22 #include <linux/mutex.h>
23 #include <linux/of.h>
24 #include <linux/types.h>
26 struct nand_chip;
28 /* The maximum number of NAND chips in an array */
29 #define NAND_MAX_CHIPS 8
32 * Constants for hardware specific CLE/ALE/NCE function
34 * These are bits which can be or'ed to set/clear multiple
35 * bits in one go.
37 /* Select the chip by setting nCE to low */
38 #define NAND_NCE 0x01
39 /* Select the command latch by setting CLE to high */
40 #define NAND_CLE 0x02
41 /* Select the address latch by setting ALE to high */
42 #define NAND_ALE 0x04
44 #define NAND_CTRL_CLE (NAND_NCE | NAND_CLE)
45 #define NAND_CTRL_ALE (NAND_NCE | NAND_ALE)
46 #define NAND_CTRL_CHANGE 0x80
49 * Standard NAND flash commands
51 #define NAND_CMD_READ0 0
52 #define NAND_CMD_READ1 1
53 #define NAND_CMD_RNDOUT 5
54 #define NAND_CMD_PAGEPROG 0x10
55 #define NAND_CMD_READOOB 0x50
56 #define NAND_CMD_ERASE1 0x60
57 #define NAND_CMD_STATUS 0x70
58 #define NAND_CMD_SEQIN 0x80
59 #define NAND_CMD_RNDIN 0x85
60 #define NAND_CMD_READID 0x90
61 #define NAND_CMD_ERASE2 0xd0
62 #define NAND_CMD_PARAM 0xec
63 #define NAND_CMD_GET_FEATURES 0xee
64 #define NAND_CMD_SET_FEATURES 0xef
65 #define NAND_CMD_RESET 0xff
67 /* Extended commands for large page devices */
68 #define NAND_CMD_READSTART 0x30
69 #define NAND_CMD_RNDOUTSTART 0xE0
70 #define NAND_CMD_CACHEDPROG 0x15
72 #define NAND_CMD_NONE -1
74 /* Status bits */
75 #define NAND_STATUS_FAIL 0x01
76 #define NAND_STATUS_FAIL_N1 0x02
77 #define NAND_STATUS_TRUE_READY 0x20
78 #define NAND_STATUS_READY 0x40
79 #define NAND_STATUS_WP 0x80
81 #define NAND_DATA_IFACE_CHECK_ONLY -1
84 * Constants for ECC_MODES
86 typedef enum {
87 NAND_ECC_NONE,
88 NAND_ECC_SOFT,
89 NAND_ECC_HW,
90 NAND_ECC_HW_SYNDROME,
91 NAND_ECC_HW_OOB_FIRST,
92 NAND_ECC_ON_DIE,
93 } nand_ecc_modes_t;
95 enum nand_ecc_algo {
96 NAND_ECC_UNKNOWN,
97 NAND_ECC_HAMMING,
98 NAND_ECC_BCH,
99 NAND_ECC_RS,
103 * Constants for Hardware ECC
105 /* Reset Hardware ECC for read */
106 #define NAND_ECC_READ 0
107 /* Reset Hardware ECC for write */
108 #define NAND_ECC_WRITE 1
109 /* Enable Hardware ECC before syndrome is read back from flash */
110 #define NAND_ECC_READSYN 2
113 * Enable generic NAND 'page erased' check. This check is only done when
114 * ecc.correct() returns -EBADMSG.
115 * Set this flag if your implementation does not fix bitflips in erased
116 * pages and you want to rely on the default implementation.
118 #define NAND_ECC_GENERIC_ERASED_CHECK BIT(0)
119 #define NAND_ECC_MAXIMIZE BIT(1)
122 * When using software implementation of Hamming, we can specify which byte
123 * ordering should be used.
125 #define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2)
128 * Option constants for bizarre disfunctionality and real
129 * features.
131 /* Buswidth is 16 bit */
132 #define NAND_BUSWIDTH_16 0x00000002
133 /* Chip has cache program function */
134 #define NAND_CACHEPRG 0x00000008
136 * Chip requires ready check on read (for auto-incremented sequential read).
137 * True only for small page devices; large page devices do not support
138 * autoincrement.
140 #define NAND_NEED_READRDY 0x00000100
142 /* Chip does not allow subpage writes */
143 #define NAND_NO_SUBPAGE_WRITE 0x00000200
145 /* Device is one of 'new' xD cards that expose fake nand command set */
146 #define NAND_BROKEN_XD 0x00000400
148 /* Device behaves just like nand, but is readonly */
149 #define NAND_ROM 0x00000800
151 /* Device supports subpage reads */
152 #define NAND_SUBPAGE_READ 0x00001000
155 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
156 * patterns.
158 #define NAND_NEED_SCRAMBLING 0x00002000
160 /* Device needs 3rd row address cycle */
161 #define NAND_ROW_ADDR_3 0x00004000
163 /* Options valid for Samsung large page devices */
164 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
166 /* Macros to identify the above */
167 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
170 * There are different places where the manufacturer stores the factory bad
171 * block markers.
173 * Position within the block: Each of these pages needs to be checked for a
174 * bad block marking pattern.
176 #define NAND_BBM_FIRSTPAGE 0x01000000
177 #define NAND_BBM_SECONDPAGE 0x02000000
178 #define NAND_BBM_LASTPAGE 0x04000000
180 /* Position within the OOB data of the page */
181 #define NAND_BBM_POS_SMALL 5
182 #define NAND_BBM_POS_LARGE 0
184 /* Non chip related options */
185 /* This option skips the bbt scan during initialization. */
186 #define NAND_SKIP_BBTSCAN 0x00010000
187 /* Chip may not exist, so silence any errors in scan */
188 #define NAND_SCAN_SILENT_NODEV 0x00040000
190 * Autodetect nand buswidth with readid/onfi.
