1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7 * spent some effort to ensure the datapath with redirect maps does not use
8 * any locking. This is a quick note on the details.
10 * We have three possible paths to get into the devmap control plane bpf
11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12 * will invoke an update, delete, or lookup operation. To ensure updates and
13 * deletes appear atomic from the datapath side xchg() is used to modify the
14 * netdev_map array. Then because the datapath does a lookup into the netdev_map
15 * array (read-only) from an RCU critical section we use call_rcu() to wait for
16 * an rcu grace period before free'ing the old data structures. This ensures the
17 * datapath always has a valid copy. However, the datapath does a "flush"
18 * operation that pushes any pending packets in the driver outside the RCU
19 * critical section. Each bpf_dtab_netdev tracks these pending operations using
20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until
21 * this list is empty, indicating outstanding flush operations have completed.
23 * BPF syscalls may race with BPF program calls on any of the update, delete
24 * or lookup operations. As noted above the xchg() operation also keep the
25 * netdev_map consistent in this case. From the devmap side BPF programs
26 * calling into these operations are the same as multiple user space threads
27 * making system calls.
29 * Finally, any of the above may race with a netdev_unregister notifier. The
30 * unregister notifier must search for net devices in the map structure that
31 * contain a reference to the net device and remove them. This is a two step
32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33 * check to see if the ifindex is the same as the net_device being removed.
34 * When removing the dev a cmpxchg() is used to ensure the correct dev is
35 * removed, in the case of a concurrent update or delete operation it is
36 * possible that the initially referenced dev is no longer in the map. As the
37 * notifier hook walks the map we know that new dev references can not be
38 * added by the user because core infrastructure ensures dev_get_by_index()
39 * calls will fail at this point.
41 * The devmap_hash type is a map type which interprets keys as ifindexes and
42 * indexes these using a hashmap. This allows maps that use ifindex as key to be
43 * densely packed instead of having holes in the lookup array for unused
44 * ifindexes. The setup and packet enqueue/send code is shared between the two
45 * types of devmap; only the lookup and insertion is different.
47 #include <linux/bpf.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
52 #define DEV_CREATE_FLAG_MASK \
53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
55 #define DEV_MAP_BULK_SIZE 16
56 struct xdp_dev_bulk_queue
{
57 struct xdp_frame
*q
[DEV_MAP_BULK_SIZE
];
58 struct list_head flush_node
;
59 struct net_device
*dev
;
60 struct net_device
*dev_rx
;
64 struct bpf_dtab_netdev
{
65 struct net_device
*dev
; /* must be first member, due to tracepoint */
66 struct hlist_node index_hlist
;
67 struct bpf_dtab
*dtab
;
74 struct bpf_dtab_netdev
**netdev_map
; /* DEVMAP type only */
75 struct list_head list
;
77 /* these are only used for DEVMAP_HASH type maps */
78 struct hlist_head
*dev_index_head
;
79 spinlock_t index_lock
;
84 static DEFINE_PER_CPU(struct list_head
, dev_flush_list
);
85 static DEFINE_SPINLOCK(dev_map_lock
);
86 static LIST_HEAD(dev_map_list
);
