1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
8 * RCU-protected list version
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
14 * Why is there no list_empty_rcu()? Because list_empty() serves this
15 * purpose. The list_empty() function fetches the RCU-protected pointer
16 * and compares it to the address of the list head, but neither dereferences
17 * this pointer itself nor provides this pointer to the caller. Therefore,
18 * it is not necessary to use rcu_dereference(), so that list_empty() can
19 * be used anywhere you would want to use a list_empty_rcu().
23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
24 * @list: list to be initialized
26 * You should instead use INIT_LIST_HEAD() for normal initialization and
27 * cleanup tasks, when readers have no access to the list being initialized.
28 * However, if the list being initialized is visible to readers, you
29 * need to keep the compiler from being too mischievous.
31 static inline void INIT_LIST_HEAD_RCU(struct list_head
*list
)
33 WRITE_ONCE(list
->next
, list
);
34 WRITE_ONCE(list
->prev
, list
);
38 * return the ->next pointer of a list_head in an rcu safe
39 * way, we must not access it directly
41 #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next)))
44 * list_tail_rcu - returns the prev pointer of the head of the list
45 * @head: the head of the list
47 * Note: This should only be used with the list header, and even then
48 * only if list_del() and similar primitives are not also used on the
51 #define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev)))
54 * Check during list traversal that we are within an RCU reader
57 #define check_arg_count_one(dummy)
59 #ifdef CONFIG_PROVE_RCU_LIST
60 #define __list_check_rcu(dummy, cond, extra...) \
62 check_arg_count_one(extra); \
63 RCU_LOCKDEP_WARN(!cond && !rcu_read_lock_any_held(), \
64 "RCU-list traversed in non-reader section!"); \
67 #define __list_check_rcu(dummy, cond, extra...) \
68 ({ check_arg_count_one(extra); })
72 * Insert a new entry between two known consecutive entries.
74 * This is only for internal list manipulation where we know
75 * the prev/next entries already!
77 static inline void __list_add_rcu(struct list_head
*new,
78 struct list_head
*prev
, struct list_head
*next
)
80 if (!__list_add_valid(new, prev
, next
))
85 rcu_assign_pointer(list_next_rcu(prev
), new);
90 * list_add_rcu - add a new entry to rcu-protected list
91 * @new: new entry to be added
92 * @head: list head to add it after
94 * Insert a new entry after the specified head.
95 * This is good for implementing stacks.
97 * The caller must take whatever precautions are necessary
98 * (such as holding appropriate locks) to avoid racing
99 * with another list-mutation primitive, such as list_add_rcu()
100 * or list_del_rcu(), running on this same list.
101 * However, it is perfectly legal to run concurrently with
102 * the _rcu list-traversal primitives, such as
103 * list_for_each_entry_rcu().
105 static inline void list_add_rcu(struct list_head
*new, struct list_head
*head
)
107 __list_add_rcu(new, head
, head
->next
);
111 * list_add_tail_rcu - add a new entry to rcu-protected list
112 * @new: new entry to be added
113 * @head: list head to add it before
115 * Insert a new entry before the specified head.
116 * This is useful for implementing queues.
118 * The caller must take whatever precautions are necessary
119 * (such as holding appropriate locks) to avoid racing
120 * with another list-mutation primitive, such as list_add_tail_rcu()
121 * or list_del_rcu(), running on this same list.
122 * However, it is perfectly legal to run concurrently with
123 * the _rcu list-traversal primitives, such as
124 * list_for_each_entry_rcu().
126 static inline void list_add_tail_rcu(struct list_head
*new,
127 struct list_head
*head
)
129 __list_add_rcu(new, head
->prev
, head
);
133 * list_del_rcu - deletes entry from list without re-initialization
134 * @entry: the element to delete from the list.
136 * Note: list_empty() on entry does not return true after this,
137 * the entry is in an undefined state. It is useful for RCU based
138 * lockfree traversal.
140 * In particular, it means that we can not poison the forward
141 * pointers that may still be used for walking the list.
143 * The caller must take whatever precautions are necessary
144 * (such as holding appropriate locks) to avoid racing
145 * with another list-mutation primitive, such as list_del_rcu()
146 * or list_add_rcu(), running on this same list.
147 * However, it is perfectly legal to run concurrently with
148 * the _rcu list-traversal primitives, such as
149 * list_for_each_entry_rcu().
151 * Note that the caller is not permitted to immediately free
152 * the newly deleted entry. Instead, either synchronize_rcu()
153 * or call_rcu() must be used to defer freeing until an RCU
154 * grace period has elapsed.
