drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / kernel / rcu / tree.c
blobd91c9156fab2ef0ad64ef1b31a77c3a10626d254
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
5 * Copyright IBM Corporation, 2008
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
62 #include "tree.h"
63 #include "rcu.h"
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
70 /* Data structures. */
73 * Steal a bit from the bottom of ->dynticks for idle entry/exit
74 * control. Initially this is for TLB flushing.
76 #define RCU_DYNTICK_CTRL_MASK 0x1
77 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
78 #ifndef rcu_eqs_special_exit
79 #define rcu_eqs_special_exit() do { } while (0)
80 #endif
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 .dynticks_nesting = 1,
84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
87 static struct rcu_state rcu_state = {
88 .level = { &rcu_state.node[0] },
89 .gp_state = RCU_GP_IDLE,
90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 .name = RCU_NAME,
93 .abbr = RCU_ABBR,
94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = 1;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
141 * a time.
143 static int rcu_scheduler_fully_active __read_mostly;
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
154 /* rcuc/rcub kthread realtime priority */
155 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
156 module_param(kthread_prio, int, 0444);
158 /* Delay in jiffies for grace-period initialization delays, debug only. */
160 static int gp_preinit_delay;
161 module_param(gp_preinit_delay, int, 0444);
162 static int gp_init_delay;
163 module_param(gp_init_delay, int, 0444);
164 static int gp_cleanup_delay;
165 module_param(gp_cleanup_delay, int, 0444);
167 /* Retrieve RCU kthreads priority for rcutorture */
168 int rcu_get_gp_kthreads_prio(void)
170 return kthread_prio;
172 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
175 * Number of grace periods between delays, normalized by the duration of
176 * the delay. The longer the delay, the more the grace periods between
177 * each delay. The reason for this normalization is that it means that,
178 * for non-zero delays, the overall slowdown of grace periods is constant
179 * regardless of the duration of the delay. This arrangement balances
180 * the need for long delays to increase some race probabilities with the
181 * need for fast grace periods to increase other race probabilities.
183 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
186 * Compute the mask of online CPUs for the specified rcu_node structure.
187 * This will not be stable unless the rcu_node structure's ->lock is
188 * held, but the bit corresponding to the current CPU will be stable
189 * in most contexts.
191 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
193 return READ_ONCE(rnp->qsmaskinitnext);
197 * Return true if an RCU grace period is in progress. The READ_ONCE()s
198 * permit this function to be invoked without holding the root rcu_node
199 * structure's ->lock, but of course results can be subject to change.
201 static int rcu_gp_in_progress(void)
203 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
207 * Return the number of callbacks queued on the specified CPU.
208 * Handles both the nocbs and normal cases.
210 static long rcu_get_n_cbs_cpu(int cpu)
212 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
214 if (rcu_segcblist_is_enabled(&rdp->cblist))
215 return rcu_segcblist_n_cbs(&rdp->cblist);
216 return 0;
219 void rcu_softirq_qs(void)
221 rcu_qs();
222 rcu_preempt_deferred_qs(current);
226 * Record entry into an extended quiescent state. This is only to be
227 * called when not already in an extended quiescent state.
229 static void rcu_dynticks_eqs_enter(void)
231 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
232 int seq;
235 * CPUs seeing atomic_add_return() must see prior RCU read-side
236 * critical sections, and we also must force ordering with the
237 * next idle sojourn.
239 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
240 /* Better be in an extended quiescent state! */
241 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
242 (seq & RCU_DYNTICK_CTRL_CTR));
243 /* Better not have special action (TLB flush) pending! */
244 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
245 (seq & RCU_DYNTICK_CTRL_MASK));
249 * Record exit from an extended quiescent state. This is only to be
250 * called from an extended quiescent state.
252 static void rcu_dynticks_eqs_exit(void)
254 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
255 int seq;
258 * CPUs seeing atomic_add_return() must see prior idle sojourns,
259 * and we also must force ordering with the next RCU read-side
260 * critical section.
262 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
263 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 !(seq & RCU_DYNTICK_CTRL_CTR));
265 if (seq & RCU_DYNTICK_CTRL_MASK) {
266 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
267 smp_mb__after_atomic(); /* _exit after clearing mask. */
268 /* Prefer duplicate flushes to losing a flush. */
269 rcu_eqs_special_exit();
274 * Reset the current CPU's ->dynticks counter to indicate that the
275 * newly onlined CPU is no longer in an extended quiescent state.
276 * This will either leave the counter unchanged, or increment it
277 * to the next non-quiescent value.
279 * The non-atomic test/increment sequence works because the upper bits
280 * of the ->dynticks counter are manipulated only by the corresponding CPU,
281 * or when the corresponding CPU is offline.
283 static void rcu_dynticks_eqs_online(void)
285 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
287 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
288 return;
289 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
293 * Is the current CPU in an extended quiescent state?
295 * No ordering, as we are sampling CPU-local information.
297 static bool rcu_dynticks_curr_cpu_in_eqs(void)
299 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
301 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
305 * Snapshot the ->dynticks counter with full ordering so as to allow
306 * stable comparison of this counter with past and future snapshots.
308 static int rcu_dynticks_snap(struct rcu_data *rdp)
310 int snap = atomic_add_return(0, &rdp->dynticks);
312 return snap & ~RCU_DYNTICK_CTRL_MASK;
316 * Return true if the snapshot returned from rcu_dynticks_snap()
317 * indicates that RCU is in an extended quiescent state.
319 static bool rcu_dynticks_in_eqs(int snap)
321 return !(snap & RCU_DYNTICK_CTRL_CTR);
325 * Return true if the CPU corresponding to the specified rcu_data
326 * structure has spent some time in an extended quiescent state since
327 * rcu_dynticks_snap() returned the specified snapshot.
329 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
331 return snap != rcu_dynticks_snap(rdp);
335 * Set the special (bottom) bit of the specified CPU so that it
336 * will take special action (such as flushing its TLB) on the
337 * next exit from an extended quiescent state. Returns true if
338 * the bit was successfully set, or false if the CPU was not in
339 * an extended quiescent state.
341 bool rcu_eqs_special_set(int cpu)
343 int old;
344 int new;
345 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
347 do {
348 old = atomic_read(&rdp->dynticks);
349 if (old & RCU_DYNTICK_CTRL_CTR)
350 return false;
351 new = old | RCU_DYNTICK_CTRL_MASK;
352 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
353 return true;
357 * Let the RCU core know that this CPU has gone through the scheduler,
358 * which is a quiescent state. This is called when the need for a
359 * quiescent state is urgent, so we burn an atomic operation and full
360 * memory barriers to let the RCU core know about it, regardless of what
361 * this CPU might (or might not) do in the near future.
363 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
365 * The caller must have disabled interrupts and must not be idle.
367 void rcu_momentary_dyntick_idle(void)
369 int special;
371 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
372 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
373 &this_cpu_ptr(&rcu_data)->dynticks);
374 /* It is illegal to call this from idle state. */
375 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
376 rcu_preempt_deferred_qs(current);
378 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
381 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
383 * If the current CPU is idle and running at a first-level (not nested)
384 * interrupt from idle, return true. The caller must have at least
385 * disabled preemption.
387 static int rcu_is_cpu_rrupt_from_idle(void)
389 /* Called only from within the scheduling-clock interrupt */
390 lockdep_assert_in_irq();
392 /* Check for counter underflows */
393 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
394 "RCU dynticks_nesting counter underflow!");
395 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
396 "RCU dynticks_nmi_nesting counter underflow/zero!");
398 /* Are we at first interrupt nesting level? */
399 if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
400 return false;
402 /* Does CPU appear to be idle from an RCU standpoint? */
403 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
406 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
407 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
408 static long blimit = DEFAULT_RCU_BLIMIT;
409 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
410 static long qhimark = DEFAULT_RCU_QHIMARK;
411 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
412 static long qlowmark = DEFAULT_RCU_QLOMARK;
414 module_param(blimit, long, 0444);
415 module_param(qhimark, long, 0444);
416 module_param(qlowmark, long, 0444);
418 static ulong jiffies_till_first_fqs = ULONG_MAX;
419 static ulong jiffies_till_next_fqs = ULONG_MAX;
420 static bool rcu_kick_kthreads;
421 static int rcu_divisor = 7;
422 module_param(rcu_divisor, int, 0644);
424 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
425 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
426 module_param(rcu_resched_ns, long, 0644);
429 * How long the grace period must be before we start recruiting
430 * quiescent-state help from rcu_note_context_switch().
432 static ulong jiffies_till_sched_qs = ULONG_MAX;
433 module_param(jiffies_till_sched_qs, ulong, 0444);
434 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
435 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
438 * Make sure that we give the grace-period kthread time to detect any
439 * idle CPUs before taking active measures to force quiescent states.
440 * However, don't go below 100 milliseconds, adjusted upwards for really
441 * large systems.
443 static void adjust_jiffies_till_sched_qs(void)
445 unsigned long j;
447 /* If jiffies_till_sched_qs was specified, respect the request. */
448 if (jiffies_till_sched_qs != ULONG_MAX) {
449 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
450 return;
452 /* Otherwise, set to third fqs scan, but bound below on large system. */
453 j = READ_ONCE(jiffies_till_first_fqs) +
454 2 * READ_ONCE(jiffies_till_next_fqs);
455 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
456 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
457 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
458 WRITE_ONCE(jiffies_to_sched_qs, j);
461 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
463 ulong j;
464 int ret = kstrtoul(val, 0, &j);
466 if (!ret) {
467 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
468 adjust_jiffies_till_sched_qs();
470 return ret;
473 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
475 ulong j;
476 int ret = kstrtoul(val, 0, &j);
478 if (!ret) {
479 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
480 adjust_jiffies_till_sched_qs();
482 return ret;
485 static struct kernel_param_ops first_fqs_jiffies_ops = {
486 .set = param_set_first_fqs_jiffies,
487 .get = param_get_ulong,
490 static struct kernel_param_ops next_fqs_jiffies_ops = {
491 .set = param_set_next_fqs_jiffies,
492 .get = param_get_ulong,
495 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
496 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
497 module_param(rcu_kick_kthreads, bool, 0644);
499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
500 static int rcu_pending(int user);
503 * Return the number of RCU GPs completed thus far for debug & stats.
505 unsigned long rcu_get_gp_seq(void)
507 return READ_ONCE(rcu_state.gp_seq);
509 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
512 * Return the number of RCU expedited batches completed thus far for
513 * debug & stats. Odd numbers mean that a batch is in progress, even
514 * numbers mean idle. The value returned will thus be roughly double
515 * the cumulative batches since boot.
517 unsigned long rcu_exp_batches_completed(void)
519 return rcu_state.expedited_sequence;
521 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
524 * Return the root node of the rcu_state structure.
526 static struct rcu_node *rcu_get_root(void)
528 return &rcu_state.node[0];
532 * Send along grace-period-related data for rcutorture diagnostics.
534 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
535 unsigned long *gp_seq)
537 switch (test_type) {
538 case RCU_FLAVOR:
539 *flags = READ_ONCE(rcu_state.gp_flags);
540 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
541 break;
542 default:
543 break;
546 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
549 * Enter an RCU extended quiescent state, which can be either the
550 * idle loop or adaptive-tickless usermode execution.
552 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
553 * the possibility of usermode upcalls having messed up our count
554 * of interrupt nesting level during the prior busy period.
556 static void rcu_eqs_enter(bool user)
558 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
560 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
561 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
562 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
563 rdp->dynticks_nesting == 0);
564 if (rdp->dynticks_nesting != 1) {
565 rdp->dynticks_nesting--;
566 return;
569 lockdep_assert_irqs_disabled();
570 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
571 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
572 rdp = this_cpu_ptr(&rcu_data);
573 do_nocb_deferred_wakeup(rdp);
574 rcu_prepare_for_idle();
575 rcu_preempt_deferred_qs(current);
576 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
577 rcu_dynticks_eqs_enter();
578 rcu_dynticks_task_enter();
582 * rcu_idle_enter - inform RCU that current CPU is entering idle
584 * Enter idle mode, in other words, -leave- the mode in which RCU
585 * read-side critical sections can occur. (Though RCU read-side
586 * critical sections can occur in irq handlers in idle, a possibility
587 * handled by irq_enter() and irq_exit().)
589 * If you add or remove a call to rcu_idle_enter(), be sure to test with
590 * CONFIG_RCU_EQS_DEBUG=y.
592 void rcu_idle_enter(void)
594 lockdep_assert_irqs_disabled();
595 rcu_eqs_enter(false);
598 #ifdef CONFIG_NO_HZ_FULL
600 * rcu_user_enter - inform RCU that we are resuming userspace.
602 * Enter RCU idle mode right before resuming userspace. No use of RCU
603 * is permitted between this call and rcu_user_exit(). This way the
604 * CPU doesn't need to maintain the tick for RCU maintenance purposes
605 * when the CPU runs in userspace.
607 * If you add or remove a call to rcu_user_enter(), be sure to test with
608 * CONFIG_RCU_EQS_DEBUG=y.
610 void rcu_user_enter(void)
612 lockdep_assert_irqs_disabled();
613 rcu_eqs_enter(true);
615 #endif /* CONFIG_NO_HZ_FULL */
618 * If we are returning from the outermost NMI handler that interrupted an
619 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
620 * to let the RCU grace-period handling know that the CPU is back to
621 * being RCU-idle.
