drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / kernel / irq / manage.c
blob3089a60ea8f98ffeb58c0d497d1172cc15718e1e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
6 * This file contains driver APIs to the irq subsystem.
7 */
9 #define pr_fmt(fmt) "genirq: " fmt
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
25 #include "internals.h"
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
31 static int __init setup_forced_irqthreads(char *arg)
33 force_irqthreads = true;
34 return 0;
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
41 struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 bool inprogress;
44 do {
45 unsigned long flags;
48 * Wait until we're out of the critical section. This might
49 * give the wrong answer due to the lack of memory barriers.
51 while (irqd_irq_inprogress(&desc->irq_data))
52 cpu_relax();
54 /* Ok, that indicated we're done: double-check carefully. */
55 raw_spin_lock_irqsave(&desc->lock, flags);
56 inprogress = irqd_irq_inprogress(&desc->irq_data);
59 * If requested and supported, check at the chip whether it
60 * is in flight at the hardware level, i.e. already pending
61 * in a CPU and waiting for service and acknowledge.
63 if (!inprogress && sync_chip) {
65 * Ignore the return code. inprogress is only updated
66 * when the chip supports it.
68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 &inprogress);
71 raw_spin_unlock_irqrestore(&desc->lock, flags);
73 /* Oops, that failed? */
74 } while (inprogress);
77 /**
78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79 * @irq: interrupt number to wait for
81 * This function waits for any pending hard IRQ handlers for this
82 * interrupt to complete before returning. If you use this
83 * function while holding a resource the IRQ handler may need you
84 * will deadlock. It does not take associated threaded handlers
85 * into account.
87 * Do not use this for shutdown scenarios where you must be sure
88 * that all parts (hardirq and threaded handler) have completed.
90 * Returns: false if a threaded handler is active.
92 * This function may be called - with care - from IRQ context.
94 * It does not check whether there is an interrupt in flight at the
95 * hardware level, but not serviced yet, as this might deadlock when
96 * called with interrupts disabled and the target CPU of the interrupt
97 * is the current CPU.
99 bool synchronize_hardirq(unsigned int irq)
101 struct irq_desc *desc = irq_to_desc(irq);
103 if (desc) {
104 __synchronize_hardirq(desc, false);
105 return !atomic_read(&desc->threads_active);
108 return true;
110 EXPORT_SYMBOL(synchronize_hardirq);
113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114 * @irq: interrupt number to wait for
116 * This function waits for any pending IRQ handlers for this interrupt
117 * to complete before returning. If you use this function while
118 * holding a resource the IRQ handler may need you will deadlock.
120 * Can only be called from preemptible code as it might sleep when
121 * an interrupt thread is associated to @irq.
123 * It optionally makes sure (when the irq chip supports that method)
124 * that the interrupt is not pending in any CPU and waiting for
125 * service.
127 void synchronize_irq(unsigned int irq)
129 struct irq_desc *desc = irq_to_desc(irq);
131 if (desc) {
132 __synchronize_hardirq(desc, true);
134 * We made sure that no hardirq handler is
135 * running. Now verify that no threaded handlers are
136 * active.
138 wait_event(desc->wait_for_threads,
139 !atomic_read(&desc->threads_active));
142 EXPORT_SYMBOL(synchronize_irq);
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
147 static bool __irq_can_set_affinity(struct irq_desc *desc)
149 if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 return false;
152 return true;
156 * irq_can_set_affinity - Check if the affinity of a given irq can be set
157 * @irq: Interrupt to check
160 int irq_can_set_affinity(unsigned int irq)
162 return __irq_can_set_affinity(irq_to_desc(irq));
166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167 * @irq: Interrupt to check
169 * Like irq_can_set_affinity() above, but additionally checks for the
170 * AFFINITY_MANAGED flag.
172 bool irq_can_set_affinity_usr(unsigned int irq)
174 struct irq_desc *desc = irq_to_desc(irq);
176 return __irq_can_set_affinity(desc) &&
177 !irqd_affinity_is_managed(&desc->irq_data);
181 * irq_set_thread_affinity - Notify irq threads to adjust affinity
182 * @desc: irq descriptor which has affitnity changed
184 * We just set IRQTF_AFFINITY and delegate the affinity setting
185 * to the interrupt thread itself. We can not call
186 * set_cpus_allowed_ptr() here as we hold desc->lock and this
187 * code can be called from hard interrupt context.
189 void irq_set_thread_affinity(struct irq_desc *desc)
191 struct irqaction *action;
193 for_each_action_of_desc(desc, action)
194 if (action->thread)
195 set_bit(IRQTF_AFFINITY, &action->thread_flags);
198 static void irq_validate_effective_affinity(struct irq_data *data)
200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 struct irq_chip *chip = irq_data_get_irq_chip(data);
204 if (!cpumask_empty(m))
205 return;
206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 chip->name, data->irq);
208 #endif
211 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
212 bool force)
214 struct irq_desc *desc = irq_data_to_desc(data);
215 struct irq_chip *chip = irq_data_get_irq_chip(data);
216 int ret;
218 if (!chip || !chip->irq_set_affinity)
219 return -EINVAL;
222 * If this is a managed interrupt and housekeeping is enabled on
223 * it check whether the requested affinity mask intersects with
224 * a housekeeping CPU. If so, then remove the isolated CPUs from
225 * the mask and just keep the housekeeping CPU(s). This prevents
226 * the affinity setter from routing the interrupt to an isolated
227 * CPU to avoid that I/O submitted from a housekeeping CPU causes
228 * interrupts on an isolated one.
230 * If the masks do not intersect or include online CPU(s) then
231 * keep the requested mask. The isolated target CPUs are only
232 * receiving interrupts when the I/O operation was submitted
233 * directly from them.
235 * If all housekeeping CPUs in the affinity mask are offline, the
236 * interrupt will be migrated by the CPU hotplug code once a
237 * housekeeping CPU which belongs to the affinity mask comes
238 * online.
240 if (irqd_affinity_is_managed(data) &&
241 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
242 const struct cpumask *hk_mask, *prog_mask;
244 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
245 static struct cpumask tmp_mask;
247 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
249 raw_spin_lock(&tmp_mask_lock);
250 cpumask_and(&tmp_mask, mask, hk_mask);
251 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
252 prog_mask = mask;
253 else
254 prog_mask = &tmp_mask;
255 ret = chip->irq_set_affinity(data, prog_mask, force);
256 raw_spin_unlock(&tmp_mask_lock);
257 } else {
258 ret = chip->irq_set_affinity(data, mask, force);
260 switch (ret) {
261 case IRQ_SET_MASK_OK:
262 case IRQ_SET_MASK_OK_DONE:
263 cpumask_copy(desc->irq_common_data.affinity, mask);
264 /* fall through */
265 case IRQ_SET_MASK_OK_NOCOPY:
266 irq_validate_effective_affinity(data);
267 irq_set_thread_affinity(desc);
268 ret = 0;
271 return ret;
274 #ifdef CONFIG_GENERIC_PENDING_IRQ
275 static inline int irq_set_affinity_pending(struct irq_data *data,
276 const struct cpumask *dest)
278 struct irq_desc *desc = irq_data_to_desc(data);
280 irqd_set_move_pending(data);
281 irq_copy_pending(desc, dest);
282 return 0;
284 #else
285 static inline int irq_set_affinity_pending(struct irq_data *data,
286 const struct cpumask *dest)
288 return -EBUSY;
290 #endif
292 static int irq_try_set_affinity(struct irq_data *data,
293 const struct cpumask *dest, bool force)
295 int ret = irq_do_set_affinity(data, dest, force);
298 * In case that the underlying vector management is busy and the
299 * architecture supports the generic pending mechanism then utilize
300 * this to avoid returning an error to user space.
302 if (ret == -EBUSY && !force)
303 ret = irq_set_affinity_pending(data, dest);
304 return ret;
307 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
308 bool force)
310 struct irq_chip *chip = irq_data_get_irq_chip(data);
311 struct irq_desc *desc = irq_data_to_desc(data);
312 int ret = 0;
314 if (!chip || !chip->irq_set_affinity)
315 return -EINVAL;
317 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
318 ret = irq_try_set_affinity(data, mask, force);
319 } else {
320 irqd_set_move_pending(data);
321 irq_copy_pending(desc, mask);
324 if (desc->affinity_notify) {
325 kref_get(&desc->affinity_notify->kref);
326 schedule_work(&desc->affinity_notify->work);
328 irqd_set(data, IRQD_AFFINITY_SET);
330 return ret;
333 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
335 struct irq_desc *desc = irq_to_desc(irq);
336 unsigned long flags;
337 int ret;
339 if (!desc)
340 return -EINVAL;
342 raw_spin_lock_irqsave(&desc->lock, flags);
343 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
344 raw_spin_unlock_irqrestore(&desc->lock, flags);
345 return ret;
348 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
350 unsigned long flags;
351 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
353 if (!desc)
354 return -EINVAL;
355 desc->affinity_hint = m;
356 irq_put_desc_unlock(desc, flags);
357 /* set the initial affinity to prevent every interrupt being on CPU0 */
358 if (m)
359 __irq_set_affinity(irq, m, false);
360 return 0;
362 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
364 static void irq_affinity_notify(struct work_struct *work)
366 struct irq_affinity_notify *notify =
367 container_of(work, struct irq_affinity_notify, work);
368 struct irq_desc *desc = irq_to_desc(notify->irq);
369 cpumask_var_t cpumask;
370 unsigned long flags;
372 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
373 goto out;
375 raw_spin_lock_irqsave(&desc->lock, flags);
376 if (irq_move_pending(&desc->irq_data))
377 irq_get_pending(cpumask, desc);
378 else
379 cpumask_copy(cpumask, desc->irq_common_data.affinity);
380 raw_spin_unlock_irqrestore(&desc->lock, flags);
382 notify->notify(notify, cpumask);
384 free_cpumask_var(cpumask);
385 out:
386 kref_put(&notify->kref, notify->release);
390 * irq_set_affinity_notifier - control notification of IRQ affinity changes
391 * @irq: Interrupt for which to enable/disable notification
392 * @notify: Context for notification, or %NULL to disable
393 * notification. Function pointers must be initialised;
394 * the other fields will be initialised by this function.
