1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
4 * Written by David Howells (dhowells@redhat.com).
5 * Derived from asm-i386/semaphore.h
7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8 * and Michel Lespinasse <walken@google.com>
10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
14 * Waiman Long <longman@redhat.com> and
15 * Peter Zijlstra <peterz@infradead.org>.
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
32 #include "lock_events.h"
35 * The least significant 3 bits of the owner value has the following
37 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38 * - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock.
39 * - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock.
41 * When the rwsem is either owned by an anonymous writer, or it is
42 * reader-owned, but a spinning writer has timed out, both nonspinnable
43 * bits will be set to disable optimistic spinning by readers and writers.
44 * In the later case, the last unlocking reader should then check the
45 * writer nonspinnable bit and clear it only to give writers preference
46 * to acquire the lock via optimistic spinning, but not readers. Similar
47 * action is also done in the reader slowpath.
49 * When a writer acquires a rwsem, it puts its task_struct pointer
50 * into the owner field. It is cleared after an unlock.
52 * When a reader acquires a rwsem, it will also puts its task_struct
53 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
54 * On unlock, the owner field will largely be left untouched. So
55 * for a free or reader-owned rwsem, the owner value may contain
56 * information about the last reader that acquires the rwsem.
58 * That information may be helpful in debugging cases where the system
59 * seems to hang on a reader owned rwsem especially if only one reader
60 * is involved. Ideally we would like to track all the readers that own
61 * a rwsem, but the overhead is simply too big.
63 * Reader optimistic spinning is helpful when the reader critical section
64 * is short and there aren't that many readers around. It makes readers
65 * relatively more preferred than writers. When a writer times out spinning
66 * on a reader-owned lock and set the nospinnable bits, there are two main
69 * 1) The reader critical section is long, perhaps the task sleeps after
70 * acquiring the read lock.
71 * 2) There are just too many readers contending the lock causing it to
72 * take a while to service all of them.
74 * In the former case, long reader critical section will impede the progress
75 * of writers which is usually more important for system performance. In
76 * the later case, reader optimistic spinning tends to make the reader
77 * groups that contain readers that acquire the lock together smaller
78 * leading to more of them. That may hurt performance in some cases. In
79 * other words, the setting of nonspinnable bits indicates that reader
80 * optimistic spinning may not be helpful for those workloads that cause
83 * Therefore, any writers that had observed the setting of the writer
84 * nonspinnable bit for a given rwsem after they fail to acquire the lock
85 * via optimistic spinning will set the reader nonspinnable bit once they
86 * acquire the write lock. Similarly, readers that observe the setting
87 * of reader nonspinnable bit at slowpath entry will set the reader
88 * nonspinnable bits when they acquire the read lock via the wakeup path.
90 * Once the reader nonspinnable bit is on, it will only be reset when
91 * a writer is able to acquire the rwsem in the fast path or somehow a
92 * reader or writer in the slowpath doesn't observe the nonspinable bit.
94 * This is to discourage reader optmistic spinning on that particular
95 * rwsem and make writers more preferred. This adaptive disabling of reader
96 * optimistic spinning will alleviate the negative side effect of this
99 #define RWSEM_READER_OWNED (1UL << 0)
100 #define RWSEM_RD_NONSPINNABLE (1UL << 1)
101 #define RWSEM_WR_NONSPINNABLE (1UL << 2)
102 #define RWSEM_NONSPINNABLE (RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE)
103 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
105 #ifdef CONFIG_DEBUG_RWSEMS
106 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \
107 if (!debug_locks_silent && \
108 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
109 #c, atomic_long_read(&(sem)->count), \
110 (unsigned long) sem->magic, \
111 atomic_long_read(&(sem)->owner), (long)current, \
112 list_empty(&(sem)->wait_list) ? "" : "not ")) \
116 # define DEBUG_RWSEMS_WARN_ON(c, sem)
120 * On 64-bit architectures, the bit definitions of the count are:
122 * Bit 0 - writer locked bit
123 * Bit 1 - waiters present bit
124 * Bit 2 - lock handoff bit
125 * Bits 3-7 - reserved
126 * Bits 8-62 - 55-bit reader count
127 * Bit 63 - read fail bit
129 * On 32-bit architectures, the bit definitions of the count are:
131 * Bit 0 - writer locked bit
132 * Bit 1 - waiters present bit
133 * Bit 2 - lock handoff bit
134 * Bits 3-7 - reserved
135 * Bits 8-30 - 23-bit reader count
136 * Bit 31 - read fail bit
138 * It is not likely that the most significant bit (read fail bit) will ever
139 * be set. This guard bit is still checked anyway in the down_read() fastpath
140 * just in case we need to use up more of the reader bits for other purpose
143 * atomic_long_fetch_add() is used to obtain reader lock, whereas
144 * atomic_long_cmpxchg() will be used to obtain writer lock.
146 * There are three places where the lock handoff bit may be set or cleared.
147 * 1) rwsem_mark_wake() for readers.
148 * 2) rwsem_try_write_lock() for writers.
149 * 3) Error path of rwsem_down_write_slowpath().
151 * For all the above cases, wait_lock will be held. A writer must also
152 * be the first one in the wait_list to be eligible for setting the handoff
153 * bit. So concurrent setting/clearing of handoff bit is not possible.
155 #define RWSEM_WRITER_LOCKED (1UL << 0)
156 #define RWSEM_FLAG_WAITERS (1UL << 1)
157 #define RWSEM_FLAG_HANDOFF (1UL << 2)
158 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1))
160 #define RWSEM_READER_SHIFT 8
161 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT)
162 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1))
163 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED
164 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
165 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
166 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
169 * All writes to owner are protected by WRITE_ONCE() to make sure that
170 * store tearing can't happen as optimistic spinners may read and use
171 * the owner value concurrently without lock. Read from owner, however,
172 * may not need READ_ONCE() as long as the pointer value is only used
173 * for comparison and isn't being dereferenced.
175 static inline void rwsem_set_owner(struct rw_semaphore
*sem
)
177 atomic_long_set(&sem
->owner
, (long)current
);
180 static inline void rwsem_clear_owner(struct rw_semaphore
*sem
)
182 atomic_long_set(&sem
->owner
, 0);
186 * Test the flags in the owner field.
188 static inline bool rwsem_test_oflags(struct rw_semaphore
*sem
, long flags
)
190 return atomic_long_read(&sem
->owner
) & flags
;
194 * The task_struct pointer of the last owning reader will be left in
197 * Note that the owner value just indicates the task has owned the rwsem
198 * previously, it may not be the real owner or one of the real owners
199 * anymore when that field is examined, so take it with a grain of salt.
