1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
14 #include "../locking/rtmutex_common.h"
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
22 * Check the RCU kernel configuration parameters and print informative
23 * messages about anything out of the ordinary.
25 static void __init
rcu_bootup_announce_oddness(void)
27 if (IS_ENABLED(CONFIG_RCU_TRACE
))
28 pr_info("\tRCU event tracing is enabled.\n");
29 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
30 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ
))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 if (IS_ENABLED(CONFIG_PROVE_RCU
))
38 pr_info("\tRCU lockdep checking is enabled.\n");
39 if (RCU_NUM_LVLS
>= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 if (RCU_FANOUT_LEAF
!= 16)
42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
44 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
47 if (nr_cpu_ids
!= NR_CPUS
)
48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS
, nr_cpu_ids
);
49 #ifdef CONFIG_RCU_BOOST
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio
, CONFIG_RCU_BOOST_DELAY
);
53 if (blimit
!= DEFAULT_RCU_BLIMIT
)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit
);
55 if (qhimark
!= DEFAULT_RCU_QHIMARK
)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark
);
57 if (qlowmark
!= DEFAULT_RCU_QLOMARK
)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark
);
59 if (jiffies_till_first_fqs
!= ULONG_MAX
)
60 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs
);
61 if (jiffies_till_next_fqs
!= ULONG_MAX
)
62 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs
);
63 if (jiffies_till_sched_qs
!= ULONG_MAX
)
64 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs
);
65 if (rcu_kick_kthreads
)
66 pr_info("\tKick kthreads if too-long grace period.\n");
67 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD
))
68 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
70 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay
);
72 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay
);
74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay
);
76 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
))
78 pr_info("\tRCU debug extended QS entry/exit.\n");
79 rcupdate_announce_bootup_oddness();
82 #ifdef CONFIG_PREEMPT_RCU
84 static void rcu_report_exp_rnp(struct rcu_node
*rnp
, bool wake
);
85 static void rcu_read_unlock_special(struct task_struct
*t
);
88 * Tell them what RCU they are running.
90 static void __init
rcu_bootup_announce(void)
92 pr_info("Preemptible hierarchical RCU implementation.\n");
93 rcu_bootup_announce_oddness();
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS 0x8
98 #define RCU_EXP_TASKS 0x4
99 #define RCU_GP_BLKD 0x2
100 #define RCU_EXP_BLKD 0x1
103 * Queues a task preempted within an RCU-preempt read-side critical
104 * section into the appropriate location within the ->blkd_tasks list,
105 * depending on the states of any ongoing normal and expedited grace
106 * periods. The ->gp_tasks pointer indicates which element the normal
107 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108 * indicates which element the expedited grace period is waiting on (again,
109 * NULL if none). If a grace period is waiting on a given element in the
110 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
111 * adding a task to the tail of the list blocks any grace period that is
112 * already waiting on one of the elements. In contrast, adding a task
113 * to the head of the list won't block any grace period that is already
114 * waiting on one of the elements.
116 * This queuing is imprecise, and can sometimes make an ongoing grace
117 * period wait for a task that is not strictly speaking blocking it.
118 * Given the choice, we needlessly block a normal grace period rather than
119 * blocking an expedited grace period.
121 * Note that an endless sequence of expedited grace periods still cannot
122 * indefinitely postpone a normal grace period. Eventually, all of the
123 * fixed number of preempted tasks blocking the normal grace period that are
124 * not also blocking the expedited grace period will resume and complete
125 * their RCU read-side critical sections. At that point, the ->gp_tasks
126 * pointer will equal the ->exp_tasks pointer, at which point the end of
127 * the corresponding expedited grace period will also be the end of the
128 * normal grace period.
130 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
131 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
133 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
134 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
135 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
136 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
137 struct task_struct
*t
= current
;
139 raw_lockdep_assert_held_rcu_node(rnp
);
140 WARN_ON_ONCE(rdp
->mynode
!= rnp
);
141 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
142 /* RCU better not be waiting on newly onlined CPUs! */
143 WARN_ON_ONCE(rnp
->qsmaskinitnext
& ~rnp
->qsmaskinit
& rnp
->qsmask
&
147 * Decide where to queue the newly blocked task. In theory,
148 * this could be an if-statement. In practice, when I tried
149 * that, it was quite messy.
151 switch (blkd_state
) {
154 case RCU_EXP_TASKS
+ RCU_GP_BLKD
:
156 case RCU_GP_TASKS
+ RCU_EXP_TASKS
:
159 * Blocking neither GP, or first task blocking the normal
160 * GP but not blocking the already-waiting expedited GP.
161 * Queue at the head of the list to avoid unnecessarily
162 * blocking the already-waiting GPs.
164 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
169 case RCU_GP_BLKD
+ RCU_EXP_BLKD
:
170 case RCU_GP_TASKS
+ RCU_EXP_BLKD
:
171 case RCU_GP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
172 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
175 * First task arriving that blocks either GP, or first task
176 * arriving that blocks the expedited GP (with the normal
177 * GP already waiting), or a task arriving that blocks
178 * both GPs with both GPs already waiting. Queue at the
179 * tail of the list to avoid any GP waiting on any of the
180 * already queued tasks that are not blocking it.
182 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
185 case RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
186 case RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
187 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
190 * Second or subsequent task blocking the expedited GP.
191 * The task either does not block the normal GP, or is the
192 * first task blocking the normal GP. Queue just after
193 * the first task blocking the expedited GP.
195 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
198 case RCU_GP_TASKS
+ RCU_GP_BLKD
:
199 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
:
202 * Second or subsequent task blocking the normal GP.
203 * The task does not block the expedited GP. Queue just
204 * after the first task blocking the normal GP.
206 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
211 /* Yet another exercise in excessive paranoia. */
217 * We have now queued the task. If it was the first one to
218 * block either grace period, update the ->gp_tasks and/or
219 * ->exp_tasks pointers, respectively, to reference the newly
222 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
)) {
223 WRITE_ONCE(rnp
->gp_tasks
, &t
->rcu_node_entry
);
224 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
);
226 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
227 rnp
->exp_tasks
= &t
->rcu_node_entry
;
228 WARN_ON_ONCE(!(blkd_state
& RCU_GP_BLKD
) !=
229 !(rnp
->qsmask
& rdp
->grpmask
));
230 WARN_ON_ONCE(!(blkd_state
& RCU_EXP_BLKD
) !=
231 !(rnp
->expmask
& rdp
->grpmask
));
232 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
235 * Report the quiescent state for the expedited GP. This expedited
236 * GP should not be able to end until we report, so there should be
237 * no need to check for a subsequent expedited GP. (Though we are
238 * still in a quiescent state in any case.)
240 if (blkd_state
& RCU_EXP_BLKD
&& rdp
->exp_deferred_qs
)
241 rcu_report_exp_rdp(rdp
);
243 WARN_ON_ONCE(rdp
->exp_deferred_qs
);
247 * Record a preemptible-RCU quiescent state for the specified CPU.
248 * Note that this does not necessarily mean that the task currently running
249 * on the CPU is in a quiescent state: Instead, it means that the current
250 * grace period need not wait on any RCU read-side critical section that
251 * starts later on this CPU. It also means that if the current task is
252 * in an RCU read-side critical section, it has already added itself to
253 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
254 * current task, there might be any number of other tasks blocked while
255 * in an RCU read-side critical section.
257 * Callers to this function must disable preemption.
259 static void rcu_qs(void)
261 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262 if (__this_cpu_read(rcu_data
.cpu_no_qs
.s
)) {
263 trace_rcu_grace_period(TPS("rcu_preempt"),
264 __this_cpu_read(rcu_data
.gp_seq
),
266 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
267 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268 WRITE_ONCE(current
->rcu_read_unlock_special
.b
.need_qs
, false);
273 * We have entered the scheduler, and the current task might soon be
274 * context-switched away from. If this task is in an RCU read-side
275 * critical section, we will no longer be able to rely on the CPU to
276 * record that fact, so we enqueue the task on the blkd_tasks list.
277 * The task will dequeue itself when it exits the outermost enclosing
278 * RCU read-side critical section. Therefore, the current grace period
279 * cannot be permitted to complete until the blkd_tasks list entries
280 * predating the current grace period drain, in other words, until
281 * rnp->gp_tasks becomes NULL.