396 * Must be called in process context. Notification may only be enabled
397 * after the IRQ is allocated and must be disabled before the IRQ is
398 * freed using free_irq().
401 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
403 struct irq_desc *desc = irq_to_desc(irq);
404 struct irq_affinity_notify *old_notify;
405 unsigned long flags;
407 /* The release function is promised process context */
408 might_sleep();
410 if (!desc || desc->istate & IRQS_NMI)
411 return -EINVAL;
413 /* Complete initialisation of *notify */
414 if (notify) {
415 notify->irq = irq;
416 kref_init(&notify->kref);
417 INIT_WORK(&notify->work, irq_affinity_notify);
420 raw_spin_lock_irqsave(&desc->lock, flags);
421 old_notify = desc->affinity_notify;
422 desc->affinity_notify = notify;
423 raw_spin_unlock_irqrestore(&desc->lock, flags);
425 if (old_notify) {
426 cancel_work_sync(&old_notify->work);
427 kref_put(&old_notify->kref, old_notify->release);
430 return 0;
432 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
434 #ifndef CONFIG_AUTO_IRQ_AFFINITY
436 * Generic version of the affinity autoselector.
438 int irq_setup_affinity(struct irq_desc *desc)
440 struct cpumask *set = irq_default_affinity;
441 int ret, node = irq_desc_get_node(desc);
442 static DEFINE_RAW_SPINLOCK(mask_lock);
443 static struct cpumask mask;
445 /* Excludes PER_CPU and NO_BALANCE interrupts */
446 if (!__irq_can_set_affinity(desc))
447 return 0;
449 raw_spin_lock(&mask_lock);
451 * Preserve the managed affinity setting and a userspace affinity
452 * setup, but make sure that one of the targets is online.
454 if (irqd_affinity_is_managed(&desc->irq_data) ||
455 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
456 if (cpumask_intersects(desc->irq_common_data.affinity,
457 cpu_online_mask))
458 set = desc->irq_common_data.affinity;
459 else
460 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
463 cpumask_and(&mask, cpu_online_mask, set);
464 if (cpumask_empty(&mask))
465 cpumask_copy(&mask, cpu_online_mask);
467 if (node != NUMA_NO_NODE) {
468 const struct cpumask *nodemask = cpumask_of_node(node);
470 /* make sure at least one of the cpus in nodemask is online */
471 if (cpumask_intersects(&mask, nodemask))
472 cpumask_and(&mask, &mask, nodemask);
474 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
475 raw_spin_unlock(&mask_lock);
476 return ret;
478 #else
479 /* Wrapper for ALPHA specific affinity selector magic */
480 int irq_setup_affinity(struct irq_desc *desc)
482 return irq_select_affinity(irq_desc_get_irq(desc));
484 #endif
487 * Called when a bogus affinity is set via /proc/irq
489 int irq_select_affinity_usr(unsigned int irq)
491 struct irq_desc *desc = irq_to_desc(irq);
492 unsigned long flags;
493 int ret;
495 raw_spin_lock_irqsave(&desc->lock, flags);
496 ret = irq_setup_affinity(desc);
497 raw_spin_unlock_irqrestore(&desc->lock, flags);
498 return ret;
500 #endif
503 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
504 * @irq: interrupt number to set affinity
505 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
506 * specific data for percpu_devid interrupts
508 * This function uses the vCPU specific data to set the vCPU
509 * affinity for an irq. The vCPU specific data is passed from
510 * outside, such as KVM. One example code path is as below:
511 * KVM -> IOMMU -> irq_set_vcpu_affinity().
513 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
515 unsigned long flags;
516 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
517 struct irq_data *data;
518 struct irq_chip *chip;
519 int ret = -ENOSYS;
521 if (!desc)
522 return -EINVAL;
524 data = irq_desc_get_irq_data(desc);
525 do {
526 chip = irq_data_get_irq_chip(data);
527 if (chip && chip->irq_set_vcpu_affinity)
528 break;
529 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
530 data = data->parent_data;
531 #else
532 data = NULL;
533 #endif
534 } while (data);
536 if (data)
537 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
538 irq_put_desc_unlock(desc, flags);
540 return ret;
542 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
544 void __disable_irq(struct irq_desc *desc)
546 if (!desc->depth++)
547 irq_disable(desc);
550 static int __disable_irq_nosync(unsigned int irq)
552 unsigned long flags;
553 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
555 if (!desc)
556 return -EINVAL;
557 __disable_irq(desc);
558 irq_put_desc_busunlock(desc, flags);
559 return 0;
563 * disable_irq_nosync - disable an irq without waiting
564 * @irq: Interrupt to disable
566 * Disable the selected interrupt line. Disables and Enables are
567 * nested.
568 * Unlike disable_irq(), this function does not ensure existing
569 * instances of the IRQ handler have completed before returning.
571 * This function may be called from IRQ context.
573 void disable_irq_nosync(unsigned int irq)
575 __disable_irq_nosync(irq);
577 EXPORT_SYMBOL(disable_irq_nosync);
580 * disable_irq - disable an irq and wait for completion
581 * @irq: Interrupt to disable
583 * Disable the selected interrupt line. Enables and Disables are
584 * nested.
585 * This function waits for any pending IRQ handlers for this interrupt
586 * to complete before returning. If you use this function while
587 * holding a resource the IRQ handler may need you will deadlock.
589 * This function may be called - with care - from IRQ context.
591 void disable_irq(unsigned int irq)
593 if (!__disable_irq_nosync(irq))
594 synchronize_irq(irq);
596 EXPORT_SYMBOL(disable_irq);
599 * disable_hardirq - disables an irq and waits for hardirq completion
600 * @irq: Interrupt to disable
602 * Disable the selected interrupt line. Enables and Disables are
603 * nested.
604 * This function waits for any pending hard IRQ handlers for this
605 * interrupt to complete before returning. If you use this function while
606 * holding a resource the hard IRQ handler may need you will deadlock.
608 * When used to optimistically disable an interrupt from atomic context
609 * the return value must be checked.
611 * Returns: false if a threaded handler is active.
613 * This function may be called - with care - from IRQ context.
615 bool disable_hardirq(unsigned int irq)
617 if (!__disable_irq_nosync(irq))
618 return synchronize_hardirq(irq);
620 return false;
622 EXPORT_SYMBOL_GPL(disable_hardirq);
625 * disable_nmi_nosync - disable an nmi without waiting
626 * @irq: Interrupt to disable
628 * Disable the selected interrupt line. Disables and enables are
629 * nested.
630 * The interrupt to disable must have been requested through request_nmi.
631 * Unlike disable_nmi(), this function does not ensure existing
632 * instances of the IRQ handler have completed before returning.
634 void disable_nmi_nosync(unsigned int irq)
636 disable_irq_nosync(irq);
639 void __enable_irq(struct irq_desc *desc)
641 switch (desc->depth) {
642 case 0:
643 err_out:
644 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
645 irq_desc_get_irq(desc));
646 break;
647 case 1: {
648 if (desc->istate & IRQS_SUSPENDED)
649 goto err_out;
650 /* Prevent probing on this irq: */
651 irq_settings_set_noprobe(desc);
653 * Call irq_startup() not irq_enable() here because the
654 * interrupt might be marked NOAUTOEN. So irq_startup()
655 * needs to be invoked when it gets enabled the first
656 * time. If it was already started up, then irq_startup()
657 * will invoke irq_enable() under the hood.
659 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
660 break;
662 default:
663 desc->depth--;
668 * enable_irq - enable handling of an irq
669 * @irq: Interrupt to enable
671 * Undoes the effect of one call to disable_irq(). If this
672 * matches the last disable, processing of interrupts on this
673 * IRQ line is re-enabled.
675 * This function may be called from IRQ context only when
676 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
678 void enable_irq(unsigned int irq)
680 unsigned long flags;
681 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
683 if (!desc)
684 return;
685 if (WARN(!desc->irq_data.chip,
686 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
687 goto out;
689 __enable_irq(desc);
690 out:
691 irq_put_desc_busunlock(desc, flags);
693 EXPORT_SYMBOL(enable_irq);
696 * enable_nmi - enable handling of an nmi
697 * @irq: Interrupt to enable
699 * The interrupt to enable must have been requested through request_nmi.
700 * Undoes the effect of one call to disable_nmi(). If this
701 * matches the last disable, processing of interrupts on this
702 * IRQ line is re-enabled.