623 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
624 * with CONFIG_RCU_EQS_DEBUG=y.
626 static __always_inline void rcu_nmi_exit_common(bool irq)
628 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
631 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
632 * (We are exiting an NMI handler, so RCU better be paying attention
633 * to us!)
635 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
636 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
639 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
640 * leave it in non-RCU-idle state.
642 if (rdp->dynticks_nmi_nesting != 1) {
643 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
644 atomic_read(&rdp->dynticks));
645 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
646 rdp->dynticks_nmi_nesting - 2);
647 return;
650 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
651 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
652 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
654 if (irq)
655 rcu_prepare_for_idle();
657 rcu_dynticks_eqs_enter();
659 if (irq)
660 rcu_dynticks_task_enter();
664 * rcu_nmi_exit - inform RCU of exit from NMI context
666 * If you add or remove a call to rcu_nmi_exit(), be sure to test
667 * with CONFIG_RCU_EQS_DEBUG=y.
669 void rcu_nmi_exit(void)
671 rcu_nmi_exit_common(false);
675 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
677 * Exit from an interrupt handler, which might possibly result in entering
678 * idle mode, in other words, leaving the mode in which read-side critical
679 * sections can occur. The caller must have disabled interrupts.
681 * This code assumes that the idle loop never does anything that might
682 * result in unbalanced calls to irq_enter() and irq_exit(). If your
683 * architecture's idle loop violates this assumption, RCU will give you what
684 * you deserve, good and hard. But very infrequently and irreproducibly.
686 * Use things like work queues to work around this limitation.
688 * You have been warned.
690 * If you add or remove a call to rcu_irq_exit(), be sure to test with
691 * CONFIG_RCU_EQS_DEBUG=y.
693 void rcu_irq_exit(void)
695 lockdep_assert_irqs_disabled();
696 rcu_nmi_exit_common(true);
700 * Wrapper for rcu_irq_exit() where interrupts are enabled.
702 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
703 * with CONFIG_RCU_EQS_DEBUG=y.
705 void rcu_irq_exit_irqson(void)
707 unsigned long flags;
709 local_irq_save(flags);
710 rcu_irq_exit();
711 local_irq_restore(flags);
715 * Exit an RCU extended quiescent state, which can be either the
716 * idle loop or adaptive-tickless usermode execution.
718 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
719 * allow for the possibility of usermode upcalls messing up our count of
720 * interrupt nesting level during the busy period that is just now starting.
722 static void rcu_eqs_exit(bool user)
724 struct rcu_data *rdp;
725 long oldval;
727 lockdep_assert_irqs_disabled();
728 rdp = this_cpu_ptr(&rcu_data);
729 oldval = rdp->dynticks_nesting;
730 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
731 if (oldval) {
732 rdp->dynticks_nesting++;
733 return;
735 rcu_dynticks_task_exit();
736 rcu_dynticks_eqs_exit();
737 rcu_cleanup_after_idle();
738 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
739 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
740 WRITE_ONCE(rdp->dynticks_nesting, 1);
741 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
742 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
746 * rcu_idle_exit - inform RCU that current CPU is leaving idle
748 * Exit idle mode, in other words, -enter- the mode in which RCU
749 * read-side critical sections can occur.
751 * If you add or remove a call to rcu_idle_exit(), be sure to test with
752 * CONFIG_RCU_EQS_DEBUG=y.
754 void rcu_idle_exit(void)
756 unsigned long flags;
758 local_irq_save(flags);
759 rcu_eqs_exit(false);
760 local_irq_restore(flags);
763 #ifdef CONFIG_NO_HZ_FULL
765 * rcu_user_exit - inform RCU that we are exiting userspace.
767 * Exit RCU idle mode while entering the kernel because it can
768 * run a RCU read side critical section anytime.
770 * If you add or remove a call to rcu_user_exit(), be sure to test with
771 * CONFIG_RCU_EQS_DEBUG=y.
773 void rcu_user_exit(void)
775 rcu_eqs_exit(1);
777 #endif /* CONFIG_NO_HZ_FULL */
780 * rcu_nmi_enter_common - inform RCU of entry to NMI context
781 * @irq: Is this call from rcu_irq_enter?
783 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
784 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
785 * that the CPU is active. This implementation permits nested NMIs, as
786 * long as the nesting level does not overflow an int. (You will probably
787 * run out of stack space first.)
789 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
790 * with CONFIG_RCU_EQS_DEBUG=y.
792 static __always_inline void rcu_nmi_enter_common(bool irq)
794 long incby = 2;
795 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
797 /* Complain about underflow. */
798 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
801 * If idle from RCU viewpoint, atomically increment ->dynticks
802 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
803 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
804 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
805 * to be in the outermost NMI handler that interrupted an RCU-idle
806 * period (observation due to Andy Lutomirski).
808 if (rcu_dynticks_curr_cpu_in_eqs()) {
810 if (irq)
811 rcu_dynticks_task_exit();
813 rcu_dynticks_eqs_exit();
815 if (irq)
816 rcu_cleanup_after_idle();
818 incby = 1;
819 } else if (tick_nohz_full_cpu(rdp->cpu) &&
820 rdp->dynticks_nmi_nesting == DYNTICK_IRQ_NONIDLE &&
821 READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
822 raw_spin_lock_rcu_node(rdp->mynode);
823 // Recheck under lock.
824 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
825 rdp->rcu_forced_tick = true;
826 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
828 raw_spin_unlock_rcu_node(rdp->mynode);
830 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
831 rdp->dynticks_nmi_nesting,
832 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
833 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
834 rdp->dynticks_nmi_nesting + incby);
835 barrier();
839 * rcu_nmi_enter - inform RCU of entry to NMI context
841 void rcu_nmi_enter(void)
843 rcu_nmi_enter_common(false);
845 NOKPROBE_SYMBOL(rcu_nmi_enter);
848 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
850 * Enter an interrupt handler, which might possibly result in exiting
851 * idle mode, in other words, entering the mode in which read-side critical
852 * sections can occur. The caller must have disabled interrupts.
854 * Note that the Linux kernel is fully capable of entering an interrupt
855 * handler that it never exits, for example when doing upcalls to user mode!
856 * This code assumes that the idle loop never does upcalls to user mode.
857 * If your architecture's idle loop does do upcalls to user mode (or does
858 * anything else that results in unbalanced calls to the irq_enter() and
859 * irq_exit() functions), RCU will give you what you deserve, good and hard.
860 * But very infrequently and irreproducibly.
862 * Use things like work queues to work around this limitation.
864 * You have been warned.
866 * If you add or remove a call to rcu_irq_enter(), be sure to test with
867 * CONFIG_RCU_EQS_DEBUG=y.
869 void rcu_irq_enter(void)
871 lockdep_assert_irqs_disabled();
872 rcu_nmi_enter_common(true);
876 * Wrapper for rcu_irq_enter() where interrupts are enabled.
878 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
879 * with CONFIG_RCU_EQS_DEBUG=y.
881 void rcu_irq_enter_irqson(void)
883 unsigned long flags;
885 local_irq_save(flags);
886 rcu_irq_enter();
887 local_irq_restore(flags);
891 * If any sort of urgency was applied to the current CPU (for example,
892 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
893 * to get to a quiescent state, disable it.
895 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
897 raw_lockdep_assert_held_rcu_node(rdp->mynode);
898 WRITE_ONCE(rdp->rcu_urgent_qs, false);
899 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
900 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
901 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
902 rdp->rcu_forced_tick = false;
907 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
909 * Return true if RCU is watching the running CPU, which means that this
910 * CPU can safely enter RCU read-side critical sections. In other words,
911 * if the current CPU is not in its idle loop or is in an interrupt or
912 * NMI handler, return true.
914 bool notrace rcu_is_watching(void)
916 bool ret;
918 preempt_disable_notrace();
919 ret = !rcu_dynticks_curr_cpu_in_eqs();
920 preempt_enable_notrace();
921 return ret;
923 EXPORT_SYMBOL_GPL(rcu_is_watching);
926 * If a holdout task is actually running, request an urgent quiescent
927 * state from its CPU. This is unsynchronized, so migrations can cause
928 * the request to go to the wrong CPU. Which is OK, all that will happen
929 * is that the CPU's next context switch will be a bit slower and next
930 * time around this task will generate another request.
932 void rcu_request_urgent_qs_task(struct task_struct *t)
934 int cpu;
936 barrier();
937 cpu = task_cpu(t);
938 if (!task_curr(t))
939 return; /* This task is not running on that CPU. */
940 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
943 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
946 * Is the current CPU online as far as RCU is concerned?
948 * Disable preemption to avoid false positives that could otherwise
949 * happen due to the current CPU number being sampled, this task being
950 * preempted, its old CPU being taken offline, resuming on some other CPU,
951 * then determining that its old CPU is now offline.
953 * Disable checking if in an NMI handler because we cannot safely
954 * report errors from NMI handlers anyway. In addition, it is OK to use
955 * RCU on an offline processor during initial boot, hence the check for
956 * rcu_scheduler_fully_active.
958 bool rcu_lockdep_current_cpu_online(void)
960 struct rcu_data *rdp;
961 struct rcu_node *rnp;
962 bool ret = false;
964 if (in_nmi() || !rcu_scheduler_fully_active)
965 return true;
966 preempt_disable();
967 rdp = this_cpu_ptr(&rcu_data);
968 rnp = rdp->mynode;
969 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
970 ret = true;
971 preempt_enable();
972 return ret;
974 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
976 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
979 * We are reporting a quiescent state on behalf of some other CPU, so
980 * it is our responsibility to check for and handle potential overflow
981 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
982 * After all, the CPU might be in deep idle state, and thus executing no
983 * code whatsoever.
985 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
987 raw_lockdep_assert_held_rcu_node(rnp);
988 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
989 rnp->gp_seq))
990 WRITE_ONCE(rdp->gpwrap, true);
991 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
992 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
996 * Snapshot the specified CPU's dynticks counter so that we can later
997 * credit them with an implicit quiescent state. Return 1 if this CPU
998 * is in dynticks idle mode, which is an extended quiescent state.
1000 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1002 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1003 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1004 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1005 rcu_gpnum_ovf(rdp->mynode, rdp);
1006 return 1;
1008 return 0;
1012 * Return true if the specified CPU has passed through a quiescent
1013 * state by virtue of being in or having passed through an dynticks
1014 * idle state since the last call to dyntick_save_progress_counter()
1015 * for this same CPU, or by virtue of having been offline.
1017 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1019 unsigned long jtsq;
1020 bool *rnhqp;
1021 bool *ruqp;
1022 struct rcu_node *rnp = rdp->mynode;
1025 * If the CPU passed through or entered a dynticks idle phase with
1026 * no active irq/NMI handlers, then we can safely pretend that the CPU
1027 * already acknowledged the request to pass through a quiescent
1028 * state. Either way, that CPU cannot possibly be in an RCU
1029 * read-side critical section that started before the beginning
1030 * of the current RCU grace period.
1032 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1033 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1034 rcu_gpnum_ovf(rnp, rdp);
1035 return 1;
1038 /* If waiting too long on an offline CPU, complain. */
1039 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1040 time_after(jiffies, rcu_state.gp_start + HZ)) {
1041 bool onl;
1042 struct rcu_node *rnp1;
1044 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1045 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1046 __func__, rnp->grplo, rnp->grphi, rnp->level,
1047 (long)rnp->gp_seq, (long)rnp->completedqs);
1048 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1049 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1050 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1051 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1052 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1053 __func__, rdp->cpu, ".o"[onl],
1054 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1055 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1056 return 1; /* Break things loose after complaining. */
1060 * A CPU running for an extended time within the kernel can
1061 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1062 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1063 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1064 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1065 * variable are safe because the assignments are repeated if this
1066 * CPU failed to pass through a quiescent state. This code
1067 * also checks .jiffies_resched in case jiffies_to_sched_qs
1068 * is set way high.
1070 jtsq = READ_ONCE(jiffies_to_sched_qs);
1071 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1072 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1073 if (!READ_ONCE(*rnhqp) &&
1074 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1075 time_after(jiffies, rcu_state.jiffies_resched))) {
1076 WRITE_ONCE(*rnhqp, true);
1077 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1078 smp_store_release(ruqp, true);
1079 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1080 WRITE_ONCE(*ruqp, true);
1084 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1085 * The above code handles this, but only for straight cond_resched().
1086 * And some in-kernel loops check need_resched() before calling
1087 * cond_resched(), which defeats the above code for CPUs that are
1088 * running in-kernel with scheduling-clock interrupts disabled.
1089 * So hit them over the head with the resched_cpu() hammer!
1091 if (tick_nohz_full_cpu(rdp->cpu) &&
1092 time_after(jiffies,
1093 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1094 WRITE_ONCE(*ruqp, true);
1095 resched_cpu(rdp->cpu);
1096 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1100 * If more than halfway to RCU CPU stall-warning time, invoke
1101 * resched_cpu() more frequently to try to loosen things up a bit.
1102 * Also check to see if the CPU is getting hammered with interrupts,
1103 * but only once per grace period, just to keep the IPIs down to
1104 * a dull roar.