201 * The reader non-spinnable bit is preserved.
203 static inline void __rwsem_set_reader_owned(struct rw_semaphore
*sem
,
204 struct task_struct
*owner
)
206 unsigned long val
= (unsigned long)owner
| RWSEM_READER_OWNED
|
207 (atomic_long_read(&sem
->owner
) & RWSEM_RD_NONSPINNABLE
);
209 atomic_long_set(&sem
->owner
, val
);
212 static inline void rwsem_set_reader_owned(struct rw_semaphore
*sem
)
214 __rwsem_set_reader_owned(sem
, current
);
218 * Return true if the rwsem is owned by a reader.
220 static inline bool is_rwsem_reader_owned(struct rw_semaphore
*sem
)
222 #ifdef CONFIG_DEBUG_RWSEMS
224 * Check the count to see if it is write-locked.
226 long count
= atomic_long_read(&sem
->count
);
228 if (count
& RWSEM_WRITER_MASK
)
231 return rwsem_test_oflags(sem
, RWSEM_READER_OWNED
);
234 #ifdef CONFIG_DEBUG_RWSEMS
236 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
237 * is a task pointer in owner of a reader-owned rwsem, it will be the
238 * real owner or one of the real owners. The only exception is when the
239 * unlock is done by up_read_non_owner().
241 static inline void rwsem_clear_reader_owned(struct rw_semaphore
*sem
)
243 unsigned long val
= atomic_long_read(&sem
->owner
);
245 while ((val
& ~RWSEM_OWNER_FLAGS_MASK
) == (unsigned long)current
) {
246 if (atomic_long_try_cmpxchg(&sem
->owner
, &val
,
247 val
& RWSEM_OWNER_FLAGS_MASK
))
252 static inline void rwsem_clear_reader_owned(struct rw_semaphore
*sem
)
258 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
259 * remains set. Otherwise, the operation will be aborted.
261 static inline void rwsem_set_nonspinnable(struct rw_semaphore
*sem
)
263 unsigned long owner
= atomic_long_read(&sem
->owner
);
266 if (!(owner
& RWSEM_READER_OWNED
))
268 if (owner
& RWSEM_NONSPINNABLE
)
270 } while (!atomic_long_try_cmpxchg(&sem
->owner
, &owner
,
271 owner
| RWSEM_NONSPINNABLE
));
274 static inline bool rwsem_read_trylock(struct rw_semaphore
*sem
)
276 long cnt
= atomic_long_add_return_acquire(RWSEM_READER_BIAS
, &sem
->count
);
277 if (WARN_ON_ONCE(cnt
< 0))
278 rwsem_set_nonspinnable(sem
);
279 return !(cnt
& RWSEM_READ_FAILED_MASK
);
283 * Return just the real task structure pointer of the owner
285 static inline struct task_struct
*rwsem_owner(struct rw_semaphore
*sem
)
287 return (struct task_struct
*)
288 (atomic_long_read(&sem
->owner
) & ~RWSEM_OWNER_FLAGS_MASK
);
292 * Return the real task structure pointer of the owner and the embedded
293 * flags in the owner. pflags must be non-NULL.
295 static inline struct task_struct
*
296 rwsem_owner_flags(struct rw_semaphore
*sem
, unsigned long *pflags
)
298 unsigned long owner
= atomic_long_read(&sem
->owner
);
300 *pflags
= owner
& RWSEM_OWNER_FLAGS_MASK
;
301 return (struct task_struct
*)(owner
& ~RWSEM_OWNER_FLAGS_MASK
);
305 * Guide to the rw_semaphore's count field.
307 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
310 * The lock is owned by readers when
311 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
312 * (2) some of the reader bits are set in count, and
313 * (3) the owner field has RWSEM_READ_OWNED bit set.
315 * Having some reader bits set is not enough to guarantee a readers owned
316 * lock as the readers may be in the process of backing out from the count
317 * and a writer has just released the lock. So another writer may steal
318 * the lock immediately after that.
322 * Initialize an rwsem:
324 void __init_rwsem(struct rw_semaphore
*sem
, const char *name
,
325 struct lock_class_key
*key
)
327 #ifdef CONFIG_DEBUG_LOCK_ALLOC
329 * Make sure we are not reinitializing a held semaphore:
331 debug_check_no_locks_freed((void *)sem
, sizeof(*sem
));
332 lockdep_init_map(&sem
->dep_map
, name
, key
, 0);
334 #ifdef CONFIG_DEBUG_RWSEMS
337 atomic_long_set(&sem
->count
, RWSEM_UNLOCKED_VALUE
);
338 raw_spin_lock_init(&sem
->wait_lock
);
339 INIT_LIST_HEAD(&sem
->wait_list
);
340 atomic_long_set(&sem
->owner
, 0L);
341 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
342 osq_lock_init(&sem
->osq
);
345 EXPORT_SYMBOL(__init_rwsem
);
347 enum rwsem_waiter_type
{
348 RWSEM_WAITING_FOR_WRITE
,
349 RWSEM_WAITING_FOR_READ
352 struct rwsem_waiter
{
353 struct list_head list
;
354 struct task_struct
*task
;
355 enum rwsem_waiter_type type
;
356 unsigned long timeout
;
357 unsigned long last_rowner
;
359 #define rwsem_first_waiter(sem) \
360 list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
362 enum rwsem_wake_type
{
363 RWSEM_WAKE_ANY
, /* Wake whatever's at head of wait list */
364 RWSEM_WAKE_READERS
, /* Wake readers only */
365 RWSEM_WAKE_READ_OWNED
/* Waker thread holds the read lock */
368 enum writer_wait_state
{
369 WRITER_NOT_FIRST
, /* Writer is not first in wait list */
370 WRITER_FIRST
, /* Writer is first in wait list */
371 WRITER_HANDOFF
/* Writer is first & handoff needed */
375 * The typical HZ value is either 250 or 1000. So set the minimum waiting
376 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
377 * queue before initiating the handoff protocol.