88 static struct hlist_head
*dev_map_create_hash(unsigned int entries
)
91 struct hlist_head
*hash
;
93 hash
= kmalloc_array(entries
, sizeof(*hash
), GFP_KERNEL
);
95 for (i
= 0; i
< entries
; i
++)
96 INIT_HLIST_HEAD(&hash
[i
]);
101 static inline struct hlist_head
*dev_map_index_hash(struct bpf_dtab
*dtab
,
104 return &dtab
->dev_index_head
[idx
& (dtab
->n_buckets
- 1)];
107 static int dev_map_init_map(struct bpf_dtab
*dtab
, union bpf_attr
*attr
)
112 /* check sanity of attributes */
113 if (attr
->max_entries
== 0 || attr
->key_size
!= 4 ||
114 attr
->value_size
!= 4 || attr
->map_flags
& ~DEV_CREATE_FLAG_MASK
)
117 /* Lookup returns a pointer straight to dev->ifindex, so make sure the
118 * verifier prevents writes from the BPF side
120 attr
->map_flags
|= BPF_F_RDONLY_PROG
;
123 bpf_map_init_from_attr(&dtab
->map
, attr
);
125 if (attr
->map_type
== BPF_MAP_TYPE_DEVMAP_HASH
) {
126 dtab
->n_buckets
= roundup_pow_of_two(dtab
->map
.max_entries
);
128 if (!dtab
->n_buckets
) /* Overflow check */
130 cost
+= (u64
) sizeof(struct hlist_head
) * dtab
->n_buckets
;
132 cost
+= (u64
) dtab
->map
.max_entries
* sizeof(struct bpf_dtab_netdev
*);
135 /* if map size is larger than memlock limit, reject it */
136 err
= bpf_map_charge_init(&dtab
->map
.memory
, cost
);
140 if (attr
->map_type
== BPF_MAP_TYPE_DEVMAP_HASH
) {
141 dtab
->dev_index_head
= dev_map_create_hash(dtab
->n_buckets
);
142 if (!dtab
->dev_index_head
)
145 spin_lock_init(&dtab
->index_lock
);
147 dtab
->netdev_map
= bpf_map_area_alloc(dtab
->map
.max_entries
*
148 sizeof(struct bpf_dtab_netdev
*),
149 dtab
->map
.numa_node
);
150 if (!dtab
->netdev_map
)
157 bpf_map_charge_finish(&dtab
->map
.memory
);
161 static struct bpf_map
*dev_map_alloc(union bpf_attr
*attr
)
163 struct bpf_dtab
*dtab
;
166 if (!capable(CAP_NET_ADMIN
))
167 return ERR_PTR(-EPERM
);
169 dtab
= kzalloc(sizeof(*dtab
), GFP_USER
);
171 return ERR_PTR(-ENOMEM
);
173 err
= dev_map_init_map(dtab
, attr
);
179 spin_lock(&dev_map_lock
);
180 list_add_tail_rcu(&dtab
->list
, &dev_map_list
);
181 spin_unlock(&dev_map_lock
);
186 static void dev_map_free(struct bpf_map
*map
)
188 struct bpf_dtab
*dtab
= container_of(map
, struct bpf_dtab
, map
);
191 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
192 * so the programs (can be more than one that used this map) were
193 * disconnected from events. The following synchronize_rcu() guarantees
194 * both rcu read critical sections complete and waits for
195 * preempt-disable regions (NAPI being the relevant context here) so we
196 * are certain there will be no further reads against the netdev_map and
197 * all flush operations are complete. Flush operations can only be done
198 * from NAPI context for this reason.
201 spin_lock(&dev_map_lock
);
202 list_del_rcu(&dtab
->list
);
203 spin_unlock(&dev_map_lock
);
205 bpf_clear_redirect_map(map
);
208 /* Make sure prior __dev_map_entry_free() have completed. */
211 if (dtab
->map
.map_type
== BPF_MAP_TYPE_DEVMAP_HASH
) {
212 for (i
= 0; i
< dtab
->n_buckets
; i
++) {
213 struct bpf_dtab_netdev
*dev
;
214 struct hlist_head
*head
;
215 struct hlist_node
*next
;
217 head
= dev_map_index_hash(dtab
, i
);
219 hlist_for_each_entry_safe(dev
, next
, head
, index_hlist
) {
220 hlist_del_rcu(&dev
->index_hlist
);
226 kfree(dtab
->dev_index_head
);
228 for (i
= 0; i
< dtab
->map
.max_entries
; i
++) {
229 struct bpf_dtab_netdev
*dev
;
231 dev
= dtab
->netdev_map
[i
];
239 bpf_map_area_free(dtab
->netdev_map
);
245 static int dev_map_get_next_key(struct bpf_map