1106 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1107 if (time_after(jiffies,
1108 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1109 resched_cpu(rdp->cpu);
1110 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1112 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1113 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1114 (rnp->ffmask & rdp->grpmask)) {
1115 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1116 rdp->rcu_iw_pending = true;
1117 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1118 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1122 return 0;
1125 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1126 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1127 unsigned long gp_seq_req, const char *s)
1129 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1130 rnp->level, rnp->grplo, rnp->grphi, s);
1134 * rcu_start_this_gp - Request the start of a particular grace period
1135 * @rnp_start: The leaf node of the CPU from which to start.
1136 * @rdp: The rcu_data corresponding to the CPU from which to start.
1137 * @gp_seq_req: The gp_seq of the grace period to start.
1139 * Start the specified grace period, as needed to handle newly arrived
1140 * callbacks. The required future grace periods are recorded in each
1141 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1142 * is reason to awaken the grace-period kthread.
1144 * The caller must hold the specified rcu_node structure's ->lock, which
1145 * is why the caller is responsible for waking the grace-period kthread.
1147 * Returns true if the GP thread needs to be awakened else false.
1149 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1150 unsigned long gp_seq_req)
1152 bool ret = false;
1153 struct rcu_node *rnp;
1156 * Use funnel locking to either acquire the root rcu_node
1157 * structure's lock or bail out if the need for this grace period
1158 * has already been recorded -- or if that grace period has in
1159 * fact already started. If there is already a grace period in
1160 * progress in a non-leaf node, no recording is needed because the
1161 * end of the grace period will scan the leaf rcu_node structures.
1162 * Note that rnp_start->lock must not be released.
1164 raw_lockdep_assert_held_rcu_node(rnp_start);
1165 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1166 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1167 if (rnp != rnp_start)
1168 raw_spin_lock_rcu_node(rnp);
1169 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1170 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1171 (rnp != rnp_start &&
1172 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1173 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1174 TPS("Prestarted"));
1175 goto unlock_out;
1177 rnp->gp_seq_needed = gp_seq_req;
1178 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1180 * We just marked the leaf or internal node, and a
1181 * grace period is in progress, which means that
1182 * rcu_gp_cleanup() will see the marking. Bail to
1183 * reduce contention.
1185 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1186 TPS("Startedleaf"));
1187 goto unlock_out;
1189 if (rnp != rnp_start && rnp->parent != NULL)
1190 raw_spin_unlock_rcu_node(rnp);
1191 if (!rnp->parent)
1192 break; /* At root, and perhaps also leaf. */
1195 /* If GP already in progress, just leave, otherwise start one. */
1196 if (rcu_gp_in_progress()) {
1197 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1198 goto unlock_out;
1200 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1201 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1202 rcu_state.gp_req_activity = jiffies;
1203 if (!rcu_state.gp_kthread) {
1204 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1205 goto unlock_out;
1207 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1208 ret = true; /* Caller must wake GP kthread. */
1209 unlock_out:
1210 /* Push furthest requested GP to leaf node and rcu_data structure. */
1211 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1212 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1213 rdp->gp_seq_needed = rnp->gp_seq_needed;
1215 if (rnp != rnp_start)
1216 raw_spin_unlock_rcu_node(rnp);
1217 return ret;
1221 * Clean up any old requests for the just-ended grace period. Also return
1222 * whether any additional grace periods have been requested.
1224 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1226 bool needmore;
1227 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1229 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1230 if (!needmore)
1231 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1232 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1233 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1234 return needmore;
1238 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1239 * an interrupt or softirq handler), and don't bother awakening when there
1240 * is nothing for the grace-period kthread to do (as in several CPUs raced
1241 * to awaken, and we lost), and finally don't try to awaken a kthread that
1242 * has not yet been created. If all those checks are passed, track some
1243 * debug information and awaken.
1245 * So why do the self-wakeup when in an interrupt or softirq handler
1246 * in the grace-period kthread's context? Because the kthread might have
1247 * been interrupted just as it was going to sleep, and just after the final
1248 * pre-sleep check of the awaken condition. In this case, a wakeup really
1249 * is required, and is therefore supplied.
1251 static void rcu_gp_kthread_wake(void)
1253 if ((current == rcu_state.gp_kthread &&
1254 !in_irq() && !in_serving_softirq()) ||
1255 !READ_ONCE(rcu_state.gp_flags) ||
1256 !rcu_state.gp_kthread)
1257 return;
1258 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1259 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1260 swake_up_one(&rcu_state.gp_wq);
1264 * If there is room, assign a ->gp_seq number to any callbacks on this
1265 * CPU that have not already been assigned. Also accelerate any callbacks
1266 * that were previously assigned a ->gp_seq number that has since proven
1267 * to be too conservative, which can happen if callbacks get assigned a
1268 * ->gp_seq number while RCU is idle, but with reference to a non-root
1269 * rcu_node structure. This function is idempotent, so it does not hurt
1270 * to call it repeatedly. Returns an flag saying that we should awaken
1271 * the RCU grace-period kthread.
1273 * The caller must hold rnp->lock with interrupts disabled.
1275 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1277 unsigned long gp_seq_req;
1278 bool ret = false;
1280 rcu_lockdep_assert_cblist_protected(rdp);
1281 raw_lockdep_assert_held_rcu_node(rnp);
1283 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1284 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1285 return false;
1288 * Callbacks are often registered with incomplete grace-period
1289 * information. Something about the fact that getting exact
1290 * information requires acquiring a global lock... RCU therefore
1291 * makes a conservative estimate of the grace period number at which
1292 * a given callback will become ready to invoke. The following
1293 * code checks this estimate and improves it when possible, thus
1294 * accelerating callback invocation to an earlier grace-period
1295 * number.
1297 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1298 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1299 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1301 /* Trace depending on how much we were able to accelerate. */
1302 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1303 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1304 else
1305 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1306 return ret;
1310 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1311 * rcu_node structure's ->lock be held. It consults the cached value
1312 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1313 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1314 * while holding the leaf rcu_node structure's ->lock.
1316 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1317 struct rcu_data *rdp)
1319 unsigned long c;
1320 bool needwake;
1322 rcu_lockdep_assert_cblist_protected(rdp);
1323 c = rcu_seq_snap(&rcu_state.gp_seq);
1324 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1325 /* Old request still live, so mark recent callbacks. */
1326 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1327 return;
1329 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1330 needwake = rcu_accelerate_cbs(rnp, rdp);
1331 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1332 if (needwake)
1333 rcu_gp_kthread_wake();
1337 * Move any callbacks whose grace period has completed to the
1338 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1339 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1340 * sublist. This function is idempotent, so it does not hurt to
1341 * invoke it repeatedly. As long as it is not invoked -too- often...
1342 * Returns true if the RCU grace-period kthread needs to be awakened.
1344 * The caller must hold rnp->lock with interrupts disabled.
1346 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1348 rcu_lockdep_assert_cblist_protected(rdp);
1349 raw_lockdep_assert_held_rcu_node(rnp);
1351 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1352 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1353 return false;
1356 * Find all callbacks whose ->gp_seq numbers indicate that they
1357 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1359 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1361 /* Classify any remaining callbacks. */
1362 return rcu_accelerate_cbs(rnp, rdp);
1366 * Move and classify callbacks, but only if doing so won't require
1367 * that the RCU grace-period kthread be awakened.
1369 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1370 struct rcu_data *rdp)
1372 rcu_lockdep_assert_cblist_protected(rdp);
1373 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1374 !raw_spin_trylock_rcu_node(rnp))
1375 return;
1376 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1377 raw_spin_unlock_rcu_node(rnp);
1381 * Update CPU-local rcu_data state to record the beginnings and ends of
1382 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1383 * structure corresponding to the current CPU, and must have irqs disabled.
1384 * Returns true if the grace-period kthread needs to be awakened.
1386 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1388 bool ret = false;
1389 bool need_gp;
1390 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1391 rcu_segcblist_is_offloaded(&rdp->cblist);
1393 raw_lockdep_assert_held_rcu_node(rnp);
1395 if (rdp->gp_seq == rnp->gp_seq)
1396 return false; /* Nothing to do. */
1398 /* Handle the ends of any preceding grace periods first. */
1399 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1400 unlikely(READ_ONCE(rdp->gpwrap))) {
1401 if (!offloaded)
1402 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1403 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1404 } else {
1405 if (!offloaded)
1406 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1409 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1410 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1411 unlikely(READ_ONCE(rdp->gpwrap))) {
1413 * If the current grace period is waiting for this CPU,
1414 * set up to detect a quiescent state, otherwise don't
1415 * go looking for one.
1417 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1418 need_gp = !!(rnp->qsmask & rdp->grpmask);
1419 rdp->cpu_no_qs.b.norm = need_gp;
1420 rdp->core_needs_qs = need_gp;
1421 zero_cpu_stall_ticks(rdp);
1423 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1424 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1425 rdp->gp_seq_needed = rnp->gp_seq_needed;
1426 WRITE_ONCE(rdp->gpwrap, false);
1427 rcu_gpnum_ovf(rnp, rdp);
1428 return ret;
1431 static void note_gp_changes(struct rcu_data *rdp)
1433 unsigned long flags;
1434 bool needwake;
1435 struct rcu_node *rnp;
1437 local_irq_save(flags);
1438 rnp = rdp->mynode;
1439 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1440 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1441 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1442 local_irq_restore(flags);
1443 return;
1445 needwake = __note_gp_changes(rnp, rdp);
1446 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1447 if (needwake)
1448 rcu_gp_kthread_wake();
1451 static void rcu_gp_slow(int delay)
1453 if (delay > 0 &&
1454 !(rcu_seq_ctr(rcu_state.gp_seq) %
1455 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1456 schedule_timeout_uninterruptible(delay);
1460 * Initialize a new grace period. Return false if no grace period required.
1462 static bool rcu_gp_init(void)
1464 unsigned long flags;
1465 unsigned long oldmask;
1466 unsigned long mask;
1467 struct rcu_data *rdp;
1468 struct rcu_node *rnp = rcu_get_root();
1470 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1471 raw_spin_lock_irq_rcu_node(rnp);
1472 if (!READ_ONCE(rcu_state.gp_flags)) {
1473 /* Spurious wakeup, tell caller to go back to sleep. */
1474 raw_spin_unlock_irq_rcu_node(rnp);
1475 return false;
1477 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1479 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1481 * Grace period already in progress, don't start another.
1482 * Not supposed to be able to happen.
1484 raw_spin_unlock_irq_rcu_node(rnp);
1485 return false;
1488 /* Advance to a new grace period and initialize state. */
1489 record_gp_stall_check_time();
1490 /* Record GP times before starting GP, hence rcu_seq_start(). */
1491 rcu_seq_start(&rcu_state.gp_seq);
1492 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1493 raw_spin_unlock_irq_rcu_node(rnp);
1496 * Apply per-leaf buffered online and offline operations to the
1497 * rcu_node tree. Note that this new grace period need not wait
1498 * for subsequent online CPUs, and that quiescent-state forcing
1499 * will handle subsequent offline CPUs.
1501 rcu_state.gp_state = RCU_GP_ONOFF;
1502 rcu_for_each_leaf_node(rnp) {
1503 raw_spin_lock(&rcu_state.ofl_lock);
1504 raw_spin_lock_irq_rcu_node(rnp);
1505 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1506 !rnp->wait_blkd_tasks) {
1507 /* Nothing to do on this leaf rcu_node structure. */
1508 raw_spin_unlock_irq_rcu_node(rnp);
1509 raw_spin_unlock(&rcu_state.ofl_lock);
1510 continue;
1513 /* Record old state, apply changes to ->qsmaskinit field. */
1514 oldmask = rnp->qsmaskinit;
1515 rnp->qsmaskinit = rnp->qsmaskinitnext;
1517 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1518 if (!oldmask != !rnp->qsmaskinit) {
1519 if (!oldmask) { /* First online CPU for rcu_node. */
1520 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1521 rcu_init_new_rnp(rnp);
1522 } else if (rcu_preempt_has_tasks(rnp)) {
1523 rnp->wait_blkd_tasks = true; /* blocked tasks */
1524 } else { /* Last offline CPU and can propagate. */
1525 rcu_cleanup_dead_rnp(rnp);
1530 * If all waited-on tasks from prior grace period are
1531 * done, and if all this rcu_node structure's CPUs are
1532 * still offline, propagate up the rcu_node tree and
1533 * clear ->wait_blkd_tasks. Otherwise, if one of this
1534 * rcu_node structure's CPUs has since come back online,
1535 * simply clear ->wait_blkd_tasks.
1537 if (rnp->wait_blkd_tasks &&
1538 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1539 rnp->wait_blkd_tasks = false;
1540 if (!rnp->qsmaskinit)
1541 rcu_cleanup_dead_rnp(rnp);
1544 raw_spin_unlock_irq_rcu_node(rnp);
1545 raw_spin_unlock(&rcu_state.ofl_lock);
1547 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1550 * Set the quiescent-state-needed bits in all the rcu_node
1551 * structures for all currently online CPUs in breadth-first
1552 * order, starting from the root rcu_node structure, relying on the
1553 * layout of the tree within the rcu_state.node[] array. Note that
1554 * other CPUs will access only the leaves of the hierarchy, thus
1555 * seeing that no grace period is in progress, at least until the
1556 * corresponding leaf node has been initialized.