704 void enable_nmi(unsigned int irq)
706 enable_irq(irq);
709 static int set_irq_wake_real(unsigned int irq, unsigned int on)
711 struct irq_desc *desc = irq_to_desc(irq);
712 int ret = -ENXIO;
714 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
715 return 0;
717 if (desc->irq_data.chip->irq_set_wake)
718 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
720 return ret;
724 * irq_set_irq_wake - control irq power management wakeup
725 * @irq: interrupt to control
726 * @on: enable/disable power management wakeup
728 * Enable/disable power management wakeup mode, which is
729 * disabled by default. Enables and disables must match,
730 * just as they match for non-wakeup mode support.
732 * Wakeup mode lets this IRQ wake the system from sleep
733 * states like "suspend to RAM".
735 * Note: irq enable/disable state is completely orthogonal
736 * to the enable/disable state of irq wake. An irq can be
737 * disabled with disable_irq() and still wake the system as
738 * long as the irq has wake enabled. If this does not hold,
739 * then the underlying irq chip and the related driver need
740 * to be investigated.
742 int irq_set_irq_wake(unsigned int irq, unsigned int on)
744 unsigned long flags;
745 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
746 int ret = 0;
748 if (!desc)
749 return -EINVAL;
751 /* Don't use NMIs as wake up interrupts please */
752 if (desc->istate & IRQS_NMI) {
753 ret = -EINVAL;
754 goto out_unlock;
757 /* wakeup-capable irqs can be shared between drivers that
758 * don't need to have the same sleep mode behaviors.
760 if (on) {
761 if (desc->wake_depth++ == 0) {
762 ret = set_irq_wake_real(irq, on);
763 if (ret)
764 desc->wake_depth = 0;
765 else
766 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
768 } else {
769 if (desc->wake_depth == 0) {
770 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
771 } else if (--desc->wake_depth == 0) {
772 ret = set_irq_wake_real(irq, on);
773 if (ret)
774 desc->wake_depth = 1;
775 else
776 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
780 out_unlock:
781 irq_put_desc_busunlock(desc, flags);
782 return ret;
784 EXPORT_SYMBOL(irq_set_irq_wake);
787 * Internal function that tells the architecture code whether a
788 * particular irq has been exclusively allocated or is available
789 * for driver use.
791 int can_request_irq(unsigned int irq, unsigned long irqflags)
793 unsigned long flags;
794 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
795 int canrequest = 0;
797 if (!desc)
798 return 0;
800 if (irq_settings_can_request(desc)) {
801 if (!desc->action ||
802 irqflags & desc->action->flags & IRQF_SHARED)
803 canrequest = 1;
805 irq_put_desc_unlock(desc, flags);
806 return canrequest;
809 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
811 struct irq_chip *chip = desc->irq_data.chip;
812 int ret, unmask = 0;
814 if (!chip || !chip->irq_set_type) {
816 * IRQF_TRIGGER_* but the PIC does not support multiple
817 * flow-types?
819 pr_debug("No set_type function for IRQ %d (%s)\n",
820 irq_desc_get_irq(desc),
821 chip ? (chip->name ? : "unknown") : "unknown");
822 return 0;
825 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
826 if (!irqd_irq_masked(&desc->irq_data))
827 mask_irq(desc);
828 if (!irqd_irq_disabled(&desc->irq_data))
829 unmask = 1;
832 /* Mask all flags except trigger mode */
833 flags &= IRQ_TYPE_SENSE_MASK;
834 ret = chip->irq_set_type(&desc->irq_data, flags);
836 switch (ret) {
837 case IRQ_SET_MASK_OK:
838 case IRQ_SET_MASK_OK_DONE:
839 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
840 irqd_set(&desc->irq_data, flags);
841 /* fall through */
843 case IRQ_SET_MASK_OK_NOCOPY:
844 flags = irqd_get_trigger_type(&desc->irq_data);
845 irq_settings_set_trigger_mask(desc, flags);
846 irqd_clear(&desc->irq_data, IRQD_LEVEL);
847 irq_settings_clr_level(desc);
848 if (flags & IRQ_TYPE_LEVEL_MASK) {
849 irq_settings_set_level(desc);
850 irqd_set(&desc->irq_data, IRQD_LEVEL);
853 ret = 0;
854 break;
855 default:
856 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
857 flags, irq_desc_get_irq(desc), chip->irq_set_type);
859 if (unmask)
860 unmask_irq(desc);
861 return ret;
864 #ifdef CONFIG_HARDIRQS_SW_RESEND
865 int irq_set_parent(int irq, int parent_irq)
867 unsigned long flags;
868 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
870 if (!desc)
871 return -EINVAL;
873 desc->parent_irq = parent_irq;
875 irq_put_desc_unlock(desc, flags);
876 return 0;
878 EXPORT_SYMBOL_GPL(irq_set_parent);
879 #endif
882 * Default primary interrupt handler for threaded interrupts. Is
883 * assigned as primary handler when request_threaded_irq is called
884 * with handler == NULL. Useful for oneshot interrupts.
886 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
888 return IRQ_WAKE_THREAD;
892 * Primary handler for nested threaded interrupts. Should never be
893 * called.
895 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
897 WARN(1, "Primary handler called for nested irq %d\n", irq);
898 return IRQ_NONE;
901 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
903 WARN(1, "Secondary action handler called for irq %d\n", irq);
904 return IRQ_NONE;
907 static int irq_wait_for_interrupt(struct irqaction *action)
909 for (;;) {
910 set_current_state(TASK_INTERRUPTIBLE);
912 if (kthread_should_stop()) {
913 /* may need to run one last time */
914 if (test_and_clear_bit(IRQTF_RUNTHREAD,
915 &action->thread_flags)) {
916 __set_current_state(TASK_RUNNING);
917 return 0;
919 __set_current_state(TASK_RUNNING);
920 return -1;
923 if (test_and_clear_bit(IRQTF_RUNTHREAD,
924 &action->thread_flags)) {
925 __set_current_state(TASK_RUNNING);
926 return 0;
928 schedule();
933 * Oneshot interrupts keep the irq line masked until the threaded
934 * handler finished. unmask if the interrupt has not been disabled and
935 * is marked MASKED.
937 static void irq_finalize_oneshot(struct irq_desc *desc,
938 struct irqaction *action)
940 if (!(desc->istate & IRQS_ONESHOT) ||
941 action->handler == irq_forced_secondary_handler)
942 return;
943 again:
944 chip_bus_lock(desc);
945 raw_spin_lock_irq(&desc->lock);
948 * Implausible though it may be we need to protect us against
949 * the following scenario:
951 * The thread is faster done than the hard interrupt handler
952 * on the other CPU. If we unmask the irq line then the
953 * interrupt can come in again and masks the line, leaves due
954 * to IRQS_INPROGRESS and the irq line is masked forever.
956 * This also serializes the state of shared oneshot handlers
957 * versus "desc->threads_onehsot |= action->thread_mask;" in
958 * irq_wake_thread(). See the comment there which explains the
959 * serialization.
961 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
962 raw_spin_unlock_irq(&desc->lock);
963 chip_bus_sync_unlock(desc);
964 cpu_relax();
965 goto again;
969 * Now check again, whether the thread should run. Otherwise
970 * we would clear the threads_oneshot bit of this thread which
971 * was just set.
973 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
974 goto out_unlock;
976 desc->threads_oneshot &= ~action->thread_mask;
978 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
979 irqd_irq_masked(&desc->irq_data))
980 unmask_threaded_irq(desc);
982 out_unlock:
983 raw_spin_unlock_irq(&desc->lock);
984 chip_bus_sync_unlock(desc);
987 #ifdef CONFIG_SMP
989 * Check whether we need to change the affinity of the interrupt thread.
991 static void
992 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
994 cpumask_var_t mask;
995 bool valid = true;
997 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
998 return;
1001 * In case we are out of memory we set IRQTF_AFFINITY again and
1002 * try again next time
1004 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1005 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1006 return;
1009 raw_spin_lock_irq(&desc->lock);
1011 * This code is triggered unconditionally. Check the affinity
1012 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1014 if (cpumask_available(desc->irq_common_data.affinity)) {
1015 const struct cpumask *m;
1017 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1018 cpumask_copy(mask, m);
1019 } else {
1020 valid = false;
1022 raw_spin_unlock_irq(&desc->lock);
1024 if (valid)
1025 set_cpus_allowed_ptr(current, mask);
1026 free_cpumask_var(mask);
1028 #else
1029 static inline void
1030 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1031 #endif
1034 * Interrupts which are not explicitly requested as threaded
1035 * interrupts rely on the implicit bh/preempt disable of the hard irq
1036 * context. So we need to disable bh here to avoid deadlocks and other
1037 * side effects.
1039 static irqreturn_t
1040 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1042 irqreturn_t ret;
1044 local_bh_disable();
1045 ret = action->thread_fn(action->irq, action->dev_id);
1046 if (ret == IRQ_HANDLED)
1047 atomic_inc(&desc->threads_handled);
1049 irq_finalize_oneshot(desc, action);
1050 local_bh_enable();
1051 return ret;
1055 * Interrupts explicitly requested as threaded interrupts want to be
1056 * preemtible - many of them need to sleep and wait for slow busses to
1057 * complete.
