1 // SPDX-License-Identifier: GPL-2.0-only
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
30 #include <linux/netdevice.h> /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34 * will maximum be stored/queued for one driver ->poll() call. It is
35 * guaranteed that queueing the frame and the flush operation happen on
36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37 * which queue in bpf_cpu_map_entry contains packets.
40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry
;
44 struct xdp_bulk_queue
{
45 void *q
[CPU_MAP_BULK_SIZE
];
46 struct list_head flush_node
;
47 struct bpf_cpu_map_entry
*obj
;
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry
{
53 u32 cpu
; /* kthread CPU and map index */
54 int map_id
; /* Back reference to map */
55 u32 qsize
; /* Queue size placeholder for map lookup */
57 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
58 struct xdp_bulk_queue __percpu
*bulkq
;
60 struct bpf_cpu_map
*cmap
;
62 /* Queue with potential multi-producers, and single-consumer kthread */
63 struct ptr_ring
*queue
;
64 struct task_struct
*kthread
;
65 struct work_struct kthread_stop_wq
;
67 atomic_t refcnt
; /* Control when this struct can be free'ed */
73 /* Below members specific for map type */
74 struct bpf_cpu_map_entry
**cpu_map
;
77 static DEFINE_PER_CPU(struct list_head
, cpu_map_flush_list
);
79 static int bq_flush_to_queue(struct xdp_bulk_queue
*bq
);
81 static struct bpf_map
*cpu_map_alloc(union bpf_attr
*attr
)
83 struct bpf_cpu_map
*cmap
;
88 if (!capable(CAP_SYS_ADMIN
))
89 return ERR_PTR(-EPERM
);
91 /* check sanity of attributes */
92 if (attr
->max_entries
== 0 || attr
->key_size
!= 4 ||
93 attr
->value_size
!= 4 || attr
->map_flags
& ~BPF_F_NUMA_NODE
)
94 return ERR_PTR(-EINVAL
);
96 cmap
= kzalloc(sizeof(*cmap
), GFP_USER
);
98 return ERR_PTR(-ENOMEM
);
100 bpf_map_init_from_attr(&cmap
->map
, attr
);
102 /* Pre-limit array size based on NR_CPUS, not final CPU check */
103 if (cmap
->map
.max_entries
> NR_CPUS
) {
108 /* make sure page count doesn't overflow */
109 cost
= (u64
) cmap
->map
.max_entries
* sizeof(struct bpf_cpu_map_entry
*);
111 /* Notice returns -EPERM on if map size is larger than memlock limit */
112 ret
= bpf_map_charge_init(&cmap
->map
.memory
, cost
);
118 /* Alloc array for possible remote "destination" CPUs */
119 cmap
->cpu_map
= bpf_map_area_alloc(cmap
->map
.max_entries
*
120 sizeof(struct bpf_cpu_map_entry
*),
121 cmap
->map
.numa_node
);
127 bpf_map_charge_finish(&cmap
->map
.memory
);
133 static void get_cpu_map_entry(struct bpf_cpu_map_entry
*rcpu
)
135 atomic_inc(&rcpu
->refcnt
);
138 /* called from workqueue, to workaround syscall using preempt_disable */
139 static void cpu_map_kthread_stop(struct work_struct
*work
)
141 struct bpf_cpu_map_entry
*rcpu
;
143 rcpu
= container_of(work
, struct bpf_cpu_map_entry
, kthread_stop_wq
);
145 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
146 * as it waits until all in-flight call_rcu() callbacks complete.
150 /* kthread_stop will wake_up_process and wait for it to complete */
151 kthread_stop(rcpu
->kthread
);
154 static struct sk_buff
*cpu_map_build_skb(struct bpf_cpu_map_entry
*rcpu
,
155 struct xdp_frame
*xdpf
,
158 unsigned int hard_start_headroom
;
159 unsigned int frame_size
;
160 void *pkt_data_start
;
162 /* Part of headroom was reserved to xdpf */
163 hard_start_headroom
= sizeof(struct xdp_frame
) + xdpf
->headroom
;
165 /* build_skb need to place skb_shared_info after SKB end, and
166 * also want to know the memory "truesize". Thus, need to
167 * know the memory frame size backing xdp_buff.