1558 * The grace period cannot complete until the initialization
1559 * process finishes, because this kthread handles both.
1561 rcu_state.gp_state = RCU_GP_INIT;
1562 rcu_for_each_node_breadth_first(rnp) {
1563 rcu_gp_slow(gp_init_delay);
1564 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1565 rdp = this_cpu_ptr(&rcu_data);
1566 rcu_preempt_check_blocked_tasks(rnp);
1567 rnp->qsmask = rnp->qsmaskinit;
1568 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1569 if (rnp == rdp->mynode)
1570 (void)__note_gp_changes(rnp, rdp);
1571 rcu_preempt_boost_start_gp(rnp);
1572 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1573 rnp->level, rnp->grplo,
1574 rnp->grphi, rnp->qsmask);
1575 /* Quiescent states for tasks on any now-offline CPUs. */
1576 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1577 rnp->rcu_gp_init_mask = mask;
1578 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1579 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1580 else
1581 raw_spin_unlock_irq_rcu_node(rnp);
1582 cond_resched_tasks_rcu_qs();
1583 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1586 return true;
1590 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1591 * time.
1593 static bool rcu_gp_fqs_check_wake(int *gfp)
1595 struct rcu_node *rnp = rcu_get_root();
1597 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1598 *gfp = READ_ONCE(rcu_state.gp_flags);
1599 if (*gfp & RCU_GP_FLAG_FQS)
1600 return true;
1602 /* The current grace period has completed. */
1603 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1604 return true;
1606 return false;
1610 * Do one round of quiescent-state forcing.
1612 static void rcu_gp_fqs(bool first_time)
1614 struct rcu_node *rnp = rcu_get_root();
1616 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1617 rcu_state.n_force_qs++;
1618 if (first_time) {
1619 /* Collect dyntick-idle snapshots. */
1620 force_qs_rnp(dyntick_save_progress_counter);
1621 } else {
1622 /* Handle dyntick-idle and offline CPUs. */
1623 force_qs_rnp(rcu_implicit_dynticks_qs);
1625 /* Clear flag to prevent immediate re-entry. */
1626 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1627 raw_spin_lock_irq_rcu_node(rnp);
1628 WRITE_ONCE(rcu_state.gp_flags,
1629 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1630 raw_spin_unlock_irq_rcu_node(rnp);
1635 * Loop doing repeated quiescent-state forcing until the grace period ends.
1637 static void rcu_gp_fqs_loop(void)
1639 bool first_gp_fqs;
1640 int gf;
1641 unsigned long j;
1642 int ret;
1643 struct rcu_node *rnp = rcu_get_root();
1645 first_gp_fqs = true;
1646 j = READ_ONCE(jiffies_till_first_fqs);
1647 ret = 0;
1648 for (;;) {
1649 if (!ret) {
1650 rcu_state.jiffies_force_qs = jiffies + j;
1651 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1652 jiffies + (j ? 3 * j : 2));
1654 trace_rcu_grace_period(rcu_state.name,
1655 READ_ONCE(rcu_state.gp_seq),
1656 TPS("fqswait"));
1657 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1658 ret = swait_event_idle_timeout_exclusive(
1659 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1660 rcu_state.gp_state = RCU_GP_DOING_FQS;
1661 /* Locking provides needed memory barriers. */
1662 /* If grace period done, leave loop. */
1663 if (!READ_ONCE(rnp->qsmask) &&
1664 !rcu_preempt_blocked_readers_cgp(rnp))
1665 break;
1666 /* If time for quiescent-state forcing, do it. */
1667 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1668 (gf & RCU_GP_FLAG_FQS)) {
1669 trace_rcu_grace_period(rcu_state.name,
1670 READ_ONCE(rcu_state.gp_seq),
1671 TPS("fqsstart"));
1672 rcu_gp_fqs(first_gp_fqs);
1673 first_gp_fqs = false;
1674 trace_rcu_grace_period(rcu_state.name,
1675 READ_ONCE(rcu_state.gp_seq),
1676 TPS("fqsend"));
1677 cond_resched_tasks_rcu_qs();
1678 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1679 ret = 0; /* Force full wait till next FQS. */
1680 j = READ_ONCE(jiffies_till_next_fqs);
1681 } else {
1682 /* Deal with stray signal. */
1683 cond_resched_tasks_rcu_qs();
1684 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1685 WARN_ON(signal_pending(current));
1686 trace_rcu_grace_period(rcu_state.name,
1687 READ_ONCE(rcu_state.gp_seq),
1688 TPS("fqswaitsig"));
1689 ret = 1; /* Keep old FQS timing. */
1690 j = jiffies;
1691 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1692 j = 1;
1693 else
1694 j = rcu_state.jiffies_force_qs - j;
1700 * Clean up after the old grace period.
1702 static void rcu_gp_cleanup(void)
1704 unsigned long gp_duration;
1705 bool needgp = false;
1706 unsigned long new_gp_seq;
1707 bool offloaded;
1708 struct rcu_data *rdp;
1709 struct rcu_node *rnp = rcu_get_root();
1710 struct swait_queue_head *sq;
1712 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1713 raw_spin_lock_irq_rcu_node(rnp);
1714 rcu_state.gp_end = jiffies;
1715 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1716 if (gp_duration > rcu_state.gp_max)
1717 rcu_state.gp_max = gp_duration;
1720 * We know the grace period is complete, but to everyone else
1721 * it appears to still be ongoing. But it is also the case
1722 * that to everyone else it looks like there is nothing that
1723 * they can do to advance the grace period. It is therefore
1724 * safe for us to drop the lock in order to mark the grace
1725 * period as completed in all of the rcu_node structures.
1727 raw_spin_unlock_irq_rcu_node(rnp);
1730 * Propagate new ->gp_seq value to rcu_node structures so that
1731 * other CPUs don't have to wait until the start of the next grace
1732 * period to process their callbacks. This also avoids some nasty
1733 * RCU grace-period initialization races by forcing the end of
1734 * the current grace period to be completely recorded in all of
1735 * the rcu_node structures before the beginning of the next grace
1736 * period is recorded in any of the rcu_node structures.
1738 new_gp_seq = rcu_state.gp_seq;
1739 rcu_seq_end(&new_gp_seq);
1740 rcu_for_each_node_breadth_first(rnp) {
1741 raw_spin_lock_irq_rcu_node(rnp);
1742 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1743 dump_blkd_tasks(rnp, 10);
1744 WARN_ON_ONCE(rnp->qsmask);
1745 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1746 rdp = this_cpu_ptr(&rcu_data);
1747 if (rnp == rdp->mynode)
1748 needgp = __note_gp_changes(rnp, rdp) || needgp;
1749 /* smp_mb() provided by prior unlock-lock pair. */
1750 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1751 sq = rcu_nocb_gp_get(rnp);
1752 raw_spin_unlock_irq_rcu_node(rnp);
1753 rcu_nocb_gp_cleanup(sq);
1754 cond_resched_tasks_rcu_qs();
1755 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1756 rcu_gp_slow(gp_cleanup_delay);
1758 rnp = rcu_get_root();
1759 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1761 /* Declare grace period done, trace first to use old GP number. */
1762 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1763 rcu_seq_end(&rcu_state.gp_seq);
1764 rcu_state.gp_state = RCU_GP_IDLE;
1765 /* Check for GP requests since above loop. */
1766 rdp = this_cpu_ptr(&rcu_data);
1767 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1768 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1769 TPS("CleanupMore"));
1770 needgp = true;
1772 /* Advance CBs to reduce false positives below. */
1773 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1774 rcu_segcblist_is_offloaded(&rdp->cblist);
1775 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1776 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1777 rcu_state.gp_req_activity = jiffies;
1778 trace_rcu_grace_period(rcu_state.name,
1779 READ_ONCE(rcu_state.gp_seq),
1780 TPS("newreq"));
1781 } else {
1782 WRITE_ONCE(rcu_state.gp_flags,
1783 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1785 raw_spin_unlock_irq_rcu_node(rnp);
1789 * Body of kthread that handles grace periods.
1791 static int __noreturn rcu_gp_kthread(void *unused)
1793 rcu_bind_gp_kthread();
1794 for (;;) {
1796 /* Handle grace-period start. */
1797 for (;;) {
1798 trace_rcu_grace_period(rcu_state.name,
1799 READ_ONCE(rcu_state.gp_seq),
1800 TPS("reqwait"));
1801 rcu_state.gp_state = RCU_GP_WAIT_GPS;
1802 swait_event_idle_exclusive(rcu_state.gp_wq,
1803 READ_ONCE(rcu_state.gp_flags) &
1804 RCU_GP_FLAG_INIT);
1805 rcu_state.gp_state = RCU_GP_DONE_GPS;
1806 /* Locking provides needed memory barrier. */
1807 if (rcu_gp_init())
1808 break;
1809 cond_resched_tasks_rcu_qs();
1810 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1811 WARN_ON(signal_pending(current));
1812 trace_rcu_grace_period(rcu_state.name,
1813 READ_ONCE(rcu_state.gp_seq),
1814 TPS("reqwaitsig"));
1817 /* Handle quiescent-state forcing. */
1818 rcu_gp_fqs_loop();
1820 /* Handle grace-period end. */
1821 rcu_state.gp_state = RCU_GP_CLEANUP;
1822 rcu_gp_cleanup();
1823 rcu_state.gp_state = RCU_GP_CLEANED;
1828 * Report a full set of quiescent states to the rcu_state data structure.
1829 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1830 * another grace period is required. Whether we wake the grace-period
1831 * kthread or it awakens itself for the next round of quiescent-state
1832 * forcing, that kthread will clean up after the just-completed grace
1833 * period. Note that the caller must hold rnp->lock, which is released
1834 * before return.
1836 static void rcu_report_qs_rsp(unsigned long flags)
1837 __releases(rcu_get_root()->lock)
1839 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1840 WARN_ON_ONCE(!rcu_gp_in_progress());
1841 WRITE_ONCE(rcu_state.gp_flags,
1842 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1843 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1844 rcu_gp_kthread_wake();
1848 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1849 * Allows quiescent states for a group of CPUs to be reported at one go
1850 * to the specified rcu_node structure, though all the CPUs in the group
1851 * must be represented by the same rcu_node structure (which need not be a
1852 * leaf rcu_node structure, though it often will be). The gps parameter
1853 * is the grace-period snapshot, which means that the quiescent states
1854 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1855 * must be held upon entry, and it is released before return.
1857 * As a special case, if mask is zero, the bit-already-cleared check is
1858 * disabled. This allows propagating quiescent state due to resumed tasks
1859 * during grace-period initialization.
1861 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1862 unsigned long gps, unsigned long flags)
1863 __releases(rnp->lock)
1865 unsigned long oldmask = 0;
1866 struct rcu_node *rnp_c;
1868 raw_lockdep_assert_held_rcu_node(rnp);
1870 /* Walk up the rcu_node hierarchy. */
1871 for (;;) {
1872 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1875 * Our bit has already been cleared, or the
1876 * relevant grace period is already over, so done.
1878 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1879 return;
1881 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1882 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1883 rcu_preempt_blocked_readers_cgp(rnp));
1884 rnp->qsmask &= ~mask;
1885 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1886 mask, rnp->qsmask, rnp->level,
1887 rnp->grplo, rnp->grphi,
1888 !!rnp->gp_tasks);
1889 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1891 /* Other bits still set at this level, so done. */
1892 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1893 return;
1895 rnp->completedqs = rnp->gp_seq;
1896 mask = rnp->grpmask;
1897 if (rnp->parent == NULL) {
1899 /* No more levels. Exit loop holding root lock. */
1901 break;
1903 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1904 rnp_c = rnp;
1905 rnp = rnp->parent;
1906 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1907 oldmask = rnp_c->qsmask;
1911 * Get here if we are the last CPU to pass through a quiescent
1912 * state for this grace period. Invoke rcu_report_qs_rsp()
1913 * to clean up and start the next grace period if one is needed.
1915 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1919 * Record a quiescent state for all tasks that were previously queued
1920 * on the specified rcu_node structure and that were blocking the current
1921 * RCU grace period. The caller must hold the corresponding rnp->lock with
1922 * irqs disabled, and this lock is released upon return, but irqs remain
1923 * disabled.
1925 static void __maybe_unused
1926 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1927 __releases(rnp->lock)
1929 unsigned long gps;
1930 unsigned long mask;
1931 struct rcu_node *rnp_p;
1933 raw_lockdep_assert_held_rcu_node(rnp);
1934 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1935 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1936 rnp->qsmask != 0) {
1937 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1938 return; /* Still need more quiescent states! */
1941 rnp->completedqs = rnp->gp_seq;
1942 rnp_p = rnp->parent;
1943 if (rnp_p == NULL) {
1945 * Only one rcu_node structure in the tree, so don't
1946 * try to report up to its nonexistent parent!
1948 rcu_report_qs_rsp(flags);
1949 return;
1952 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1953 gps = rnp->gp_seq;
1954 mask = rnp->grpmask;
1955 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1956 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
1957 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1961 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1962 * structure. This must be called from the specified CPU.
1964 static void
1965 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1967 unsigned long flags;
1968 unsigned long mask;
1969 bool needwake = false;
1970 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1971 rcu_segcblist_is_offloaded(&rdp->cblist);
1972 struct rcu_node *rnp;
1974 rnp = rdp->mynode;
1975 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1976 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1977 rdp->gpwrap) {
1980 * The grace period in which this quiescent state was
1981 * recorded has ended, so don't report it upwards.