*map
, void *key
, void *next_key
)
247 struct bpf_dtab
*dtab
= container_of(map
, struct bpf_dtab
, map
);
248 u32 index
= key
? *(u32
*)key
: U32_MAX
;
249 u32
*next
= next_key
;
251 if (index
>= dtab
->map
.max_entries
) {
256 if (index
== dtab
->map
.max_entries
- 1)
262 struct bpf_dtab_netdev
*__dev_map_hash_lookup_elem(struct bpf_map
*map
, u32 key
)
264 struct bpf_dtab
*dtab
= container_of(map
, struct bpf_dtab
, map
);
265 struct hlist_head
*head
= dev_map_index_hash(dtab
, key
);
266 struct bpf_dtab_netdev
*dev
;
268 hlist_for_each_entry_rcu(dev
, head
, index_hlist
,
269 lockdep_is_held(&dtab
->index_lock
))
276 static int dev_map_hash_get_next_key(struct bpf_map
*map
, void *key
,
279 struct bpf_dtab
*dtab
= container_of(map
, struct bpf_dtab
, map
);
280 u32 idx
, *next
= next_key
;
281 struct bpf_dtab_netdev
*dev
, *next_dev
;
282 struct hlist_head
*head
;
290 dev
= __dev_map_hash_lookup_elem(map
, idx
);
294 next_dev
= hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev
->index_hlist
)),
295 struct bpf_dtab_netdev
, index_hlist
);
298 *next
= next_dev
->idx
;
302 i
= idx
& (dtab
->n_buckets
- 1);
306 for (; i
< dtab
->n_buckets
; i
++) {
307 head
= dev_map_index_hash(dtab
, i
);
309 next_dev
= hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head
)),
310 struct bpf_dtab_netdev
,
313 *next
= next_dev
->idx
;
321 static int bq_xmit_all(struct xdp_dev_bulk_queue
*bq
, u32 flags
)
323 struct net_device
*dev
= bq
->dev
;
324 int sent
= 0, drops
= 0, err
= 0;
327 if (unlikely(!bq
->count
))
330 for (i
= 0; i
< bq
->count
; i
++) {
331 struct xdp_frame
*xdpf
= bq
->q
[i
];
336 sent
= dev
->netdev_ops
->ndo_xdp_xmit(dev
, bq
->count
, bq
->q
, flags
);
342 drops
= bq
->count
- sent
;
346 trace_xdp_devmap_xmit(bq
->dev_rx
, dev
, sent
, drops
, err
);
348 __list_del_clearprev(&bq
->flush_node
);
351 /* If ndo_xdp_xmit fails with an errno, no frames have been
352 * xmit'ed and it's our responsibility to them free all.
354 for (i
= 0; i
< bq
->count
; i
++) {
355 struct xdp_frame
*xdpf
= bq
->q
[i
];
357 xdp_return_frame_rx_napi(xdpf
);
363 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
364 * from the driver before returning from its napi->poll() routine. The poll()
365 * routine is called either from busy_poll context or net_rx_action signaled
366 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
367 * net device can be torn down. On devmap tear down we ensure the flush list
368 * is empty before completing to ensure all flush operations have completed.
369 * When drivers update the bpf program they may need to ensure any flush ops
370 * are also complete. Using synchronize_rcu or call_rcu will suffice for this
371 * because both wait for napi context to exit.
373 void __dev_flush(void)
375 struct list_head
*flush_list
= this_cpu_ptr(&dev_flush_list
);
376 struct xdp_dev_bulk_queue
*bq
, *tmp
;
378 list_for_each_entry_safe(bq
, tmp
, flush_list
, flush_node
)
379 bq_xmit_all(bq
, XDP_XMIT_FLUSH
);
382 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
383 * update happens in parallel here a dev_put wont happen until after reading the
386 struct bpf_dtab_netdev
*__dev_map_lookup_elem(struct bpf_map
*map
, u32 key
)
388 struct bpf_dtab
*dtab
= container_of(map
, struct bpf_dtab
, map
);
389 struct bpf_dtab_netdev
*obj
;
391 if (key
>= map
->max_entries
)
394 obj
= READ_ONCE(dtab
->netdev_map
[key
]);
398 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
399 * Thus, safe percpu variable access.