379 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250)
382 * Magic number to batch-wakeup waiting readers, even when writers are
383 * also present in the queue. This both limits the amount of work the
384 * waking thread must do and also prevents any potential counter overflow,
387 #define MAX_READERS_WAKEUP 0x100
390 * handle the lock release when processes blocked on it that can now run
391 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
393 * - there must be someone on the queue
394 * - the wait_lock must be held by the caller
395 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
396 * to actually wakeup the blocked task(s) and drop the reference count,
397 * preferably when the wait_lock is released
398 * - woken process blocks are discarded from the list after having task zeroed
399 * - writers are only marked woken if downgrading is false
401 static void rwsem_mark_wake(struct rw_semaphore
*sem
,
402 enum rwsem_wake_type wake_type
,
403 struct wake_q_head
*wake_q
)
405 struct rwsem_waiter
*waiter
, *tmp
;
406 long oldcount
, woken
= 0, adjustment
= 0;
407 struct list_head wlist
;
409 lockdep_assert_held(&sem
->wait_lock
);
412 * Take a peek at the queue head waiter such that we can determine
413 * the wakeup(s) to perform.
415 waiter
= rwsem_first_waiter(sem
);
417 if (waiter
->type
== RWSEM_WAITING_FOR_WRITE
) {
418 if (wake_type
== RWSEM_WAKE_ANY
) {
420 * Mark writer at the front of the queue for wakeup.
421 * Until the task is actually later awoken later by
422 * the caller, other writers are able to steal it.
423 * Readers, on the other hand, will block as they
424 * will notice the queued writer.
426 wake_q_add(wake_q
, waiter
->task
);
427 lockevent_inc(rwsem_wake_writer
);
434 * No reader wakeup if there are too many of them already.
436 if (unlikely(atomic_long_read(&sem
->count
) < 0))
440 * Writers might steal the lock before we grant it to the next reader.
441 * We prefer to do the first reader grant before counting readers
442 * so we can bail out early if a writer stole the lock.
444 if (wake_type
!= RWSEM_WAKE_READ_OWNED
) {
445 struct task_struct
*owner
;
447 adjustment
= RWSEM_READER_BIAS
;
448 oldcount
= atomic_long_fetch_add(adjustment
, &sem
->count
);
449 if (unlikely(oldcount
& RWSEM_WRITER_MASK
)) {
451 * When we've been waiting "too" long (for writers
452 * to give up the lock), request a HANDOFF to
455 if (!(oldcount
& RWSEM_FLAG_HANDOFF
) &&
456 time_after(jiffies
, waiter
->timeout
)) {
457 adjustment
-= RWSEM_FLAG_HANDOFF
;
458 lockevent_inc(rwsem_rlock_handoff
);
461 atomic_long_add(-adjustment
, &sem
->count
);
465 * Set it to reader-owned to give spinners an early
466 * indication that readers now have the lock.
467 * The reader nonspinnable bit seen at slowpath entry of
468 * the reader is copied over.
470 owner
= waiter
->task
;
471 if (waiter
->last_rowner
& RWSEM_RD_NONSPINNABLE
) {
472 owner
= (void *)((unsigned long)owner
| RWSEM_RD_NONSPINNABLE
);
473 lockevent_inc(rwsem_opt_norspin
);
475 __rwsem_set_reader_owned(sem
, owner
);
479 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
480 * queue. We know that the woken will be at least 1 as we accounted
481 * for above. Note we increment the 'active part' of the count by the
482 * number of readers before waking any processes up.
484 * This is an adaptation of the phase-fair R/W locks where at the
485 * reader phase (first waiter is a reader), all readers are eligible
486 * to acquire the lock at the same time irrespective of their order
487 * in the queue. The writers acquire the lock according to their
488 * order in the queue.
490 * We have to do wakeup in 2 passes to prevent the possibility that
491 * the reader count may be decremented before it is incremented. It
492 * is because the to-be-woken waiter may not have slept yet. So it
493 * may see waiter->task got cleared, finish its critical section and
494 * do an unlock before the reader count increment.
496 * 1) Collect the read-waiters in a separate list, count them and
497 * fully increment the reader count in rwsem.
498 * 2) For each waiters in the new list, clear waiter->task and
499 * put them into wake_q to be woken up later.
501 INIT_LIST_HEAD(&wlist
);
502 list_for_each_entry_safe(waiter
, tmp
, &sem
->wait_list
, list
) {
503 if (waiter
->type
== RWSEM_WAITING_FOR_WRITE
)
507 list_move_tail(&waiter
->list
, &wlist
);
510 * Limit # of readers that can be woken up per wakeup call.
512 if (woken
>= MAX_READERS_WAKEUP
)
516 adjustment
= woken
* RWSEM_READER_BIAS
- adjustment
;
517 lockevent_cond_inc(rwsem_wake_reader
, woken
);
518 if (list_empty(&sem
->wait_list
)) {
519 /* hit end of list above */
520 adjustment
-= RWSEM_FLAG_WAITERS
;
524 * When we've woken a reader, we no longer need to force writers
525 * to give up the lock and we can clear HANDOFF.
527 if (woken
&& (atomic_long_read(&sem
->count
) & RWSEM_FLAG_HANDOFF
))
528 adjustment
-= RWSEM_FLAG_HANDOFF
;
531 atomic_long_add(adjustment
, &sem
->count
);
534 list_for_each_entry_safe(waiter
, tmp
, &wlist
, list
) {
535 struct task_struct
*tsk
;
538 get_task_struct(tsk
);
541 * Ensure calling get_task_struct() before setting the reader
542 * waiter to nil such that rwsem_down_read_slowpath() cannot
543 * race with do_exit() by always holding a reference count
544 * to the task to wakeup.
546 smp_store_release(&waiter
->task
, NULL
);
548 * Ensure issuing the wakeup (either by us or someone else)
549 * after setting the reader waiter to nil.
551 wake_q_add_safe(wake_q
, tsk
);
556 * This function must be called with the sem->wait_lock held to prevent
557 * race conditions between checking the rwsem wait list and setting the
558 * sem->count accordingly.
560 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
561 * bit is set or the lock is acquired with handoff bit cleared.
563 static inline bool rwsem_try_write_lock(struct rw_semaphore
*sem
,
564 enum writer_wait_state wstate
)
568 lockdep_assert_held(&sem
->wait_lock
);
570 count
= atomic_long_read(&sem
->count
);
572 bool has_handoff
= !!(count
& RWSEM_FLAG_HANDOFF
);
574 if (has_handoff
&& wstate
== WRITER_NOT_FIRST
)
579 if (count
& RWSEM_LOCK_MASK
) {
580 if (has_handoff
|| (wstate
!= WRITER_HANDOFF
))
583 new |= RWSEM_FLAG_HANDOFF
;
585 new |= RWSEM_WRITER_LOCKED
;
586 new &= ~RWSEM_FLAG_HANDOFF
;
588 if (list_is_singular(&sem
->wait_list
))
589 new &= ~RWSEM_FLAG_WAITERS
;
591 } while (!atomic_long_try_cmpxchg_acquire(&sem
->count
, &count
, new));
594 * We have either acquired the lock with handoff bit cleared or
595 * set the handoff bit.