191 * This suppose the driver will configure the hardware in 8 bits mode
192 * when calling nand_scan_ident, and update its configuration
193 * before calling nand_scan_tail.
195 #define NAND_BUSWIDTH_AUTO 0x00080000
197 * This option could be defined by controller drivers to protect against
198 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
200 #define NAND_USE_BOUNCE_BUFFER 0x00100000
203 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
204 * on the default ->cmdfunc() implementation, you may want to let the core
205 * handle the tCCS delay which is required when a column change (RNDIN or
206 * RNDOUT) is requested.
207 * If your controller already takes care of this delay, you don't need to set
208 * this flag.
210 #define NAND_WAIT_TCCS 0x00200000
213 * Whether the NAND chip is a boot medium. Drivers might use this information
214 * to select ECC algorithms supported by the boot ROM or similar restrictions.
216 #define NAND_IS_BOOT_MEDIUM 0x00400000
219 * Do not try to tweak the timings at runtime. This is needed when the
220 * controller initializes the timings on itself or when it relies on
221 * configuration done by the bootloader.
223 #define NAND_KEEP_TIMINGS 0x00800000
225 /* Cell info constants */
226 #define NAND_CI_CHIPNR_MSK 0x03
227 #define NAND_CI_CELLTYPE_MSK 0x0C
228 #define NAND_CI_CELLTYPE_SHIFT 2
231 * struct nand_parameters - NAND generic parameters from the parameter page
232 * @model: Model name
233 * @supports_set_get_features: The NAND chip supports setting/getting features
234 * @set_feature_list: Bitmap of features that can be set
235 * @get_feature_list: Bitmap of features that can be get
236 * @onfi: ONFI specific parameters
238 struct nand_parameters {
239 /* Generic parameters */
240 const char *model;
241 bool supports_set_get_features;
242 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
243 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
245 /* ONFI parameters */
246 struct onfi_params *onfi;
249 /* The maximum expected count of bytes in the NAND ID sequence */
250 #define NAND_MAX_ID_LEN 8
253 * struct nand_id - NAND id structure
254 * @data: buffer containing the id bytes.
255 * @len: ID length.
257 struct nand_id {
258 u8 data[NAND_MAX_ID_LEN];
259 int len;
263 * struct nand_ecc_step_info - ECC step information of ECC engine
264 * @stepsize: data bytes per ECC step
265 * @strengths: array of supported strengths
266 * @nstrengths: number of supported strengths
268 struct nand_ecc_step_info {
269 int stepsize;
270 const int *strengths;
271 int nstrengths;
275 * struct nand_ecc_caps - capability of ECC engine
276 * @stepinfos: array of ECC step information
277 * @nstepinfos: number of ECC step information
278 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
280 struct nand_ecc_caps {
281 const struct nand_ecc_step_info *stepinfos;
282 int nstepinfos;
283 int (*calc_ecc_bytes)(int step_size, int strength);
286 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
287 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \
288 static const int __name##_strengths[] = { __VA_ARGS__ }; \
289 static const struct nand_ecc_step_info __name##_stepinfo = { \
290 .stepsize = __step, \
291 .strengths = __name##_strengths, \
292 .nstrengths = ARRAY_SIZE(__name##_strengths), \
293 }; \
294 static const struct nand_ecc_caps __name = { \
295 .stepinfos = &__name##_stepinfo, \
296 .nstepinfos = 1, \
297 .calc_ecc_bytes = __calc, \
301 * struct nand_ecc_ctrl - Control structure for ECC
302 * @mode: ECC mode
303 * @algo: ECC algorithm
304 * @steps: number of ECC steps per page
305 * @size: data bytes per ECC step
306 * @bytes: ECC bytes per step
307 * @strength: max number of correctible bits per ECC step
308 * @total: total number of ECC bytes per page
309 * @prepad: padding information for syndrome based ECC generators
310 * @postpad: padding information for syndrome based ECC generators
311 * @options: ECC specific options (see NAND_ECC_XXX flags defined above)
312 * @priv: pointer to private ECC control data
313 * @calc_buf: buffer for calculated ECC, size is oobsize.
314 * @code_buf: buffer for ECC read from flash, size is oobsize.
315 * @hwctl: function to control hardware ECC generator. Must only
316 * be provided if an hardware ECC is available
317 * @calculate: function for ECC calculation or readback from ECC hardware
318 * @correct: function for ECC correction, matching to ECC generator (sw/hw).
319 * Should return a positive number representing the number of
320 * corrected bitflips, -EBADMSG if the number of bitflips exceed
321 * ECC strength, or any other error code if the error is not
322 * directly related to correction.
323 * If -EBADMSG is returned the input buffers should be left
324 * untouched.
325 * @read_page_raw: function to read a raw page without ECC. This function
326 * should hide the specific layout used by the ECC
327 * controller and always return contiguous in-band and
328 * out-of-band data even if they're not stored
329 * contiguously on the NAND chip (e.g.
330 * NAND_ECC_HW_SYNDROME interleaves in-band and
331 * out-of-band data).
332 * @write_page_raw: function to write a raw page without ECC. This function
333 * should hide the specific layout used by the ECC
334 * controller and consider the passed data as contiguous
335 * in-band and out-of-band data. ECC controller is
336 * responsible for doing the appropriate transformations
337 * to adapt to its specific layout (e.g.
338 * NAND_ECC_HW_SYNDROME interleaves in-band and
339 * out-of-band data).