283 * Caller must disable interrupts.
285 void rcu_note_context_switch(bool preempt
)
287 struct task_struct
*t
= current
;
288 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
289 struct rcu_node
*rnp
;
291 trace_rcu_utilization(TPS("Start context switch"));
292 lockdep_assert_irqs_disabled();
293 WARN_ON_ONCE(!preempt
&& rcu_preempt_depth() > 0);
294 if (rcu_preempt_depth() > 0 &&
295 !t
->rcu_read_unlock_special
.b
.blocked
) {
297 /* Possibly blocking in an RCU read-side critical section. */
299 raw_spin_lock_rcu_node(rnp
);
300 t
->rcu_read_unlock_special
.b
.blocked
= true;
301 t
->rcu_blocked_node
= rnp
;
304 * Verify the CPU's sanity, trace the preemption, and
305 * then queue the task as required based on the states
306 * of any ongoing and expedited grace periods.
308 WARN_ON_ONCE((rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) == 0);
309 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
310 trace_rcu_preempt_task(rcu_state
.name
,
312 (rnp
->qsmask
& rdp
->grpmask
)
314 : rcu_seq_snap(&rnp
->gp_seq
));
315 rcu_preempt_ctxt_queue(rnp
, rdp
);
317 rcu_preempt_deferred_qs(t
);
321 * Either we were not in an RCU read-side critical section to
322 * begin with, or we have now recorded that critical section
323 * globally. Either way, we can now note a quiescent state
324 * for this CPU. Again, if we were in an RCU read-side critical
325 * section, and if that critical section was blocking the current
326 * grace period, then the fact that the task has been enqueued
327 * means that we continue to block the current grace period.
330 if (rdp
->exp_deferred_qs
)
331 rcu_report_exp_rdp(rdp
);
332 trace_rcu_utilization(TPS("End context switch"));
334 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
337 * Check for preempted RCU readers blocking the current grace period
338 * for the specified rcu_node structure. If the caller needs a reliable
339 * answer, it must hold the rcu_node's ->lock.
341 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
343 return READ_ONCE(rnp
->gp_tasks
) != NULL
;
346 /* Bias and limit values for ->rcu_read_lock_nesting. */
347 #define RCU_NEST_BIAS INT_MAX
348 #define RCU_NEST_NMAX (-INT_MAX / 2)
349 #define RCU_NEST_PMAX (INT_MAX / 2)
351 static void rcu_preempt_read_enter(void)
353 current
->rcu_read_lock_nesting
++;
356 static void rcu_preempt_read_exit(void)
358 current
->rcu_read_lock_nesting
--;
361 static void rcu_preempt_depth_set(int val
)
363 current
->rcu_read_lock_nesting
= val
;
367 * Preemptible RCU implementation for rcu_read_lock().
368 * Just increment ->rcu_read_lock_nesting, shared state will be updated
371 void __rcu_read_lock(void)
373 rcu_preempt_read_enter();
374 if (IS_ENABLED(CONFIG_PROVE_LOCKING
))
375 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX
);
376 barrier(); /* critical section after entry code. */
378 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
381 * Preemptible RCU implementation for rcu_read_unlock().
382 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
383 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
384 * invoke rcu_read_unlock_special() to clean up after a context switch
385 * in an RCU read-side critical section and other special cases.
387 void __rcu_read_unlock(void)
389 struct task_struct
*t
= current
;
391 if (rcu_preempt_depth() != 1) {
392 rcu_preempt_read_exit();
394 barrier(); /* critical section before exit code. */
395 rcu_preempt_depth_set(-RCU_NEST_BIAS
);
396 barrier(); /* assign before ->rcu_read_unlock_special load */
397 if (unlikely(READ_ONCE(t
->rcu_read_unlock_special
.s
)))
398 rcu_read_unlock_special(t
);
399 barrier(); /* ->rcu_read_unlock_special load before assign */
400 rcu_preempt_depth_set(0);
402 if (IS_ENABLED(CONFIG_PROVE_LOCKING
)) {
403 int rrln
= rcu_preempt_depth();
405 WARN_ON_ONCE(rrln
< 0 && rrln
> RCU_NEST_NMAX
);
408 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
411 * Advance a ->blkd_tasks-list pointer to the next entry, instead
412 * returning NULL if at the end of the list.
414 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
415 struct rcu_node
*rnp
)
417 struct list_head
*np
;
419 np
= t
->rcu_node_entry
.next
;
420 if (np
== &rnp
->blkd_tasks
)
426 * Return true if the specified rcu_node structure has tasks that were
427 * preempted within an RCU read-side critical section.
429 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
431 return !list_empty(&rnp
->blkd_tasks
);
435 * Report deferred quiescent states. The deferral time can
436 * be quite short, for example, in the case of the call from
437 * rcu_read_unlock_special().
440 rcu_preempt_deferred_qs_irqrestore(struct task_struct
*t
, unsigned long flags
)
445 struct list_head
*np
;
446 bool drop_boost_mutex
= false;
447 struct rcu_data
*rdp
;
448 struct rcu_node
*rnp
;
449 union rcu_special special
;
452 * If RCU core is waiting for this CPU to exit its critical section,
453 * report the fact that it has exited. Because irqs are disabled,
454 * t->rcu_read_unlock_special cannot change.
456 special
= t
->rcu_read_unlock_special
;
457 rdp
= this_cpu_ptr(&rcu_data
);
458 if (!special
.s
&& !rdp
->exp_deferred_qs
) {
459 local_irq_restore(flags
);
462 t
->rcu_read_unlock_special
.s
= 0;
463 if (special
.b
.need_qs
)
467 * Respond to a request by an expedited grace period for a
468 * quiescent state from this CPU. Note that requests from
469 * tasks are handled when removing the task from the
470 * blocked-tasks list below.
472 if (rdp
->exp_deferred_qs
)
473 rcu_report_exp_rdp(rdp
);
475 /* Clean up if blocked during RCU read-side critical section. */
476 if (special
.b
.blocked
) {
479 * Remove this task from the list it blocked on. The task
480 * now remains queued on the rcu_node corresponding to the
481 * CPU it first blocked on, so there is no longer any need
482 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
484 rnp
= t
->rcu_blocked_node
;
485 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
486 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
487 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
488 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
489 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
&&
490 (!empty_norm
|| rnp
->qsmask
));
491 empty_exp
= sync_rcu_exp_done(rnp
);
492 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
493 np
= rcu_next_node_entry(t
, rnp
);
494 list_del_init(&t
->rcu_node_entry
);
495 t
->rcu_blocked_node
= NULL
;
496 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
497 rnp
->gp_seq
, t
->pid
);
498 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
499 WRITE_ONCE(rnp
->gp_tasks
, np
);
500 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
502 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
503 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
504 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
) == t
;
505 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
506 rnp
->boost_tasks
= np
;
510 * If this was the last task on the current list, and if
511 * we aren't waiting on any CPUs, report the quiescent state.
512 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
513 * so we must take a snapshot of the expedited state.
515 empty_exp_now
= sync_rcu_exp_done(rnp
);
516 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
517 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
524 rcu_report_unblock_qs_rnp(rnp
, flags
);
526 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
529 /* Unboost if we were boosted. */
530 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
531 rt_mutex_futex_unlock(&rnp
->boost_mtx
);
534 * If this was the last task on the expedited lists,
535 * then we need to report up the rcu_node hierarchy.
537 if (!empty_exp
&& empty_exp_now
)
538 rcu_report_exp_rnp(rnp
, true);
540 local_irq_restore(flags
);
545 * Is a deferred quiescent-state pending, and are we also not in
546 * an RCU read-side critical section? It is the caller's responsibility
547 * to ensure it is otherwise safe to report any deferred quiescent
548 * states. The reason for this is that it is safe to report a
549 * quiescent state during context switch even though preemption
550 * is disabled. This function cannot be expected to understand these
551 * nuances, so the caller must handle them.
553 static bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
555 return (__this_cpu_read(rcu_data
.exp_deferred_qs
) ||
556 READ_ONCE(t
->rcu_read_unlock_special
.s
)) &&
557 rcu_preempt_depth() <= 0;
561 * Report a deferred quiescent state if needed and safe to do so.