1982 * We will instead need a new quiescent state that lies
1983 * within the current grace period.
1985 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
1986 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1987 return;
1989 mask = rdp->grpmask;
1990 if ((rnp->qsmask & mask) == 0) {
1991 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1992 } else {
1994 * This GP can't end until cpu checks in, so all of our
1995 * callbacks can be processed during the next GP.
1997 if (!offloaded)
1998 needwake = rcu_accelerate_cbs(rnp, rdp);
2000 rcu_disable_urgency_upon_qs(rdp);
2001 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2002 /* ^^^ Released rnp->lock */
2003 if (needwake)
2004 rcu_gp_kthread_wake();
2009 * Check to see if there is a new grace period of which this CPU
2010 * is not yet aware, and if so, set up local rcu_data state for it.
2011 * Otherwise, see if this CPU has just passed through its first
2012 * quiescent state for this grace period, and record that fact if so.
2014 static void
2015 rcu_check_quiescent_state(struct rcu_data *rdp)
2017 /* Check for grace-period ends and beginnings. */
2018 note_gp_changes(rdp);
2021 * Does this CPU still need to do its part for current grace period?
2022 * If no, return and let the other CPUs do their part as well.
2024 if (!rdp->core_needs_qs)
2025 return;
2028 * Was there a quiescent state since the beginning of the grace
2029 * period? If no, then exit and wait for the next call.
2031 if (rdp->cpu_no_qs.b.norm)
2032 return;
2035 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2036 * judge of that).
2038 rcu_report_qs_rdp(rdp->cpu, rdp);
2042 * Near the end of the offline process. Trace the fact that this CPU
2043 * is going offline.
2045 int rcutree_dying_cpu(unsigned int cpu)
2047 bool blkd;
2048 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2049 struct rcu_node *rnp = rdp->mynode;
2051 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2052 return 0;
2054 blkd = !!(rnp->qsmask & rdp->grpmask);
2055 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2056 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2057 return 0;
2061 * All CPUs for the specified rcu_node structure have gone offline,
2062 * and all tasks that were preempted within an RCU read-side critical
2063 * section while running on one of those CPUs have since exited their RCU
2064 * read-side critical section. Some other CPU is reporting this fact with
2065 * the specified rcu_node structure's ->lock held and interrupts disabled.
2066 * This function therefore goes up the tree of rcu_node structures,
2067 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2068 * the leaf rcu_node structure's ->qsmaskinit field has already been
2069 * updated.
2071 * This function does check that the specified rcu_node structure has
2072 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2073 * prematurely. That said, invoking it after the fact will cost you
2074 * a needless lock acquisition. So once it has done its work, don't
2075 * invoke it again.
2077 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2079 long mask;
2080 struct rcu_node *rnp = rnp_leaf;
2082 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2083 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2084 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2085 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2086 return;
2087 for (;;) {
2088 mask = rnp->grpmask;
2089 rnp = rnp->parent;
2090 if (!rnp)
2091 break;
2092 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2093 rnp->qsmaskinit &= ~mask;
2094 /* Between grace periods, so better already be zero! */
2095 WARN_ON_ONCE(rnp->qsmask);
2096 if (rnp->qsmaskinit) {
2097 raw_spin_unlock_rcu_node(rnp);
2098 /* irqs remain disabled. */
2099 return;
2101 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2106 * The CPU has been completely removed, and some other CPU is reporting
2107 * this fact from process context. Do the remainder of the cleanup.
2108 * There can only be one CPU hotplug operation at a time, so no need for
2109 * explicit locking.
2111 int rcutree_dead_cpu(unsigned int cpu)
2113 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2114 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2116 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2117 return 0;
2119 /* Adjust any no-longer-needed kthreads. */
2120 rcu_boost_kthread_setaffinity(rnp, -1);
2121 /* Do any needed no-CB deferred wakeups from this CPU. */
2122 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2124 // Stop-machine done, so allow nohz_full to disable tick.
2125 tick_dep_clear(TICK_DEP_BIT_RCU);
2126 return 0;
2130 * Invoke any RCU callbacks that have made it to the end of their grace
2131 * period. Thottle as specified by rdp->blimit.
2133 static void rcu_do_batch(struct rcu_data *rdp)
2135 unsigned long flags;
2136 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2137 rcu_segcblist_is_offloaded(&rdp->cblist);
2138 struct rcu_head *rhp;
2139 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2140 long bl, count;
2141 long pending, tlimit = 0;
2143 /* If no callbacks are ready, just return. */
2144 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2145 trace_rcu_batch_start(rcu_state.name,
2146 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2147 trace_rcu_batch_end(rcu_state.name, 0,
2148 !rcu_segcblist_empty(&rdp->cblist),
2149 need_resched(), is_idle_task(current),
2150 rcu_is_callbacks_kthread());
2151 return;
2155 * Extract the list of ready callbacks, disabling to prevent
2156 * races with call_rcu() from interrupt handlers. Leave the
2157 * callback counts, as rcu_barrier() needs to be conservative.
2159 local_irq_save(flags);
2160 rcu_nocb_lock(rdp);
2161 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2162 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2163 bl = max(rdp->blimit, pending >> rcu_divisor);
2164 if (unlikely(bl > 100))
2165 tlimit = local_clock() + rcu_resched_ns;
2166 trace_rcu_batch_start(rcu_state.name,
2167 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2168 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2169 if (offloaded)
2170 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2171 rcu_nocb_unlock_irqrestore(rdp, flags);
2173 /* Invoke callbacks. */
2174 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2175 rhp = rcu_cblist_dequeue(&rcl);
2176 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2177 rcu_callback_t f;
2179 debug_rcu_head_unqueue(rhp);
2181 rcu_lock_acquire(&rcu_callback_map);
2182 trace_rcu_invoke_callback(rcu_state.name, rhp);
2184 f = rhp->func;
2185 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2186 f(rhp);
2188 rcu_lock_release(&rcu_callback_map);
2191 * Stop only if limit reached and CPU has something to do.
2192 * Note: The rcl structure counts down from zero.
2194 if (-rcl.len >= bl && !offloaded &&
2195 (need_resched() ||
2196 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2197 break;
2198 if (unlikely(tlimit)) {
2199 /* only call local_clock() every 32 callbacks */
2200 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2201 continue;
2202 /* Exceeded the time limit, so leave. */
2203 break;
2205 if (offloaded) {
2206 WARN_ON_ONCE(in_serving_softirq());
2207 local_bh_enable();
2208 lockdep_assert_irqs_enabled();
2209 cond_resched_tasks_rcu_qs();
2210 lockdep_assert_irqs_enabled();
2211 local_bh_disable();
2215 local_irq_save(flags);
2216 rcu_nocb_lock(rdp);
2217 count = -rcl.len;
2218 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2219 is_idle_task(current), rcu_is_callbacks_kthread());
2221 /* Update counts and requeue any remaining callbacks. */
2222 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2223 smp_mb(); /* List handling before counting for rcu_barrier(). */
2224 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2226 /* Reinstate batch limit if we have worked down the excess. */
2227 count = rcu_segcblist_n_cbs(&rdp->cblist);
2228 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2229 rdp->blimit = blimit;
2231 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2232 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2233 rdp->qlen_last_fqs_check = 0;
2234 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2235 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2236 rdp->qlen_last_fqs_check = count;
2239 * The following usually indicates a double call_rcu(). To track
2240 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2242 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2243 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2244 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2246 rcu_nocb_unlock_irqrestore(rdp, flags);
2248 /* Re-invoke RCU core processing if there are callbacks remaining. */
2249 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2250 invoke_rcu_core();
2251 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2255 * This function is invoked from each scheduling-clock interrupt,
2256 * and checks to see if this CPU is in a non-context-switch quiescent
2257 * state, for example, user mode or idle loop. It also schedules RCU
2258 * core processing. If the current grace period has gone on too long,
2259 * it will ask the scheduler to manufacture a context switch for the sole
2260 * purpose of providing a providing the needed quiescent state.
2262 void rcu_sched_clock_irq(int user)
2264 trace_rcu_utilization(TPS("Start scheduler-tick"));
2265 raw_cpu_inc(rcu_data.ticks_this_gp);
2266 /* The load-acquire pairs with the store-release setting to true. */
2267 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2268 /* Idle and userspace execution already are quiescent states. */
2269 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2270 set_tsk_need_resched(current);
2271 set_preempt_need_resched();
2273 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2275 rcu_flavor_sched_clock_irq(user);
2276 if (rcu_pending(user))
2277 invoke_rcu_core();
2279 trace_rcu_utilization(TPS("End scheduler-tick"));
2283 * Scan the leaf rcu_node structures. For each structure on which all
2284 * CPUs have reported a quiescent state and on which there are tasks
2285 * blocking the current grace period, initiate RCU priority boosting.
2286 * Otherwise, invoke the specified function to check dyntick state for
2287 * each CPU that has not yet reported a quiescent state.
2289 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2291 int cpu;
2292 unsigned long flags;
2293 unsigned long mask;
2294 struct rcu_data *rdp;
2295 struct rcu_node *rnp;
2297 rcu_for_each_leaf_node(rnp) {
2298 cond_resched_tasks_rcu_qs();
2299 mask = 0;
2300 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2301 if (rnp->qsmask == 0) {
2302 if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2303 rcu_preempt_blocked_readers_cgp(rnp)) {
2305 * No point in scanning bits because they
2306 * are all zero. But we might need to
2307 * priority-boost blocked readers.
2309 rcu_initiate_boost(rnp, flags);
2310 /* rcu_initiate_boost() releases rnp->lock */
2311 continue;
2313 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2314 continue;
2316 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2317 rdp = per_cpu_ptr(&rcu_data, cpu);
2318 if (f(rdp)) {
2319 mask |= rdp->grpmask;
2320 rcu_disable_urgency_upon_qs(rdp);
2323 if (mask != 0) {
2324 /* Idle/offline CPUs, report (releases rnp->lock). */
2325 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2326 } else {
2327 /* Nothing to do here, so just drop the lock. */
2328 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2334 * Force quiescent states on reluctant CPUs, and also detect which
2335 * CPUs are in dyntick-idle mode.
2337 void rcu_force_quiescent_state(void)
2339 unsigned long flags;
2340 bool ret;
2341 struct rcu_node *rnp;
2342 struct rcu_node *rnp_old = NULL;
2344 /* Funnel through hierarchy to reduce memory contention. */
2345 rnp = __this_cpu_read(rcu_data.mynode);
2346 for (; rnp != NULL; rnp = rnp->parent) {
2347 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2348 !raw_spin_trylock(&rnp->fqslock);
2349 if (rnp_old != NULL)
2350 raw_spin_unlock(&rnp_old->fqslock);
2351 if (ret)
2352 return;
2353 rnp_old = rnp;
2355 /* rnp_old == rcu_get_root(), rnp == NULL. */
2357 /* Reached the root of the rcu_node tree, acquire lock. */
2358 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2359 raw_spin_unlock(&rnp_old->fqslock);
2360 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2361 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2362 return; /* Someone beat us to it. */
2364 WRITE_ONCE(rcu_state.gp_flags,
2365 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2366 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2367 rcu_gp_kthread_wake();
2369 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2371 /* Perform RCU core processing work for the current CPU. */
2372 static __latent_entropy void rcu_core(void)
2374 unsigned long flags;
2375 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2376 struct rcu_node *rnp = rdp->mynode;
2377 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2378 rcu_segcblist_is_offloaded(&rdp->cblist);
2380 if (cpu_is_offline(smp_processor_id()))
2381 return;
2382 trace_rcu_utilization(TPS("Start RCU core"));
2383 WARN_ON_ONCE(!rdp->beenonline);
2385 /* Report any deferred quiescent states if preemption enabled. */
2386 if (!(preempt_count() & PREEMPT_MASK)) {
2387 rcu_preempt_deferred_qs(current);
2388 } else if (rcu_preempt_need_deferred_qs(current)) {
2389 set_tsk_need_resched(current);
2390 set_preempt_need_resched();
2393 /* Update RCU state based on any recent quiescent states. */
2394 rcu_check_quiescent_state(rdp);
2396 /* No grace period and unregistered callbacks? */
2397 if (!rcu_gp_in_progress() &&
2398 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2399 local_irq_save(flags);
2400 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2401 rcu_accelerate_cbs_unlocked(rnp, rdp);
2402 local_irq_restore(flags);
2405 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2407 /* If there are callbacks ready, invoke them. */
2408 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2409 likely(READ_ONCE(rcu_scheduler_fully_active)))
2410 rcu_do_batch(rdp);
2412 /* Do any needed deferred wakeups of rcuo kthreads. */
2413 do_nocb_deferred_wakeup(rdp);
2414 trace_rcu_utilization(TPS("End RCU core"));
2417 static void rcu_core_si(struct softirq_action *h)
2419 rcu_core();
2422 static void rcu_wake_cond(struct task_struct *t, int status)
2425 * If the thread is yielding, only wake it when this
2426 * is invoked from idle
2428 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2429 wake_up_process(t);
2432 static void invoke_rcu_core_kthread(void)
2434 struct task_struct *t;
2435 unsigned long flags;
2437 local_irq_save(flags);
2438 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2439 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2440 if (t != NULL && t != current)
2441 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2442 local_irq_restore(flags);
2446 * Wake up this CPU's rcuc kthread to do RCU core processing.