1059 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1060 struct irqaction *action)
1062 irqreturn_t ret;
1064 ret = action->thread_fn(action->irq, action->dev_id);
1065 if (ret == IRQ_HANDLED)
1066 atomic_inc(&desc->threads_handled);
1068 irq_finalize_oneshot(desc, action);
1069 return ret;
1072 static void wake_threads_waitq(struct irq_desc *desc)
1074 if (atomic_dec_and_test(&desc->threads_active))
1075 wake_up(&desc->wait_for_threads);
1078 static void irq_thread_dtor(struct callback_head *unused)
1080 struct task_struct *tsk = current;
1081 struct irq_desc *desc;
1082 struct irqaction *action;
1084 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1085 return;
1087 action = kthread_data(tsk);
1089 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1090 tsk->comm, tsk->pid, action->irq);
1093 desc = irq_to_desc(action->irq);
1095 * If IRQTF_RUNTHREAD is set, we need to decrement
1096 * desc->threads_active and wake possible waiters.
1098 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1099 wake_threads_waitq(desc);
1101 /* Prevent a stale desc->threads_oneshot */
1102 irq_finalize_oneshot(desc, action);
1105 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1107 struct irqaction *secondary = action->secondary;
1109 if (WARN_ON_ONCE(!secondary))
1110 return;
1112 raw_spin_lock_irq(&desc->lock);
1113 __irq_wake_thread(desc, secondary);
1114 raw_spin_unlock_irq(&desc->lock);
1118 * Interrupt handler thread
1120 static int irq_thread(void *data)
1122 struct callback_head on_exit_work;
1123 struct irqaction *action = data;
1124 struct irq_desc *desc = irq_to_desc(action->irq);
1125 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1126 struct irqaction *action);
1128 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1129 &action->thread_flags))
1130 handler_fn = irq_forced_thread_fn;
1131 else
1132 handler_fn = irq_thread_fn;
1134 init_task_work(&on_exit_work, irq_thread_dtor);
1135 task_work_add(current, &on_exit_work, false);
1137 irq_thread_check_affinity(desc, action);
1139 while (!irq_wait_for_interrupt(action)) {
1140 irqreturn_t action_ret;
1142 irq_thread_check_affinity(desc, action);
1144 action_ret = handler_fn(desc, action);
1145 if (action_ret == IRQ_WAKE_THREAD)
1146 irq_wake_secondary(desc, action);
1148 wake_threads_waitq(desc);
1152 * This is the regular exit path. __free_irq() is stopping the
1153 * thread via kthread_stop() after calling
1154 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1155 * oneshot mask bit can be set.
1157 task_work_cancel(current, irq_thread_dtor);
1158 return 0;
1162 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1163 * @irq: Interrupt line
1164 * @dev_id: Device identity for which the thread should be woken
1167 void irq_wake_thread(unsigned int irq, void *dev_id)
1169 struct irq_desc *desc = irq_to_desc(irq);
1170 struct irqaction *action;
1171 unsigned long flags;
1173 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1174 return;
1176 raw_spin_lock_irqsave(&desc->lock, flags);
1177 for_each_action_of_desc(desc, action) {
1178 if (action->dev_id == dev_id) {
1179 if (action->thread)
1180 __irq_wake_thread(desc, action);
1181 break;
1184 raw_spin_unlock_irqrestore(&desc->lock, flags);
1186 EXPORT_SYMBOL_GPL(irq_wake_thread);
1188 static int irq_setup_forced_threading(struct irqaction *new)
1190 if (!force_irqthreads)
1191 return 0;
1192 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1193 return 0;
1196 * No further action required for interrupts which are requested as
1197 * threaded interrupts already
1199 if (new->handler == irq_default_primary_handler)
1200 return 0;
1202 new->flags |= IRQF_ONESHOT;
1205 * Handle the case where we have a real primary handler and a
1206 * thread handler. We force thread them as well by creating a
1207 * secondary action.
1209 if (new->handler && new->thread_fn) {
1210 /* Allocate the secondary action */
1211 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1212 if (!new->secondary)
1213 return -ENOMEM;
1214 new->secondary->handler = irq_forced_secondary_handler;
1215 new->secondary->thread_fn = new->thread_fn;
1216 new->secondary->dev_id = new->dev_id;
1217 new->secondary->irq = new->irq;
1218 new->secondary->name = new->name;
1220 /* Deal with the primary handler */
1221 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1222 new->thread_fn = new->handler;
1223 new->handler = irq_default_primary_handler;
1224 return 0;
1227 static int irq_request_resources(struct irq_desc *desc)
1229 struct irq_data *d = &desc->irq_data;
1230 struct irq_chip *c = d->chip;
1232 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1235 static void irq_release_resources(struct irq_desc *desc)
1237 struct irq_data *d = &desc->irq_data;
1238 struct irq_chip *c = d->chip;
1240 if (c->irq_release_resources)
1241 c->irq_release_resources(d);
1244 static bool irq_supports_nmi(struct irq_desc *desc)
1246 struct irq_data *d = irq_desc_get_irq_data(desc);
1248 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1249 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1250 if (d->parent_data)
1251 return false;
1252 #endif
1253 /* Don't support NMIs for chips behind a slow bus */
1254 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1255 return false;
1257 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1260 static int irq_nmi_setup(struct irq_desc *desc)
1262 struct irq_data *d = irq_desc_get_irq_data(desc);
1263 struct irq_chip *c = d->chip;
1265 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1268 static void irq_nmi_teardown(struct irq_desc *desc)
1270 struct irq_data *d = irq_desc_get_irq_data(desc);
1271 struct irq_chip *c = d->chip;
1273 if (c->irq_nmi_teardown)
1274 c->irq_nmi_teardown(d);
1277 static int
1278 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1280 struct task_struct *t;
1281 struct sched_param param = {
1282 .sched_priority = MAX_USER_RT_PRIO/2,
1285 if (!secondary) {
1286 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1287 new->name);
1288 } else {
1289 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1290 new->name);
1291 param.sched_priority -= 1;
1294 if (IS_ERR(t))
1295 return PTR_ERR(t);
1297 sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1300 * We keep the reference to the task struct even if
1301 * the thread dies to avoid that the interrupt code
1302 * references an already freed task_struct.
1304 new->thread = get_task_struct(t);
1306 * Tell the thread to set its affinity. This is
1307 * important for shared interrupt handlers as we do
1308 * not invoke setup_affinity() for the secondary
1309 * handlers as everything is already set up. Even for
1310 * interrupts marked with IRQF_NO_BALANCE this is
1311 * correct as we want the thread to move to the cpu(s)
1312 * on which the requesting code placed the interrupt.
1314 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1315 return 0;
1319 * Internal function to register an irqaction - typically used to
1320 * allocate special interrupts that are part of the architecture.
1322 * Locking rules:
1324 * desc->request_mutex Provides serialization against a concurrent free_irq()
1325 * chip_bus_lock Provides serialization for slow bus operations
1326 * desc->lock Provides serialization against hard interrupts
1328 * chip_bus_lock and desc->lock are sufficient for all other management and
1329 * interrupt related functions. desc->request_mutex solely serializes
1330 * request/free_irq().
1332 static int
1333 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1335 struct irqaction *old, **old_ptr;
1336 unsigned long flags, thread_mask = 0;
1337 int ret, nested, shared = 0;
1339 if (!desc)
1340 return -EINVAL;
1342 if (desc->irq_data.chip == &no_irq_chip)
1343 return -ENOSYS;
1344 if (!try_module_get(desc->owner))
1345 return -ENODEV;
1347 new->irq = irq;
1350 * If the trigger type is not specified by the caller,
1351 * then use the default for this interrupt.
1353 if (!(new->flags & IRQF_TRIGGER_MASK))
1354 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1357 * Check whether the interrupt nests into another interrupt
1358 * thread.
1360 nested = irq_settings_is_nested_thread(desc);
1361 if (nested) {
1362 if (!new->thread_fn) {
1363 ret = -EINVAL;
1364 goto out_mput;
1367 * Replace the primary handler which was provided from
1368 * the driver for non nested interrupt handling by the
1369 * dummy function which warns when called.
1371 new->handler = irq_nested_primary_handler;
1372 } else {
1373 if (irq_settings_can_thread(desc)) {
1374 ret = irq_setup_forced_threading(new);
1375 if (ret)
1376 goto out_mput;
1381 * Create a handler thread when a thread function is supplied
1382 * and the interrupt does not nest into another interrupt
1383 * thread.
1385 if (new->thread_fn && !nested) {
1386 ret = setup_irq_thread(new, irq, false);
1387 if (ret)
1388 goto out_mput;
1389 if (new->secondary) {
1390 ret = setup_irq_thread(new->secondary, irq, true);
1391 if (ret)
1392 goto out_thread;
1397 * Drivers are often written to work w/o knowledge about the
1398 * underlying irq chip implementation, so a request for a
1399 * threaded irq without a primary hard irq context handler
1400 * requires the ONESHOT flag to be set. Some irq chips like
1401 * MSI based interrupts are per se one shot safe. Check the
1402 * chip flags, so we can avoid the unmask dance at the end of
1403 * the threaded handler for those.
1405 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1406 new->flags &= ~IRQF_ONESHOT;
1409 * Protects against a concurrent __free_irq() call which might wait
1410 * for synchronize_hardirq() to complete without holding the optional
1411 * chip bus lock and desc->lock. Also protects against handing out
1412 * a recycled oneshot thread_mask bit while it's still in use by
1413 * its previous owner.