156 static inline void list_del_rcu(struct list_head
*entry
)
158 __list_del_entry(entry
);
159 entry
->prev
= LIST_POISON2
;
163 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
164 * @n: the element to delete from the hash list.
166 * Note: list_unhashed() on the node return true after this. It is
167 * useful for RCU based read lockfree traversal if the writer side
168 * must know if the list entry is still hashed or already unhashed.
170 * In particular, it means that we can not poison the forward pointers
171 * that may still be used for walking the hash list and we can only
172 * zero the pprev pointer so list_unhashed() will return true after
175 * The caller must take whatever precautions are necessary (such as
176 * holding appropriate locks) to avoid racing with another
177 * list-mutation primitive, such as hlist_add_head_rcu() or
178 * hlist_del_rcu(), running on this same list. However, it is
179 * perfectly legal to run concurrently with the _rcu list-traversal
180 * primitives, such as hlist_for_each_entry_rcu().
182 static inline void hlist_del_init_rcu(struct hlist_node
*n
)
184 if (!hlist_unhashed(n
)) {
186 WRITE_ONCE(n
->pprev
, NULL
);
191 * list_replace_rcu - replace old entry by new one
192 * @old : the element to be replaced
193 * @new : the new element to insert
195 * The @old entry will be replaced with the @new entry atomically.
196 * Note: @old should not be empty.
198 static inline void list_replace_rcu(struct list_head
*old
,
199 struct list_head
*new)
201 new->next
= old
->next
;
202 new->prev
= old
->prev
;
203 rcu_assign_pointer(list_next_rcu(new->prev
), new);
204 new->next
->prev
= new;
205 old
->prev
= LIST_POISON2
;
209 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
210 * @list: the RCU-protected list to splice
211 * @prev: points to the last element of the existing list
212 * @next: points to the first element of the existing list
213 * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
215 * The list pointed to by @prev and @next can be RCU-read traversed
216 * concurrently with this function.
218 * Note that this function blocks.
220 * Important note: the caller must take whatever action is necessary to prevent
221 * any other updates to the existing list. In principle, it is possible to
222 * modify the list as soon as sync() begins execution. If this sort of thing
223 * becomes necessary, an alternative version based on call_rcu() could be
224 * created. But only if -really- needed -- there is no shortage of RCU API
227 static inline void __list_splice_init_rcu(struct list_head
*list
,
228 struct list_head
*prev
,
229 struct list_head
*next
,
232 struct list_head
*first
= list
->next
;
233 struct list_head
*last
= list
->prev
;
236 * "first" and "last" tracking list, so initialize it. RCU readers
237 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
238 * instead of INIT_LIST_HEAD().
241 INIT_LIST_HEAD_RCU(list
);
244 * At this point, the list body still points to the source list.
245 * Wait for any readers to finish using the list before splicing
246 * the list body into the new list. Any new readers will see
253 * Readers are finished with the source list, so perform splice.
254 * The order is important if the new list is global and accessible
255 * to concurrent RCU readers. Note that RCU readers are not
256 * permitted to traverse the prev pointers without excluding
261 rcu_assign_pointer(list_next_rcu(prev
), first
);
267 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
268 * designed for stacks.
269 * @list: the RCU-protected list to splice
270 * @head: the place in the existing list to splice the first list into
271 * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
273 static inline void list_splice_init_rcu(struct list_head
*list
,
274 struct list_head
*head
,
277 if (!list_empty(list
))
278 __list_splice_init_rcu(list
, head
, head
->next
, sync
);
282 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
283 * list, designed for queues.
284 * @list: the RCU-protected list to splice
285 * @head: the place in the existing list to splice the first list into
286 * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
288 static inline void list_splice_tail_init_rcu(struct list_head
*list
,
289 struct list_head
*head
,
292 if (!list_empty(list
))
293 __list_splice_init_rcu(list
, head
->prev
, head
, sync
);
297 * list_entry_rcu - get the struct for this entry
298 * @ptr: the &struct list_head pointer.
299 * @type: the type of the struct this is embedded in.
300 * @member: the name of the list_head within the struct.
302 * This primitive may safely run concurrently with the _rcu list-mutation
303 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
305 #define list_entry_rcu(ptr, type, member) \
306 container_of(READ_ONCE(ptr), type, member)
309 * Where are list_empty_rcu() and list_first_entry_rcu()?
311 * Implementing those functions following their counterparts list_empty() and
312 * list_first_entry() is not advisable because they lead to subtle race
313 * conditions as the following snippet shows:
315 * if (!list_empty_rcu(mylist)) {
316 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
320 * The list may not be empty when list_empty_rcu checks it, but it may be when
321 * list_first_entry_rcu rereads the ->next pointer.