401 static int bq_enqueue(struct net_device
*dev
, struct xdp_frame
*xdpf
,
402 struct net_device
*dev_rx
)
404 struct list_head
*flush_list
= this_cpu_ptr(&dev_flush_list
);
405 struct xdp_dev_bulk_queue
*bq
= this_cpu_ptr(dev
->xdp_bulkq
);
407 if (unlikely(bq
->count
== DEV_MAP_BULK_SIZE
))
410 /* Ingress dev_rx will be the same for all xdp_frame's in
411 * bulk_queue, because bq stored per-CPU and must be flushed
412 * from net_device drivers NAPI func end.
417 bq
->q
[bq
->count
++] = xdpf
;
419 if (!bq
->flush_node
.prev
)
420 list_add(&bq
->flush_node
, flush_list
);
425 static inline int __xdp_enqueue(struct net_device
*dev
, struct xdp_buff
*xdp
,
426 struct net_device
*dev_rx
)
428 struct xdp_frame
*xdpf
;
431 if (!dev
->netdev_ops
->ndo_xdp_xmit
)
434 err
= xdp_ok_fwd_dev(dev
, xdp
->data_end
- xdp
->data
);
438 xdpf
= convert_to_xdp_frame(xdp
);
442 return bq_enqueue(dev
, xdpf
, dev_rx
);
445 int dev_xdp_enqueue(struct net_device
*dev
, struct xdp_buff
*xdp
,
446 struct net_device
*dev_rx
)
448 return __xdp_enqueue(dev
, xdp
, dev_rx
);
451 int dev_map_enqueue(struct bpf_dtab_netdev
*dst
, struct xdp_buff
*xdp
,
452 struct net_device
*dev_rx
)
454 struct net_device
*dev
= dst
->dev
;
456 return __xdp_enqueue(dev
, xdp
, dev_rx
);
459 int dev_map_generic_redirect(struct bpf_dtab_netdev
*dst
, struct sk_buff
*skb
,
460 struct bpf_prog
*xdp_prog
)
464 err
= xdp_ok_fwd_dev(dst
->dev
, skb
->len
);
468 generic_xdp_tx(skb
, xdp_prog
);
473 static void *dev_map_lookup_elem(struct bpf_map
*map
, void *key
)
475 struct bpf_dtab_netdev
*obj
= __dev_map_lookup_elem(map
, *(u32
*)key
);
476 struct net_device
*dev
= obj
? obj
->dev
: NULL
;
478 return dev
? &dev
->ifindex
: NULL
;
481 static void *dev_map_hash_lookup_elem(struct bpf_map
*map
, void *key
)
483 struct bpf_dtab_netdev
*obj
= __dev_map_hash_lookup_elem(map
,
485 struct net_device
*dev
= obj
? obj
->dev
: NULL
;
487 return dev
? &dev
->ifindex
: NULL
;
490 static void __dev_map_entry_free(struct rcu_head
*rcu
)
492 struct bpf_dtab_netdev
*dev
;
494 dev
= container_of(rcu
, struct bpf_dtab_netdev
, rcu
);
499 static int dev_map_delete_elem(struct bpf_map
*map
, void *key
)
501 struct bpf_dtab
*dtab
= container_of(map
, struct bpf_dtab
, map
);
502 struct bpf_dtab_netdev
*old_dev
;
505 if (k
>= map
->max_entries
)
508 /* Use call_rcu() here to ensure any rcu critical sections have
509 * completed as well as any flush operations because call_rcu
510 * will wait for preempt-disable region to complete, NAPI in this
511 * context. And additionally, the driver tear down ensures all
512 * soft irqs are complete before removing the net device in the
513 * case of dev_put equals zero.