169 * XDP was designed to have PAGE_SIZE frames, but this
170 * assumption is not longer true with ixgbe and i40e. It
171 * would be preferred to set frame_size to 2048 or 4096
172 * depending on the driver.
174 * frame_len = frame_size - sizeof(*xdp_frame);
176 * Instead, with info avail, skb_shared_info in placed after
177 * packet len. This, unfortunately fakes the truesize.
178 * Another disadvantage of this approach, the skb_shared_info
179 * is not at a fixed memory location, with mixed length
180 * packets, which is bad for cache-line hotness.
182 frame_size
= SKB_DATA_ALIGN(xdpf
->len
+ hard_start_headroom
) +
183 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
185 pkt_data_start
= xdpf
->data
- hard_start_headroom
;
186 skb
= build_skb_around(skb
, pkt_data_start
, frame_size
);
190 skb_reserve(skb
, hard_start_headroom
);
191 __skb_put(skb
, xdpf
->len
);
193 skb_metadata_set(skb
, xdpf
->metasize
);
195 /* Essential SKB info: protocol and skb->dev */
196 skb
->protocol
= eth_type_trans(skb
, xdpf
->dev_rx
);
198 /* Optional SKB info, currently missing:
199 * - HW checksum info (skb->ip_summed)
200 * - HW RX hash (skb_set_hash)
201 * - RX ring dev queue index (skb_record_rx_queue)
204 /* Until page_pool get SKB return path, release DMA here */
205 xdp_release_frame(xdpf
);
207 /* Allow SKB to reuse area used by xdp_frame */
208 xdp_scrub_frame(xdpf
);
213 static void __cpu_map_ring_cleanup(struct ptr_ring
*ring
)
215 /* The tear-down procedure should have made sure that queue is
216 * empty. See __cpu_map_entry_replace() and work-queue
217 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
218 * gracefully and warn once.
220 struct xdp_frame
*xdpf
;
222 while ((xdpf
= ptr_ring_consume(ring
)))
223 if (WARN_ON_ONCE(xdpf
))
224 xdp_return_frame(xdpf
);
227 static void put_cpu_map_entry(struct bpf_cpu_map_entry
*rcpu
)
229 if (atomic_dec_and_test(&rcpu
->refcnt
)) {
230 /* The queue should be empty at this point */
231 __cpu_map_ring_cleanup(rcpu
->queue
);
232 ptr_ring_cleanup(rcpu
->queue
, NULL
);
238 #define CPUMAP_BATCH 8
240 static int cpu_map_kthread_run(void *data
)
242 struct bpf_cpu_map_entry
*rcpu
= data
;
244 set_current_state(TASK_INTERRUPTIBLE
);
246 /* When kthread gives stop order, then rcpu have been disconnected
247 * from map, thus no new packets can enter. Remaining in-flight
248 * per CPU stored packets are flushed to this queue. Wait honoring
249 * kthread_stop signal until queue is empty.
251 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu
->queue
)) {
252 unsigned int drops
= 0, sched
= 0;
253 void *frames
[CPUMAP_BATCH
];
254 void *skbs
[CPUMAP_BATCH
];
255 gfp_t gfp
= __GFP_ZERO
| GFP_ATOMIC
;
258 /* Release CPU reschedule checks */
259 if (__ptr_ring_empty(rcpu
->queue
)) {
260 set_current_state(TASK_INTERRUPTIBLE
);
261 /* Recheck to avoid lost wake-up */
262 if (__ptr_ring_empty(rcpu
->queue
)) {
266 __set_current_state(TASK_RUNNING
);
269 sched
= cond_resched();
273 * The bpf_cpu_map_entry is single consumer, with this
274 * kthread CPU pinned. Lockless access to ptr_ring
275 * consume side valid as no-resize allowed of queue.