562 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
563 * not being in an RCU read-side critical section. The caller must
564 * evaluate safety in terms of interrupt, softirq, and preemption
567 static void rcu_preempt_deferred_qs(struct task_struct
*t
)
570 bool couldrecurse
= rcu_preempt_depth() >= 0;
572 if (!rcu_preempt_need_deferred_qs(t
))
575 rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS
);
576 local_irq_save(flags
);
577 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
579 rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS
);
583 * Minimal handler to give the scheduler a chance to re-evaluate.
585 static void rcu_preempt_deferred_qs_handler(struct irq_work
*iwp
)
587 struct rcu_data
*rdp
;
589 rdp
= container_of(iwp
, struct rcu_data
, defer_qs_iw
);
590 rdp
->defer_qs_iw_pending
= false;
594 * Handle special cases during rcu_read_unlock(), such as needing to
595 * notify RCU core processing or task having blocked during the RCU
596 * read-side critical section.
598 static void rcu_read_unlock_special(struct task_struct
*t
)
601 bool preempt_bh_were_disabled
=
602 !!(preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
));
603 bool irqs_were_disabled
;
605 /* NMI handlers cannot block and cannot safely manipulate state. */
609 local_irq_save(flags
);
610 irqs_were_disabled
= irqs_disabled_flags(flags
);
611 if (preempt_bh_were_disabled
|| irqs_were_disabled
) {
613 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
614 struct rcu_node
*rnp
= rdp
->mynode
;
616 exp
= (t
->rcu_blocked_node
&& t
->rcu_blocked_node
->exp_tasks
) ||
617 (rdp
->grpmask
& READ_ONCE(rnp
->expmask
)) ||
618 tick_nohz_full_cpu(rdp
->cpu
);
619 // Need to defer quiescent state until everything is enabled.
620 if (irqs_were_disabled
&& use_softirq
&&
622 (exp
&& !t
->rcu_read_unlock_special
.b
.deferred_qs
))) {
623 // Using softirq, safe to awaken, and we get
624 // no help from enabling irqs, unlike bh/preempt.
625 raise_softirq_irqoff(RCU_SOFTIRQ
);
627 // Enabling BH or preempt does reschedule, so...
628 // Also if no expediting or NO_HZ_FULL, slow is OK.
629 set_tsk_need_resched(current
);
630 set_preempt_need_resched();
631 if (IS_ENABLED(CONFIG_IRQ_WORK
) && irqs_were_disabled
&&
632 !rdp
->defer_qs_iw_pending
&& exp
) {
633 // Get scheduler to re-evaluate and call hooks.
634 // If !IRQ_WORK, FQS scan will eventually IPI.
635 init_irq_work(&rdp
->defer_qs_iw
,
636 rcu_preempt_deferred_qs_handler
);
637 rdp
->defer_qs_iw_pending
= true;
638 irq_work_queue_on(&rdp
->defer_qs_iw
, rdp
->cpu
);
641 t
->rcu_read_unlock_special
.b
.deferred_qs
= true;
642 local_irq_restore(flags
);
645 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
649 * Check that the list of blocked tasks for the newly completed grace
650 * period is in fact empty. It is a serious bug to complete a grace
651 * period that still has RCU readers blocked! This function must be
652 * invoked -before- updating this rnp's ->gp_seq.
654 * Also, if there are blocked tasks on the list, they automatically
655 * block the newly created grace period, so set up ->gp_tasks accordingly.
657 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
659 struct task_struct
*t
;
661 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
662 raw_lockdep_assert_held_rcu_node(rnp
);
663 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
664 dump_blkd_tasks(rnp
, 10);
665 if (rcu_preempt_has_tasks(rnp
) &&
666 (rnp
->qsmaskinit
|| rnp
->wait_blkd_tasks
)) {
667 WRITE_ONCE(rnp
->gp_tasks
, rnp
->blkd_tasks
.next
);
668 t
= container_of(rnp
->gp_tasks
, struct task_struct
,
670 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
671 rnp
->gp_seq
, t
->pid
);
673 WARN_ON_ONCE(rnp
->qsmask
);
677 * Check for a quiescent state from the current CPU, including voluntary
678 * context switches for Tasks RCU. When a task blocks, the task is
679 * recorded in the corresponding CPU's rcu_node structure, which is checked
680 * elsewhere, hence this function need only check for quiescent states
681 * related to the current CPU, not to those related to tasks.
683 static void rcu_flavor_sched_clock_irq(int user
)
685 struct task_struct
*t
= current
;
687 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
688 rcu_note_voluntary_context_switch(current
);
690 if (rcu_preempt_depth() > 0 ||
691 (preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
))) {
692 /* No QS, force context switch if deferred. */
693 if (rcu_preempt_need_deferred_qs(t
)) {
694 set_tsk_need_resched(t
);
695 set_preempt_need_resched();
697 } else if (rcu_preempt_need_deferred_qs(t
)) {
698 rcu_preempt_deferred_qs(t
); /* Report deferred QS. */
700 } else if (!rcu_preempt_depth()) {
701 rcu_qs(); /* Report immediate QS. */
705 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
706 if (rcu_preempt_depth() > 0 &&
707 __this_cpu_read(rcu_data
.core_needs_qs
) &&
708 __this_cpu_read(rcu_data
.cpu_no_qs
.b
.norm
) &&
709 !t
->rcu_read_unlock_special
.b
.need_qs
&&
710 time_after(jiffies
, rcu_state
.gp_start
+ HZ
))
711 t
->rcu_read_unlock_special
.b
.need_qs
= true;
715 * Check for a task exiting while in a preemptible-RCU read-side
716 * critical section, clean up if so. No need to issue warnings, as
717 * debug_check_no_locks_held() already does this if lockdep is enabled.
718 * Besides, if this function does anything other than just immediately
719 * return, there was a bug of some sort. Spewing warnings from this
720 * function is like as not to simply obscure important prior warnings.
724 struct task_struct
*t
= current
;
726 if (unlikely(!list_empty(¤t
->rcu_node_entry
))) {
727 rcu_preempt_depth_set(1);
729 WRITE_ONCE(t
->rcu_read_unlock_special
.b
.blocked
, true);
730 } else if (unlikely(rcu_preempt_depth())) {
731 rcu_preempt_depth_set(1);
736 rcu_preempt_deferred_qs(current
);
740 * Dump the blocked-tasks state, but limit the list dump to the
741 * specified number of elements.
744 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
748 struct list_head
*lhp
;
750 struct rcu_data
*rdp
;
751 struct rcu_node
*rnp1
;
753 raw_lockdep_assert_held_rcu_node(rnp
);
754 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
755 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
756 (long)rnp
->gp_seq
, (long)rnp
->completedqs
);
757 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
758 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
759 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
);
760 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
761 __func__
, READ_ONCE(rnp
->gp_tasks
), rnp
->boost_tasks
,
763 pr_info("%s: ->blkd_tasks", __func__
);
765 list_for_each(lhp
, &rnp
->blkd_tasks
) {
771 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++) {
772 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
773 onl
= !!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
));
774 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
776 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_flags
,
777 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_flags
);
781 #else /* #ifdef CONFIG_PREEMPT_RCU */
784 * Tell them what RCU they are running.
786 static void __init
rcu_bootup_announce(void)
788 pr_info("Hierarchical RCU implementation.\n");
789 rcu_bootup_announce_oddness();
793 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
794 * how many quiescent states passed, just if there was at least one since
795 * the start of the grace period, this just sets a flag. The caller must
796 * have disabled preemption.
798 static void rcu_qs(void)
800 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
801 if (!__this_cpu_read(rcu_data
.cpu_no_qs
.s
))
803 trace_rcu_grace_period(TPS("rcu_sched"),
804 __this_cpu_read(rcu_data
.gp_seq
), TPS("cpuqs"));
805 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
806 if (!__this_cpu_read(rcu_data
.cpu_no_qs
.b
.exp
))
808 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.exp
, false);
809 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data
));
813 * Register an urgently needed quiescent state. If there is an
814 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
815 * dyntick-idle quiescent state visible to other CPUs, which will in
816 * some cases serve for expedited as well as normal grace periods.
817 * Either way, register a lightweight quiescent state.