340 * @read_page: function to read a page according to the ECC generator
341 * requirements; returns maximum number of bitflips corrected in
342 * any single ECC step, -EIO hw error
343 * @read_subpage: function to read parts of the page covered by ECC;
344 * returns same as read_page()
345 * @write_subpage: function to write parts of the page covered by ECC.
346 * @write_page: function to write a page according to the ECC generator
347 * requirements.
348 * @write_oob_raw: function to write chip OOB data without ECC
349 * @read_oob_raw: function to read chip OOB data without ECC
350 * @read_oob: function to read chip OOB data
351 * @write_oob: function to write chip OOB data
353 struct nand_ecc_ctrl {
354 nand_ecc_modes_t mode;
355 enum nand_ecc_algo algo;
356 int steps;
357 int size;
358 int bytes;
359 int total;
360 int strength;
361 int prepad;
362 int postpad;
363 unsigned int options;
364 void *priv;
365 u8 *calc_buf;
366 u8 *code_buf;
367 void (*hwctl)(struct nand_chip *chip, int mode);
368 int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
369 uint8_t *ecc_code);
370 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
371 uint8_t *calc_ecc);
372 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
373 int oob_required, int page);
374 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
375 int oob_required, int page);
376 int (*read_page)(struct nand_chip *chip, uint8_t *buf,
377 int oob_required, int page);
378 int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
379 uint32_t len, uint8_t *buf, int page);
380 int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
381 uint32_t data_len, const uint8_t *data_buf,
382 int oob_required, int page);
383 int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
384 int oob_required, int page);
385 int (*write_oob_raw)(struct nand_chip *chip, int page);
386 int (*read_oob_raw)(struct nand_chip *chip, int page);
387 int (*read_oob)(struct nand_chip *chip, int page);
388 int (*write_oob)(struct nand_chip *chip, int page);
392 * struct nand_sdr_timings - SDR NAND chip timings
394 * This struct defines the timing requirements of a SDR NAND chip.
395 * These information can be found in every NAND datasheets and the timings
396 * meaning are described in the ONFI specifications:
397 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
398 * Parameters)
400 * All these timings are expressed in picoseconds.
402 * @tBERS_max: Block erase time
403 * @tCCS_min: Change column setup time
404 * @tPROG_max: Page program time
405 * @tR_max: Page read time
406 * @tALH_min: ALE hold time
407 * @tADL_min: ALE to data loading time
408 * @tALS_min: ALE setup time
409 * @tAR_min: ALE to RE# delay
410 * @tCEA_max: CE# access time
411 * @tCEH_min: CE# high hold time
412 * @tCH_min: CE# hold time
413 * @tCHZ_max: CE# high to output hi-Z
414 * @tCLH_min: CLE hold time
415 * @tCLR_min: CLE to RE# delay
416 * @tCLS_min: CLE setup time
417 * @tCOH_min: CE# high to output hold
418 * @tCS_min: CE# setup time
419 * @tDH_min: Data hold time
420 * @tDS_min: Data setup time
421 * @tFEAT_max: Busy time for Set Features and Get Features
422 * @tIR_min: Output hi-Z to RE# low
423 * @tITC_max: Interface and Timing Mode Change time
424 * @tRC_min: RE# cycle time
425 * @tREA_max: RE# access time
426 * @tREH_min: RE# high hold time
427 * @tRHOH_min: RE# high to output hold
428 * @tRHW_min: RE# high to WE# low
429 * @tRHZ_max: RE# high to output hi-Z
430 * @tRLOH_min: RE# low to output hold
431 * @tRP_min: RE# pulse width
432 * @tRR_min: Ready to RE# low (data only)
433 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
434 * rising edge of R/B#.
435 * @tWB_max: WE# high to SR[6] low
436 * @tWC_min: WE# cycle time
437 * @tWH_min: WE# high hold time
438 * @tWHR_min: WE# high to RE# low
439 * @tWP_min: WE# pulse width
440 * @tWW_min: WP# transition to WE# low
442 struct nand_sdr_timings {
443 u64 tBERS_max;
444 u32 tCCS_min;
445 u64 tPROG_max;
446 u64 tR_max;
447 u32 tALH_min;
448 u32 tADL_min;
449 u32 tALS_min;
450 u32 tAR_min;
451 u32 tCEA_max;
452 u32 tCEH_min;
453 u32 tCH_min;
454 u32 tCHZ_max;
455 u32 tCLH_min;
456 u32 tCLR_min;
457 u32 tCLS_min;
458 u32 tCOH_min;
459 u32 tCS_min;
460 u32 tDH_min;
461 u32 tDS_min;
462 u32 tFEAT_max;
463 u32 tIR_min;
464 u32 tITC_max;
465 u32 tRC_min;
466 u32 tREA_max;
467 u32 tREH_min;
468 u32 tRHOH_min;
469 u32 tRHW_min;
470 u32 tRHZ_max;
471 u32 tRLOH_min;
472 u32 tRP_min;
473 u32 tRR_min;
474 u64 tRST_max;
475 u32 tWB_max;
476 u32 tWC_min;
477 u32 tWH_min;
478 u32 tWHR_min;
479 u32 tWP_min;
480 u32 tWW_min;
484 * enum nand_data_interface_type - NAND interface timing type
485 * @NAND_SDR_IFACE: Single Data Rate interface
487 enum nand_data_interface_type {
488 NAND_SDR_IFACE,
492 * struct nand_data_interface - NAND interface timing
493 * @type: type of the timing
494 * @timings: The timing, type according to @type
495 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
497 struct nand_data_interface {
498 enum nand_data_interface_type type;
499 union {
500 struct nand_sdr_timings sdr;
501 } timings;
505 * nand_get_sdr_timings - get SDR timing from data interface
506 * @conf: The data interface
508 static inline const struct nand_sdr_timings *
509 nand_get_sdr_timings(const struct nand_data_interface *conf)
511 if (conf->type != NAND_SDR_IFACE)
512 return ERR_PTR(-EINVAL);
514 return &conf->timings.sdr;
518 * struct nand_op_cmd_instr - Definition of a command instruction
519 * @opcode: the command to issue in one cycle
521 struct nand_op_cmd_instr {
522 u8 opcode;
526 * struct nand_op_addr_instr - Definition of an address instruction
527 * @naddrs: length of the @addrs array
528 * @addrs: array containing the address cycles to issue
530 struct nand_op_addr_instr {
531 unsigned int naddrs;
532 const u8 *addrs;
536 * struct nand_op_data_instr - Definition of a data instruction
537 * @len: number of data bytes to move
538 * @buf: buffer to fill
539 * @buf.in: buffer to fill when reading from the NAND chip
540 * @buf.out: buffer to read from when writing to the NAND chip
541 * @force_8bit: force 8-bit access
543 * Please note that "in" and "out" are inverted from the ONFI specification
544 * and are from the controller perspective, so a "in" is a read from the NAND
545 * chip while a "out" is a write to the NAND chip.