1415 mutex_lock(&desc->request_mutex);
1418 * Acquire bus lock as the irq_request_resources() callback below
1419 * might rely on the serialization or the magic power management
1420 * functions which are abusing the irq_bus_lock() callback,
1422 chip_bus_lock(desc);
1424 /* First installed action requests resources. */
1425 if (!desc->action) {
1426 ret = irq_request_resources(desc);
1427 if (ret) {
1428 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1429 new->name, irq, desc->irq_data.chip->name);
1430 goto out_bus_unlock;
1435 * The following block of code has to be executed atomically
1436 * protected against a concurrent interrupt and any of the other
1437 * management calls which are not serialized via
1438 * desc->request_mutex or the optional bus lock.
1440 raw_spin_lock_irqsave(&desc->lock, flags);
1441 old_ptr = &desc->action;
1442 old = *old_ptr;
1443 if (old) {
1445 * Can't share interrupts unless both agree to and are
1446 * the same type (level, edge, polarity). So both flag
1447 * fields must have IRQF_SHARED set and the bits which
1448 * set the trigger type must match. Also all must
1449 * agree on ONESHOT.
1450 * Interrupt lines used for NMIs cannot be shared.
1452 unsigned int oldtype;
1454 if (desc->istate & IRQS_NMI) {
1455 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1456 new->name, irq, desc->irq_data.chip->name);
1457 ret = -EINVAL;
1458 goto out_unlock;
1462 * If nobody did set the configuration before, inherit
1463 * the one provided by the requester.
1465 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1466 oldtype = irqd_get_trigger_type(&desc->irq_data);
1467 } else {
1468 oldtype = new->flags & IRQF_TRIGGER_MASK;
1469 irqd_set_trigger_type(&desc->irq_data, oldtype);
1472 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1473 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1474 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1475 goto mismatch;
1477 /* All handlers must agree on per-cpuness */
1478 if ((old->flags & IRQF_PERCPU) !=
1479 (new->flags & IRQF_PERCPU))
1480 goto mismatch;
1482 /* add new interrupt at end of irq queue */
1483 do {
1485 * Or all existing action->thread_mask bits,
1486 * so we can find the next zero bit for this
1487 * new action.
1489 thread_mask |= old->thread_mask;
1490 old_ptr = &old->next;
1491 old = *old_ptr;
1492 } while (old);
1493 shared = 1;
1497 * Setup the thread mask for this irqaction for ONESHOT. For
1498 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1499 * conditional in irq_wake_thread().
1501 if (new->flags & IRQF_ONESHOT) {
1503 * Unlikely to have 32 resp 64 irqs sharing one line,
1504 * but who knows.
1506 if (thread_mask == ~0UL) {
1507 ret = -EBUSY;
1508 goto out_unlock;
1511 * The thread_mask for the action is or'ed to
1512 * desc->thread_active to indicate that the
1513 * IRQF_ONESHOT thread handler has been woken, but not
1514 * yet finished. The bit is cleared when a thread
1515 * completes. When all threads of a shared interrupt
1516 * line have completed desc->threads_active becomes
1517 * zero and the interrupt line is unmasked. See
1518 * handle.c:irq_wake_thread() for further information.
1520 * If no thread is woken by primary (hard irq context)
1521 * interrupt handlers, then desc->threads_active is
1522 * also checked for zero to unmask the irq line in the
1523 * affected hard irq flow handlers
1524 * (handle_[fasteoi|level]_irq).
1526 * The new action gets the first zero bit of
1527 * thread_mask assigned. See the loop above which or's
1528 * all existing action->thread_mask bits.
1530 new->thread_mask = 1UL << ffz(thread_mask);
1532 } else if (new->handler == irq_default_primary_handler &&
1533 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1535 * The interrupt was requested with handler = NULL, so
1536 * we use the default primary handler for it. But it
1537 * does not have the oneshot flag set. In combination
1538 * with level interrupts this is deadly, because the
1539 * default primary handler just wakes the thread, then
1540 * the irq lines is reenabled, but the device still
1541 * has the level irq asserted. Rinse and repeat....
1543 * While this works for edge type interrupts, we play
1544 * it safe and reject unconditionally because we can't
1545 * say for sure which type this interrupt really
1546 * has. The type flags are unreliable as the
1547 * underlying chip implementation can override them.
1549 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1550 new->name, irq);
1551 ret = -EINVAL;
1552 goto out_unlock;
1555 if (!shared) {
1556 init_waitqueue_head(&desc->wait_for_threads);
1558 /* Setup the type (level, edge polarity) if configured: */
1559 if (new->flags & IRQF_TRIGGER_MASK) {
1560 ret = __irq_set_trigger(desc,
1561 new->flags & IRQF_TRIGGER_MASK);
1563 if (ret)
1564 goto out_unlock;
1568 * Activate the interrupt. That activation must happen
1569 * independently of IRQ_NOAUTOEN. request_irq() can fail
1570 * and the callers are supposed to handle
1571 * that. enable_irq() of an interrupt requested with
1572 * IRQ_NOAUTOEN is not supposed to fail. The activation
1573 * keeps it in shutdown mode, it merily associates
1574 * resources if necessary and if that's not possible it
1575 * fails. Interrupts which are in managed shutdown mode
1576 * will simply ignore that activation request.
1578 ret = irq_activate(desc);
1579 if (ret)
1580 goto out_unlock;
1582 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1583 IRQS_ONESHOT | IRQS_WAITING);
1584 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1586 if (new->flags & IRQF_PERCPU) {
1587 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1588 irq_settings_set_per_cpu(desc);
1591 if (new->flags & IRQF_ONESHOT)
1592 desc->istate |= IRQS_ONESHOT;
1594 /* Exclude IRQ from balancing if requested */
1595 if (new->flags & IRQF_NOBALANCING) {
1596 irq_settings_set_no_balancing(desc);
1597 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1600 if (irq_settings_can_autoenable(desc)) {
1601 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1602 } else {
1604 * Shared interrupts do not go well with disabling
1605 * auto enable. The sharing interrupt might request
1606 * it while it's still disabled and then wait for
1607 * interrupts forever.
1609 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1610 /* Undo nested disables: */
1611 desc->depth = 1;
1614 } else if (new->flags & IRQF_TRIGGER_MASK) {
1615 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1616 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1618 if (nmsk != omsk)
1619 /* hope the handler works with current trigger mode */
1620 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1621 irq, omsk, nmsk);
1624 *old_ptr = new;
1626 irq_pm_install_action(desc, new);
1628 /* Reset broken irq detection when installing new handler */
1629 desc->irq_count = 0;
1630 desc->irqs_unhandled = 0;
1633 * Check whether we disabled the irq via the spurious handler
1634 * before. Reenable it and give it another chance.
1636 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1637 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1638 __enable_irq(desc);
1641 raw_spin_unlock_irqrestore(&desc->lock, flags);
1642 chip_bus_sync_unlock(desc);
1643 mutex_unlock(&desc->request_mutex);
1645 irq_setup_timings(desc, new);
1648 * Strictly no need to wake it up, but hung_task complains
1649 * when no hard interrupt wakes the thread up.
1651 if (new->thread)
1652 wake_up_process(new->thread);
1653 if (new->secondary)
1654 wake_up_process(new->secondary->thread);
1656 register_irq_proc(irq, desc);
1657 new->dir = NULL;
1658 register_handler_proc(irq, new);
1659 return 0;
1661 mismatch:
1662 if (!(new->flags & IRQF_PROBE_SHARED)) {
1663 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1664 irq, new->flags, new->name, old->flags, old->name);
1665 #ifdef CONFIG_DEBUG_SHIRQ
1666 dump_stack();
1667 #endif
1669 ret = -EBUSY;
1671 out_unlock:
1672 raw_spin_unlock_irqrestore(&desc->lock, flags);
1674 if (!desc->action)
1675 irq_release_resources(desc);
1676 out_bus_unlock:
1677 chip_bus_sync_unlock(desc);
1678 mutex_unlock(&desc->request_mutex);
1680 out_thread:
1681 if (new->thread) {
1682 struct task_struct *t = new->thread;
1684 new->thread = NULL;
1685 kthread_stop(t);
1686 put_task_struct(t);
1688 if (new->secondary && new->secondary->thread) {
1689 struct task_struct *t = new->secondary->thread;
1691 new->secondary->thread = NULL;
1692 kthread_stop(t);
1693 put_task_struct(t);
1695 out_mput:
1696 module_put(desc->owner);
1697 return ret;
1701 * setup_irq - setup an interrupt
1702 * @irq: Interrupt line to setup
1703 * @act: irqaction for the interrupt
1705 * Used to statically setup interrupts in the early boot process.
1707 int setup_irq(unsigned int irq, struct irqaction *act)
1709 int retval;
1710 struct irq_desc *desc = irq_to_desc(irq);
1712 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1713 return -EINVAL;
1715 retval = irq_chip_pm_get(&desc->irq_data);
1716 if (retval < 0)
1717 return retval;
1719 retval = __setup_irq(irq, desc, act);
1721 if (retval)
1722 irq_chip_pm_put(&desc->irq_data);
1724 return retval;
1726 EXPORT_SYMBOL_GPL(setup_irq);
1729 * Internal function to unregister an irqaction - used to free
1730 * regular and special interrupts that are part of the architecture.