2448 static void invoke_rcu_core(void)
2450 if (!cpu_online(smp_processor_id()))
2451 return;
2452 if (use_softirq)
2453 raise_softirq(RCU_SOFTIRQ);
2454 else
2455 invoke_rcu_core_kthread();
2458 static void rcu_cpu_kthread_park(unsigned int cpu)
2460 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2463 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2465 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2469 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2470 * the RCU softirq used in configurations of RCU that do not support RCU
2471 * priority boosting.
2473 static void rcu_cpu_kthread(unsigned int cpu)
2475 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2476 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2477 int spincnt;
2479 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2480 for (spincnt = 0; spincnt < 10; spincnt++) {
2481 local_bh_disable();
2482 *statusp = RCU_KTHREAD_RUNNING;
2483 local_irq_disable();
2484 work = *workp;
2485 *workp = 0;
2486 local_irq_enable();
2487 if (work)
2488 rcu_core();
2489 local_bh_enable();
2490 if (*workp == 0) {
2491 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2492 *statusp = RCU_KTHREAD_WAITING;
2493 return;
2496 *statusp = RCU_KTHREAD_YIELDING;
2497 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2498 schedule_timeout_interruptible(2);
2499 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2500 *statusp = RCU_KTHREAD_WAITING;
2503 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2504 .store = &rcu_data.rcu_cpu_kthread_task,
2505 .thread_should_run = rcu_cpu_kthread_should_run,
2506 .thread_fn = rcu_cpu_kthread,
2507 .thread_comm = "rcuc/%u",
2508 .setup = rcu_cpu_kthread_setup,
2509 .park = rcu_cpu_kthread_park,
2513 * Spawn per-CPU RCU core processing kthreads.
2515 static int __init rcu_spawn_core_kthreads(void)
2517 int cpu;
2519 for_each_possible_cpu(cpu)
2520 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2521 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2522 return 0;
2523 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2524 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2525 return 0;
2527 early_initcall(rcu_spawn_core_kthreads);
2530 * Handle any core-RCU processing required by a call_rcu() invocation.
2532 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2533 unsigned long flags)
2536 * If called from an extended quiescent state, invoke the RCU
2537 * core in order to force a re-evaluation of RCU's idleness.
2539 if (!rcu_is_watching())
2540 invoke_rcu_core();
2542 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2543 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2544 return;
2547 * Force the grace period if too many callbacks or too long waiting.
2548 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2549 * if some other CPU has recently done so. Also, don't bother
2550 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2551 * is the only one waiting for a grace period to complete.
2553 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2554 rdp->qlen_last_fqs_check + qhimark)) {
2556 /* Are we ignoring a completed grace period? */
2557 note_gp_changes(rdp);
2559 /* Start a new grace period if one not already started. */
2560 if (!rcu_gp_in_progress()) {
2561 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2562 } else {
2563 /* Give the grace period a kick. */
2564 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2565 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2566 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2567 rcu_force_quiescent_state();
2568 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2569 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2575 * RCU callback function to leak a callback.
2577 static void rcu_leak_callback(struct rcu_head *rhp)
2582 * Helper function for call_rcu() and friends. The cpu argument will
2583 * normally be -1, indicating "currently running CPU". It may specify
2584 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
2585 * is expected to specify a CPU.
2587 static void
2588 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2590 unsigned long flags;
2591 struct rcu_data *rdp;
2592 bool was_alldone;
2594 /* Misaligned rcu_head! */
2595 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2597 if (debug_rcu_head_queue(head)) {
2599 * Probable double call_rcu(), so leak the callback.
2600 * Use rcu:rcu_callback trace event to find the previous
2601 * time callback was passed to __call_rcu().
2603 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2604 head, head->func);
2605 WRITE_ONCE(head->func, rcu_leak_callback);
2606 return;
2608 head->func = func;
2609 head->next = NULL;
2610 local_irq_save(flags);
2611 rdp = this_cpu_ptr(&rcu_data);
2613 /* Add the callback to our list. */
2614 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2615 // This can trigger due to call_rcu() from offline CPU:
2616 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2617 WARN_ON_ONCE(!rcu_is_watching());
2618 // Very early boot, before rcu_init(). Initialize if needed
2619 // and then drop through to queue the callback.
2620 if (rcu_segcblist_empty(&rdp->cblist))
2621 rcu_segcblist_init(&rdp->cblist);
2624 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2625 return; // Enqueued onto ->nocb_bypass, so just leave.
2626 /* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2627 rcu_segcblist_enqueue(&rdp->cblist, head);
2628 if (__is_kfree_rcu_offset((unsigned long)func))
2629 trace_rcu_kfree_callback(rcu_state.name, head,
2630 (unsigned long)func,
2631 rcu_segcblist_n_cbs(&rdp->cblist));
2632 else
2633 trace_rcu_callback(rcu_state.name, head,
2634 rcu_segcblist_n_cbs(&rdp->cblist));
2636 /* Go handle any RCU core processing required. */
2637 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2638 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2639 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2640 } else {
2641 __call_rcu_core(rdp, head, flags);
2642 local_irq_restore(flags);
2647 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2648 * @head: structure to be used for queueing the RCU updates.
2649 * @func: actual callback function to be invoked after the grace period
2651 * The callback function will be invoked some time after a full grace
2652 * period elapses, in other words after all pre-existing RCU read-side
2653 * critical sections have completed. However, the callback function
2654 * might well execute concurrently with RCU read-side critical sections
2655 * that started after call_rcu() was invoked. RCU read-side critical
2656 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2657 * may be nested. In addition, regions of code across which interrupts,
2658 * preemption, or softirqs have been disabled also serve as RCU read-side
2659 * critical sections. This includes hardware interrupt handlers, softirq
2660 * handlers, and NMI handlers.
2662 * Note that all CPUs must agree that the grace period extended beyond
2663 * all pre-existing RCU read-side critical section. On systems with more
2664 * than one CPU, this means that when "func()" is invoked, each CPU is
2665 * guaranteed to have executed a full memory barrier since the end of its
2666 * last RCU read-side critical section whose beginning preceded the call
2667 * to call_rcu(). It also means that each CPU executing an RCU read-side
2668 * critical section that continues beyond the start of "func()" must have
2669 * executed a memory barrier after the call_rcu() but before the beginning
2670 * of that RCU read-side critical section. Note that these guarantees
2671 * include CPUs that are offline, idle, or executing in user mode, as
2672 * well as CPUs that are executing in the kernel.
2674 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2675 * resulting RCU callback function "func()", then both CPU A and CPU B are
2676 * guaranteed to execute a full memory barrier during the time interval
2677 * between the call to call_rcu() and the invocation of "func()" -- even
2678 * if CPU A and CPU B are the same CPU (but again only if the system has
2679 * more than one CPU).
2681 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2683 __call_rcu(head, func);
2685 EXPORT_SYMBOL_GPL(call_rcu);
2688 /* Maximum number of jiffies to wait before draining a batch. */
2689 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2690 #define KFREE_N_BATCHES 2
2693 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2694 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2695 * @head_free: List of kfree_rcu() objects waiting for a grace period
2696 * @krcp: Pointer to @kfree_rcu_cpu structure
2699 struct kfree_rcu_cpu_work {
2700 struct rcu_work rcu_work;
2701 struct rcu_head *head_free;
2702 struct kfree_rcu_cpu *krcp;
2706 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2707 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2708 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2709 * @lock: Synchronize access to this structure
2710 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2711 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
2712 * @initialized: The @lock and @rcu_work fields have been initialized
2714 * This is a per-CPU structure. The reason that it is not included in
2715 * the rcu_data structure is to permit this code to be extracted from
2716 * the RCU files. Such extraction could allow further optimization of
2717 * the interactions with the slab allocators.
2719 struct kfree_rcu_cpu {
2720 struct rcu_head *head;
2721 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2722 spinlock_t lock;
2723 struct delayed_work monitor_work;
2724 bool monitor_todo;
2725 bool initialized;
2728 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc);
2731 * This function is invoked in workqueue context after a grace period.
2732 * It frees all the objects queued on ->head_free.
2734 static void kfree_rcu_work(struct work_struct *work)
2736 unsigned long flags;
2737 struct rcu_head *head, *next;
2738 struct kfree_rcu_cpu *krcp;
2739 struct kfree_rcu_cpu_work *krwp;
2741 krwp = container_of(to_rcu_work(work),
2742 struct kfree_rcu_cpu_work, rcu_work);
2743 krcp = krwp->krcp;
2744 spin_lock_irqsave(&krcp->lock, flags);
2745 head = krwp->head_free;
2746 krwp->head_free = NULL;
2747 spin_unlock_irqrestore(&krcp->lock, flags);
2749 // List "head" is now private, so traverse locklessly.
2750 for (; head; head = next) {
2751 unsigned long offset = (unsigned long)head->func;
2753 next = head->next;
2754 // Potentially optimize with kfree_bulk in future.
2755 debug_rcu_head_unqueue(head);
2756 rcu_lock_acquire(&rcu_callback_map);
2757 trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset);
2759 if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset))) {
2760 /* Could be optimized with kfree_bulk() in future. */
2761 kfree((void *)head - offset);
2764 rcu_lock_release(&rcu_callback_map);
2765 cond_resched_tasks_rcu_qs();
2770 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
2772 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
2773 * timeout has been reached.
2775 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
2777 int i;
2778 struct kfree_rcu_cpu_work *krwp = NULL;
2780 lockdep_assert_held(&krcp->lock);
2781 for (i = 0; i < KFREE_N_BATCHES; i++)
2782 if (!krcp->krw_arr[i].head_free) {
2783 krwp = &(krcp->krw_arr[i]);
2784 break;
2787 // If a previous RCU batch is in progress, we cannot immediately
2788 // queue another one, so return false to tell caller to retry.
2789 if (!krwp)
2790 return false;
2792 krwp->head_free = krcp->head;
2793 krcp->head = NULL;
2794 INIT_RCU_WORK(&krwp->rcu_work, kfree_rcu_work);
2795 queue_rcu_work(system_wq, &krwp->rcu_work);
2796 return true;
2799 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
2800 unsigned long flags)
2802 // Attempt to start a new batch.
2803 krcp->monitor_todo = false;
2804 if (queue_kfree_rcu_work(krcp)) {
2805 // Success! Our job is done here.
2806 spin_unlock_irqrestore(&krcp->lock, flags);
2807 return;
2810 // Previous RCU batch still in progress, try again later.
2811 krcp->monitor_todo = true;
2812 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
2813 spin_unlock_irqrestore(&krcp->lock, flags);
2817 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
2818 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
2820 static void kfree_rcu_monitor(struct work_struct *work)
2822 unsigned long flags;
2823 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
2824 monitor_work.work);
2826 spin_lock_irqsave(&krcp->lock, flags);
2827 if (krcp->monitor_todo)
2828 kfree_rcu_drain_unlock(krcp, flags);
2829 else
2830 spin_unlock_irqrestore(&krcp->lock, flags);
2834 * Queue a request for lazy invocation of kfree() after a grace period.
2836 * Each kfree_call_rcu() request is added to a batch. The batch will be drained
2837 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch
2838 * will be kfree'd in workqueue context. This allows us to:
2840 * 1. Batch requests together to reduce the number of grace periods during
2841 * heavy kfree_rcu() load.
2843 * 2. It makes it possible to use kfree_bulk() on a large number of
2844 * kfree_rcu() requests thus reducing cache misses and the per-object
2845 * overhead of kfree().
2847 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2849 unsigned long flags;
2850 struct kfree_rcu_cpu *krcp;
2852 local_irq_save(flags); // For safely calling this_cpu_ptr().
2853 krcp = this_cpu_ptr(&krc);
2854 if (krcp->initialized)
2855 spin_lock(&krcp->lock);
2857 // Queue the object but don't yet schedule the batch.
2858 if (debug_rcu_head_queue(head)) {
2859 // Probable double kfree_rcu(), just leak.
2860 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
2861 __func__, head);
2862 goto unlock_return;
2864 head->func = func;
2865 head->next = krcp->head;
2866 krcp->head = head;
2868 // Set timer to drain after KFREE_DRAIN_JIFFIES.
2869 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
2870 !krcp->monitor_todo) {
2871 krcp->monitor_todo = true;
2872 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
2875 unlock_return:
2876 if (krcp->initialized)
2877 spin_unlock(&krcp->lock);
2878 local_irq_restore(flags);
2880 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2882 void __init kfree_rcu_scheduler_running(void)
2884 int cpu;
2885 unsigned long flags;
2887 for_each_online_cpu(cpu) {
2888 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
2890 spin_lock_irqsave(&krcp->lock, flags);
2891 if (!krcp->head || krcp->monitor_todo) {
2892 spin_unlock_irqrestore(&krcp->lock, flags);
2893 continue;
2895 krcp->monitor_todo = true;
2896 schedule_delayed_work_on(cpu, &krcp->monitor_work,
2897 KFREE_DRAIN_JIFFIES);
2898 spin_unlock_irqrestore(&krcp->lock, flags);
2903 * During early boot, any blocking grace-period wait automatically
2904 * implies a grace period. Later on, this is never the case for PREEMPTION.