547 struct nand_op_data_instr {
548 unsigned int len;
549 union {
550 void *in;
551 const void *out;
552 } buf;
553 bool force_8bit;
557 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
558 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
560 struct nand_op_waitrdy_instr {
561 unsigned int timeout_ms;
565 * enum nand_op_instr_type - Definition of all instruction types
566 * @NAND_OP_CMD_INSTR: command instruction
567 * @NAND_OP_ADDR_INSTR: address instruction
568 * @NAND_OP_DATA_IN_INSTR: data in instruction
569 * @NAND_OP_DATA_OUT_INSTR: data out instruction
570 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
572 enum nand_op_instr_type {
573 NAND_OP_CMD_INSTR,
574 NAND_OP_ADDR_INSTR,
575 NAND_OP_DATA_IN_INSTR,
576 NAND_OP_DATA_OUT_INSTR,
577 NAND_OP_WAITRDY_INSTR,
581 * struct nand_op_instr - Instruction object
582 * @type: the instruction type
583 * @ctx: extra data associated to the instruction. You'll have to use the
584 * appropriate element depending on @type
585 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
586 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
587 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
588 * or %NAND_OP_DATA_OUT_INSTR
589 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
590 * @delay_ns: delay the controller should apply after the instruction has been
591 * issued on the bus. Most modern controllers have internal timings
592 * control logic, and in this case, the controller driver can ignore
593 * this field.
595 struct nand_op_instr {
596 enum nand_op_instr_type type;
597 union {
598 struct nand_op_cmd_instr cmd;
599 struct nand_op_addr_instr addr;
600 struct nand_op_data_instr data;
601 struct nand_op_waitrdy_instr waitrdy;
602 } ctx;
603 unsigned int delay_ns;
607 * Special handling must be done for the WAITRDY timeout parameter as it usually
608 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
609 * tBERS (during an erase) which all of them are u64 values that cannot be
610 * divided by usual kernel macros and must be handled with the special
611 * DIV_ROUND_UP_ULL() macro.
613 * Cast to type of dividend is needed here to guarantee that the result won't
614 * be an unsigned long long when the dividend is an unsigned long (or smaller),
615 * which is what the compiler does when it sees ternary operator with 2
616 * different return types (picks the largest type to make sure there's no
617 * loss).
619 #define __DIVIDE(dividend, divisor) ({ \
620 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \
621 DIV_ROUND_UP(dividend, divisor) : \
622 DIV_ROUND_UP_ULL(dividend, divisor)); \
624 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
625 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
627 #define NAND_OP_CMD(id, ns) \
629 .type = NAND_OP_CMD_INSTR, \
630 .ctx.cmd.opcode = id, \
631 .delay_ns = ns, \
634 #define NAND_OP_ADDR(ncycles, cycles, ns) \
636 .type = NAND_OP_ADDR_INSTR, \
637 .ctx.addr = { \
638 .naddrs = ncycles, \
639 .addrs = cycles, \
640 }, \
641 .delay_ns = ns, \
644 #define NAND_OP_DATA_IN(l, b, ns) \
646 .type = NAND_OP_DATA_IN_INSTR, \
647 .ctx.data = { \
648 .len = l, \
649 .buf.in = b, \
650 .force_8bit = false, \
651 }, \
652 .delay_ns = ns, \
655 #define NAND_OP_DATA_OUT(l, b, ns) \
657 .type = NAND_OP_DATA_OUT_INSTR, \
658 .ctx.data = { \
659 .len = l, \
660 .buf.out = b, \
661 .force_8bit = false, \
662 }, \
663 .delay_ns = ns, \
666 #define NAND_OP_8BIT_DATA_IN(l, b, ns) \
668 .type = NAND_OP_DATA_IN_INSTR, \
669 .ctx.data = { \
670 .len = l, \
671 .buf.in = b, \
672 .force_8bit = true, \
673 }, \
674 .delay_ns = ns, \
677 #define NAND_OP_8BIT_DATA_OUT(l, b, ns) \
679 .type = NAND_OP_DATA_OUT_INSTR, \
680 .ctx.data = { \
681 .len = l, \
682 .buf.out = b, \
683 .force_8bit = true, \
684 }, \
685 .delay_ns = ns, \
688 #define NAND_OP_WAIT_RDY(tout_ms, ns) \
690 .type = NAND_OP_WAITRDY_INSTR, \
691 .ctx.waitrdy.timeout_ms = tout_ms, \
692 .delay_ns = ns, \
696 * struct nand_subop - a sub operation
697 * @instrs: array of instructions
698 * @ninstrs: length of the @instrs array
699 * @first_instr_start_off: offset to start from for the first instruction
700 * of the sub-operation
701 * @last_instr_end_off: offset to end at (excluded) for the last instruction
702 * of the sub-operation
704 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
705 * address instructions.