597 if (new & RWSEM_FLAG_HANDOFF
)
600 rwsem_set_owner(sem
);
604 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
606 * Try to acquire read lock before the reader is put on wait queue.
607 * Lock acquisition isn't allowed if the rwsem is locked or a writer handoff
610 static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore
*sem
)
612 long count
= atomic_long_read(&sem
->count
);
614 if (count
& (RWSEM_WRITER_MASK
| RWSEM_FLAG_HANDOFF
))
617 count
= atomic_long_fetch_add_acquire(RWSEM_READER_BIAS
, &sem
->count
);
618 if (!(count
& (RWSEM_WRITER_MASK
| RWSEM_FLAG_HANDOFF
))) {
619 rwsem_set_reader_owned(sem
);
620 lockevent_inc(rwsem_opt_rlock
);
624 /* Back out the change */
625 atomic_long_add(-RWSEM_READER_BIAS
, &sem
->count
);
630 * Try to acquire write lock before the writer has been put on wait queue.
632 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore
*sem
)
634 long count
= atomic_long_read(&sem
->count
);
636 while (!(count
& (RWSEM_LOCK_MASK
|RWSEM_FLAG_HANDOFF
))) {
637 if (atomic_long_try_cmpxchg_acquire(&sem
->count
, &count
,
638 count
| RWSEM_WRITER_LOCKED
)) {
639 rwsem_set_owner(sem
);
640 lockevent_inc(rwsem_opt_wlock
);
647 static inline bool owner_on_cpu(struct task_struct
*owner
)
650 * As lock holder preemption issue, we both skip spinning if
651 * task is not on cpu or its cpu is preempted
653 return owner
->on_cpu
&& !vcpu_is_preempted(task_cpu(owner
));
656 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore
*sem
,
657 unsigned long nonspinnable
)
659 struct task_struct
*owner
;
663 BUILD_BUG_ON(!(RWSEM_OWNER_UNKNOWN
& RWSEM_NONSPINNABLE
));
665 if (need_resched()) {
666 lockevent_inc(rwsem_opt_fail
);
672 owner
= rwsem_owner_flags(sem
, &flags
);
674 * Don't check the read-owner as the entry may be stale.
676 if ((flags
& nonspinnable
) ||
677 (owner
&& !(flags
& RWSEM_READER_OWNED
) && !owner_on_cpu(owner
)))
682 lockevent_cond_inc(rwsem_opt_fail
, !ret
);
687 * The rwsem_spin_on_owner() function returns the folowing 4 values
688 * depending on the lock owner state.
689 * OWNER_NULL : owner is currently NULL
690 * OWNER_WRITER: when owner changes and is a writer
691 * OWNER_READER: when owner changes and the new owner may be a reader.
692 * OWNER_NONSPINNABLE:
693 * when optimistic spinning has to stop because either the
694 * owner stops running, is unknown, or its timeslice has
699 OWNER_WRITER
= 1 << 1,
700 OWNER_READER
= 1 << 2,
701 OWNER_NONSPINNABLE
= 1 << 3,
703 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER)
705 static inline enum owner_state
706 rwsem_owner_state(struct task_struct
*owner
, unsigned long flags
, unsigned long nonspinnable
)
708 if (flags
& nonspinnable
)
709 return OWNER_NONSPINNABLE
;
711 if (flags
& RWSEM_READER_OWNED
)
714 return owner
? OWNER_WRITER
: OWNER_NULL
;
717 static noinline
enum owner_state
718 rwsem_spin_on_owner(struct rw_semaphore
*sem
, unsigned long nonspinnable
)
720 struct task_struct
*new, *owner
;
721 unsigned long flags
, new_flags
;
722 enum owner_state state
;
724 owner
= rwsem_owner_flags(sem
, &flags
);
725 state
= rwsem_owner_state(owner
, flags
, nonspinnable
);
726 if (state
!= OWNER_WRITER
)
732 * When a waiting writer set the handoff flag, it may spin
733 * on the owner as well. Once that writer acquires the lock,
734 * we can spin on it. So we don't need to quit even when the
735 * handoff bit is set.
737 new = rwsem_owner_flags(sem
, &new_flags
);
738 if ((new != owner
) || (new_flags
!= flags
)) {
739 state
= rwsem_owner_state(new, new_flags
, nonspinnable
);
744 * Ensure we emit the owner->on_cpu, dereference _after_
745 * checking sem->owner still matches owner, if that fails,
746 * owner might point to free()d memory, if it still matches,
747 * the rcu_read_lock() ensures the memory stays valid.
751 if (need_resched() || !owner_on_cpu(owner
)) {
752 state
= OWNER_NONSPINNABLE
;
764 * Calculate reader-owned rwsem spinning threshold for writer
766 * The more readers own the rwsem, the longer it will take for them to
767 * wind down and free the rwsem. So the empirical formula used to
768 * determine the actual spinning time limit here is:
770 * Spinning threshold = (10 + nr_readers/2)us
772 * The limit is capped to a maximum of 25us (30 readers). This is just
773 * a heuristic and is subjected to change in the future.
775 static inline u64
rwsem_rspin_threshold(struct rw_semaphore
*sem
)
777 long count
= atomic_long_read(&sem
->count
);
778 int readers
= count
>> RWSEM_READER_SHIFT
;
783 delta
= (20 + readers
) * NSEC_PER_USEC
/ 2;
785 return sched_clock() + delta
;
788 static bool rwsem_optimistic_spin(struct rw_semaphore
*sem
, bool wlock
)
791 int prev_owner_state
= OWNER_NULL
;
793 u64 rspin_threshold
= 0;
794 unsigned long nonspinnable
= wlock
? RWSEM_WR_NONSPINNABLE
795 : RWSEM_RD_NONSPINNABLE
;
799 /* sem->wait_lock should not be held when doing optimistic spinning */
800 if (!osq_lock(&sem
->osq
))
804 * Optimistically spin on the owner field and attempt to acquire the
805 * lock whenever the owner changes. Spinning will be stopped when:
806 * 1) the owning writer isn't running; or
807 * 2) readers own the lock and spinning time has exceeded limit.