1732 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1734 unsigned irq = desc->irq_data.irq;
1735 struct irqaction *action, **action_ptr;
1736 unsigned long flags;
1738 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1740 mutex_lock(&desc->request_mutex);
1741 chip_bus_lock(desc);
1742 raw_spin_lock_irqsave(&desc->lock, flags);
1745 * There can be multiple actions per IRQ descriptor, find the right
1746 * one based on the dev_id:
1748 action_ptr = &desc->action;
1749 for (;;) {
1750 action = *action_ptr;
1752 if (!action) {
1753 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1754 raw_spin_unlock_irqrestore(&desc->lock, flags);
1755 chip_bus_sync_unlock(desc);
1756 mutex_unlock(&desc->request_mutex);
1757 return NULL;
1760 if (action->dev_id == dev_id)
1761 break;
1762 action_ptr = &action->next;
1765 /* Found it - now remove it from the list of entries: */
1766 *action_ptr = action->next;
1768 irq_pm_remove_action(desc, action);
1770 /* If this was the last handler, shut down the IRQ line: */
1771 if (!desc->action) {
1772 irq_settings_clr_disable_unlazy(desc);
1773 /* Only shutdown. Deactivate after synchronize_hardirq() */
1774 irq_shutdown(desc);
1777 #ifdef CONFIG_SMP
1778 /* make sure affinity_hint is cleaned up */
1779 if (WARN_ON_ONCE(desc->affinity_hint))
1780 desc->affinity_hint = NULL;
1781 #endif
1783 raw_spin_unlock_irqrestore(&desc->lock, flags);
1785 * Drop bus_lock here so the changes which were done in the chip
1786 * callbacks above are synced out to the irq chips which hang
1787 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1789 * Aside of that the bus_lock can also be taken from the threaded
1790 * handler in irq_finalize_oneshot() which results in a deadlock
1791 * because kthread_stop() would wait forever for the thread to
1792 * complete, which is blocked on the bus lock.
1794 * The still held desc->request_mutex() protects against a
1795 * concurrent request_irq() of this irq so the release of resources
1796 * and timing data is properly serialized.
1798 chip_bus_sync_unlock(desc);
1800 unregister_handler_proc(irq, action);
1803 * Make sure it's not being used on another CPU and if the chip
1804 * supports it also make sure that there is no (not yet serviced)
1805 * interrupt in flight at the hardware level.
1807 __synchronize_hardirq(desc, true);
1809 #ifdef CONFIG_DEBUG_SHIRQ
1811 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1812 * event to happen even now it's being freed, so let's make sure that
1813 * is so by doing an extra call to the handler ....
1815 * ( We do this after actually deregistering it, to make sure that a
1816 * 'real' IRQ doesn't run in parallel with our fake. )
1818 if (action->flags & IRQF_SHARED) {
1819 local_irq_save(flags);
1820 action->handler(irq, dev_id);
1821 local_irq_restore(flags);
1823 #endif
1826 * The action has already been removed above, but the thread writes
1827 * its oneshot mask bit when it completes. Though request_mutex is
1828 * held across this which prevents __setup_irq() from handing out
1829 * the same bit to a newly requested action.
1831 if (action->thread) {
1832 kthread_stop(action->thread);
1833 put_task_struct(action->thread);
1834 if (action->secondary && action->secondary->thread) {
1835 kthread_stop(action->secondary->thread);
1836 put_task_struct(action->secondary->thread);
1840 /* Last action releases resources */
1841 if (!desc->action) {
1843 * Reaquire bus lock as irq_release_resources() might
1844 * require it to deallocate resources over the slow bus.
1846 chip_bus_lock(desc);
1848 * There is no interrupt on the fly anymore. Deactivate it
1849 * completely.
1851 raw_spin_lock_irqsave(&desc->lock, flags);
1852 irq_domain_deactivate_irq(&desc->irq_data);
1853 raw_spin_unlock_irqrestore(&desc->lock, flags);
1855 irq_release_resources(desc);
1856 chip_bus_sync_unlock(desc);
1857 irq_remove_timings(desc);
1860 mutex_unlock(&desc->request_mutex);
1862 irq_chip_pm_put(&desc->irq_data);
1863 module_put(desc->owner);
1864 kfree(action->secondary);
1865 return action;
1869 * remove_irq - free an interrupt
1870 * @irq: Interrupt line to free
1871 * @act: irqaction for the interrupt
1873 * Used to remove interrupts statically setup by the early boot process.
1875 void remove_irq(unsigned int irq, struct irqaction *act)
1877 struct irq_desc *desc = irq_to_desc(irq);
1879 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1880 __free_irq(desc, act->dev_id);
1882 EXPORT_SYMBOL_GPL(remove_irq);
1885 * free_irq - free an interrupt allocated with request_irq
1886 * @irq: Interrupt line to free
1887 * @dev_id: Device identity to free
1889 * Remove an interrupt handler. The handler is removed and if the
1890 * interrupt line is no longer in use by any driver it is disabled.
1891 * On a shared IRQ the caller must ensure the interrupt is disabled
1892 * on the card it drives before calling this function. The function
1893 * does not return until any executing interrupts for this IRQ
1894 * have completed.
1896 * This function must not be called from interrupt context.
1898 * Returns the devname argument passed to request_irq.
1900 const void *free_irq(unsigned int irq, void *dev_id)
1902 struct irq_desc *desc = irq_to_desc(irq);
1903 struct irqaction *action;
1904 const char *devname;
1906 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1907 return NULL;
1909 #ifdef CONFIG_SMP
1910 if (WARN_ON(desc->affinity_notify))
1911 desc->affinity_notify = NULL;
1912 #endif
1914 action = __free_irq(desc, dev_id);
1916 if (!action)
1917 return NULL;
1919 devname = action->name;
1920 kfree(action);
1921 return devname;
1923 EXPORT_SYMBOL(free_irq);
1925 /* This function must be called with desc->lock held */
1926 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1928 const char *devname = NULL;
1930 desc->istate &= ~IRQS_NMI;
1932 if (!WARN_ON(desc->action == NULL)) {
1933 irq_pm_remove_action(desc, desc->action);
1934 devname = desc->action->name;
1935 unregister_handler_proc(irq, desc->action);
1937 kfree(desc->action);
1938 desc->action = NULL;
1941 irq_settings_clr_disable_unlazy(desc);
1942 irq_shutdown_and_deactivate(desc);
1944 irq_release_resources(desc);
1946 irq_chip_pm_put(&desc->irq_data);
1947 module_put(desc->owner);
1949 return devname;
1952 const void *free_nmi(unsigned int irq, void *dev_id)
1954 struct irq_desc *desc = irq_to_desc(irq);
1955 unsigned long flags;
1956 const void *devname;
1958 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1959 return NULL;
1961 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1962 return NULL;
1964 /* NMI still enabled */
1965 if (WARN_ON(desc->depth == 0))
1966 disable_nmi_nosync(irq);
1968 raw_spin_lock_irqsave(&desc->lock, flags);
1970 irq_nmi_teardown(desc);
1971 devname = __cleanup_nmi(irq, desc);
1973 raw_spin_unlock_irqrestore(&desc->lock, flags);
1975 return devname;
1979 * request_threaded_irq - allocate an interrupt line
1980 * @irq: Interrupt line to allocate
1981 * @handler: Function to be called when the IRQ occurs.
1982 * Primary handler for threaded interrupts
1983 * If NULL and thread_fn != NULL the default
1984 * primary handler is installed
1985 * @thread_fn: Function called from the irq handler thread
1986 * If NULL, no irq thread is created
1987 * @irqflags: Interrupt type flags
1988 * @devname: An ascii name for the claiming device
1989 * @dev_id: A cookie passed back to the handler function
1991 * This call allocates interrupt resources and enables the
1992 * interrupt line and IRQ handling. From the point this
1993 * call is made your handler function may be invoked. Since
1994 * your handler function must clear any interrupt the board
1995 * raises, you must take care both to initialise your hardware
1996 * and to set up the interrupt handler in the right order.
1998 * If you want to set up a threaded irq handler for your device
1999 * then you need to supply @handler and @thread_fn. @handler is
2000 * still called in hard interrupt context and has to check
2001 * whether the interrupt originates from the device. If yes it
2002 * needs to disable the interrupt on the device and return
2003 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2004 * @thread_fn. This split handler design is necessary to support
2005 * shared interrupts.
2007 * Dev_id must be globally unique. Normally the address of the
2008 * device data structure is used as the cookie. Since the handler
2009 * receives this value it makes sense to use it.
2011 * If your interrupt is shared you must pass a non NULL dev_id
2012 * as this is required when freeing the interrupt.
2014 * Flags:
2016 * IRQF_SHARED Interrupt is shared
2017 * IRQF_TRIGGER_* Specify active edge(s) or level
2020 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2021 irq_handler_t thread_fn, unsigned long irqflags,
2022 const char *devname, void *dev_id)
2024 struct irqaction *action;
2025 struct irq_desc *desc;
2026 int retval;
2028 if (irq == IRQ_NOTCONNECTED)
2029 return -ENOTCONN;
2032 * Sanity-check: shared interrupts must pass in a real dev-ID,
2033 * otherwise we'll have trouble later trying to figure out
2034 * which interrupt is which (messes up the interrupt freeing
2035 * logic etc).
2037 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2038 * it cannot be set along with IRQF_NO_SUSPEND.