707 * When an operation cannot be handled as is by the NAND controller, it will
708 * be split by the parser into sub-operations which will be passed to the
709 * controller driver.
711 struct nand_subop {
712 const struct nand_op_instr *instrs;
713 unsigned int ninstrs;
714 unsigned int first_instr_start_off;
715 unsigned int last_instr_end_off;
718 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
719 unsigned int op_id);
720 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
721 unsigned int op_id);
722 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
723 unsigned int op_id);
724 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
725 unsigned int op_id);
728 * struct nand_op_parser_addr_constraints - Constraints for address instructions
729 * @maxcycles: maximum number of address cycles the controller can issue in a
730 * single step
732 struct nand_op_parser_addr_constraints {
733 unsigned int maxcycles;
737 * struct nand_op_parser_data_constraints - Constraints for data instructions
738 * @maxlen: maximum data length that the controller can handle in a single step
740 struct nand_op_parser_data_constraints {
741 unsigned int maxlen;
745 * struct nand_op_parser_pattern_elem - One element of a pattern
746 * @type: the instructuction type
747 * @optional: whether this element of the pattern is optional or mandatory
748 * @ctx: address or data constraint
749 * @ctx.addr: address constraint (number of cycles)
750 * @ctx.data: data constraint (data length)
752 struct nand_op_parser_pattern_elem {
753 enum nand_op_instr_type type;
754 bool optional;
755 union {
756 struct nand_op_parser_addr_constraints addr;
757 struct nand_op_parser_data_constraints data;
758 } ctx;
761 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \
763 .type = NAND_OP_CMD_INSTR, \
764 .optional = _opt, \
767 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \
769 .type = NAND_OP_ADDR_INSTR, \
770 .optional = _opt, \
771 .ctx.addr.maxcycles = _maxcycles, \
774 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \
776 .type = NAND_OP_DATA_IN_INSTR, \
777 .optional = _opt, \
778 .ctx.data.maxlen = _maxlen, \
781 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \
783 .type = NAND_OP_DATA_OUT_INSTR, \
784 .optional = _opt, \
785 .ctx.data.maxlen = _maxlen, \
788 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \
790 .type = NAND_OP_WAITRDY_INSTR, \
791 .optional = _opt, \
795 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
796 * @elems: array of pattern elements
797 * @nelems: number of pattern elements in @elems array
798 * @exec: the function that will issue a sub-operation
800 * A pattern is a list of elements, each element reprensenting one instruction
801 * with its constraints. The pattern itself is used by the core to match NAND
802 * chip operation with NAND controller operations.
803 * Once a match between a NAND controller operation pattern and a NAND chip
804 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
805 * hook is called so that the controller driver can issue the operation on the
806 * bus.
808 * Controller drivers should declare as many patterns as they support and pass
809 * this list of patterns (created with the help of the following macro) to
810 * the nand_op_parser_exec_op() helper.
812 struct nand_op_parser_pattern {
813 const struct nand_op_parser_pattern_elem *elems;
814 unsigned int nelems;
815 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
818 #define NAND_OP_PARSER_PATTERN(_exec, ...) \
820 .exec = _exec, \
821 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \
822 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \
823 sizeof(struct nand_op_parser_pattern_elem), \
827 * struct nand_op_parser - NAND controller operation parser descriptor
828 * @patterns: array of supported patterns
829 * @npatterns: length of the @patterns array
831 * The parser descriptor is just an array of supported patterns which will be
832 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
833 * NAND operation (or tries to determine if a specific operation is supported).
835 * It is worth mentioning that patterns will be tested in their declaration
836 * order, and the first match will be taken, so it's important to order patterns
837 * appropriately so that simple/inefficient patterns are placed at the end of
838 * the list. Usually, this is where you put single instruction patterns.
840 struct nand_op_parser {
841 const struct nand_op_parser_pattern *patterns;
842 unsigned int npatterns;
845 #define NAND_OP_PARSER(...) \
847 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \
848 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \
849 sizeof(struct nand_op_parser_pattern), \
853 * struct nand_operation - NAND operation descriptor
854 * @cs: the CS line to select for this NAND operation
855 * @instrs: array of instructions to execute
856 * @ninstrs: length of the @instrs array
858 * The actual operation structure that will be passed to chip->exec_op().
860 struct nand_operation {
861 unsigned int cs;
862 const struct nand_op_instr *instrs;
863 unsigned int ninstrs;
866 #define NAND_OPERATION(_cs, _instrs) \
868 .cs = _cs, \
869 .instrs = _instrs, \
870 .ninstrs = ARRAY_SIZE(_instrs), \
873 int nand_op_parser_exec_op(struct nand_chip *chip,
874 const struct nand_op_parser *parser,
875 const struct nand_operation *op, bool check_only);
877 static inline void nand_op_trace(const char *prefix,
878 const struct nand_op_instr *instr)
880 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
881 switch (instr->type) {
882 case NAND_OP_CMD_INSTR:
883 pr_debug("%sCMD [0x%02x]\n", prefix,
884 instr->ctx.cmd.opcode);
885 break;
886 case NAND_OP_ADDR_INSTR:
887 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
888 instr->ctx.addr.naddrs,
889 instr->ctx.addr.naddrs < 64 ?