819 void rcu_all_qs(void)
823 if (!raw_cpu_read(rcu_data
.rcu_urgent_qs
))
826 /* Load rcu_urgent_qs before other flags. */
827 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
))) {
831 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
832 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
))) {
833 local_irq_save(flags
);
834 rcu_momentary_dyntick_idle();
835 local_irq_restore(flags
);
840 EXPORT_SYMBOL_GPL(rcu_all_qs
);
843 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
845 void rcu_note_context_switch(bool preempt
)
847 trace_rcu_utilization(TPS("Start context switch"));
849 /* Load rcu_urgent_qs before other flags. */
850 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
)))
852 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
853 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
)))
854 rcu_momentary_dyntick_idle();
856 rcu_tasks_qs(current
);
858 trace_rcu_utilization(TPS("End context switch"));
860 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
863 * Because preemptible RCU does not exist, there are never any preempted
866 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
872 * Because there is no preemptible RCU, there can be no readers blocked.
874 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
880 * Because there is no preemptible RCU, there can be no deferred quiescent
883 static bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
887 static void rcu_preempt_deferred_qs(struct task_struct
*t
) { }
890 * Because there is no preemptible RCU, there can be no readers blocked,
891 * so there is no need to check for blocked tasks. So check only for
892 * bogus qsmask values.
894 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
896 WARN_ON_ONCE(rnp
->qsmask
);
900 * Check to see if this CPU is in a non-context-switch quiescent state,
901 * namely user mode and idle loop.
903 static void rcu_flavor_sched_clock_irq(int user
)
905 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
908 * Get here if this CPU took its interrupt from user
909 * mode or from the idle loop, and if this is not a
910 * nested interrupt. In this case, the CPU is in
911 * a quiescent state, so note it.
913 * No memory barrier is required here because rcu_qs()
914 * references only CPU-local variables that other CPUs
915 * neither access nor modify, at least not while the
916 * corresponding CPU is online.
924 * Because preemptible RCU does not exist, tasks cannot possibly exit
925 * while in preemptible RCU read-side critical sections.
932 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
935 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
937 WARN_ON_ONCE(!list_empty(&rnp
->blkd_tasks
));
940 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
943 * If boosting, set rcuc kthreads to realtime priority.
945 static void rcu_cpu_kthread_setup(unsigned int cpu
)
947 #ifdef CONFIG_RCU_BOOST
948 struct sched_param sp
;
950 sp
.sched_priority
= kthread_prio
;
951 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
952 #endif /* #ifdef CONFIG_RCU_BOOST */
955 #ifdef CONFIG_RCU_BOOST
958 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
959 * or ->boost_tasks, advancing the pointer to the next task in the
962 * Note that irqs must be enabled: boosting the task can block.
963 * Returns 1 if there are more tasks needing to be boosted.
965 static int rcu_boost(struct rcu_node
*rnp
)
968 struct task_struct
*t
;
969 struct list_head
*tb
;
971 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
972 READ_ONCE(rnp
->boost_tasks
) == NULL
)
973 return 0; /* Nothing left to boost. */
975 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
978 * Recheck under the lock: all tasks in need of boosting
979 * might exit their RCU read-side critical sections on their own.
981 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
982 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
987 * Preferentially boost tasks blocking expedited grace periods.
988 * This cannot starve the normal grace periods because a second
989 * expedited grace period must boost all blocked tasks, including
990 * those blocking the pre-existing normal grace period.
992 if (rnp
->exp_tasks
!= NULL
)
995 tb
= rnp
->boost_tasks
;
998 * We boost task t by manufacturing an rt_mutex that appears to
999 * be held by task t. We leave a pointer to that rt_mutex where
1000 * task t can find it, and task t will release the mutex when it
1001 * exits its outermost RCU read-side critical section. Then
1002 * simply acquiring this artificial rt_mutex will boost task
1003 * t's priority. (Thanks to tglx for suggesting this approach!)
1005 * Note that task t must acquire rnp->lock to remove itself from
1006 * the ->blkd_tasks list, which it will do from exit() if from
1007 * nowhere else. We therefore are guaranteed that task t will
1008 * stay around at least until we drop rnp->lock. Note that
1009 * rnp->lock also resolves races between our priority boosting
1010 * and task t's exiting its outermost RCU read-side critical
1013 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1014 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
, t
);
1015 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1016 /* Lock only for side effect: boosts task t's priority. */
1017 rt_mutex_lock(&rnp
->boost_mtx
);
1018 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
1020 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
1021 READ_ONCE(rnp
->boost_tasks
) != NULL
;
1025 * Priority-boosting kthread, one per leaf rcu_node.
1027 static int rcu_boost_kthread(void *arg
)
1029 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1033 trace_rcu_utilization(TPS("Start boost kthread@init"));
1035 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
1036 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1037 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
1038 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1039 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
1040 more2boost
= rcu_boost(rnp
);
1046 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
1047 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1048 schedule_timeout_interruptible(2);
1049 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1054 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1059 * Check to see if it is time to start boosting RCU readers that are
1060 * blocking the current grace period, and, if so, tell the per-rcu_node
1061 * kthread to start boosting them. If there is an expedited grace
1062 * period in progress, it is always time to boost.
1064 * The caller must hold rnp->lock, which this function releases.
1065 * The ->boost_kthread_task is immortal, so we don't need to worry
1066 * about it going away.
1068 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1069 __releases(rnp
->lock
)
1071 raw_lockdep_assert_held_rcu_node(rnp
);
1072 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1073 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1076 if (rnp
->exp_tasks
!= NULL
||
1077 (rnp
->gp_tasks
!= NULL
&&
1078 rnp
->boost_tasks
== NULL
&&
1080 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1081 if (rnp
->exp_tasks
== NULL
)
1082 rnp
->boost_tasks
= rnp
->gp_tasks
;
1083 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1084 rcu_wake_cond(rnp
->boost_kthread_task
,
1085 rnp
->boost_kthread_status
);
1087 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1092 * Is the current CPU running the RCU-callbacks kthread?
1093 * Caller must have preemption disabled.
1095 static bool rcu_is_callbacks_kthread(void)
1097 return __this_cpu_read(rcu_data
.rcu_cpu_kthread_task
) == current
;
1100 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1103 * Do priority-boost accounting for the start of a new grace period.
1105 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1107 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1111 * Create an RCU-boost kthread for the specified node if one does not
1112 * already exist. We only create this kthread for preemptible RCU.
1113 * Returns zero if all is well, a negated errno otherwise.
1115 static void rcu_spawn_one_boost_kthread(struct rcu_node
*rnp
)
1117 int rnp_index
= rnp
- rcu_get_root();
1118 unsigned long flags
;
1119 struct sched_param sp
;
1120 struct task_struct
*t
;
1122 if (!IS_ENABLED(CONFIG_PREEMPT_RCU
))
1125 if (!rcu_scheduler_fully_active
|| rcu_rnp_online_cpus(rnp
) == 0)
1128 rcu_state
.boost
= 1;
1130 if (rnp
->boost_kthread_task
!= NULL
)
1133 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1134 "rcub/%d", rnp_index
);
1135 if (WARN_ON_ONCE(IS_ERR(t
)))
1138 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1139 rnp
->boost_kthread_task
= t
;
1140 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1141 sp
.sched_priority
= kthread_prio
;
1142 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1143 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1147 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1148 * served by the rcu_node in question. The CPU hotplug lock is still
1149 * held, so the value of rnp->qsmaskinit will be stable.
1151 * We don't include outgoingcpu in the affinity set, use -1 if there is
1152 * no outgoing CPU. If there are no CPUs left in the affinity set,
1153 * this function allows the kthread to execute on any CPU.
1155 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1157 struct task_struct
*t
= rnp
->boost_kthread_task
;
1158 unsigned long mask
= rcu_rnp_online_cpus(rnp
);
1164 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1166 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1167 if ((mask
& leaf_node_cpu_bit(rnp
, cpu
)) &&
1169 cpumask_set_cpu(cpu
, cm
);
1170 if (cpumask_weight(cm
) == 0)
1172 set_cpus_allowed_ptr(t
, cm
);
1173 free_cpumask_var(cm
);
1177 * Spawn boost kthreads -- called as soon as the scheduler is running.