2040 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2041 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2042 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2043 return -EINVAL;
2045 desc = irq_to_desc(irq);
2046 if (!desc)
2047 return -EINVAL;
2049 if (!irq_settings_can_request(desc) ||
2050 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2051 return -EINVAL;
2053 if (!handler) {
2054 if (!thread_fn)
2055 return -EINVAL;
2056 handler = irq_default_primary_handler;
2059 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2060 if (!action)
2061 return -ENOMEM;
2063 action->handler = handler;
2064 action->thread_fn = thread_fn;
2065 action->flags = irqflags;
2066 action->name = devname;
2067 action->dev_id = dev_id;
2069 retval = irq_chip_pm_get(&desc->irq_data);
2070 if (retval < 0) {
2071 kfree(action);
2072 return retval;
2075 retval = __setup_irq(irq, desc, action);
2077 if (retval) {
2078 irq_chip_pm_put(&desc->irq_data);
2079 kfree(action->secondary);
2080 kfree(action);
2083 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2084 if (!retval && (irqflags & IRQF_SHARED)) {
2086 * It's a shared IRQ -- the driver ought to be prepared for it
2087 * to happen immediately, so let's make sure....
2088 * We disable the irq to make sure that a 'real' IRQ doesn't
2089 * run in parallel with our fake.
2091 unsigned long flags;
2093 disable_irq(irq);
2094 local_irq_save(flags);
2096 handler(irq, dev_id);
2098 local_irq_restore(flags);
2099 enable_irq(irq);
2101 #endif
2102 return retval;
2104 EXPORT_SYMBOL(request_threaded_irq);
2107 * request_any_context_irq - allocate an interrupt line
2108 * @irq: Interrupt line to allocate
2109 * @handler: Function to be called when the IRQ occurs.
2110 * Threaded handler for threaded interrupts.
2111 * @flags: Interrupt type flags
2112 * @name: An ascii name for the claiming device
2113 * @dev_id: A cookie passed back to the handler function
2115 * This call allocates interrupt resources and enables the
2116 * interrupt line and IRQ handling. It selects either a
2117 * hardirq or threaded handling method depending on the
2118 * context.
2120 * On failure, it returns a negative value. On success,
2121 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2123 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2124 unsigned long flags, const char *name, void *dev_id)
2126 struct irq_desc *desc;
2127 int ret;
2129 if (irq == IRQ_NOTCONNECTED)
2130 return -ENOTCONN;
2132 desc = irq_to_desc(irq);
2133 if (!desc)
2134 return -EINVAL;
2136 if (irq_settings_is_nested_thread(desc)) {
2137 ret = request_threaded_irq(irq, NULL, handler,
2138 flags, name, dev_id);
2139 return !ret ? IRQC_IS_NESTED : ret;
2142 ret = request_irq(irq, handler, flags, name, dev_id);
2143 return !ret ? IRQC_IS_HARDIRQ : ret;
2145 EXPORT_SYMBOL_GPL(request_any_context_irq);
2148 * request_nmi - allocate an interrupt line for NMI delivery
2149 * @irq: Interrupt line to allocate
2150 * @handler: Function to be called when the IRQ occurs.
2151 * Threaded handler for threaded interrupts.
2152 * @irqflags: Interrupt type flags
2153 * @name: An ascii name for the claiming device
2154 * @dev_id: A cookie passed back to the handler function
2156 * This call allocates interrupt resources and enables the
2157 * interrupt line and IRQ handling. It sets up the IRQ line
2158 * to be handled as an NMI.
2160 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2161 * cannot be threaded.
2163 * Interrupt lines requested for NMI delivering must produce per cpu
2164 * interrupts and have auto enabling setting disabled.
2166 * Dev_id must be globally unique. Normally the address of the
2167 * device data structure is used as the cookie. Since the handler
2168 * receives this value it makes sense to use it.
2170 * If the interrupt line cannot be used to deliver NMIs, function
2171 * will fail and return a negative value.
2173 int request_nmi(unsigned int irq, irq_handler_t handler,
2174 unsigned long irqflags, const char *name, void *dev_id)
2176 struct irqaction *action;
2177 struct irq_desc *desc;
2178 unsigned long flags;
2179 int retval;
2181 if (irq == IRQ_NOTCONNECTED)
2182 return -ENOTCONN;
2184 /* NMI cannot be shared, used for Polling */
2185 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2186 return -EINVAL;
2188 if (!(irqflags & IRQF_PERCPU))
2189 return -EINVAL;
2191 if (!handler)
2192 return -EINVAL;
2194 desc = irq_to_desc(irq);
2196 if (!desc || irq_settings_can_autoenable(desc) ||
2197 !irq_settings_can_request(desc) ||
2198 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2199 !irq_supports_nmi(desc))
2200 return -EINVAL;
2202 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2203 if (!action)
2204 return -ENOMEM;
2206 action->handler = handler;
2207 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2208 action->name = name;
2209 action->dev_id = dev_id;
2211 retval = irq_chip_pm_get(&desc->irq_data);
2212 if (retval < 0)
2213 goto err_out;
2215 retval = __setup_irq(irq, desc, action);
2216 if (retval)
2217 goto err_irq_setup;
2219 raw_spin_lock_irqsave(&desc->lock, flags);
2221 /* Setup NMI state */
2222 desc->istate |= IRQS_NMI;
2223 retval = irq_nmi_setup(desc);
2224 if (retval) {
2225 __cleanup_nmi(irq, desc);
2226 raw_spin_unlock_irqrestore(&desc->lock, flags);
2227 return -EINVAL;
2230 raw_spin_unlock_irqrestore(&desc->lock, flags);
2232 return 0;
2234 err_irq_setup:
2235 irq_chip_pm_put(&desc->irq_data);
2236 err_out:
2237 kfree(action);
2239 return retval;
2242 void enable_percpu_irq(unsigned int irq, unsigned int type)
2244 unsigned int cpu = smp_processor_id();
2245 unsigned long flags;
2246 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2248 if (!desc)
2249 return;
2252 * If the trigger type is not specified by the caller, then
2253 * use the default for this interrupt.
2255 type &= IRQ_TYPE_SENSE_MASK;
2256 if (type == IRQ_TYPE_NONE)
2257 type = irqd_get_trigger_type(&desc->irq_data);
2259 if (type != IRQ_TYPE_NONE) {
2260 int ret;
2262 ret = __irq_set_trigger(desc, type);
2264 if (ret) {
2265 WARN(1, "failed to set type for IRQ%d\n", irq);
2266 goto out;
2270 irq_percpu_enable(desc, cpu);
2271 out:
2272 irq_put_desc_unlock(desc, flags);
2274 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2276 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2278 enable_percpu_irq(irq, type);
2282 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2283 * @irq: Linux irq number to check for
2285 * Must be called from a non migratable context. Returns the enable
2286 * state of a per cpu interrupt on the current cpu.
2288 bool irq_percpu_is_enabled(unsigned int irq)
2290 unsigned int cpu = smp_processor_id();
2291 struct irq_desc *desc;
2292 unsigned long flags;
2293 bool is_enabled;
2295 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2296 if (!desc)
2297 return false;
2299 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2300 irq_put_desc_unlock(desc, flags);
2302 return is_enabled;
2304 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2306 void disable_percpu_irq(unsigned int irq)
2308 unsigned int cpu = smp_processor_id();
2309 unsigned long flags;
2310 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2312 if (!desc)
2313 return;
2315 irq_percpu_disable(desc, cpu);
2316 irq_put_desc_unlock(desc, flags);
2318 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2320 void disable_percpu_nmi(unsigned int irq)
2322 disable_percpu_irq(irq);
2326 * Internal function to unregister a percpu irqaction.
2328 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2330 struct irq_desc *desc = irq_to_desc(irq);
2331 struct irqaction *action;
2332 unsigned long flags;
2334 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2336 if (!desc)
2337 return NULL;
2339 raw_spin_lock_irqsave(&desc->lock, flags);
2341 action = desc->action;
2342 if (!action || action->percpu_dev_id != dev_id) {
2343 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2344 goto bad;
2347 if (!cpumask_empty(desc->percpu_enabled)) {
2348 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2349 irq, cpumask_first(desc->percpu_enabled));
2350 goto bad;
2353 /* Found it - now remove it from the list of entries: */
2354 desc->action = NULL;
2356 desc->istate &= ~IRQS_NMI;
2358 raw_spin_unlock_irqrestore(&desc->lock, flags);
2360 unregister_handler_proc(irq, action);
2362 irq_chip_pm_put(&desc->irq_data);
2363 module_put(desc->owner);
2364 return action;
2366 bad:
2367 raw_spin_unlock_irqrestore(&desc->lock, flags);
2368 return NULL;
2372 * remove_percpu_irq - free a per-cpu interrupt
2373 * @irq: Interrupt line to free
2374 * @act: irqaction for the interrupt
2376 * Used to remove interrupts statically setup by the early boot process.
2378 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2380 struct irq_desc *desc = irq_to_desc(irq);
2382 if (desc && irq_settings_is_per_cpu_devid(desc))
2383 __free_percpu_irq(irq, act->percpu_dev_id);
2387 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2388 * @irq: Interrupt line to free
2389 * @dev_id: Device identity to free
2391 * Remove a percpu interrupt handler. The handler is removed, but
2392 * the interrupt line is not disabled. This must be done on each
2393 * CPU before calling this function. The function does not return
2394 * until any executing interrupts for this IRQ have completed.
2396 * This function must not be called from interrupt context.