810 enum owner_state owner_state
;
812 owner_state
= rwsem_spin_on_owner(sem
, nonspinnable
);
813 if (!(owner_state
& OWNER_SPINNABLE
))
817 * Try to acquire the lock
819 taken
= wlock
? rwsem_try_write_lock_unqueued(sem
)
820 : rwsem_try_read_lock_unqueued(sem
);
826 * Time-based reader-owned rwsem optimistic spinning
828 if (wlock
&& (owner_state
== OWNER_READER
)) {
830 * Re-initialize rspin_threshold every time when
831 * the owner state changes from non-reader to reader.
832 * This allows a writer to steal the lock in between
833 * 2 reader phases and have the threshold reset at
834 * the beginning of the 2nd reader phase.
836 if (prev_owner_state
!= OWNER_READER
) {
837 if (rwsem_test_oflags(sem
, nonspinnable
))
839 rspin_threshold
= rwsem_rspin_threshold(sem
);
844 * Check time threshold once every 16 iterations to
845 * avoid calling sched_clock() too frequently so
846 * as to reduce the average latency between the times
847 * when the lock becomes free and when the spinner
848 * is ready to do a trylock.
850 else if (!(++loop
& 0xf) && (sched_clock() > rspin_threshold
)) {
851 rwsem_set_nonspinnable(sem
);
852 lockevent_inc(rwsem_opt_nospin
);
858 * An RT task cannot do optimistic spinning if it cannot
859 * be sure the lock holder is running or live-lock may
860 * happen if the current task and the lock holder happen
861 * to run in the same CPU. However, aborting optimistic
862 * spinning while a NULL owner is detected may miss some
863 * opportunity where spinning can continue without causing
866 * There are 2 possible cases where an RT task may be able
867 * to continue spinning.
869 * 1) The lock owner is in the process of releasing the
870 * lock, sem->owner is cleared but the lock has not
872 * 2) The lock was free and owner cleared, but another
873 * task just comes in and acquire the lock before
874 * we try to get it. The new owner may be a spinnable
877 * To take advantage of two scenarios listed agove, the RT
878 * task is made to retry one more time to see if it can
879 * acquire the lock or continue spinning on the new owning
880 * writer. Of course, if the time lag is long enough or the
881 * new owner is not a writer or spinnable, the RT task will
884 * If the owner is a writer, the need_resched() check is
885 * done inside rwsem_spin_on_owner(). If the owner is not
886 * a writer, need_resched() check needs to be done here.
888 if (owner_state
!= OWNER_WRITER
) {
891 if (rt_task(current
) &&
892 (prev_owner_state
!= OWNER_WRITER
))
895 prev_owner_state
= owner_state
;
898 * The cpu_relax() call is a compiler barrier which forces
899 * everything in this loop to be re-loaded. We don't need
900 * memory barriers as we'll eventually observe the right
901 * values at the cost of a few extra spins.
905 osq_unlock(&sem
->osq
);
908 lockevent_cond_inc(rwsem_opt_fail
, !taken
);
913 * Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should
914 * only be called when the reader count reaches 0.
916 * This give writers better chance to acquire the rwsem first before
917 * readers when the rwsem was being held by readers for a relatively long
918 * period of time. Race can happen that an optimistic spinner may have
919 * just stolen the rwsem and set the owner, but just clearing the
920 * RWSEM_WR_NONSPINNABLE bit will do no harm anyway.
922 static inline void clear_wr_nonspinnable(struct rw_semaphore
*sem
)
924 if (rwsem_test_oflags(sem
, RWSEM_WR_NONSPINNABLE
))
925 atomic_long_andnot(RWSEM_WR_NONSPINNABLE
, &sem
->owner
);
929 * This function is called when the reader fails to acquire the lock via
930 * optimistic spinning. In this case we will still attempt to do a trylock
931 * when comparing the rwsem state right now with the state when entering
932 * the slowpath indicates that the reader is still in a valid reader phase.
933 * This happens when the following conditions are true:
935 * 1) The lock is currently reader owned, and
936 * 2) The lock is previously not reader-owned or the last read owner changes.
938 * In the former case, we have transitioned from a writer phase to a
939 * reader-phase while spinning. In the latter case, it means the reader
940 * phase hasn't ended when we entered the optimistic spinning loop. In
941 * both cases, the reader is eligible to acquire the lock. This is the
942 * secondary path where a read lock is acquired optimistically.
944 * The reader non-spinnable bit wasn't set at time of entry or it will
945 * not be here at all.
947 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore
*sem
,
948 unsigned long last_rowner
)
950 unsigned long owner
= atomic_long_read(&sem
->owner
);
952 if (!(owner
& RWSEM_READER_OWNED
))
955 if (((owner
^ last_rowner
) & ~RWSEM_OWNER_FLAGS_MASK
) &&
956 rwsem_try_read_lock_unqueued(sem
)) {
957 lockevent_inc(rwsem_opt_rlock2
);
958 lockevent_add(rwsem_opt_fail
, -1);
964 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore
*sem
,
965 unsigned long nonspinnable
)
970 static inline bool rwsem_optimistic_spin(struct rw_semaphore
*sem
, bool wlock
)
975 static inline void clear_wr_nonspinnable(struct rw_semaphore
*sem
) { }
977 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore
*sem
,
978 unsigned long last_rowner
)
984 rwsem_spin_on_owner(struct rw_semaphore
*sem
, unsigned long nonspinnable
)
992 * Wait for the read lock to be granted
994 static struct rw_semaphore __sched
*
995 rwsem_down_read_slowpath(struct rw_semaphore
*sem
, int state
)
997 long count
, adjustment
= -RWSEM_READER_BIAS
;
998 struct rwsem_waiter waiter
;
999 DEFINE_WAKE_Q(wake_q
);
1003 * Save the current read-owner of rwsem, if available, and the
1004 * reader nonspinnable bit.
1006 waiter
.last_rowner
= atomic_long_read(&sem
->owner
);
1007 if (!(waiter
.last_rowner
& RWSEM_READER_OWNED
))
1008 waiter
.last_rowner
&= RWSEM_RD_NONSPINNABLE
;
1010 if (!rwsem_can_spin_on_owner(sem
, RWSEM_RD_NONSPINNABLE
))
1014 * Undo read bias from down_read() and do optimistic spinning.
1016 atomic_long_add(-RWSEM_READER_BIAS
, &sem
->count
);
1018 if (rwsem_optimistic_spin(sem
, false)) {
1019 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1021 * Wake up other readers in the wait list if the front
1022 * waiter is a reader.