1179 static void __init
rcu_spawn_boost_kthreads(void)
1181 struct rcu_node
*rnp
;
1183 rcu_for_each_leaf_node(rnp
)
1184 rcu_spawn_one_boost_kthread(rnp
);
1187 static void rcu_prepare_kthreads(int cpu
)
1189 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
1190 struct rcu_node
*rnp
= rdp
->mynode
;
1192 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1193 if (rcu_scheduler_fully_active
)
1194 rcu_spawn_one_boost_kthread(rnp
);
1197 #else /* #ifdef CONFIG_RCU_BOOST */
1199 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1200 __releases(rnp
->lock
)
1202 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1205 static bool rcu_is_callbacks_kthread(void)
1210 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1214 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1218 static void __init
rcu_spawn_boost_kthreads(void)
1222 static void rcu_prepare_kthreads(int cpu
)
1226 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1228 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1231 * Check to see if any future non-offloaded RCU-related work will need
1232 * to be done by the current CPU, even if none need be done immediately,
1233 * returning 1 if so. This function is part of the RCU implementation;
1234 * it is -not- an exported member of the RCU API.
1236 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1237 * CPU has RCU callbacks queued.
1239 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1241 *nextevt
= KTIME_MAX
;
1242 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data
)->cblist
) &&
1243 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data
)->cblist
);
1247 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1250 static void rcu_cleanup_after_idle(void)
1255 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1258 static void rcu_prepare_for_idle(void)
1262 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1265 * This code is invoked when a CPU goes idle, at which point we want
1266 * to have the CPU do everything required for RCU so that it can enter
1267 * the energy-efficient dyntick-idle mode.
1269 * The following preprocessor symbol controls this:
1271 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1272 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1273 * is sized to be roughly one RCU grace period. Those energy-efficiency
1274 * benchmarkers who might otherwise be tempted to set this to a large
1275 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1276 * system. And if you are -that- concerned about energy efficiency,
1277 * just power the system down and be done with it!
1279 * The value below works well in practice. If future workloads require
1280 * adjustment, they can be converted into kernel config parameters, though
1281 * making the state machine smarter might be a better option.
1283 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1285 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1286 module_param(rcu_idle_gp_delay
, int, 0644);
1289 * Try to advance callbacks on the current CPU, but only if it has been
1290 * awhile since the last time we did so. Afterwards, if there are any
1291 * callbacks ready for immediate invocation, return true.
1293 static bool __maybe_unused
rcu_try_advance_all_cbs(void)
1295 bool cbs_ready
= false;
1296 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1297 struct rcu_node
*rnp
;
1299 /* Exit early if we advanced recently. */
1300 if (jiffies
== rdp
->last_advance_all
)
1302 rdp
->last_advance_all
= jiffies
;
1307 * Don't bother checking unless a grace period has
1308 * completed since we last checked and there are
1309 * callbacks not yet ready to invoke.
1311 if ((rcu_seq_completed_gp(rdp
->gp_seq
,
1312 rcu_seq_current(&rnp
->gp_seq
)) ||
1313 unlikely(READ_ONCE(rdp
->gpwrap
))) &&
1314 rcu_segcblist_pend_cbs(&rdp
->cblist
))
1315 note_gp_changes(rdp
);
1317 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
1323 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1324 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1325 * caller about what to set the timeout.
1327 * The caller must have disabled interrupts.
1329 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1331 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1334 lockdep_assert_irqs_disabled();
1336 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1337 if (rcu_segcblist_empty(&rdp
->cblist
) ||
1338 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data
)->cblist
)) {
1339 *nextevt
= KTIME_MAX
;
1343 /* Attempt to advance callbacks. */
1344 if (rcu_try_advance_all_cbs()) {
1345 /* Some ready to invoke, so initiate later invocation. */
1349 rdp
->last_accelerate
= jiffies
;
1351 /* Request timer and round. */
1352 dj
= round_up(rcu_idle_gp_delay
+ jiffies
, rcu_idle_gp_delay
) - jiffies
;
1354 *nextevt
= basemono
+ dj
* TICK_NSEC
;
1359 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1360 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1361 * major task is to accelerate (that is, assign grace-period numbers to) any
1362 * recently arrived callbacks.
1364 * The caller must have disabled interrupts.
1366 static void rcu_prepare_for_idle(void)
1369 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1370 struct rcu_node
*rnp
;
1373 lockdep_assert_irqs_disabled();
1374 if (rcu_segcblist_is_offloaded(&rdp
->cblist
))
1377 /* Handle nohz enablement switches conservatively. */
1378 tne
= READ_ONCE(tick_nohz_active
);
1379 if (tne
!= rdp
->tick_nohz_enabled_snap
) {
1380 if (!rcu_segcblist_empty(&rdp
->cblist
))
1381 invoke_rcu_core(); /* force nohz to see update. */
1382 rdp
->tick_nohz_enabled_snap
= tne
;
1389 * If we have not yet accelerated this jiffy, accelerate all
1390 * callbacks on this CPU.
1392 if (rdp
->last_accelerate
== jiffies
)
1394 rdp
->last_accelerate
= jiffies
;
1395 if (rcu_segcblist_pend_cbs(&rdp
->cblist
)) {
1397 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1398 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
1399 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1401 rcu_gp_kthread_wake();
1406 * Clean up for exit from idle. Attempt to advance callbacks based on
1407 * any grace periods that elapsed while the CPU was idle, and if any
1408 * callbacks are now ready to invoke, initiate invocation.
1410 static void rcu_cleanup_after_idle(void)
1412 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1414 lockdep_assert_irqs_disabled();
1415 if (rcu_segcblist_is_offloaded(&rdp
->cblist
))
1417 if (rcu_try_advance_all_cbs())
1421 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1423 #ifdef CONFIG_RCU_NOCB_CPU
1426 * Offload callback processing from the boot-time-specified set of CPUs
1427 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1428 * created that pull the callbacks from the corresponding CPU, wait for
1429 * a grace period to elapse, and invoke the callbacks. These kthreads
1430 * are organized into GP kthreads, which manage incoming callbacks, wait for
1431 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1432 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1433 * do a wake_up() on their GP kthread when they insert a callback into any
1434 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1435 * in which case each kthread actively polls its CPU. (Which isn't so great
1436 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1438 * This is intended to be used in conjunction with Frederic Weisbecker's
1439 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1440 * running CPU-bound user-mode computations.
1442 * Offloading of callbacks can also be used as an energy-efficiency
1443 * measure because CPUs with no RCU callbacks queued are more aggressive
1444 * about entering dyntick-idle mode.
1449 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1450 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1451 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1452 * given, a warning is emitted and all CPUs are offloaded.
1454 static int __init
rcu_nocb_setup(char *str
)
1456 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
1457 if (!strcasecmp(str
, "all"))
1458 cpumask_setall(rcu_nocb_mask
);
1460 if (cpulist_parse(str
, rcu_nocb_mask
)) {
1461 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1462 cpumask_setall(rcu_nocb_mask
);
1466 __setup("rcu_nocbs=", rcu_nocb_setup
);
1468 static int __init
parse_rcu_nocb_poll(char *arg
)
1470 rcu_nocb_poll
= true;
1473 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
1476 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1477 * After all, the main point of bypassing is to avoid lock contention
1478 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1480 int nocb_nobypass_lim_per_jiffy
= 16 * 1000 / HZ
;
1481 module_param(nocb_nobypass_lim_per_jiffy
, int, 0);
1484 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1485 * lock isn't immediately available, increment ->nocb_lock_contended to
1486 * flag the contention.
1488 static void rcu_nocb_bypass_lock(struct rcu_data
*rdp
)
1490 lockdep_assert_irqs_disabled();
1491 if (raw_spin_trylock(&rdp
->nocb_bypass_lock
))
1493 atomic_inc(&rdp
->nocb_lock_contended
);
1494 WARN_ON_ONCE(smp_processor_id() != rdp
->cpu
);
1495 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1496 raw_spin_lock(&rdp
->nocb_bypass_lock
);
1497 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1498 atomic_dec(&rdp
->nocb_lock_contended
);
1502 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1503 * not contended. Please note that this is extremely special-purpose,
1504 * relying on the fact that at most two kthreads and one CPU contend for
1505 * this lock, and also that the two kthreads are guaranteed to have frequent
1506 * grace-period-duration time intervals between successive acquisitions
1507 * of the lock. This allows us to use an extremely simple throttling
1508 * mechanism, and further to apply it only to the CPU doing floods of
1509 * call_rcu() invocations. Don't try this at home!