323 * Rereading the ->next pointer is not a problem for list_empty() and
324 * list_first_entry() because they would be protected by a lock that blocks
327 * See list_first_or_null_rcu for an alternative.
331 * list_first_or_null_rcu - get the first element from a list
332 * @ptr: the list head to take the element from.
333 * @type: the type of the struct this is embedded in.
334 * @member: the name of the list_head within the struct.
336 * Note that if the list is empty, it returns NULL.
338 * This primitive may safely run concurrently with the _rcu list-mutation
339 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
341 #define list_first_or_null_rcu(ptr, type, member) \
343 struct list_head *__ptr = (ptr); \
344 struct list_head *__next = READ_ONCE(__ptr->next); \
345 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
349 * list_next_or_null_rcu - get the first element from a list
350 * @head: the head for the list.
351 * @ptr: the list head to take the next element from.
352 * @type: the type of the struct this is embedded in.
353 * @member: the name of the list_head within the struct.
355 * Note that if the ptr is at the end of the list, NULL is returned.
357 * This primitive may safely run concurrently with the _rcu list-mutation
358 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
360 #define list_next_or_null_rcu(head, ptr, type, member) \
362 struct list_head *__head = (head); \
363 struct list_head *__ptr = (ptr); \
364 struct list_head *__next = READ_ONCE(__ptr->next); \
365 likely(__next != __head) ? list_entry_rcu(__next, type, \
370 * list_for_each_entry_rcu - iterate over rcu list of given type
371 * @pos: the type * to use as a loop cursor.
372 * @head: the head for your list.
373 * @member: the name of the list_head within the struct.
374 * @cond...: optional lockdep expression if called from non-RCU protection.
376 * This list-traversal primitive may safely run concurrently with
377 * the _rcu list-mutation primitives such as list_add_rcu()
378 * as long as the traversal is guarded by rcu_read_lock().
380 #define list_for_each_entry_rcu(pos, head, member, cond...) \
381 for (__list_check_rcu(dummy, ## cond, 0), \
382 pos = list_entry_rcu((head)->next, typeof(*pos), member); \
383 &pos->member != (head); \
384 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
387 * list_entry_lockless - get the struct for this entry
388 * @ptr: the &struct list_head pointer.
389 * @type: the type of the struct this is embedded in.
390 * @member: the name of the list_head within the struct.
392 * This primitive may safely run concurrently with the _rcu
393 * list-mutation primitives such as list_add_rcu(), but requires some
394 * implicit RCU read-side guarding. One example is running within a special
395 * exception-time environment where preemption is disabled and where lockdep
396 * cannot be invoked. Another example is when items are added to the list,
399 #define list_entry_lockless(ptr, type, member) \
400 container_of((typeof(ptr))READ_ONCE(ptr), type, member)
403 * list_for_each_entry_lockless - iterate over rcu list of given type
404 * @pos: the type * to use as a loop cursor.
405 * @head: the head for your list.
406 * @member: the name of the list_struct within the struct.
408 * This primitive may safely run concurrently with the _rcu
409 * list-mutation primitives such as list_add_rcu(), but requires some
410 * implicit RCU read-side guarding. One example is running within a special
411 * exception-time environment where preemption is disabled and where lockdep
412 * cannot be invoked. Another example is when items are added to the list,
415 #define list_for_each_entry_lockless(pos, head, member) \
416 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
417 &pos->member != (head); \
418 pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
421 * list_for_each_entry_continue_rcu - continue iteration over list of given type
422 * @pos: the type * to use as a loop cursor.
423 * @head: the head for your list.
424 * @member: the name of the list_head within the struct.
426 * Continue to iterate over list of given type, continuing after
427 * the current position which must have been in the list when the RCU read
429 * This would typically require either that you obtained the node from a
430 * previous walk of the list in the same RCU read-side critical section, or
431 * that you held some sort of non-RCU reference (such as a reference count)
432 * to keep the node alive *and* in the list.
434 * This iterator is similar to list_for_each_entry_from_rcu() except
435 * this starts after the given position and that one starts at the given
438 #define list_for_each_entry_continue_rcu(pos, head, member) \
439 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
440 &pos->member != (head); \
441 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
444 * list_for_each_entry_from_rcu - iterate over a list from current point
445 * @pos: the type * to use as a loop cursor.
446 * @head: the head for your list.
447 * @member: the name of the list_node within the struct.
449 * Iterate over the tail of a list starting from a given position,
450 * which must have been in the list when the RCU read lock was taken.