1024 if ((atomic_long_read(&sem
->count
) & RWSEM_FLAG_WAITERS
)) {
1025 raw_spin_lock_irq(&sem
->wait_lock
);
1026 if (!list_empty(&sem
->wait_list
))
1027 rwsem_mark_wake(sem
, RWSEM_WAKE_READ_OWNED
,
1029 raw_spin_unlock_irq(&sem
->wait_lock
);
1033 } else if (rwsem_reader_phase_trylock(sem
, waiter
.last_rowner
)) {
1034 /* rwsem_reader_phase_trylock() implies ACQUIRE on success */
1039 waiter
.task
= current
;
1040 waiter
.type
= RWSEM_WAITING_FOR_READ
;
1041 waiter
.timeout
= jiffies
+ RWSEM_WAIT_TIMEOUT
;
1043 raw_spin_lock_irq(&sem
->wait_lock
);
1044 if (list_empty(&sem
->wait_list
)) {
1046 * In case the wait queue is empty and the lock isn't owned
1047 * by a writer or has the handoff bit set, this reader can
1048 * exit the slowpath and return immediately as its
1049 * RWSEM_READER_BIAS has already been set in the count.
1051 if (adjustment
&& !(atomic_long_read(&sem
->count
) &
1052 (RWSEM_WRITER_MASK
| RWSEM_FLAG_HANDOFF
))) {
1053 /* Provide lock ACQUIRE */
1054 smp_acquire__after_ctrl_dep();
1055 raw_spin_unlock_irq(&sem
->wait_lock
);
1056 rwsem_set_reader_owned(sem
);
1057 lockevent_inc(rwsem_rlock_fast
);
1060 adjustment
+= RWSEM_FLAG_WAITERS
;
1062 list_add_tail(&waiter
.list
, &sem
->wait_list
);
1064 /* we're now waiting on the lock, but no longer actively locking */
1066 count
= atomic_long_add_return(adjustment
, &sem
->count
);
1068 count
= atomic_long_read(&sem
->count
);
1071 * If there are no active locks, wake the front queued process(es).
1073 * If there are no writers and we are first in the queue,
1074 * wake our own waiter to join the existing active readers !
1076 if (!(count
& RWSEM_LOCK_MASK
)) {
1077 clear_wr_nonspinnable(sem
);
1080 if (wake
|| (!(count
& RWSEM_WRITER_MASK
) &&
1081 (adjustment
& RWSEM_FLAG_WAITERS
)))
1082 rwsem_mark_wake(sem
, RWSEM_WAKE_ANY
, &wake_q
);
1084 raw_spin_unlock_irq(&sem
->wait_lock
);
1087 /* wait to be given the lock */
1089 set_current_state(state
);
1090 if (!smp_load_acquire(&waiter
.task
)) {
1091 /* Matches rwsem_mark_wake()'s smp_store_release(). */
1094 if (signal_pending_state(state
, current
)) {
1095 raw_spin_lock_irq(&sem
->wait_lock
);
1098 raw_spin_unlock_irq(&sem
->wait_lock
);
1099 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1103 lockevent_inc(rwsem_sleep_reader
);
1106 __set_current_state(TASK_RUNNING
);
1107 lockevent_inc(rwsem_rlock
);
1111 list_del(&waiter
.list
);
1112 if (list_empty(&sem
->wait_list
)) {
1113 atomic_long_andnot(RWSEM_FLAG_WAITERS
|RWSEM_FLAG_HANDOFF
,
1116 raw_spin_unlock_irq(&sem
->wait_lock
);
1117 __set_current_state(TASK_RUNNING
);
1118 lockevent_inc(rwsem_rlock_fail
);
1119 return ERR_PTR(-EINTR
);
1123 * This function is called by the a write lock owner. So the owner value
1124 * won't get changed by others.
1126 static inline void rwsem_disable_reader_optspin(struct rw_semaphore
*sem
,
1129 if (unlikely(disable
)) {
1130 atomic_long_or(RWSEM_RD_NONSPINNABLE
, &sem
->owner
);
1131 lockevent_inc(rwsem_opt_norspin
);
1136 * Wait until we successfully acquire the write lock
1138 static struct rw_semaphore
*
1139 rwsem_down_write_slowpath(struct rw_semaphore
*sem
, int state
)
1143 enum writer_wait_state wstate
;
1144 struct rwsem_waiter waiter
;
1145 struct rw_semaphore
*ret
= sem
;
1146 DEFINE_WAKE_Q(wake_q
);
1148 /* do optimistic spinning and steal lock if possible */
1149 if (rwsem_can_spin_on_owner(sem
, RWSEM_WR_NONSPINNABLE
) &&
1150 rwsem_optimistic_spin(sem
, true)) {
1151 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1156 * Disable reader optimistic spinning for this rwsem after
1157 * acquiring the write lock when the setting of the nonspinnable
1158 * bits are observed.
1160 disable_rspin
= atomic_long_read(&sem
->owner
) & RWSEM_NONSPINNABLE
;
1163 * Optimistic spinning failed, proceed to the slowpath
1164 * and block until we can acquire the sem.
1166 waiter
.task
= current
;
1167 waiter
.type
= RWSEM_WAITING_FOR_WRITE
;
1168 waiter
.timeout
= jiffies
+ RWSEM_WAIT_TIMEOUT
;
1170 raw_spin_lock_irq(&sem
->wait_lock
);
1172 /* account for this before adding a new element to the list */
1173 wstate
= list_empty(&sem
->wait_list
) ? WRITER_FIRST
: WRITER_NOT_FIRST
;
1175 list_add_tail(&waiter
.list
, &sem
->wait_list
);
1177 /* we're now waiting on the lock */
1178 if (wstate
== WRITER_NOT_FIRST
) {
1179 count
= atomic_long_read(&sem
->count
);
1182 * If there were already threads queued before us and:
1183 * 1) there are no no active locks, wake the front
1184 * queued process(es) as the handoff bit might be set.
1185 * 2) there are no active writers and some readers, the lock
1186 * must be read owned; so we try to wake any read lock
1187 * waiters that were queued ahead of us.
1189 if (count
& RWSEM_WRITER_MASK
)
1192 rwsem_mark_wake(sem
, (count
& RWSEM_READER_MASK
)
1193 ? RWSEM_WAKE_READERS
1194 : RWSEM_WAKE_ANY
, &wake_q
);
1196 if (!wake_q_empty(&wake_q
)) {
1198 * We want to minimize wait_lock hold time especially
1199 * when a large number of readers are to be woken up.