1511 static void rcu_nocb_wait_contended(struct rcu_data
*rdp
)
1513 WARN_ON_ONCE(smp_processor_id() != rdp
->cpu
);
1514 while (WARN_ON_ONCE(atomic_read(&rdp
->nocb_lock_contended
)))
1519 * Conditionally acquire the specified rcu_data structure's
1520 * ->nocb_bypass_lock.
1522 static bool rcu_nocb_bypass_trylock(struct rcu_data
*rdp
)
1524 lockdep_assert_irqs_disabled();
1525 return raw_spin_trylock(&rdp
->nocb_bypass_lock
);
1529 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1531 static void rcu_nocb_bypass_unlock(struct rcu_data
*rdp
)
1533 lockdep_assert_irqs_disabled();
1534 raw_spin_unlock(&rdp
->nocb_bypass_lock
);
1538 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1539 * if it corresponds to a no-CBs CPU.
1541 static void rcu_nocb_lock(struct rcu_data
*rdp
)
1543 lockdep_assert_irqs_disabled();
1544 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
))
1546 raw_spin_lock(&rdp
->nocb_lock
);
1550 * Release the specified rcu_data structure's ->nocb_lock, but only
1551 * if it corresponds to a no-CBs CPU.
1553 static void rcu_nocb_unlock(struct rcu_data
*rdp
)
1555 if (rcu_segcblist_is_offloaded(&rdp
->cblist
)) {
1556 lockdep_assert_irqs_disabled();
1557 raw_spin_unlock(&rdp
->nocb_lock
);
1562 * Release the specified rcu_data structure's ->nocb_lock and restore
1563 * interrupts, but only if it corresponds to a no-CBs CPU.
1565 static void rcu_nocb_unlock_irqrestore(struct rcu_data
*rdp
,
1566 unsigned long flags
)
1568 if (rcu_segcblist_is_offloaded(&rdp
->cblist
)) {
1569 lockdep_assert_irqs_disabled();
1570 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1572 local_irq_restore(flags
);
1576 /* Lockdep check that ->cblist may be safely accessed. */
1577 static void rcu_lockdep_assert_cblist_protected(struct rcu_data
*rdp
)
1579 lockdep_assert_irqs_disabled();
1580 if (rcu_segcblist_is_offloaded(&rdp
->cblist
) &&
1581 cpu_online(rdp
->cpu
))
1582 lockdep_assert_held(&rdp
->nocb_lock
);
1586 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1589 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
1594 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
1596 return &rnp
->nocb_gp_wq
[rcu_seq_ctr(rnp
->gp_seq
) & 0x1];
1599 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
1601 init_swait_queue_head(&rnp
->nocb_gp_wq
[0]);
1602 init_swait_queue_head(&rnp
->nocb_gp_wq
[1]);
1605 /* Is the specified CPU a no-CBs CPU? */
1606 bool rcu_is_nocb_cpu(int cpu
)
1608 if (cpumask_available(rcu_nocb_mask
))
1609 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
1614 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
1615 * and this function releases it.
1617 static void wake_nocb_gp(struct rcu_data
*rdp
, bool force
,
1618 unsigned long flags
)
1619 __releases(rdp
->nocb_lock
)
1621 bool needwake
= false;
1622 struct rcu_data
*rdp_gp
= rdp
->nocb_gp_rdp
;
1624 lockdep_assert_held(&rdp
->nocb_lock
);
1625 if (!READ_ONCE(rdp_gp
->nocb_gp_kthread
)) {
1626 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1627 TPS("AlreadyAwake"));
1628 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1631 del_timer(&rdp
->nocb_timer
);
1632 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1633 raw_spin_lock_irqsave(&rdp_gp
->nocb_gp_lock
, flags
);
1634 if (force
|| READ_ONCE(rdp_gp
->nocb_gp_sleep
)) {
1635 WRITE_ONCE(rdp_gp
->nocb_gp_sleep
, false);
1637 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("DoWake"));
1639 raw_spin_unlock_irqrestore(&rdp_gp
->nocb_gp_lock
, flags
);
1641 wake_up_process(rdp_gp
->nocb_gp_kthread
);
1645 * Arrange to wake the GP kthread for this NOCB group at some future
1646 * time when it is safe to do so.
1648 static void wake_nocb_gp_defer(struct rcu_data
*rdp
, int waketype
,
1651 if (rdp
->nocb_defer_wakeup
== RCU_NOCB_WAKE_NOT
)
1652 mod_timer(&rdp
->nocb_timer
, jiffies
+ 1);
1653 if (rdp
->nocb_defer_wakeup
< waketype
)
1654 WRITE_ONCE(rdp
->nocb_defer_wakeup
, waketype
);
1655 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, reason
);
1659 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1660 * However, if there is a callback to be enqueued and if ->nocb_bypass
1661 * proves to be initially empty, just return false because the no-CB GP
1662 * kthread may need to be awakened in this case.
1664 * Note that this function always returns true if rhp is NULL.
1666 static bool rcu_nocb_do_flush_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1669 struct rcu_cblist rcl
;
1671 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp
->cblist
));
1672 rcu_lockdep_assert_cblist_protected(rdp
);
1673 lockdep_assert_held(&rdp
->nocb_bypass_lock
);
1674 if (rhp
&& !rcu_cblist_n_cbs(&rdp
->nocb_bypass
)) {
1675 raw_spin_unlock(&rdp
->nocb_bypass_lock
);
1678 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1680 rcu_segcblist_inc_len(&rdp
->cblist
); /* Must precede enqueue. */
1681 rcu_cblist_flush_enqueue(&rcl
, &rdp
->nocb_bypass
, rhp
);
1682 rcu_segcblist_insert_pend_cbs(&rdp
->cblist
, &rcl
);
1683 WRITE_ONCE(rdp
->nocb_bypass_first
, j
);
1684 rcu_nocb_bypass_unlock(rdp
);
1689 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1690 * However, if there is a callback to be enqueued and if ->nocb_bypass
1691 * proves to be initially empty, just return false because the no-CB GP
1692 * kthread may need to be awakened in this case.
1694 * Note that this function always returns true if rhp is NULL.
1696 static bool rcu_nocb_flush_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1699 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
))
1701 rcu_lockdep_assert_cblist_protected(rdp
);
1702 rcu_nocb_bypass_lock(rdp
);
1703 return rcu_nocb_do_flush_bypass(rdp
, rhp
, j
);
1707 * If the ->nocb_bypass_lock is immediately available, flush the
1708 * ->nocb_bypass queue into ->cblist.
1710 static void rcu_nocb_try_flush_bypass(struct rcu_data
*rdp
, unsigned long j
)
1712 rcu_lockdep_assert_cblist_protected(rdp
);
1713 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
) ||
1714 !rcu_nocb_bypass_trylock(rdp
))
1716 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp
, NULL
, j
));
1720 * See whether it is appropriate to use the ->nocb_bypass list in order
1721 * to control contention on ->nocb_lock. A limited number of direct
1722 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1723 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1724 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1725 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1726 * used if ->cblist is empty, because otherwise callbacks can be stranded
1727 * on ->nocb_bypass because we cannot count on the current CPU ever again
1728 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1729 * non-empty, the corresponding no-CBs grace-period kthread must not be
1730 * in an indefinite sleep state.
1732 * Finally, it is not permitted to use the bypass during early boot,
1733 * as doing so would confuse the auto-initialization code. Besides
1734 * which, there is no point in worrying about lock contention while
1735 * there is only one CPU in operation.
1737 static bool rcu_nocb_try_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1738 bool *was_alldone
, unsigned long flags
)
1741 unsigned long cur_gp_seq
;
1742 unsigned long j
= jiffies
;
1743 long ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1745 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
)) {
1746 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1747 return false; /* Not offloaded, no bypassing. */
1749 lockdep_assert_irqs_disabled();
1751 // Don't use ->nocb_bypass during early boot.
1752 if (rcu_scheduler_active
!= RCU_SCHEDULER_RUNNING
) {
1754 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp
->nocb_bypass
));
1755 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1759 // If we have advanced to a new jiffy, reset counts to allow
1760 // moving back from ->nocb_bypass to ->cblist.