2906 * Howevr, because a context switch is a grace period for !PREEMPTION, any
2907 * blocking grace-period wait automatically implies a grace period if
2908 * there is only one CPU online at any point time during execution of
2909 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
2910 * occasionally incorrectly indicate that there are multiple CPUs online
2911 * when there was in fact only one the whole time, as this just adds some
2912 * overhead: RCU still operates correctly.
2914 static int rcu_blocking_is_gp(void)
2916 int ret;
2918 if (IS_ENABLED(CONFIG_PREEMPTION))
2919 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2920 might_sleep(); /* Check for RCU read-side critical section. */
2921 preempt_disable();
2922 ret = num_online_cpus() <= 1;
2923 preempt_enable();
2924 return ret;
2928 * synchronize_rcu - wait until a grace period has elapsed.
2930 * Control will return to the caller some time after a full grace
2931 * period has elapsed, in other words after all currently executing RCU
2932 * read-side critical sections have completed. Note, however, that
2933 * upon return from synchronize_rcu(), the caller might well be executing
2934 * concurrently with new RCU read-side critical sections that began while
2935 * synchronize_rcu() was waiting. RCU read-side critical sections are
2936 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2937 * In addition, regions of code across which interrupts, preemption, or
2938 * softirqs have been disabled also serve as RCU read-side critical
2939 * sections. This includes hardware interrupt handlers, softirq handlers,
2940 * and NMI handlers.
2942 * Note that this guarantee implies further memory-ordering guarantees.
2943 * On systems with more than one CPU, when synchronize_rcu() returns,
2944 * each CPU is guaranteed to have executed a full memory barrier since
2945 * the end of its last RCU read-side critical section whose beginning
2946 * preceded the call to synchronize_rcu(). In addition, each CPU having
2947 * an RCU read-side critical section that extends beyond the return from
2948 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2949 * after the beginning of synchronize_rcu() and before the beginning of
2950 * that RCU read-side critical section. Note that these guarantees include
2951 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2952 * that are executing in the kernel.
2954 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2955 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2956 * to have executed a full memory barrier during the execution of
2957 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2958 * again only if the system has more than one CPU).
2960 void synchronize_rcu(void)
2962 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2963 lock_is_held(&rcu_lock_map) ||
2964 lock_is_held(&rcu_sched_lock_map),
2965 "Illegal synchronize_rcu() in RCU read-side critical section");
2966 if (rcu_blocking_is_gp())
2967 return;
2968 if (rcu_gp_is_expedited())
2969 synchronize_rcu_expedited();
2970 else
2971 wait_rcu_gp(call_rcu);
2973 EXPORT_SYMBOL_GPL(synchronize_rcu);
2976 * get_state_synchronize_rcu - Snapshot current RCU state
2978 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2979 * to determine whether or not a full grace period has elapsed in the
2980 * meantime.
2982 unsigned long get_state_synchronize_rcu(void)
2985 * Any prior manipulation of RCU-protected data must happen
2986 * before the load from ->gp_seq.
2988 smp_mb(); /* ^^^ */
2989 return rcu_seq_snap(&rcu_state.gp_seq);
2991 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2994 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2996 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2998 * If a full RCU grace period has elapsed since the earlier call to
2999 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3000 * synchronize_rcu() to wait for a full grace period.
3002 * Yes, this function does not take counter wrap into account. But
3003 * counter wrap is harmless. If the counter wraps, we have waited for
3004 * more than 2 billion grace periods (and way more on a 64-bit system!),
3005 * so waiting for one additional grace period should be just fine.
3007 void cond_synchronize_rcu(unsigned long oldstate)
3009 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3010 synchronize_rcu();
3011 else
3012 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3014 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3017 * Check to see if there is any immediate RCU-related work to be done by
3018 * the current CPU, returning 1 if so and zero otherwise. The checks are
3019 * in order of increasing expense: checks that can be carried out against
3020 * CPU-local state are performed first. However, we must check for CPU
3021 * stalls first, else we might not get a chance.
3023 static int rcu_pending(int user)
3025 bool gp_in_progress;
3026 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3027 struct rcu_node *rnp = rdp->mynode;
3029 /* Check for CPU stalls, if enabled. */
3030 check_cpu_stall(rdp);
3032 /* Does this CPU need a deferred NOCB wakeup? */
3033 if (rcu_nocb_need_deferred_wakeup(rdp))
3034 return 1;
3036 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3037 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3038 return 0;
3040 /* Is the RCU core waiting for a quiescent state from this CPU? */
3041 gp_in_progress = rcu_gp_in_progress();
3042 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3043 return 1;
3045 /* Does this CPU have callbacks ready to invoke? */
3046 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3047 return 1;
3049 /* Has RCU gone idle with this CPU needing another grace period? */
3050 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3051 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3052 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3053 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3054 return 1;
3056 /* Have RCU grace period completed or started? */
3057 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3058 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3059 return 1;
3061 /* nothing to do */
3062 return 0;
3066 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3067 * the compiler is expected to optimize this away.
3069 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3071 trace_rcu_barrier(rcu_state.name, s, cpu,
3072 atomic_read(&rcu_state.barrier_cpu_count), done);
3076 * RCU callback function for rcu_barrier(). If we are last, wake
3077 * up the task executing rcu_barrier().
3079 static void rcu_barrier_callback(struct rcu_head *rhp)
3081 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3082 rcu_barrier_trace(TPS("LastCB"), -1,
3083 rcu_state.barrier_sequence);
3084 complete(&rcu_state.barrier_completion);
3085 } else {
3086 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
3091 * Called with preemption disabled, and from cross-cpu IRQ context.
3093 static void rcu_barrier_func(void *unused)
3095 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
3097 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3098 rdp->barrier_head.func = rcu_barrier_callback;
3099 debug_rcu_head_queue(&rdp->barrier_head);
3100 rcu_nocb_lock(rdp);
3101 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3102 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3103 atomic_inc(&rcu_state.barrier_cpu_count);
3104 } else {
3105 debug_rcu_head_unqueue(&rdp->barrier_head);
3106 rcu_barrier_trace(TPS("IRQNQ"), -1,
3107 rcu_state.barrier_sequence);
3109 rcu_nocb_unlock(rdp);
3113 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3115 * Note that this primitive does not necessarily wait for an RCU grace period
3116 * to complete. For example, if there are no RCU callbacks queued anywhere
3117 * in the system, then rcu_barrier() is within its rights to return
3118 * immediately, without waiting for anything, much less an RCU grace period.
3120 void rcu_barrier(void)
3122 int cpu;
3123 struct rcu_data *rdp;
3124 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3126 rcu_barrier_trace(TPS("Begin"), -1, s);
3128 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3129 mutex_lock(&rcu_state.barrier_mutex);
3131 /* Did someone else do our work for us? */
3132 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3133 rcu_barrier_trace(TPS("EarlyExit"), -1,
3134 rcu_state.barrier_sequence);
3135 smp_mb(); /* caller's subsequent code after above check. */
3136 mutex_unlock(&rcu_state.barrier_mutex);
3137 return;
3140 /* Mark the start of the barrier operation. */
3141 rcu_seq_start(&rcu_state.barrier_sequence);
3142 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3145 * Initialize the count to one rather than to zero in order to
3146 * avoid a too-soon return to zero in case of a short grace period
3147 * (or preemption of this task). Exclude CPU-hotplug operations
3148 * to ensure that no offline CPU has callbacks queued.
3150 init_completion(&rcu_state.barrier_completion);
3151 atomic_set(&rcu_state.barrier_cpu_count, 1);
3152 get_online_cpus();
3155 * Force each CPU with callbacks to register a new callback.
3156 * When that callback is invoked, we will know that all of the
3157 * corresponding CPU's preceding callbacks have been invoked.
3159 for_each_possible_cpu(cpu) {
3160 rdp = per_cpu_ptr(&rcu_data, cpu);
3161 if (!cpu_online(cpu) &&
3162 !rcu_segcblist_is_offloaded(&rdp->cblist))
3163 continue;
3164 if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3165 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3166 rcu_state.barrier_sequence);
3167 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
3168 } else {
3169 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3170 rcu_state.barrier_sequence);
3173 put_online_cpus();
3176 * Now that we have an rcu_barrier_callback() callback on each
3177 * CPU, and thus each counted, remove the initial count.
3179 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3180 complete(&rcu_state.barrier_completion);
3182 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3183 wait_for_completion(&rcu_state.barrier_completion);
3185 /* Mark the end of the barrier operation. */
3186 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3187 rcu_seq_end(&rcu_state.barrier_sequence);
3189 /* Other rcu_barrier() invocations can now safely proceed. */
3190 mutex_unlock(&rcu_state.barrier_mutex);
3192 EXPORT_SYMBOL_GPL(rcu_barrier);
3195 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3196 * first CPU in a given leaf rcu_node structure coming online. The caller
3197 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3198 * disabled.
3200 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3202 long mask;
3203 long oldmask;
3204 struct rcu_node *rnp = rnp_leaf;
3206 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3207 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3208 for (;;) {
3209 mask = rnp->grpmask;
3210 rnp = rnp->parent;
3211 if (rnp == NULL)
3212 return;
3213 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3214 oldmask = rnp->qsmaskinit;
3215 rnp->qsmaskinit |= mask;
3216 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3217 if (oldmask)
3218 return;
3223 * Do boot-time initialization of a CPU's per-CPU RCU data.
3225 static void __init
3226 rcu_boot_init_percpu_data(int cpu)
3228 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3230 /* Set up local state, ensuring consistent view of global state. */
3231 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3232 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3233 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3234 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3235 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3236 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3237 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3238 rdp->cpu = cpu;
3239 rcu_boot_init_nocb_percpu_data(rdp);
3243 * Invoked early in the CPU-online process, when pretty much all services
3244 * are available. The incoming CPU is not present.
3246 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3247 * offline event can be happening at a given time. Note also that we can
3248 * accept some slop in the rsp->gp_seq access due to the fact that this
3249 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3250 * And any offloaded callbacks are being numbered elsewhere.
3252 int rcutree_prepare_cpu(unsigned int cpu)
3254 unsigned long flags;
3255 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3256 struct rcu_node *rnp = rcu_get_root();
3258 /* Set up local state, ensuring consistent view of global state. */
3259 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3260 rdp->qlen_last_fqs_check = 0;
3261 rdp->n_force_qs_snap = rcu_state.n_force_qs;
3262 rdp->blimit = blimit;
3263 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3264 !rcu_segcblist_is_offloaded(&rdp->cblist))
3265 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3266 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
3267 rcu_dynticks_eqs_online();
3268 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3271 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3272 * propagation up the rcu_node tree will happen at the beginning
3273 * of the next grace period.
3275 rnp = rdp->mynode;
3276 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3277 rdp->beenonline = true; /* We have now been online. */
3278 rdp->gp_seq = rnp->gp_seq;
3279 rdp->gp_seq_needed = rnp->gp_seq;
3280 rdp->cpu_no_qs.b.norm = true;
3281 rdp->core_needs_qs = false;
3282 rdp->rcu_iw_pending = false;
3283 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3284 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3285 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3286 rcu_prepare_kthreads(cpu);
3287 rcu_spawn_cpu_nocb_kthread(cpu);
3289 return 0;
3293 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3295 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3297 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3299 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3303 * Near the end of the CPU-online process. Pretty much all services
3304 * enabled, and the CPU is now very much alive.
3306 int rcutree_online_cpu(unsigned int cpu)
3308 unsigned long flags;
3309 struct rcu_data *rdp;
3310 struct rcu_node *rnp;
3312 rdp = per_cpu_ptr(&rcu_data, cpu);
3313 rnp = rdp->mynode;
3314 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3315 rnp->ffmask |= rdp->grpmask;
3316 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3317 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3318 return 0; /* Too early in boot for scheduler work. */
3319 sync_sched_exp_online_cleanup(cpu);
3320 rcutree_affinity_setting(cpu, -1);
3322 // Stop-machine done, so allow nohz_full to disable tick.
3323 tick_dep_clear(TICK_DEP_BIT_RCU);
3324 return 0;
3328 * Near the beginning of the process. The CPU is still very much alive
3329 * with pretty much all services enabled.
3331 int rcutree_offline_cpu(unsigned int cpu)
3333 unsigned long flags;
3334 struct rcu_data *rdp;
3335 struct rcu_node *rnp;
3337 rdp = per_cpu_ptr(&rcu_data, cpu);
3338 rnp = rdp->mynode;
3339 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3340 rnp->ffmask &= ~rdp->grpmask;
3341 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3343 rcutree_affinity_setting(cpu, cpu);
3345 // nohz_full CPUs need the tick for stop-machine to work quickly
3346 tick_dep_set(TICK_DEP_BIT_RCU);
3347 return 0;
3350 static DEFINE_PER_CPU(int, rcu_cpu_started);
3353 * Mark the specified CPU as being online so that subsequent grace periods
3354 * (both expedited and normal) will wait on it. Note that this means that
3355 * incoming CPUs are not allowed to use RCU read-side critical sections
3356 * until this function is called. Failing to observe this restriction
3357 * will result in lockdep splats.
3359 * Note that this function is special in that it is invoked directly
3360 * from the incoming CPU rather than from the cpuhp_step mechanism.