1201 raw_spin_unlock_irq(&sem
->wait_lock
);
1203 wake_q_init(&wake_q
); /* Used again, reinit */
1204 raw_spin_lock_irq(&sem
->wait_lock
);
1207 atomic_long_or(RWSEM_FLAG_WAITERS
, &sem
->count
);
1211 /* wait until we successfully acquire the lock */
1212 set_current_state(state
);
1214 if (rwsem_try_write_lock(sem
, wstate
)) {
1215 /* rwsem_try_write_lock() implies ACQUIRE on success */
1219 raw_spin_unlock_irq(&sem
->wait_lock
);
1222 * After setting the handoff bit and failing to acquire
1223 * the lock, attempt to spin on owner to accelerate lock
1224 * transfer. If the previous owner is a on-cpu writer and it
1225 * has just released the lock, OWNER_NULL will be returned.
1226 * In this case, we attempt to acquire the lock again
1229 if (wstate
== WRITER_HANDOFF
&&
1230 rwsem_spin_on_owner(sem
, RWSEM_NONSPINNABLE
) == OWNER_NULL
)
1233 /* Block until there are no active lockers. */
1235 if (signal_pending_state(state
, current
))
1239 lockevent_inc(rwsem_sleep_writer
);
1240 set_current_state(state
);
1242 * If HANDOFF bit is set, unconditionally do
1245 if (wstate
== WRITER_HANDOFF
)
1248 if ((wstate
== WRITER_NOT_FIRST
) &&
1249 (rwsem_first_waiter(sem
) == &waiter
))
1250 wstate
= WRITER_FIRST
;
1252 count
= atomic_long_read(&sem
->count
);
1253 if (!(count
& RWSEM_LOCK_MASK
))
1257 * The setting of the handoff bit is deferred
1258 * until rwsem_try_write_lock() is called.
1260 if ((wstate
== WRITER_FIRST
) && (rt_task(current
) ||
1261 time_after(jiffies
, waiter
.timeout
))) {
1262 wstate
= WRITER_HANDOFF
;
1263 lockevent_inc(rwsem_wlock_handoff
);
1268 raw_spin_lock_irq(&sem
->wait_lock
);
1270 __set_current_state(TASK_RUNNING
);
1271 list_del(&waiter
.list
);
1272 rwsem_disable_reader_optspin(sem
, disable_rspin
);
1273 raw_spin_unlock_irq(&sem
->wait_lock
);
1274 lockevent_inc(rwsem_wlock
);
1279 __set_current_state(TASK_RUNNING
);
1280 raw_spin_lock_irq(&sem
->wait_lock
);
1281 list_del(&waiter
.list
);
1283 if (unlikely(wstate
== WRITER_HANDOFF
))
1284 atomic_long_add(-RWSEM_FLAG_HANDOFF
, &sem
->count
);
1286 if (list_empty(&sem
->wait_list
))
1287 atomic_long_andnot(RWSEM_FLAG_WAITERS
, &sem
->count
);
1289 rwsem_mark_wake(sem
, RWSEM_WAKE_ANY
, &wake_q
);
1290 raw_spin_unlock_irq(&sem
->wait_lock
);
1292 lockevent_inc(rwsem_wlock_fail
);
1294 return ERR_PTR(-EINTR
);
1298 * handle waking up a waiter on the semaphore
1299 * - up_read/up_write has decremented the active part of count if we come here
1301 static struct rw_semaphore
*rwsem_wake(struct rw_semaphore
*sem
, long count
)
1303 unsigned long flags
;
1304 DEFINE_WAKE_Q(wake_q
);
1306 raw_spin_lock_irqsave(&sem
->wait_lock
, flags
);
1308 if (!list_empty(&sem
->wait_list
))
1309 rwsem_mark_wake(sem
, RWSEM_WAKE_ANY
, &wake_q
);
1311 raw_spin_unlock_irqrestore(&sem
->wait_lock
, flags
);
1318 * downgrade a write lock into a read lock
1319 * - caller incremented waiting part of count and discovered it still negative
1320 * - just wake up any readers at the front of the queue
1322 static struct rw_semaphore
*rwsem_downgrade_wake(struct rw_semaphore
*sem
)
1324 unsigned long flags
;
1325 DEFINE_WAKE_Q(wake_q
);
1327 raw_spin_lock_irqsave(&sem
->wait_lock
, flags
);
1329 if (!list_empty(&sem
->wait_list
))
1330 rwsem_mark_wake(sem
, RWSEM_WAKE_READ_OWNED
, &wake_q
);
1332 raw_spin_unlock_irqrestore(&sem
->wait_lock
, flags
);
1341 inline void __down_read(struct rw_semaphore
*sem
)
1343 if (!rwsem_read_trylock(sem
)) {
1344 rwsem_down_read_slowpath(sem
, TASK_UNINTERRUPTIBLE
);
1345 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1347 rwsem_set_reader_owned(sem
);
1351 static inline int __down_read_killable(struct rw_semaphore
*sem
)
1353 if (!rwsem_read_trylock(sem
)) {
1354 if (IS_ERR(rwsem_down_read_slowpath(sem
, TASK_KILLABLE
)))
1356 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1358 rwsem_set_reader_owned(sem
);
1363 static inline int __down_read_trylock(struct rw_semaphore
*sem
)
1367 DEBUG_RWSEMS_WARN_ON(sem
->magic
!= sem
, sem
);
1370 * Optimize for the case when the rwsem is not locked at all.