890 instr->ctx.addr.naddrs : 64,
891 instr->ctx.addr.addrs);
892 break;
893 case NAND_OP_DATA_IN_INSTR:
894 pr_debug("%sDATA_IN [%d B%s]\n", prefix,
895 instr->ctx.data.len,
896 instr->ctx.data.force_8bit ?
897 ", force 8-bit" : "");
898 break;
899 case NAND_OP_DATA_OUT_INSTR:
900 pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
901 instr->ctx.data.len,
902 instr->ctx.data.force_8bit ?
903 ", force 8-bit" : "");
904 break;
905 case NAND_OP_WAITRDY_INSTR:
906 pr_debug("%sWAITRDY [max %d ms]\n", prefix,
907 instr->ctx.waitrdy.timeout_ms);
908 break;
910 #endif
914 * struct nand_controller_ops - Controller operations
916 * @attach_chip: this method is called after the NAND detection phase after
917 * flash ID and MTD fields such as erase size, page size and OOB
918 * size have been set up. ECC requirements are available if
919 * provided by the NAND chip or device tree. Typically used to
920 * choose the appropriate ECC configuration and allocate
921 * associated resources.
922 * This hook is optional.
923 * @detach_chip: free all resources allocated/claimed in
924 * nand_controller_ops->attach_chip().
925 * This hook is optional.
926 * @exec_op: controller specific method to execute NAND operations.
927 * This method replaces chip->legacy.cmdfunc(),
928 * chip->legacy.{read,write}_{buf,byte,word}(),
929 * chip->legacy.dev_ready() and chip->legacy.waifunc().
930 * @setup_data_interface: setup the data interface and timing. If
931 * chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
932 * means the configuration should not be applied but
933 * only checked.
934 * This hook is optional.
936 struct nand_controller_ops {
937 int (*attach_chip)(struct nand_chip *chip);
938 void (*detach_chip)(struct nand_chip *chip);
939 int (*exec_op)(struct nand_chip *chip,
940 const struct nand_operation *op,
941 bool check_only);
942 int (*setup_data_interface)(struct nand_chip *chip, int chipnr,
943 const struct nand_data_interface *conf);
947 * struct nand_controller - Structure used to describe a NAND controller
949 * @lock: lock used to serialize accesses to the NAND controller
950 * @ops: NAND controller operations.
952 struct nand_controller {
953 struct mutex lock;
954 const struct nand_controller_ops *ops;
957 static inline void nand_controller_init(struct nand_controller *nfc)
959 mutex_init(&nfc->lock);
963 * struct nand_legacy - NAND chip legacy fields/hooks
964 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
965 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
966 * @select_chip: select/deselect a specific target/die
967 * @read_byte: read one byte from the chip
968 * @write_byte: write a single byte to the chip on the low 8 I/O lines
969 * @write_buf: write data from the buffer to the chip
970 * @read_buf: read data from the chip into the buffer
971 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
972 * to write command and address
973 * @cmdfunc: hardware specific function for writing commands to the chip.
974 * @dev_ready: hardware specific function for accessing device ready/busy line.
975 * If set to NULL no access to ready/busy is available and the
976 * ready/busy information is read from the chip status register.
977 * @waitfunc: hardware specific function for wait on ready.
978 * @block_bad: check if a block is bad, using OOB markers
979 * @block_markbad: mark a block bad
980 * @set_features: set the NAND chip features
981 * @get_features: get the NAND chip features
982 * @chip_delay: chip dependent delay for transferring data from array to read
983 * regs (tR).
984 * @dummy_controller: dummy controller implementation for drivers that can
985 * only control a single chip
987 * If you look at this structure you're already wrong. These fields/hooks are
988 * all deprecated.
990 struct nand_legacy {
991 void __iomem *IO_ADDR_R;
992 void __iomem *IO_ADDR_W;
993 void (*select_chip)(struct nand_chip *chip, int cs);
994 u8 (*read_byte)(struct nand_chip *chip);
995 void (*write_byte)(struct nand_chip *chip, u8 byte);
996 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
997 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
998 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
999 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1000 int page_addr);
1001 int (*dev_ready)(struct nand_chip *chip);
1002 int (*waitfunc)(struct nand_chip *chip);
1003 int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1004 int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1005 int (*set_features)(struct nand_chip *chip, int feature_addr,
1006 u8 *subfeature_para);
1007 int (*get_features)(struct nand_chip *chip, int feature_addr,
1008 u8 *subfeature_para);
1009 int chip_delay;
1010 struct nand_controller dummy_controller;
1014 * struct nand_chip - NAND Private Flash Chip Data
1015 * @base: Inherit from the generic NAND device
1016 * @legacy: All legacy fields/hooks. If you develop a new driver,
1017 * don't even try to use any of these fields/hooks, and if
1018 * you're modifying an existing driver that is using those
1019 * fields/hooks, you should consider reworking the driver
1020 * avoid using them.
1021 * @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for
1022 * setting the read-retry mode. Mostly needed for MLC NAND.
1023 * @ecc: [BOARDSPECIFIC] ECC control structure
1024 * @buf_align: minimum buffer alignment required by a platform
1025 * @oob_poi: "poison value buffer," used for laying out OOB data
1026 * before writing
1027 * @page_shift: [INTERN] number of address bits in a page (column
1028 * address bits).
1029 * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock
1030 * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry
1031 * @chip_shift: [INTERN] number of address bits in one chip
1032 * @options: [BOARDSPECIFIC] various chip options. They can partly
1033 * be set to inform nand_scan about special functionality.
1034 * See the defines for further explanation.
1035 * @bbt_options: [INTERN] bad block specific options. All options used
1036 * here must come from bbm.h. By default, these options
1037 * will be copied to the appropriate nand_bbt_descr's.