3361 * This is because this function must be invoked at a precise location.
3363 void rcu_cpu_starting(unsigned int cpu)
3365 unsigned long flags;
3366 unsigned long mask;
3367 int nbits;
3368 unsigned long oldmask;
3369 struct rcu_data *rdp;
3370 struct rcu_node *rnp;
3372 if (per_cpu(rcu_cpu_started, cpu))
3373 return;
3375 per_cpu(rcu_cpu_started, cpu) = 1;
3377 rdp = per_cpu_ptr(&rcu_data, cpu);
3378 rnp = rdp->mynode;
3379 mask = rdp->grpmask;
3380 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3381 rnp->qsmaskinitnext |= mask;
3382 oldmask = rnp->expmaskinitnext;
3383 rnp->expmaskinitnext |= mask;
3384 oldmask ^= rnp->expmaskinitnext;
3385 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3386 /* Allow lockless access for expedited grace periods. */
3387 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3388 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3389 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3390 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3391 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3392 rcu_disable_urgency_upon_qs(rdp);
3393 /* Report QS -after- changing ->qsmaskinitnext! */
3394 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3395 } else {
3396 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3398 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3401 #ifdef CONFIG_HOTPLUG_CPU
3403 * The outgoing function has no further need of RCU, so remove it from
3404 * the rcu_node tree's ->qsmaskinitnext bit masks.
3406 * Note that this function is special in that it is invoked directly
3407 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3408 * This is because this function must be invoked at a precise location.
3410 void rcu_report_dead(unsigned int cpu)
3412 unsigned long flags;
3413 unsigned long mask;
3414 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3415 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3417 /* QS for any half-done expedited grace period. */
3418 preempt_disable();
3419 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3420 preempt_enable();
3421 rcu_preempt_deferred_qs(current);
3423 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3424 mask = rdp->grpmask;
3425 raw_spin_lock(&rcu_state.ofl_lock);
3426 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3427 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3428 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3429 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3430 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3431 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3432 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3434 rnp->qsmaskinitnext &= ~mask;
3435 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3436 raw_spin_unlock(&rcu_state.ofl_lock);
3438 per_cpu(rcu_cpu_started, cpu) = 0;
3442 * The outgoing CPU has just passed through the dying-idle state, and we
3443 * are being invoked from the CPU that was IPIed to continue the offline
3444 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3446 void rcutree_migrate_callbacks(int cpu)
3448 unsigned long flags;
3449 struct rcu_data *my_rdp;
3450 struct rcu_node *my_rnp;
3451 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3452 bool needwake;
3454 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3455 rcu_segcblist_empty(&rdp->cblist))
3456 return; /* No callbacks to migrate. */
3458 local_irq_save(flags);
3459 my_rdp = this_cpu_ptr(&rcu_data);
3460 my_rnp = my_rdp->mynode;
3461 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3462 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3463 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3464 /* Leverage recent GPs and set GP for new callbacks. */
3465 needwake = rcu_advance_cbs(my_rnp, rdp) ||
3466 rcu_advance_cbs(my_rnp, my_rdp);
3467 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3468 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3469 rcu_segcblist_disable(&rdp->cblist);
3470 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3471 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3472 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3473 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3474 __call_rcu_nocb_wake(my_rdp, true, flags);
3475 } else {
3476 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3477 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3479 if (needwake)
3480 rcu_gp_kthread_wake();
3481 lockdep_assert_irqs_enabled();
3482 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3483 !rcu_segcblist_empty(&rdp->cblist),
3484 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3485 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3486 rcu_segcblist_first_cb(&rdp->cblist));
3488 #endif
3491 * On non-huge systems, use expedited RCU grace periods to make suspend
3492 * and hibernation run faster.
3494 static int rcu_pm_notify(struct notifier_block *self,
3495 unsigned long action, void *hcpu)
3497 switch (action) {
3498 case PM_HIBERNATION_PREPARE:
3499 case PM_SUSPEND_PREPARE:
3500 rcu_expedite_gp();
3501 break;
3502 case PM_POST_HIBERNATION:
3503 case PM_POST_SUSPEND:
3504 rcu_unexpedite_gp();
3505 break;
3506 default:
3507 break;
3509 return NOTIFY_OK;
3513 * Spawn the kthreads that handle RCU's grace periods.
3515 static int __init rcu_spawn_gp_kthread(void)
3517 unsigned long flags;
3518 int kthread_prio_in = kthread_prio;
3519 struct rcu_node *rnp;
3520 struct sched_param sp;
3521 struct task_struct *t;
3523 /* Force priority into range. */
3524 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3525 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3526 kthread_prio = 2;
3527 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3528 kthread_prio = 1;
3529 else if (kthread_prio < 0)
3530 kthread_prio = 0;
3531 else if (kthread_prio > 99)
3532 kthread_prio = 99;
3534 if (kthread_prio != kthread_prio_in)
3535 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3536 kthread_prio, kthread_prio_in);
3538 rcu_scheduler_fully_active = 1;
3539 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3540 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3541 return 0;
3542 if (kthread_prio) {
3543 sp.sched_priority = kthread_prio;
3544 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3546 rnp = rcu_get_root();
3547 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3548 rcu_state.gp_kthread = t;
3549 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3550 wake_up_process(t);
3551 rcu_spawn_nocb_kthreads();
3552 rcu_spawn_boost_kthreads();
3553 return 0;
3555 early_initcall(rcu_spawn_gp_kthread);
3558 * This function is invoked towards the end of the scheduler's
3559 * initialization process. Before this is called, the idle task might
3560 * contain synchronous grace-period primitives (during which time, this idle
3561 * task is booting the system, and such primitives are no-ops). After this
3562 * function is called, any synchronous grace-period primitives are run as
3563 * expedited, with the requesting task driving the grace period forward.
3564 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3565 * runtime RCU functionality.
3567 void rcu_scheduler_starting(void)
3569 WARN_ON(num_online_cpus() != 1);
3570 WARN_ON(nr_context_switches() > 0);
3571 rcu_test_sync_prims();
3572 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3573 rcu_test_sync_prims();
3577 * Helper function for rcu_init() that initializes the rcu_state structure.
3579 static void __init rcu_init_one(void)
3581 static const char * const buf[] = RCU_NODE_NAME_INIT;
3582 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3583 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3584 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3586 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3587 int cpustride = 1;
3588 int i;
3589 int j;
3590 struct rcu_node *rnp;
3592 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3594 /* Silence gcc 4.8 false positive about array index out of range. */
3595 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3596 panic("rcu_init_one: rcu_num_lvls out of range");
3598 /* Initialize the level-tracking arrays. */
3600 for (i = 1; i < rcu_num_lvls; i++)
3601 rcu_state.level[i] =
3602 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3603 rcu_init_levelspread(levelspread, num_rcu_lvl);
3605 /* Initialize the elements themselves, starting from the leaves. */
3607 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3608 cpustride *= levelspread[i];
3609 rnp = rcu_state.level[i];
3610 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3611 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3612 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3613 &rcu_node_class[i], buf[i]);
3614 raw_spin_lock_init(&rnp->fqslock);
3615 lockdep_set_class_and_name(&rnp->fqslock,
3616 &rcu_fqs_class[i], fqs[i]);
3617 rnp->gp_seq = rcu_state.gp_seq;
3618 rnp->gp_seq_needed = rcu_state.gp_seq;
3619 rnp->completedqs = rcu_state.gp_seq;
3620 rnp->qsmask = 0;
3621 rnp->qsmaskinit = 0;
3622 rnp->grplo = j * cpustride;
3623 rnp->grphi = (j + 1) * cpustride - 1;
3624 if (rnp->grphi >= nr_cpu_ids)
3625 rnp->grphi = nr_cpu_ids - 1;
3626 if (i == 0) {
3627 rnp->grpnum = 0;
3628 rnp->grpmask = 0;
3629 rnp->parent = NULL;
3630 } else {
3631 rnp->grpnum = j % levelspread[i - 1];
3632 rnp->grpmask = BIT(rnp->grpnum);
3633 rnp->parent = rcu_state.level[i - 1] +
3634 j / levelspread[i - 1];
3636 rnp->level = i;
3637 INIT_LIST_HEAD(&rnp->blkd_tasks);
3638 rcu_init_one_nocb(rnp);
3639 init_waitqueue_head(&rnp->exp_wq[0]);
3640 init_waitqueue_head(&rnp->exp_wq[1]);
3641 init_waitqueue_head(&rnp->exp_wq[2]);
3642 init_waitqueue_head(&rnp->exp_wq[3]);
3643 spin_lock_init(&rnp->exp_lock);
3647 init_swait_queue_head(&rcu_state.gp_wq);
3648 init_swait_queue_head(&rcu_state.expedited_wq);
3649 rnp = rcu_first_leaf_node();
3650 for_each_possible_cpu(i) {
3651 while (i > rnp->grphi)
3652 rnp++;
3653 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3654 rcu_boot_init_percpu_data(i);
3659 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3660 * replace the definitions in tree.h because those are needed to size
3661 * the ->node array in the rcu_state structure.
3663 static void __init rcu_init_geometry(void)
3665 ulong d;
3666 int i;
3667 int rcu_capacity[RCU_NUM_LVLS];
3670 * Initialize any unspecified boot parameters.
3671 * The default values of jiffies_till_first_fqs and
3672 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3673 * value, which is a function of HZ, then adding one for each
3674 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3676 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3677 if (jiffies_till_first_fqs == ULONG_MAX)
3678 jiffies_till_first_fqs = d;
3679 if (jiffies_till_next_fqs == ULONG_MAX)
3680 jiffies_till_next_fqs = d;
3681 adjust_jiffies_till_sched_qs();
3683 /* If the compile-time values are accurate, just leave. */
3684 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3685 nr_cpu_ids == NR_CPUS)
3686 return;
3687 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3688 rcu_fanout_leaf, nr_cpu_ids);
3691 * The boot-time rcu_fanout_leaf parameter must be at least two
3692 * and cannot exceed the number of bits in the rcu_node masks.
3693 * Complain and fall back to the compile-time values if this
3694 * limit is exceeded.
3696 if (rcu_fanout_leaf < 2 ||
3697 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3698 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3699 WARN_ON(1);
3700 return;
3704 * Compute number of nodes that can be handled an rcu_node tree
3705 * with the given number of levels.
3707 rcu_capacity[0] = rcu_fanout_leaf;
3708 for (i = 1; i < RCU_NUM_LVLS; i++)
3709 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3712 * The tree must be able to accommodate the configured number of CPUs.
3713 * If this limit is exceeded, fall back to the compile-time values.
3715 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3716 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3717 WARN_ON(1);
3718 return;
3721 /* Calculate the number of levels in the tree. */
3722 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3724 rcu_num_lvls = i + 1;
3726 /* Calculate the number of rcu_nodes at each level of the tree. */
3727 for (i = 0; i < rcu_num_lvls; i++) {
3728 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3729 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3732 /* Calculate the total number of rcu_node structures. */
3733 rcu_num_nodes = 0;
3734 for (i = 0; i < rcu_num_lvls; i++)
3735 rcu_num_nodes += num_rcu_lvl[i];
3739 * Dump out the structure of the rcu_node combining tree associated
3740 * with the rcu_state structure.
3742 static void __init rcu_dump_rcu_node_tree(void)
3744 int level = 0;
3745 struct rcu_node *rnp;
3747 pr_info("rcu_node tree layout dump\n");
3748 pr_info(" ");
3749 rcu_for_each_node_breadth_first(rnp) {
3750 if (rnp->level != level) {
3751 pr_cont("\n");
3752 pr_info(" ");
3753 level = rnp->level;
3755 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3757 pr_cont("\n");
3760 struct workqueue_struct *rcu_gp_wq;
3761 struct workqueue_struct *rcu_par_gp_wq;
3763 static void __init kfree_rcu_batch_init(void)
3765 int cpu;
3766 int i;
3768 for_each_possible_cpu(cpu) {
3769 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3771 spin_lock_init(&krcp->lock);
3772 for (i = 0; i < KFREE_N_BATCHES; i++)
3773 krcp->krw_arr[i].krcp = krcp;
3774 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
3775 krcp->initialized = true;
3779 void __init rcu_init(void)
3781 int cpu;
3783 rcu_early_boot_tests();
3785 kfree_rcu_batch_init();
3786 rcu_bootup_announce();
3787 rcu_init_geometry();
3788 rcu_init_one();
3789 if (dump_tree)
3790 rcu_dump_rcu_node_tree();
3791 if (use_softirq)
3792 open_softirq(RCU_SOFTIRQ, rcu_core_si);
3795 * We don't need protection against CPU-hotplug here because
3796 * this is called early in boot, before either interrupts
3797 * or the scheduler are operational.
3799 pm_notifier(rcu_pm_notify, 0);
3800 for_each_online_cpu(cpu) {
3801 rcutree_prepare_cpu(cpu);
3802 rcu_cpu_starting(cpu);
3803 rcutree_online_cpu(cpu);
3806 /* Create workqueue for expedited GPs and for Tree SRCU. */
3807 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3808 WARN_ON(!rcu_gp_wq);
3809 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3810 WARN_ON(!rcu_par_gp_wq);
3811 srcu_init();
3814 #include "tree_stall.h"
3815 #include "tree_exp.h"
3816 #include "tree_plugin.h"