2398 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2400 struct irq_desc *desc = irq_to_desc(irq);
2402 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2403 return;
2405 chip_bus_lock(desc);
2406 kfree(__free_percpu_irq(irq, dev_id));
2407 chip_bus_sync_unlock(desc);
2409 EXPORT_SYMBOL_GPL(free_percpu_irq);
2411 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2413 struct irq_desc *desc = irq_to_desc(irq);
2415 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2416 return;
2418 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2419 return;
2421 kfree(__free_percpu_irq(irq, dev_id));
2425 * setup_percpu_irq - setup a per-cpu interrupt
2426 * @irq: Interrupt line to setup
2427 * @act: irqaction for the interrupt
2429 * Used to statically setup per-cpu interrupts in the early boot process.
2431 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2433 struct irq_desc *desc = irq_to_desc(irq);
2434 int retval;
2436 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2437 return -EINVAL;
2439 retval = irq_chip_pm_get(&desc->irq_data);
2440 if (retval < 0)
2441 return retval;
2443 retval = __setup_irq(irq, desc, act);
2445 if (retval)
2446 irq_chip_pm_put(&desc->irq_data);
2448 return retval;
2452 * __request_percpu_irq - allocate a percpu interrupt line
2453 * @irq: Interrupt line to allocate
2454 * @handler: Function to be called when the IRQ occurs.
2455 * @flags: Interrupt type flags (IRQF_TIMER only)
2456 * @devname: An ascii name for the claiming device
2457 * @dev_id: A percpu cookie passed back to the handler function
2459 * This call allocates interrupt resources and enables the
2460 * interrupt on the local CPU. If the interrupt is supposed to be
2461 * enabled on other CPUs, it has to be done on each CPU using
2462 * enable_percpu_irq().
2464 * Dev_id must be globally unique. It is a per-cpu variable, and
2465 * the handler gets called with the interrupted CPU's instance of
2466 * that variable.
2468 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2469 unsigned long flags, const char *devname,
2470 void __percpu *dev_id)
2472 struct irqaction *action;
2473 struct irq_desc *desc;
2474 int retval;
2476 if (!dev_id)
2477 return -EINVAL;
2479 desc = irq_to_desc(irq);
2480 if (!desc || !irq_settings_can_request(desc) ||
2481 !irq_settings_is_per_cpu_devid(desc))
2482 return -EINVAL;
2484 if (flags && flags != IRQF_TIMER)
2485 return -EINVAL;
2487 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2488 if (!action)
2489 return -ENOMEM;
2491 action->handler = handler;
2492 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2493 action->name = devname;
2494 action->percpu_dev_id = dev_id;
2496 retval = irq_chip_pm_get(&desc->irq_data);
2497 if (retval < 0) {
2498 kfree(action);
2499 return retval;
2502 retval = __setup_irq(irq, desc, action);
2504 if (retval) {
2505 irq_chip_pm_put(&desc->irq_data);
2506 kfree(action);
2509 return retval;
2511 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2514 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2515 * @irq: Interrupt line to allocate
2516 * @handler: Function to be called when the IRQ occurs.
2517 * @name: An ascii name for the claiming device
2518 * @dev_id: A percpu cookie passed back to the handler function
2520 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2521 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2522 * being enabled on the same CPU by using enable_percpu_nmi().
2524 * Dev_id must be globally unique. It is a per-cpu variable, and
2525 * the handler gets called with the interrupted CPU's instance of
2526 * that variable.
2528 * Interrupt lines requested for NMI delivering should have auto enabling
2529 * setting disabled.
2531 * If the interrupt line cannot be used to deliver NMIs, function
2532 * will fail returning a negative value.
2534 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2535 const char *name, void __percpu *dev_id)
2537 struct irqaction *action;
2538 struct irq_desc *desc;
2539 unsigned long flags;
2540 int retval;
2542 if (!handler)
2543 return -EINVAL;
2545 desc = irq_to_desc(irq);
2547 if (!desc || !irq_settings_can_request(desc) ||
2548 !irq_settings_is_per_cpu_devid(desc) ||
2549 irq_settings_can_autoenable(desc) ||
2550 !irq_supports_nmi(desc))
2551 return -EINVAL;
2553 /* The line cannot already be NMI */
2554 if (desc->istate & IRQS_NMI)
2555 return -EINVAL;
2557 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2558 if (!action)
2559 return -ENOMEM;
2561 action->handler = handler;
2562 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2563 | IRQF_NOBALANCING;
2564 action->name = name;
2565 action->percpu_dev_id = dev_id;
2567 retval = irq_chip_pm_get(&desc->irq_data);
2568 if (retval < 0)
2569 goto err_out;
2571 retval = __setup_irq(irq, desc, action);
2572 if (retval)
2573 goto err_irq_setup;
2575 raw_spin_lock_irqsave(&desc->lock, flags);
2576 desc->istate |= IRQS_NMI;
2577 raw_spin_unlock_irqrestore(&desc->lock, flags);
2579 return 0;
2581 err_irq_setup:
2582 irq_chip_pm_put(&desc->irq_data);
2583 err_out:
2584 kfree(action);
2586 return retval;
2590 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2591 * @irq: Interrupt line to prepare for NMI delivery
2593 * This call prepares an interrupt line to deliver NMI on the current CPU,
2594 * before that interrupt line gets enabled with enable_percpu_nmi().
2596 * As a CPU local operation, this should be called from non-preemptible
2597 * context.
2599 * If the interrupt line cannot be used to deliver NMIs, function
2600 * will fail returning a negative value.
2602 int prepare_percpu_nmi(unsigned int irq)
2604 unsigned long flags;
2605 struct irq_desc *desc;
2606 int ret = 0;
2608 WARN_ON(preemptible());
2610 desc = irq_get_desc_lock(irq, &flags,
2611 IRQ_GET_DESC_CHECK_PERCPU);
2612 if (!desc)
2613 return -EINVAL;
2615 if (WARN(!(desc->istate & IRQS_NMI),
2616 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2617 irq)) {
2618 ret = -EINVAL;
2619 goto out;
2622 ret = irq_nmi_setup(desc);
2623 if (ret) {
2624 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2625 goto out;
2628 out:
2629 irq_put_desc_unlock(desc, flags);
2630 return ret;
2634 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2635 * @irq: Interrupt line from which CPU local NMI configuration should be
2636 * removed
2638 * This call undoes the setup done by prepare_percpu_nmi().
2640 * IRQ line should not be enabled for the current CPU.
2642 * As a CPU local operation, this should be called from non-preemptible
2643 * context.
2645 void teardown_percpu_nmi(unsigned int irq)
2647 unsigned long flags;
2648 struct irq_desc *desc;
2650 WARN_ON(preemptible());
2652 desc = irq_get_desc_lock(irq, &flags,
2653 IRQ_GET_DESC_CHECK_PERCPU);
2654 if (!desc)
2655 return;
2657 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2658 goto out;
2660 irq_nmi_teardown(desc);
2661 out:
2662 irq_put_desc_unlock(desc, flags);
2665 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2666 bool *state)
2668 struct irq_chip *chip;
2669 int err = -EINVAL;
2671 do {
2672 chip = irq_data_get_irq_chip(data);
2673 if (chip->irq_get_irqchip_state)
2674 break;
2675 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2676 data = data->parent_data;
2677 #else
2678 data = NULL;
2679 #endif
2680 } while (data);
2682 if (data)
2683 err = chip->irq_get_irqchip_state(data, which, state);
2684 return err;
2688 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2689 * @irq: Interrupt line that is forwarded to a VM
2690 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2691 * @state: a pointer to a boolean where the state is to be storeed
2693 * This call snapshots the internal irqchip state of an
2694 * interrupt, returning into @state the bit corresponding to
2695 * stage @which
2697 * This function should be called with preemption disabled if the
2698 * interrupt controller has per-cpu registers.
2700 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2701 bool *state)
2703 struct irq_desc *desc;
2704 struct irq_data *data;
2705 unsigned long flags;
2706 int err = -EINVAL;
2708 desc = irq_get_desc_buslock(irq, &flags, 0);
2709 if (!desc)
2710 return err;
2712 data = irq_desc_get_irq_data(desc);
2714 err = __irq_get_irqchip_state(data, which, state);
2716 irq_put_desc_busunlock(desc, flags);
2717 return err;
2719 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2722 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2723 * @irq: Interrupt line that is forwarded to a VM
2724 * @which: State to be restored (one of IRQCHIP_STATE_*)
2725 * @val: Value corresponding to @which
2727 * This call sets the internal irqchip state of an interrupt,
2728 * depending on the value of @which.
2730 * This function should be called with preemption disabled if the
2731 * interrupt controller has per-cpu registers.
2733 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2734 bool val)
2736 struct irq_desc *desc;
2737 struct irq_data *data;
2738 struct irq_chip *chip;
2739 unsigned long flags;
2740 int err = -EINVAL;
2742 desc = irq_get_desc_buslock(irq, &flags, 0);
2743 if (!desc)
2744 return err;
2746 data = irq_desc_get_irq_data(desc);
2748 do {
2749 chip = irq_data_get_irq_chip(data);
2750 if (chip->irq_set_irqchip_state)
2751 break;
2752 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2753 data = data->parent_data;
2754 #else
2755 data = NULL;
2756 #endif
2757 } while (data);
2759 if (data)
2760 err = chip->irq_set_irqchip_state(data, which, val);
2762 irq_put_desc_busunlock(desc, flags);
2763 return err;
2765 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);