1372 tmp
= RWSEM_UNLOCKED_VALUE
;
1374 if (atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
,
1375 tmp
+ RWSEM_READER_BIAS
)) {
1376 rwsem_set_reader_owned(sem
);
1379 } while (!(tmp
& RWSEM_READ_FAILED_MASK
));
1386 static inline void __down_write(struct rw_semaphore
*sem
)
1388 long tmp
= RWSEM_UNLOCKED_VALUE
;
1390 if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
,
1391 RWSEM_WRITER_LOCKED
)))
1392 rwsem_down_write_slowpath(sem
, TASK_UNINTERRUPTIBLE
);
1394 rwsem_set_owner(sem
);
1397 static inline int __down_write_killable(struct rw_semaphore
*sem
)
1399 long tmp
= RWSEM_UNLOCKED_VALUE
;
1401 if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
,
1402 RWSEM_WRITER_LOCKED
))) {
1403 if (IS_ERR(rwsem_down_write_slowpath(sem
, TASK_KILLABLE
)))
1406 rwsem_set_owner(sem
);
1411 static inline int __down_write_trylock(struct rw_semaphore
*sem
)
1415 DEBUG_RWSEMS_WARN_ON(sem
->magic
!= sem
, sem
);
1417 tmp
= RWSEM_UNLOCKED_VALUE
;
1418 if (atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
,
1419 RWSEM_WRITER_LOCKED
)) {
1420 rwsem_set_owner(sem
);
1427 * unlock after reading
1429 inline void __up_read(struct rw_semaphore
*sem
)
1433 DEBUG_RWSEMS_WARN_ON(sem
->magic
!= sem
, sem
);
1434 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1436 rwsem_clear_reader_owned(sem
);
1437 tmp
= atomic_long_add_return_release(-RWSEM_READER_BIAS
, &sem
->count
);
1438 DEBUG_RWSEMS_WARN_ON(tmp
< 0, sem
);
1439 if (unlikely((tmp
& (RWSEM_LOCK_MASK
|RWSEM_FLAG_WAITERS
)) ==
1440 RWSEM_FLAG_WAITERS
)) {
1441 clear_wr_nonspinnable(sem
);
1442 rwsem_wake(sem
, tmp
);
1447 * unlock after writing
1449 static inline void __up_write(struct rw_semaphore
*sem
)
1453 DEBUG_RWSEMS_WARN_ON(sem
->magic
!= sem
, sem
);
1455 * sem->owner may differ from current if the ownership is transferred
1456 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1458 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem
) != current
) &&
1459 !rwsem_test_oflags(sem
, RWSEM_NONSPINNABLE
), sem
);
1461 rwsem_clear_owner(sem
);
1462 tmp
= atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED
, &sem
->count
);
1463 if (unlikely(tmp
& RWSEM_FLAG_WAITERS
))
1464 rwsem_wake(sem
, tmp
);
1468 * downgrade write lock to read lock
1470 static inline void __downgrade_write(struct rw_semaphore
*sem
)
1475 * When downgrading from exclusive to shared ownership,
1476 * anything inside the write-locked region cannot leak
1477 * into the read side. In contrast, anything in the
1478 * read-locked region is ok to be re-ordered into the
1479 * write side. As such, rely on RELEASE semantics.
1481 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem
) != current
, sem
);
1482 tmp
= atomic_long_fetch_add_release(
1483 -RWSEM_WRITER_LOCKED
+RWSEM_READER_BIAS
, &sem
->count
);
1484 rwsem_set_reader_owned(sem
);
1485 if (tmp
& RWSEM_FLAG_WAITERS
)
1486 rwsem_downgrade_wake(sem
);
1492 void __sched
down_read(struct rw_semaphore
*sem
)
1495 rwsem_acquire_read(&sem
->dep_map
, 0, 0, _RET_IP_
);
1497 LOCK_CONTENDED(sem
, __down_read_trylock
, __down_read
);
1499 EXPORT_SYMBOL(down_read
);
1501 int __sched
down_read_killable(struct rw_semaphore
*sem
)
1504 rwsem_acquire_read(&sem
->dep_map
, 0, 0, _RET_IP_
);
1506 if (LOCK_CONTENDED_RETURN(sem
, __down_read_trylock
, __down_read_killable
)) {
1507 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1513 EXPORT_SYMBOL(down_read_killable
);
1516 * trylock for reading -- returns 1 if successful, 0 if contention
1518 int down_read_trylock(struct rw_semaphore
*sem
)
1520 int ret
= __down_read_trylock(sem
);
1523 rwsem_acquire_read(&sem
->dep_map
, 0, 1, _RET_IP_
);
1526 EXPORT_SYMBOL(down_read_trylock
);
1531 void __sched
down_write(struct rw_semaphore
*sem
)
1534 rwsem_acquire(&sem
->dep_map
, 0, 0, _RET_IP_
);
1535 LOCK_CONTENDED(sem
, __down_write_trylock
, __down_write
);
1537 EXPORT_SYMBOL(down_write
);
1542 int __sched
down_write_killable(struct rw_semaphore
*sem
)
1545 rwsem_acquire(&sem
->dep_map
, 0, 0, _RET_IP_
);
1547 if (LOCK_CONTENDED_RETURN(sem
, __down_write_trylock
,
1548 __down_write_killable
)) {
1549 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1555 EXPORT_SYMBOL(down_write_killable
);
1558 * trylock for writing -- returns 1 if successful, 0 if contention
1560 int down_write_trylock(struct rw_semaphore
*sem
)
1562 int ret
= __down_write_trylock(sem
);
1565 rwsem_acquire(&sem
->dep_map
, 0, 1, _RET_IP_
);
1569 EXPORT_SYMBOL(down_write_trylock
);
1572 * release a read lock
1574 void up_read(struct rw_semaphore
*sem
)
1576 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1579 EXPORT_SYMBOL(up_read
);
1582 * release a write lock
1584 void up_write(struct rw_semaphore
*sem
)
1586 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1589 EXPORT_SYMBOL(up_write
);
1592 * downgrade write lock to read lock
1594 void downgrade_write(struct rw_semaphore
*sem
)
1596 lock_downgrade(&sem
->dep_map
, _RET_IP_
);
1597 __downgrade_write(sem
);
1599 EXPORT_SYMBOL(downgrade_write
);
1601 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1603 void down_read_nested(struct rw_semaphore
*sem
, int subclass
)
1606 rwsem_acquire_read(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1607 LOCK_CONTENDED(sem
, __down_read_trylock
, __down_read
);
1609 EXPORT_SYMBOL(down_read_nested
);
1611 void _down_write_nest_lock(struct rw_semaphore
*sem
, struct lockdep_map
*nest
)
1614 rwsem_acquire_nest(&sem
->dep_map
, 0, 0, nest
, _RET_IP_
);
1615 LOCK_CONTENDED(sem
, __down_write_trylock
, __down_write
);
1617 EXPORT_SYMBOL(_down_write_nest_lock
);
1619 void down_read_non_owner(struct rw_semaphore
*sem
)
1623 __rwsem_set_reader_owned(sem
, NULL
);
1625 EXPORT_SYMBOL(down_read_non_owner
);
1627 void down_write_nested(struct rw_semaphore
*sem
, int subclass
)
1630 rwsem_acquire(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1631 LOCK_CONTENDED(sem
, __down_write_trylock
, __down_write
);
1633 EXPORT_SYMBOL(down_write_nested
);
1635 int __sched
down_write_killable_nested(struct rw_semaphore
*sem
, int subclass
)
1638 rwsem_acquire(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1640 if (LOCK_CONTENDED_RETURN(sem
, __down_write_trylock
,
1641 __down_write_killable
)) {
1642 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1648 EXPORT_SYMBOL(down_write_killable_nested
);
1650 void up_read_non_owner(struct rw_semaphore
*sem
)
1652 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1655 EXPORT_SYMBOL(up_read_non_owner
);