277 n
= ptr_ring_consume_batched(rcpu
->queue
, frames
, CPUMAP_BATCH
);
279 for (i
= 0; i
< n
; i
++) {
281 struct page
*page
= virt_to_page(f
);
283 /* Bring struct page memory area to curr CPU. Read by
284 * build_skb_around via page_is_pfmemalloc(), and when
285 * freed written by page_frag_free call.
290 m
= kmem_cache_alloc_bulk(skbuff_head_cache
, gfp
, n
, skbs
);
291 if (unlikely(m
== 0)) {
292 for (i
= 0; i
< n
; i
++)
293 skbs
[i
] = NULL
; /* effect: xdp_return_frame */
298 for (i
= 0; i
< n
; i
++) {
299 struct xdp_frame
*xdpf
= frames
[i
];
300 struct sk_buff
*skb
= skbs
[i
];
303 skb
= cpu_map_build_skb(rcpu
, xdpf
, skb
);
305 xdp_return_frame(xdpf
);
309 /* Inject into network stack */
310 ret
= netif_receive_skb_core(skb
);
311 if (ret
== NET_RX_DROP
)
314 /* Feedback loop via tracepoint */
315 trace_xdp_cpumap_kthread(rcpu
->map_id
, n
, drops
, sched
);
317 local_bh_enable(); /* resched point, may call do_softirq() */
319 __set_current_state(TASK_RUNNING
);
321 put_cpu_map_entry(rcpu
);
325 static struct bpf_cpu_map_entry
*__cpu_map_entry_alloc(u32 qsize
, u32 cpu
,
328 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
329 struct bpf_cpu_map_entry
*rcpu
;
330 struct xdp_bulk_queue
*bq
;
333 /* Have map->numa_node, but choose node of redirect target CPU */
334 numa
= cpu_to_node(cpu
);
336 rcpu
= kzalloc_node(sizeof(*rcpu
), gfp
, numa
);
340 /* Alloc percpu bulkq */
341 rcpu
->bulkq
= __alloc_percpu_gfp(sizeof(*rcpu
->bulkq
),
342 sizeof(void *), gfp
);
346 for_each_possible_cpu(i
) {
347 bq
= per_cpu_ptr(rcpu
->bulkq
, i
);
352 rcpu
->queue
= kzalloc_node(sizeof(*rcpu
->queue
), gfp
, numa
);
356 err
= ptr_ring_init(rcpu
->queue
, qsize
, gfp
);
361 rcpu
->map_id
= map_id
;
365 rcpu
->kthread
= kthread_create_on_node(cpu_map_kthread_run
, rcpu
, numa
,
366 "cpumap/%d/map:%d", cpu
, map_id
);
367 if (IS_ERR(rcpu
->kthread
))
370 get_cpu_map_entry(rcpu
); /* 1-refcnt for being in cmap->cpu_map[] */
371 get_cpu_map_entry(rcpu
); /* 1-refcnt for kthread */
373 /* Make sure kthread runs on a single CPU */
374 kthread_bind(rcpu
->kthread
, cpu
);
375 wake_up_process(rcpu
->kthread
);
380 ptr_ring_cleanup(rcpu
->queue
, NULL
);
384 free_percpu(rcpu
->bulkq
);
390 static void __cpu_map_entry_free(struct rcu_head
*rcu
)
392 struct bpf_cpu_map_entry
*rcpu
;
394 /* This cpu_map_entry have been disconnected from map and one
395 * RCU grace-period have elapsed. Thus, XDP cannot queue any
396 * new packets and cannot change/set flush_needed that can
399 rcpu
= container_of(rcu
, struct bpf_cpu_map_entry
, rcu
);
401 free_percpu(rcpu
->bulkq
);
402 /* Cannot kthread_stop() here, last put free rcpu resources */
403 put_cpu_map_entry(rcpu
);
406 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
407 * ensure any driver rcu critical sections have completed, but this
408 * does not guarantee a flush has happened yet. Because driver side
409 * rcu_read_lock/unlock only protects the running XDP program. The
410 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
411 * pending flush op doesn't fail.