515 old_dev
= xchg(&dtab
->netdev_map
[k
], NULL
);
517 call_rcu(&old_dev
->rcu
, __dev_map_entry_free
);
521 static int dev_map_hash_delete_elem(struct bpf_map
*map
, void *key
)
523 struct bpf_dtab
*dtab
= container_of(map
, struct bpf_dtab
, map
);
524 struct bpf_dtab_netdev
*old_dev
;
529 spin_lock_irqsave(&dtab
->index_lock
, flags
);
531 old_dev
= __dev_map_hash_lookup_elem(map
, k
);
534 hlist_del_init_rcu(&old_dev
->index_hlist
);
535 call_rcu(&old_dev
->rcu
, __dev_map_entry_free
);
538 spin_unlock_irqrestore(&dtab
->index_lock
, flags
);
543 static struct bpf_dtab_netdev
*__dev_map_alloc_node(struct net
*net
,
544 struct bpf_dtab
*dtab
,
548 struct bpf_dtab_netdev
*dev
;
550 dev
= kmalloc_node(sizeof(*dev
), GFP_ATOMIC
| __GFP_NOWARN
,
551 dtab
->map
.numa_node
);
553 return ERR_PTR(-ENOMEM
);
555 dev
->dev
= dev_get_by_index(net
, ifindex
);
558 return ERR_PTR(-EINVAL
);
567 static int __dev_map_update_elem(struct net
*net
, struct bpf_map
*map
,
568 void *key
, void *value
, u64 map_flags
)
570 struct bpf_dtab
*dtab
= container_of(map
, struct bpf_dtab
, map
);
571 struct bpf_dtab_netdev
*dev
, *old_dev
;
572 u32 ifindex
= *(u32
*)value
;
575 if (unlikely(map_flags
> BPF_EXIST
))
577 if (unlikely(i
>= dtab
->map
.max_entries
))
579 if (unlikely(map_flags
== BPF_NOEXIST
))
585 dev
= __dev_map_alloc_node(net
, dtab
, ifindex
, i
);
590 /* Use call_rcu() here to ensure rcu critical sections have completed
591 * Remembering the driver side flush operation will happen before the
592 * net device is removed.
594 old_dev
= xchg(&dtab
->netdev_map
[i
], dev
);
596 call_rcu(&old_dev
->rcu
, __dev_map_entry_free
);
601 static int dev_map_update_elem(struct bpf_map
*map
, void *key
, void *value
,
604 return __dev_map_update_elem(current
->nsproxy
->net_ns
,
605 map
, key
, value
, map_flags
);
608 static int __dev_map_hash_update_elem(struct net
*net
, struct bpf_map
*map
,
609 void *key
, void *value
, u64 map_flags
)
611 struct bpf_dtab
*dtab
= container_of(map
, struct bpf_dtab
, map
);
612 struct bpf_dtab_netdev
*dev
, *old_dev
;
613 u32 ifindex
= *(u32
*)value
;
614 u32 idx
= *(u32
*)key
;
618 if (unlikely(map_flags
> BPF_EXIST
|| !ifindex
))
621 spin_lock_irqsave(&dtab
->index_lock
, flags
);
623 old_dev
= __dev_map_hash_lookup_elem(map
, idx
);
624 if (old_dev
&& (map_flags
& BPF_NOEXIST
))
627 dev
= __dev_map_alloc_node(net
, dtab
, ifindex
, idx
);
634 hlist_del_rcu(&old_dev
->index_hlist
);
636 if (dtab
->items
>= dtab
->map
.max_entries
) {
637 spin_unlock_irqrestore(&dtab
->index_lock
, flags
);
638 call_rcu(&dev
->rcu
, __dev_map_entry_free
);
644 hlist_add_head_rcu(&dev
->index_hlist
,
645 dev_map_index_hash(dtab
, idx
));
646 spin_unlock_irqrestore(&dtab
->index_lock
, flags
);
649 call_rcu(&old_dev
->rcu
, __dev_map_entry_free
);
654 spin_unlock_irqrestore(&dtab
->index_lock
, flags
);
658 static int dev_map_hash_update_elem(struct bpf_map
*map
, void *key
, void *value
,
661 return __dev_map_hash_update_elem(current
->nsproxy
->net_ns
,
662 map
, key