451 * This would typically require either that you obtained the node from a
452 * previous walk of the list in the same RCU read-side critical section, or
453 * that you held some sort of non-RCU reference (such as a reference count)
454 * to keep the node alive *and* in the list.
456 * This iterator is similar to list_for_each_entry_continue_rcu() except
457 * this starts from the given position and that one starts from the position
458 * after the given position.
460 #define list_for_each_entry_from_rcu(pos, head, member) \
461 for (; &(pos)->member != (head); \
462 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
465 * hlist_del_rcu - deletes entry from hash list without re-initialization
466 * @n: the element to delete from the hash list.
468 * Note: list_unhashed() on entry does not return true after this,
469 * the entry is in an undefined state. It is useful for RCU based
470 * lockfree traversal.
472 * In particular, it means that we can not poison the forward
473 * pointers that may still be used for walking the hash list.
475 * The caller must take whatever precautions are necessary
476 * (such as holding appropriate locks) to avoid racing
477 * with another list-mutation primitive, such as hlist_add_head_rcu()
478 * or hlist_del_rcu(), running on this same list.
479 * However, it is perfectly legal to run concurrently with
480 * the _rcu list-traversal primitives, such as
481 * hlist_for_each_entry().
483 static inline void hlist_del_rcu(struct hlist_node
*n
)
486 WRITE_ONCE(n
->pprev
, LIST_POISON2
);
490 * hlist_replace_rcu - replace old entry by new one
491 * @old : the element to be replaced
492 * @new : the new element to insert
494 * The @old entry will be replaced with the @new entry atomically.
496 static inline void hlist_replace_rcu(struct hlist_node
*old
,
497 struct hlist_node
*new)
499 struct hlist_node
*next
= old
->next
;
502 WRITE_ONCE(new->pprev
, old
->pprev
);
503 rcu_assign_pointer(*(struct hlist_node __rcu
**)new->pprev
, new);
505 WRITE_ONCE(new->next
->pprev
, &new->next
);
506 WRITE_ONCE(old
->pprev
, LIST_POISON2
);
510 * return the first or the next element in an RCU protected hlist
512 #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first)))
513 #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next)))
514 #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev)))
518 * @n: the element to add to the hash list.
519 * @h: the list to add to.
522 * Adds the specified element to the specified hlist,
523 * while permitting racing traversals.
525 * The caller must take whatever precautions are necessary
526 * (such as holding appropriate locks) to avoid racing
527 * with another list-mutation primitive, such as hlist_add_head_rcu()
528 * or hlist_del_rcu(), running on this same list.
529 * However, it is perfectly legal to run concurrently with
530 * the _rcu list-traversal primitives, such as
531 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
532 * problems on Alpha CPUs. Regardless of the type of CPU, the
533 * list-traversal primitive must be guarded by rcu_read_lock().
535 static inline void hlist_add_head_rcu(struct hlist_node
*n
,
536 struct hlist_head
*h
)
538 struct hlist_node
*first
= h
->first
;
541 WRITE_ONCE(n
->pprev
, &h
->first
);
542 rcu_assign_pointer(hlist_first_rcu(h
), n
);
544 WRITE_ONCE(first
->pprev
, &n
->next
);
549 * @n: the element to add to the hash list.
550 * @h: the list to add to.
553 * Adds the specified element to the specified hlist,
554 * while permitting racing traversals.
556 * The caller must take whatever precautions are necessary
557 * (such as holding appropriate locks) to avoid racing
558 * with another list-mutation primitive, such as hlist_add_head_rcu()
559 * or hlist_del_rcu(), running on this same list.
560 * However, it is perfectly legal to run concurrently with
561 * the _rcu list-traversal primitives, such as
562 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
563 * problems on Alpha CPUs. Regardless of the type of CPU, the
564 * list-traversal primitive must be guarded by rcu_read_lock().
566 static inline void hlist_add_tail_rcu(struct hlist_node
*n
,
567 struct hlist_head
*h
)
569 struct hlist_node
*i
, *last
= NULL
;
571 /* Note: write side code, so rcu accessors are not needed. */
572 for (i
= h
->first
; i
; i
= i
->next
)
576 n
->next
= last
->next
;
577 WRITE_ONCE(n
->pprev
, &last
->next
);
578 rcu_assign_pointer(hlist_next_rcu(last
), n
);
580 hlist_add_head_rcu(n
, h
);
585 * hlist_add_before_rcu
586 * @n: the new element to add to the hash list.
587 * @next: the existing element to add the new element before.
590 * Adds the specified element to the specified hlist
591 * before the specified node while permitting racing traversals.