1761 if (j
== rdp
->nocb_nobypass_last
) {
1762 c
= rdp
->nocb_nobypass_count
+ 1;
1764 WRITE_ONCE(rdp
->nocb_nobypass_last
, j
);
1765 c
= rdp
->nocb_nobypass_count
- nocb_nobypass_lim_per_jiffy
;
1766 if (ULONG_CMP_LT(rdp
->nocb_nobypass_count
,
1767 nocb_nobypass_lim_per_jiffy
))
1769 else if (c
> nocb_nobypass_lim_per_jiffy
)
1770 c
= nocb_nobypass_lim_per_jiffy
;
1772 WRITE_ONCE(rdp
->nocb_nobypass_count
, c
);
1774 // If there hasn't yet been all that many ->cblist enqueues
1775 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1776 // ->nocb_bypass first.
1777 if (rdp
->nocb_nobypass_count
< nocb_nobypass_lim_per_jiffy
) {
1779 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1781 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1783 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp
, NULL
, j
));
1784 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp
->nocb_bypass
));
1785 return false; // Caller must enqueue the callback.
1788 // If ->nocb_bypass has been used too long or is too full,
1789 // flush ->nocb_bypass to ->cblist.
1790 if ((ncbs
&& j
!= READ_ONCE(rdp
->nocb_bypass_first
)) ||
1793 if (!rcu_nocb_flush_bypass(rdp
, rhp
, j
)) {
1794 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1796 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1798 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp
->nocb_bypass
));
1799 return false; // Caller must enqueue the callback.
1801 if (j
!= rdp
->nocb_gp_adv_time
&&
1802 rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
1803 rcu_seq_done(&rdp
->mynode
->gp_seq
, cur_gp_seq
)) {
1804 rcu_advance_cbs_nowake(rdp
->mynode
, rdp
);
1805 rdp
->nocb_gp_adv_time
= j
;
1807 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1808 return true; // Callback already enqueued.
1811 // We need to use the bypass.
1812 rcu_nocb_wait_contended(rdp
);
1813 rcu_nocb_bypass_lock(rdp
);
1814 ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1815 rcu_segcblist_inc_len(&rdp
->cblist
); /* Must precede enqueue. */
1816 rcu_cblist_enqueue(&rdp
->nocb_bypass
, rhp
);
1818 WRITE_ONCE(rdp
->nocb_bypass_first
, j
);
1819 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("FirstBQ"));
1821 rcu_nocb_bypass_unlock(rdp
);
1822 smp_mb(); /* Order enqueue before wake. */
1824 local_irq_restore(flags
);
1826 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1827 rcu_nocb_lock(rdp
); // Rare during call_rcu() flood.
1828 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
)) {
1829 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1830 TPS("FirstBQwake"));
1831 __call_rcu_nocb_wake(rdp
, true, flags
);
1833 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1834 TPS("FirstBQnoWake"));
1835 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1838 return true; // Callback already enqueued.
1842 * Awaken the no-CBs grace-period kthead if needed, either due to it
1843 * legitimately being asleep or due to overload conditions.
1845 * If warranted, also wake up the kthread servicing this CPUs queues.
1847 static void __call_rcu_nocb_wake(struct rcu_data
*rdp
, bool was_alldone
,
1848 unsigned long flags
)
1849 __releases(rdp
->nocb_lock
)
1851 unsigned long cur_gp_seq
;
1854 struct task_struct
*t
;
1856 // If we are being polled or there is no kthread, just leave.
1857 t
= READ_ONCE(rdp
->nocb_gp_kthread
);
1858 if (rcu_nocb_poll
|| !t
) {
1859 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1860 TPS("WakeNotPoll"));
1861 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1864 // Need to actually to a wakeup.
1865 len
= rcu_segcblist_n_cbs(&rdp
->cblist
);
1867 rdp
->qlen_last_fqs_check
= len
;
1868 if (!irqs_disabled_flags(flags
)) {
1869 /* ... if queue was empty ... */
1870 wake_nocb_gp(rdp
, false, flags
);
1871 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1874 wake_nocb_gp_defer(rdp
, RCU_NOCB_WAKE
,
1875 TPS("WakeEmptyIsDeferred"));
1876 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1878 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
1879 /* ... or if many callbacks queued. */
1880 rdp
->qlen_last_fqs_check
= len
;
1882 if (j
!= rdp
->nocb_gp_adv_time
&&
1883 rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
1884 rcu_seq_done(&rdp
->mynode
->gp_seq
, cur_gp_seq
)) {
1885 rcu_advance_cbs_nowake(rdp
->mynode
, rdp
);
1886 rdp
->nocb_gp_adv_time
= j
;
1888 smp_mb(); /* Enqueue before timer_pending(). */
1889 if ((rdp
->nocb_cb_sleep
||
1890 !rcu_segcblist_ready_cbs(&rdp
->cblist
)) &&
1891 !timer_pending(&rdp
->nocb_bypass_timer
))
1892 wake_nocb_gp_defer(rdp
, RCU_NOCB_WAKE_FORCE
,
1893 TPS("WakeOvfIsDeferred"));
1894 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1896 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("WakeNot"));
1897 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1902 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1903 static void do_nocb_bypass_wakeup_timer(struct timer_list
*t
)
1905 unsigned long flags
;
1906 struct rcu_data
*rdp
= from_timer(rdp
, t
, nocb_bypass_timer
);
1908 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("Timer"));
1909 rcu_nocb_lock_irqsave(rdp
, flags
);
1910 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1911 __call_rcu_nocb_wake(rdp
, true, flags
);
1915 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1916 * or for grace periods to end.
1918 static void nocb_gp_wait(struct rcu_data
*my_rdp
)
1920 bool bypass
= false;
1922 int __maybe_unused cpu
= my_rdp
->cpu
;
1923 unsigned long cur_gp_seq
;
1924 unsigned long flags
;
1925 bool gotcbs
= false;
1926 unsigned long j
= jiffies
;
1927 bool needwait_gp
= false; // This prevents actual uninitialized use.
1930 struct rcu_data
*rdp
;
1931 struct rcu_node
*rnp
;
1932 unsigned long wait_gp_seq
= 0; // Suppress "use uninitialized" warning.
1935 * Each pass through the following loop checks for CBs and for the
1936 * nearest grace period (if any) to wait for next. The CB kthreads
1937 * and the global grace-period kthread are awakened if needed.
1939 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_cb_rdp
) {
1940 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("Check"));
1941 rcu_nocb_lock_irqsave(rdp
, flags
);
1942 bypass_ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1944 (time_after(j
, READ_ONCE(rdp
->nocb_bypass_first
) + 1) ||
1945 bypass_ncbs
> 2 * qhimark
)) {
1946 // Bypass full or old, so flush it.
1947 (void)rcu_nocb_try_flush_bypass(rdp
, j
);
1948 bypass_ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1949 } else if (!bypass_ncbs
&& rcu_segcblist_empty(&rdp
->cblist
)) {
1950 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1951 continue; /* No callbacks here, try next. */
1954 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1959 if (bypass
) { // Avoid race with first bypass CB.
1960 WRITE_ONCE(my_rdp
->nocb_defer_wakeup
,
1962 del_timer(&my_rdp
->nocb_timer
);
1964 // Advance callbacks if helpful and low contention.
1965 needwake_gp
= false;
1966 if (!rcu_segcblist_restempty(&rdp
->cblist
,
1967 RCU_NEXT_READY_TAIL
) ||
1968 (rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
1969 rcu_seq_done(&rnp
->gp_seq
, cur_gp_seq
))) {
1970 raw_spin_lock_rcu_node(rnp
); /* irqs disabled. */
1971 needwake_gp
= rcu_advance_cbs(rnp
, rdp
);
1972 raw_spin_unlock_rcu_node(rnp
); /* irqs disabled. */
1974 // Need to wait on some grace period?
1975 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp
->cblist
,
1976 RCU_NEXT_READY_TAIL
));
1977 if (rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
)) {
1979 ULONG_CMP_LT(cur_gp_seq
, wait_gp_seq
))
1980 wait_gp_seq
= cur_gp_seq
;
1982 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1985 if (rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
1986 needwake
= rdp
->nocb_cb_sleep
;
1987 WRITE_ONCE(rdp
->nocb_cb_sleep
, false);
1988 smp_mb(); /* CB invocation -after- GP end. */
1992 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1994 swake_up_one(&rdp
->nocb_cb_wq
);
1998 rcu_gp_kthread_wake();
2001 my_rdp
->nocb_gp_bypass
= bypass
;
2002 my_rdp
->nocb_gp_gp
= needwait_gp
;
2003 my_rdp
->nocb_gp_seq
= needwait_gp
? wait_gp_seq
: 0;
2004 if (bypass
&& !rcu_nocb_poll
) {
2005 // At least one child with non-empty ->nocb_bypass, so set
2006 // timer in order to avoid stranding its callbacks.