, value
, map_flags
);
665 const struct bpf_map_ops dev_map_ops
= {
666 .map_alloc
= dev_map_alloc
,
667 .map_free
= dev_map_free
,
668 .map_get_next_key
= dev_map_get_next_key
,
669 .map_lookup_elem
= dev_map_lookup_elem
,
670 .map_update_elem
= dev_map_update_elem
,
671 .map_delete_elem
= dev_map_delete_elem
,
672 .map_check_btf
= map_check_no_btf
,
675 const struct bpf_map_ops dev_map_hash_ops
= {
676 .map_alloc
= dev_map_alloc
,
677 .map_free
= dev_map_free
,
678 .map_get_next_key
= dev_map_hash_get_next_key
,
679 .map_lookup_elem
= dev_map_hash_lookup_elem
,
680 .map_update_elem
= dev_map_hash_update_elem
,
681 .map_delete_elem
= dev_map_hash_delete_elem
,
682 .map_check_btf
= map_check_no_btf
,
685 static void dev_map_hash_remove_netdev(struct bpf_dtab
*dtab
,
686 struct net_device
*netdev
)
691 spin_lock_irqsave(&dtab
->index_lock
, flags
);
692 for (i
= 0; i
< dtab
->n_buckets
; i
++) {
693 struct bpf_dtab_netdev
*dev
;
694 struct hlist_head
*head
;
695 struct hlist_node
*next
;
697 head
= dev_map_index_hash(dtab
, i
);
699 hlist_for_each_entry_safe(dev
, next
, head
, index_hlist
) {
700 if (netdev
!= dev
->dev
)
704 hlist_del_rcu(&dev
->index_hlist
);
705 call_rcu(&dev
->rcu
, __dev_map_entry_free
);
708 spin_unlock_irqrestore(&dtab
->index_lock
, flags
);
711 static int dev_map_notification(struct notifier_block
*notifier
,
712 ulong event
, void *ptr
)
714 struct net_device
*netdev
= netdev_notifier_info_to_dev(ptr
);
715 struct bpf_dtab
*dtab
;
719 case NETDEV_REGISTER
:
720 if (!netdev
->netdev_ops
->ndo_xdp_xmit
|| netdev
->xdp_bulkq
)
723 /* will be freed in free_netdev() */
725 __alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue
),
726 sizeof(void *), GFP_ATOMIC
);
727 if (!netdev
->xdp_bulkq
)
730 for_each_possible_cpu(cpu
)
731 per_cpu_ptr(netdev
->xdp_bulkq
, cpu
)->dev
= netdev
;
733 case NETDEV_UNREGISTER
:
734 /* This rcu_read_lock/unlock pair is needed because
735 * dev_map_list is an RCU list AND to ensure a delete
736 * operation does not free a netdev_map entry while we
737 * are comparing it against the netdev being unregistered.
740 list_for_each_entry_rcu(dtab
, &dev_map_list
, list
) {
741 if (dtab
->map
.map_type
== BPF_MAP_TYPE_DEVMAP_HASH
) {
742 dev_map_hash_remove_netdev(dtab
, netdev
);
746 for (i
= 0; i
< dtab
->map
.max_entries
; i
++) {
747 struct bpf_dtab_netdev
*dev
, *odev
;
749 dev
= READ_ONCE(dtab
->netdev_map
[i
]);
750 if (!dev
|| netdev
!= dev
->dev
)
752 odev
= cmpxchg(&dtab
->netdev_map
[i
], dev
, NULL
);
755 __dev_map_entry_free
);
766 static struct notifier_block dev_map_notifier
= {
767 .notifier_call
= dev_map_notification
,
770 static int __init
dev_map_init(void)
774 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
775 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev
, dev
) !=
776 offsetof(struct _bpf_dtab_netdev
, dev
));
777 register_netdevice_notifier(&dev_map_notifier
);
779 for_each_possible_cpu(cpu
)
780 INIT_LIST_HEAD(&per_cpu(dev_flush_list
, cpu
));
784 subsys_initcall(dev_map_init
);