413 * The bpf_cpu_map_entry is still used by the kthread, and there can
414 * still be pending packets (in queue and percpu bulkq). A refcnt
415 * makes sure to last user (kthread_stop vs. call_rcu) free memory
418 * The rcu callback __cpu_map_entry_free flush remaining packets in
419 * percpu bulkq to queue. Due to caller map_delete_elem() disable
420 * preemption, cannot call kthread_stop() to make sure queue is empty.
421 * Instead a work_queue is started for stopping kthread,
422 * cpu_map_kthread_stop, which waits for an RCU grace period before
423 * stopping kthread, emptying the queue.
425 static void __cpu_map_entry_replace(struct bpf_cpu_map
*cmap
,
426 u32 key_cpu
, struct bpf_cpu_map_entry
*rcpu
)
428 struct bpf_cpu_map_entry
*old_rcpu
;
430 old_rcpu
= xchg(&cmap
->cpu_map
[key_cpu
], rcpu
);
432 call_rcu(&old_rcpu
->rcu
, __cpu_map_entry_free
);
433 INIT_WORK(&old_rcpu
->kthread_stop_wq
, cpu_map_kthread_stop
);
434 schedule_work(&old_rcpu
->kthread_stop_wq
);
438 static int cpu_map_delete_elem(struct bpf_map
*map
, void *key
)
440 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
441 u32 key_cpu
= *(u32
*)key
;
443 if (key_cpu
>= map
->max_entries
)
446 /* notice caller map_delete_elem() use preempt_disable() */
447 __cpu_map_entry_replace(cmap
, key_cpu
, NULL
);
451 static int cpu_map_update_elem(struct bpf_map
*map
, void *key
, void *value
,
454 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
455 struct bpf_cpu_map_entry
*rcpu
;
457 /* Array index key correspond to CPU number */
458 u32 key_cpu
= *(u32
*)key
;
459 /* Value is the queue size */
460 u32 qsize
= *(u32
*)value
;
462 if (unlikely(map_flags
> BPF_EXIST
))
464 if (unlikely(key_cpu
>= cmap
->map
.max_entries
))
466 if (unlikely(map_flags
== BPF_NOEXIST
))
468 if (unlikely(qsize
> 16384)) /* sanity limit on qsize */
471 /* Make sure CPU is a valid possible cpu */
472 if (!cpu_possible(key_cpu
))
476 rcpu
= NULL
; /* Same as deleting */
478 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
479 rcpu
= __cpu_map_entry_alloc(qsize
, key_cpu
, map
->id
);
485 __cpu_map_entry_replace(cmap
, key_cpu
, rcpu
);
490 static void cpu_map_free(struct bpf_map
*map
)
492 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
495 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
496 * so the bpf programs (can be more than one that used this map) were
497 * disconnected from events. Wait for outstanding critical sections in
498 * these programs to complete. The rcu critical section only guarantees
499 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
500 * It does __not__ ensure pending flush operations (if any) are
504 bpf_clear_redirect_map(map
);
507 /* For cpu_map the remote CPUs can still be using the entries
508 * (struct bpf_cpu_map_entry).