593 * The caller must take whatever precautions are necessary
594 * (such as holding appropriate locks) to avoid racing
595 * with another list-mutation primitive, such as hlist_add_head_rcu()
596 * or hlist_del_rcu(), running on this same list.
597 * However, it is perfectly legal to run concurrently with
598 * the _rcu list-traversal primitives, such as
599 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
600 * problems on Alpha CPUs.
602 static inline void hlist_add_before_rcu(struct hlist_node
*n
,
603 struct hlist_node
*next
)
605 WRITE_ONCE(n
->pprev
, next
->pprev
);
607 rcu_assign_pointer(hlist_pprev_rcu(n
), n
);
608 WRITE_ONCE(next
->pprev
, &n
->next
);
612 * hlist_add_behind_rcu
613 * @n: the new element to add to the hash list.
614 * @prev: the existing element to add the new element after.
617 * Adds the specified element to the specified hlist
618 * after the specified node while permitting racing traversals.
620 * The caller must take whatever precautions are necessary
621 * (such as holding appropriate locks) to avoid racing
622 * with another list-mutation primitive, such as hlist_add_head_rcu()
623 * or hlist_del_rcu(), running on this same list.
624 * However, it is perfectly legal to run concurrently with
625 * the _rcu list-traversal primitives, such as
626 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
627 * problems on Alpha CPUs.
629 static inline void hlist_add_behind_rcu(struct hlist_node
*n
,
630 struct hlist_node
*prev
)
632 n
->next
= prev
->next
;
633 WRITE_ONCE(n
->pprev
, &prev
->next
);
634 rcu_assign_pointer(hlist_next_rcu(prev
), n
);
636 WRITE_ONCE(n
->next
->pprev
, &n
->next
);
639 #define __hlist_for_each_rcu(pos, head) \
640 for (pos = rcu_dereference(hlist_first_rcu(head)); \
642 pos = rcu_dereference(hlist_next_rcu(pos)))
645 * hlist_for_each_entry_rcu - iterate over rcu list of given type
646 * @pos: the type * to use as a loop cursor.
647 * @head: the head for your list.
648 * @member: the name of the hlist_node within the struct.
649 * @cond...: optional lockdep expression if called from non-RCU protection.
651 * This list-traversal primitive may safely run concurrently with
652 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
653 * as long as the traversal is guarded by rcu_read_lock().
655 #define hlist_for_each_entry_rcu(pos, head, member, cond...) \
656 for (__list_check_rcu(dummy, ## cond, 0), \
657 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
658 typeof(*(pos)), member); \
660 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
661 &(pos)->member)), typeof(*(pos)), member))
664 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
665 * @pos: the type * to use as a loop cursor.
666 * @head: the head for your list.
667 * @member: the name of the hlist_node within the struct.
669 * This list-traversal primitive may safely run concurrently with
670 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
671 * as long as the traversal is guarded by rcu_read_lock().
673 * This is the same as hlist_for_each_entry_rcu() except that it does
674 * not do any RCU debugging or tracing.
676 #define hlist_for_each_entry_rcu_notrace(pos, head, member) \
677 for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
678 typeof(*(pos)), member); \
680 pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
681 &(pos)->member)), typeof(*(pos)), member))
684 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
685 * @pos: the type * to use as a loop cursor.
686 * @head: the head for your list.
687 * @member: the name of the hlist_node within the struct.
689 * This list-traversal primitive may safely run concurrently with
690 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
691 * as long as the traversal is guarded by rcu_read_lock().
693 #define hlist_for_each_entry_rcu_bh(pos, head, member) \
694 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
695 typeof(*(pos)), member); \
697 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
698 &(pos)->member)), typeof(*(pos)), member))
701 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
702 * @pos: the type * to use as a loop cursor.
703 * @member: the name of the hlist_node within the struct.
705 #define hlist_for_each_entry_continue_rcu(pos, member) \
706 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
707 &(pos)->member)), typeof(*(pos)), member); \
709 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
710 &(pos)->member)), typeof(*(pos)), member))
713 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
714 * @pos: the type * to use as a loop cursor.
715 * @member: the name of the hlist_node within the struct.
717 #define hlist_for_each_entry_continue_rcu_bh(pos, member) \
718 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
719 &(pos)->member)), typeof(*(pos)), member); \
721 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
722 &(pos)->member)), typeof(*(pos)), member))
725 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
726 * @pos: the type * to use as a loop cursor.
727 * @member: the name of the hlist_node within the struct.
729 #define hlist_for_each_entry_from_rcu(pos, member) \
731 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
732 &(pos)->member)), typeof(*(pos)), member))
734 #endif /* __KERNEL__ */