1038 * @badblockpos: [INTERN] position of the bad block marker in the oob
1039 * area.
1040 * @badblockbits: [INTERN] minimum number of set bits in a good block's
1041 * bad block marker position; i.e., BBM == 11110111b is
1042 * not bad when badblockbits == 7
1043 * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1044 * set to the actually used ONFI mode if the chip is
1045 * ONFI compliant or deduced from the datasheet if
1046 * the NAND chip is not ONFI compliant.
1047 * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1
1048 * @data_buf: [INTERN] buffer for data, size is (page size + oobsize).
1049 * @pagecache: Structure containing page cache related fields
1050 * @pagecache.bitflips: Number of bitflips of the cached page
1051 * @pagecache.page: Page number currently in the cache. -1 means no page is
1052 * currently cached
1053 * @subpagesize: [INTERN] holds the subpagesize
1054 * @id: [INTERN] holds NAND ID
1055 * @parameters: [INTERN] holds generic parameters under an easily
1056 * readable form.
1057 * @data_interface: [INTERN] NAND interface timing information
1058 * @cur_cs: currently selected target. -1 means no target selected,
1059 * otherwise we should always have cur_cs >= 0 &&
1060 * cur_cs < nanddev_ntargets(). NAND Controller drivers
1061 * should not modify this value, but they're allowed to
1062 * read it.
1063 * @read_retries: [INTERN] the number of read retry modes supported
1064 * @lock: lock protecting the suspended field. Also used to
1065 * serialize accesses to the NAND device.
1066 * @suspended: set to 1 when the device is suspended, 0 when it's not.
1067 * @bbt: [INTERN] bad block table pointer
1068 * @bbt_td: [REPLACEABLE] bad block table descriptor for flash
1069 * lookup.
1070 * @bbt_md: [REPLACEABLE] bad block table mirror descriptor
1071 * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial
1072 * bad block scan.
1073 * @controller: [REPLACEABLE] a pointer to a hardware controller
1074 * structure which is shared among multiple independent
1075 * devices.
1076 * @priv: [OPTIONAL] pointer to private chip data
1077 * @manufacturer: [INTERN] Contains manufacturer information
1078 * @manufacturer.desc: [INTERN] Contains manufacturer's description
1079 * @manufacturer.priv: [INTERN] Contains manufacturer private information
1082 struct nand_chip {
1083 struct nand_device base;
1085 struct nand_legacy legacy;
1087 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1089 unsigned int options;
1090 unsigned int bbt_options;
1092 int page_shift;
1093 int phys_erase_shift;
1094 int bbt_erase_shift;
1095 int chip_shift;
1096 int pagemask;
1097 u8 *data_buf;
1099 struct {
1100 unsigned int bitflips;
1101 int page;
1102 } pagecache;
1104 int subpagesize;
1105 int onfi_timing_mode_default;
1106 unsigned int badblockpos;
1107 int badblockbits;
1109 struct nand_id id;
1110 struct nand_parameters parameters;
1112 struct nand_data_interface data_interface;
1114 int cur_cs;
1116 int read_retries;
1118 struct mutex lock;
1119 unsigned int suspended : 1;
1121 uint8_t *oob_poi;
1122 struct nand_controller *controller;
1124 struct nand_ecc_ctrl ecc;
1125 unsigned long buf_align;
1127 uint8_t *bbt;
1128 struct nand_bbt_descr *bbt_td;
1129 struct nand_bbt_descr *bbt_md;
1131 struct nand_bbt_descr *badblock_pattern;
1133 void *priv;
1135 struct {
1136 const struct nand_manufacturer *desc;
1137 void *priv;
1138 } manufacturer;
1141 extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1142 extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1144 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1146 return container_of(mtd, struct nand_chip, base.mtd);
1149 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1151 return &chip->base.mtd;
1154 static inline void *nand_get_controller_data(struct nand_chip *chip)
1156 return chip->priv;
1159 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1161 chip->priv = priv;
1164 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1165 void *priv)
1167 chip->manufacturer.priv = priv;
1170 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1172 return chip->manufacturer.priv;
1175 static inline void nand_set_flash_node(struct nand_chip *chip,
1176 struct device_node *np)
1178 mtd_set_of_node(nand_to_mtd(chip), np);
1181 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1183 return mtd_get_of_node(nand_to_mtd(chip));
1187 * A helper for defining older NAND chips where the second ID byte fully
1188 * defined the chip, including the geometry (chip size, eraseblock size, page
1189 * size). All these chips have 512 bytes NAND page size.
1191 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \
1192 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1193 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1196 * A helper for defining newer chips which report their page size and
1197 * eraseblock size via the extended ID bytes.
1199 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1200 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1201 * device ID now only represented a particular total chip size (and voltage,
1202 * buswidth), and the page size, eraseblock size, and OOB size could vary while
1203 * using the same device ID.
1205 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \
1206 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1207 .options = (opts) }
1209 #define NAND_ECC_INFO(_strength, _step) \
1210 { .strength_ds = (_strength), .step_ds = (_step) }
1211 #define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds)
1212 #define NAND_ECC_STEP(type) ((type)->ecc.step_ds)
1215 * struct nand_flash_dev - NAND Flash Device ID Structure
1216 * @name: a human-readable name of the NAND chip
1217 * @dev_id: the device ID (the second byte of the full chip ID array)
1218 * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
1219 * memory address as ``id[0]``)
1220 * @dev_id: device ID part of the full chip ID array (refers the same memory
1221 * address as ``id[1]``)
1222 * @id: full device ID array
1223 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1224 * well as the eraseblock size) is determined from the extended NAND
1225 * chip ID array)
1226 * @chipsize: total chip size in MiB
1227 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1228 * @options: stores various chip bit options
1229 * @id_len: The valid length of the @id.