510 for (i
= 0; i
< cmap
->map
.max_entries
; i
++) {
511 struct bpf_cpu_map_entry
*rcpu
;
513 rcpu
= READ_ONCE(cmap
->cpu_map
[i
]);
517 /* bq flush and cleanup happens after RCU grace-period */
518 __cpu_map_entry_replace(cmap
, i
, NULL
); /* call_rcu */
520 bpf_map_area_free(cmap
->cpu_map
);
524 struct bpf_cpu_map_entry
*__cpu_map_lookup_elem(struct bpf_map
*map
, u32 key
)
526 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
527 struct bpf_cpu_map_entry
*rcpu
;
529 if (key
>= map
->max_entries
)
532 rcpu
= READ_ONCE(cmap
->cpu_map
[key
]);
536 static void *cpu_map_lookup_elem(struct bpf_map
*map
, void *key
)
538 struct bpf_cpu_map_entry
*rcpu
=
539 __cpu_map_lookup_elem(map
, *(u32
*)key
);
541 return rcpu
? &rcpu
->qsize
: NULL
;
544 static int cpu_map_get_next_key(struct bpf_map
*map
, void *key
, void *next_key
)
546 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
547 u32 index
= key
? *(u32
*)key
: U32_MAX
;
548 u32
*next
= next_key
;
550 if (index
>= cmap
->map
.max_entries
) {
555 if (index
== cmap
->map
.max_entries
- 1)
561 const struct bpf_map_ops cpu_map_ops
= {
562 .map_alloc
= cpu_map_alloc
,
563 .map_free
= cpu_map_free
,
564 .map_delete_elem
= cpu_map_delete_elem
,
565 .map_update_elem
= cpu_map_update_elem
,
566 .map_lookup_elem
= cpu_map_lookup_elem
,
567 .map_get_next_key
= cpu_map_get_next_key
,
568 .map_check_btf
= map_check_no_btf
,
571 static int bq_flush_to_queue(struct xdp_bulk_queue
*bq
)
573 struct bpf_cpu_map_entry
*rcpu
= bq
->obj
;
574 unsigned int processed
= 0, drops
= 0;
575 const int to_cpu
= rcpu
->cpu
;
579 if (unlikely(!bq
->count
))
583 spin_lock(&q
->producer_lock
);
585 for (i
= 0; i
< bq
->count
; i
++) {
586 struct xdp_frame
*xdpf
= bq
->q
[i
];
589 err
= __ptr_ring_produce(q
, xdpf
);
592 xdp_return_frame_rx_napi(xdpf
);
597 spin_unlock(&q
->producer_lock
);
599 __list_del_clearprev(&bq
->flush_node
);
601 /* Feedback loop via tracepoints */
602 trace_xdp_cpumap_enqueue(rcpu
->map_id
, processed
, drops
, to_cpu
);
606 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
607 * Thus, safe percpu variable access.
609 static int bq_enqueue(struct bpf_cpu_map_entry
*rcpu
, struct xdp_frame
*xdpf
)
611 struct list_head
*flush_list
= this_cpu_ptr(&cpu_map_flush_list
);
612 struct xdp_bulk_queue
*bq
= this_cpu_ptr(rcpu
->bulkq
);
614 if (unlikely(bq
->count
== CPU_MAP_BULK_SIZE
))
615 bq_flush_to_queue(bq
);
617 /* Notice, xdp_buff/page MUST be queued here, long enough for
618 * driver to code invoking us to finished, due to driver
619 * (e.g. ixgbe) recycle tricks based on page-refcnt.
621 * Thus, incoming xdp_frame is always queued here (else we race
622 * with another CPU on page-refcnt and remaining driver code).
623 * Queue time is very short, as driver will invoke flush
624 * operation, when completing napi->poll call.
626 bq
->q
[bq
->count
++] = xdpf
;
628 if (!bq
->flush_node
.prev
)
629 list_add(&bq
->flush_node
, flush_list
);
634 int cpu_map_enqueue(struct bpf_cpu_map_entry
*rcpu
, struct xdp_buff
*xdp
,
635 struct net_device
*dev_rx
)
637 struct xdp_frame
*xdpf
;
639 xdpf
= convert_to_xdp_frame(xdp
);
643 /* Info needed when constructing SKB on remote CPU */
644 xdpf
->dev_rx
= dev_rx
;
646 bq_enqueue(rcpu
, xdpf
);
650 void __cpu_map_flush(void)
652 struct list_head
*flush_list
= this_cpu_ptr(&cpu_map_flush_list
);
653 struct xdp_bulk_queue
*bq
, *tmp
;
655 list_for_each_entry_safe(bq
, tmp
, flush_list
, flush_node
) {
656 bq_flush_to_queue(bq
);
658 /* If already running, costs spin_lock_irqsave + smb_mb */
659 wake_up_process(bq
->obj
->kthread
);
663 static int __init
cpu_map_init(void)
667 for_each_possible_cpu(cpu
)
668 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list
, cpu
));
672 subsys_initcall(cpu_map_init
);