1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/rculist.h>
6 #include <linux/wait.h>
7 #include <linux/refcount.h>
21 * A struct pid is the kernel's internal notion of a process identifier.
22 * It refers to individual tasks, process groups, and sessions. While
23 * there are processes attached to it the struct pid lives in a hash
24 * table, so it and then the processes that it refers to can be found
25 * quickly from the numeric pid value. The attached processes may be
26 * quickly accessed by following pointers from struct pid.
28 * Storing pid_t values in the kernel and referring to them later has a
29 * problem. The process originally with that pid may have exited and the
30 * pid allocator wrapped, and another process could have come along
31 * and been assigned that pid.
33 * Referring to user space processes by holding a reference to struct
34 * task_struct has a problem. When the user space process exits
35 * the now useless task_struct is still kept. A task_struct plus a
36 * stack consumes around 10K of low kernel memory. More precisely
37 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
38 * a struct pid is about 64 bytes.
40 * Holding a reference to struct pid solves both of these problems.
41 * It is small so holding a reference does not consume a lot of
42 * resources, and since a new struct pid is allocated when the numeric pid
43 * value is reused (when pids wrap around) we don't mistakenly refer to new
49 * struct upid is used to get the id of the struct pid, as it is
50 * seen in particular namespace. Later the struct pid is found with
51 * find_pid_ns() using the int nr and struct pid_namespace *ns.
56 struct pid_namespace
*ns
;
63 /* lists of tasks that use this pid */
64 struct hlist_head tasks
[PIDTYPE_MAX
];
65 /* wait queue for pidfd notifications */
66 wait_queue_head_t wait_pidfd
;
68 struct upid numbers
[1];
71 extern struct pid init_struct_pid
;
73 extern const struct file_operations pidfd_fops
;
77 extern struct pid
*pidfd_pid(const struct file
*file
);
79 static inline struct pid
*get_pid(struct pid
*pid
)
82 refcount_inc(&pid
->count
);
86 extern void put_pid(struct pid
*pid
);
87 extern struct task_struct
*pid_task(struct pid
*pid
, enum pid_type
);
88 static inline bool pid_has_task(struct pid
*pid
, enum pid_type type
)
90 return !hlist_empty(&pid
->tasks
[type
]);
92 extern struct task_struct
*get_pid_task(struct pid
*pid
, enum pid_type
);
94 extern struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
);
97 * these helpers must be called with the tasklist_lock write-held.
99 extern void attach_pid(struct task_struct
*task
, enum pid_type
);
100 extern void detach_pid(struct task_struct
*task
, enum pid_type
);
101 extern void change_pid(struct task_struct
*task
, enum pid_type
,
103 extern void transfer_pid(struct task_struct
*old
, struct task_struct
*new,
106 struct pid_namespace
;
107 extern struct pid_namespace init_pid_ns
;
110 * look up a PID in the hash table. Must be called with the tasklist_lock
111 * or rcu_read_lock() held.
113 * find_pid_ns() finds the pid in the namespace specified
114 * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
116 * see also find_task_by_vpid() set in include/linux/sched.h
118 extern struct pid
*find_pid_ns(int nr
, struct pid_namespace
*ns
);
119 extern struct pid
*find_vpid(int nr
);
122 * Lookup a PID in the hash table, and return with it's count elevated.
124 extern struct pid
*find_get_pid(int nr
);
125 extern struct pid
*find_ge_pid(int nr
, struct pid_namespace
*);
127 extern struct pid
*alloc_pid(struct pid_namespace
*ns
, pid_t
*set_tid
,
128 size_t set_tid_size
);
129 extern void free_pid(struct pid
*pid
);
130 extern void disable_pid_allocation(struct pid_namespace
*ns
);
133 * ns_of_pid() returns the pid namespace in which the specified pid was
137 * ns_of_pid() is expected to be called for a process (task) that has
138 * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
139 * is expected to be non-NULL. If @pid is NULL, caller should handle
140 * the resulting NULL pid-ns.
142 static inline struct pid_namespace
*ns_of_pid(struct pid
*pid
)
144 struct pid_namespace
*ns
= NULL
;
146 ns
= pid
->numbers
[pid
->level
].ns
;
151 * is_child_reaper returns true if the pid is the init process
152 * of the current namespace. As this one could be checked before
153 * pid_ns->child_reaper is assigned in copy_process, we check
154 * with the pid number.
156 static inline bool is_child_reaper(struct pid
*pid
)
158 return pid
->numbers
[pid
->level
].nr
== 1;
162 * the helpers to get the pid's id seen from different namespaces
164 * pid_nr() : global id, i.e. the id seen from the init namespace;
165 * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
167 * pid_nr_ns() : id seen from the ns specified.
169 * see also task_xid_nr() etc in include/linux/sched.h
172 static inline pid_t
pid_nr(struct pid
*pid
)
176 nr
= pid
->numbers
[0].nr
;
180 pid_t
pid_nr_ns(struct pid
*pid
, struct pid_namespace
*ns
);
181 pid_t
pid_vnr(struct pid
*pid
);
183 #define do_each_pid_task(pid, type, task) \
186 hlist_for_each_entry_rcu((task), \
187 &(pid)->tasks[type], pid_links[type]) {
190 * Both old and new leaders may be attached to
191 * the same pid in the middle of de_thread().
193 #define while_each_pid_task(pid, type, task) \
194 if (type == PIDTYPE_PID) \
199 #define do_each_pid_thread(pid, type, task) \
200 do_each_pid_task(pid, type, task) { \
201 struct task_struct *tg___ = task; \
202 for_each_thread(tg___, task) {
204 #define while_each_pid_thread(pid, type, task) \
207 } while_each_pid_task(pid, type, task)
208 #endif /* _LINUX_PID_H */