1230 * @oobsize: OOB size
1231 * @ecc: ECC correctability and step information from the datasheet.
1232 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1233 * @ecc_strength_ds in nand_chip{}.
1234 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1235 * @ecc_step_ds in nand_chip{}, also from the datasheet.
1236 * For example, the "4bit ECC for each 512Byte" can be set with
1237 * NAND_ECC_INFO(4, 512).
1238 * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
1239 * reset. Should be deduced from timings described
1240 * in the datasheet.
1243 struct nand_flash_dev {
1244 char *name;
1245 union {
1246 struct {
1247 uint8_t mfr_id;
1248 uint8_t dev_id;
1250 uint8_t id[NAND_MAX_ID_LEN];
1252 unsigned int pagesize;
1253 unsigned int chipsize;
1254 unsigned int erasesize;
1255 unsigned int options;
1256 uint16_t id_len;
1257 uint16_t oobsize;
1258 struct {
1259 uint16_t strength_ds;
1260 uint16_t step_ds;
1261 } ecc;
1262 int onfi_timing_mode_default;
1265 int nand_create_bbt(struct nand_chip *chip);
1268 * Check if it is a SLC nand.
1269 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1270 * We do not distinguish the MLC and TLC now.
1272 static inline bool nand_is_slc(struct nand_chip *chip)
1274 WARN(nanddev_bits_per_cell(&chip->base) == 0,
1275 "chip->bits_per_cell is used uninitialized\n");
1276 return nanddev_bits_per_cell(&chip->base) == 1;
1280 * Check if the opcode's address should be sent only on the lower 8 bits
1281 * @command: opcode to check
1283 static inline int nand_opcode_8bits(unsigned int command)
1285 switch (command) {
1286 case NAND_CMD_READID:
1287 case NAND_CMD_PARAM:
1288 case NAND_CMD_GET_FEATURES:
1289 case NAND_CMD_SET_FEATURES:
1290 return 1;
1291 default:
1292 break;
1294 return 0;
1297 int nand_check_erased_ecc_chunk(void *data, int datalen,
1298 void *ecc, int ecclen,
1299 void *extraoob, int extraooblen,
1300 int threshold);
1302 int nand_ecc_choose_conf(struct nand_chip *chip,
1303 const struct nand_ecc_caps *caps, int oobavail);
1305 /* Default write_oob implementation */
1306 int nand_write_oob_std(struct nand_chip *chip, int page);
1308 /* Default read_oob implementation */
1309 int nand_read_oob_std(struct nand_chip *chip, int page);
1311 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1312 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1313 u8 *subfeature_param);
1315 /* Default read_page_raw implementation */
1316 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1317 int page);
1319 /* Default write_page_raw implementation */
1320 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1321 int oob_required, int page);
1323 /* Reset and initialize a NAND device */
1324 int nand_reset(struct nand_chip *chip, int chipnr);
1326 /* NAND operation helpers */
1327 int nand_reset_op(struct nand_chip *chip);
1328 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1329 unsigned int len);
1330 int nand_status_op(struct nand_chip *chip, u8 *status);
1331 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1332 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1333 unsigned int offset_in_page, void *buf, unsigned int len);
1334 int nand_change_read_column_op(struct nand_chip *chip,
1335 unsigned int offset_in_page, void *buf,
1336 unsigned int len, bool force_8bit);
1337 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1338 unsigned int offset_in_page, void *buf, unsigned int len);
1339 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1340 unsigned int offset_in_page, const void *buf,
1341 unsigned int len);
1342 int nand_prog_page_end_op(struct nand_chip *chip);
1343 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1344 unsigned int offset_in_page, const void *buf,
1345 unsigned int len);
1346 int nand_change_write_column_op(struct nand_chip *chip,
1347 unsigned int offset_in_page, const void *buf,
1348 unsigned int len, bool force_8bit);
1349 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1350 bool force_8bit);
1351 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1352 unsigned int len, bool force_8bit);
1354 /* Scan and identify a NAND device */
1355 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1356 struct nand_flash_dev *ids);
1358 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1360 return nand_scan_with_ids(chip, max_chips, NULL);
1363 /* Internal helper for board drivers which need to override command function */
1364 void nand_wait_ready(struct nand_chip *chip);
1367 * Free resources held by the NAND device, must be called on error after a
1368 * sucessful nand_scan().
1370 void nand_cleanup(struct nand_chip *chip);
1371 /* Unregister the MTD device and calls nand_cleanup() */
1372 void nand_release(struct nand_chip *chip);
1375 * External helper for controller drivers that have to implement the WAITRDY
1376 * instruction and have no physical pin to check it.
1378 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1379 struct gpio_desc;
1380 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1381 unsigned long timeout_ms);
1383 /* Select/deselect a NAND target. */
1384 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1385 void nand_deselect_target(struct nand_chip *chip);
1388 * nand_get_data_buf() - Get the internal page buffer
1389 * @chip: NAND chip object
1391 * Returns the pre-allocated page buffer after invalidating the cache. This
1392 * function should be used by drivers that do not want to allocate their own
1393 * bounce buffer and still need such a buffer for specific operations (most
1394 * commonly when reading OOB data only).
1396 * Be careful to never call this function in the write/write_oob path, because
1397 * the core may have placed the data to be written out in this buffer.
1399 * Return: pointer to the page cache buffer
1401 static inline void *nand_get_data_buf(struct nand_chip *chip)
1403 chip->pagecache.page = -1;
1405 return chip->data_buf;
1408 #endif /* __LINUX_MTD_RAWNAND_H */