2007 raw_spin_lock_irqsave(&my_rdp
->nocb_gp_lock
, flags
);
2008 mod_timer(&my_rdp
->nocb_bypass_timer
, j
+ 2);
2009 raw_spin_unlock_irqrestore(&my_rdp
->nocb_gp_lock
, flags
);
2011 if (rcu_nocb_poll
) {
2012 /* Polling, so trace if first poll in the series. */
2014 trace_rcu_nocb_wake(rcu_state
.name
, cpu
, TPS("Poll"));
2015 schedule_timeout_interruptible(1);
2016 } else if (!needwait_gp
) {
2017 /* Wait for callbacks to appear. */
2018 trace_rcu_nocb_wake(rcu_state
.name
, cpu
, TPS("Sleep"));
2019 swait_event_interruptible_exclusive(my_rdp
->nocb_gp_wq
,
2020 !READ_ONCE(my_rdp
->nocb_gp_sleep
));
2021 trace_rcu_nocb_wake(rcu_state
.name
, cpu
, TPS("EndSleep"));
2023 rnp
= my_rdp
->mynode
;
2024 trace_rcu_this_gp(rnp
, my_rdp
, wait_gp_seq
, TPS("StartWait"));
2025 swait_event_interruptible_exclusive(
2026 rnp
->nocb_gp_wq
[rcu_seq_ctr(wait_gp_seq
) & 0x1],
2027 rcu_seq_done(&rnp
->gp_seq
, wait_gp_seq
) ||
2028 !READ_ONCE(my_rdp
->nocb_gp_sleep
));
2029 trace_rcu_this_gp(rnp
, my_rdp
, wait_gp_seq
, TPS("EndWait"));
2031 if (!rcu_nocb_poll
) {
2032 raw_spin_lock_irqsave(&my_rdp
->nocb_gp_lock
, flags
);
2034 del_timer(&my_rdp
->nocb_bypass_timer
);
2035 WRITE_ONCE(my_rdp
->nocb_gp_sleep
, true);
2036 raw_spin_unlock_irqrestore(&my_rdp
->nocb_gp_lock
, flags
);
2038 my_rdp
->nocb_gp_seq
= -1;
2039 WARN_ON(signal_pending(current
));
2043 * No-CBs grace-period-wait kthread. There is one of these per group
2044 * of CPUs, but only once at least one CPU in that group has come online
2045 * at least once since boot. This kthread checks for newly posted
2046 * callbacks from any of the CPUs it is responsible for, waits for a
2047 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2048 * that then have callback-invocation work to do.
2050 static int rcu_nocb_gp_kthread(void *arg
)
2052 struct rcu_data
*rdp
= arg
;
2055 WRITE_ONCE(rdp
->nocb_gp_loops
, rdp
->nocb_gp_loops
+ 1);
2057 cond_resched_tasks_rcu_qs();
2063 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2064 * then, if there are no more, wait for more to appear.
2066 static void nocb_cb_wait(struct rcu_data
*rdp
)
2068 unsigned long cur_gp_seq
;
2069 unsigned long flags
;
2070 bool needwake_gp
= false;
2071 struct rcu_node
*rnp
= rdp
->mynode
;
2073 local_irq_save(flags
);
2074 rcu_momentary_dyntick_idle();
2075 local_irq_restore(flags
);
2079 lockdep_assert_irqs_enabled();
2080 rcu_nocb_lock_irqsave(rdp
, flags
);
2081 if (rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
2082 rcu_seq_done(&rnp
->gp_seq
, cur_gp_seq
) &&
2083 raw_spin_trylock_rcu_node(rnp
)) { /* irqs already disabled. */
2084 needwake_gp
= rcu_advance_cbs(rdp
->mynode
, rdp
);
2085 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2087 if (rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2088 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2090 rcu_gp_kthread_wake();
2094 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("CBSleep"));
2095 WRITE_ONCE(rdp
->nocb_cb_sleep
, true);
2096 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2098 rcu_gp_kthread_wake();
2099 swait_event_interruptible_exclusive(rdp
->nocb_cb_wq
,
2100 !READ_ONCE(rdp
->nocb_cb_sleep
));
2101 if (!smp_load_acquire(&rdp
->nocb_cb_sleep
)) { /* VVV */
2102 /* ^^^ Ensure CB invocation follows _sleep test. */
2105 WARN_ON(signal_pending(current
));
2106 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("WokeEmpty"));
2110 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2111 * nocb_cb_wait() to do the dirty work.
2113 static int rcu_nocb_cb_kthread(void *arg
)
2115 struct rcu_data
*rdp
= arg
;
2117 // Each pass through this loop does one callback batch, and,
2118 // if there are no more ready callbacks, waits for them.
2121 cond_resched_tasks_rcu_qs();
2126 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2127 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2129 return READ_ONCE(rdp
->nocb_defer_wakeup
);
2132 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2133 static void do_nocb_deferred_wakeup_common(struct rcu_data
*rdp
)
2135 unsigned long flags
;
2138 rcu_nocb_lock_irqsave(rdp
, flags
);
2139 if (!rcu_nocb_need_deferred_wakeup(rdp
)) {
2140 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2143 ndw
= READ_ONCE(rdp
->nocb_defer_wakeup
);
2144 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2145 wake_nocb_gp(rdp
, ndw
== RCU_NOCB_WAKE_FORCE
, flags
);
2146 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("DeferredWake"));
2149 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2150 static void do_nocb_deferred_wakeup_timer(struct timer_list
*t
)
2152 struct rcu_data
*rdp
= from_timer(rdp
, t
, nocb_timer
);
2154 do_nocb_deferred_wakeup_common(rdp
);
2158 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2159 * This means we do an inexact common-case check. Note that if
2160 * we miss, ->nocb_timer will eventually clean things up.
2162 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2164 if (rcu_nocb_need_deferred_wakeup(rdp
))
2165 do_nocb_deferred_wakeup_common(rdp
);
2168 void __init
rcu_init_nohz(void)
2171 bool need_rcu_nocb_mask
= false;
2172 struct rcu_data
*rdp
;
2174 #if defined(CONFIG_NO_HZ_FULL)
2175 if (tick_nohz_full_running
&& cpumask_weight(tick_nohz_full_mask
))
2176 need_rcu_nocb_mask
= true;
2177 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2179 if (!cpumask_available(rcu_nocb_mask
) && need_rcu_nocb_mask
) {
2180 if (!zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
)) {
2181 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2185 if (!cpumask_available(rcu_nocb_mask
))
2188 #if defined(CONFIG_NO_HZ_FULL)
2189 if (tick_nohz_full_running
)
2190 cpumask_or(rcu_nocb_mask
, rcu_nocb_mask
, tick_nohz_full_mask
);
2191 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2193 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
2194 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2195 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
2198 if (cpumask_empty(rcu_nocb_mask
))
2199 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2201 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2202 cpumask_pr_args(rcu_nocb_mask
));
2204 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2206 for_each_cpu(cpu
, rcu_nocb_mask
) {
2207 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2208 if (rcu_segcblist_empty(&rdp
->cblist
))
2209 rcu_segcblist_init(&rdp
->cblist
);
2210 rcu_segcblist_offload(&rdp
->cblist
);
2212 rcu_organize_nocb_kthreads();
2215 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2216 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2218 init_swait_queue_head(&rdp
->nocb_cb_wq
);
2219 init_swait_queue_head(&rdp
->nocb_gp_wq
);
2220 raw_spin_lock_init(&rdp
->nocb_lock
);
2221 raw_spin_lock_init(&rdp
->nocb_bypass_lock
);
2222 raw_spin_lock_init(&rdp
->nocb_gp_lock
);
2223 timer_setup(&rdp
->nocb_timer
, do_nocb_deferred_wakeup_timer
, 0);
2224 timer_setup(&rdp
->nocb_bypass_timer
, do_nocb_bypass_wakeup_timer
, 0);
2225 rcu_cblist_init(&rdp
->nocb_bypass
);
2229 * If the specified CPU is a no-CBs CPU that does not already have its
2230 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2231 * for this CPU's group has not yet been created, spawn it as well.
2233 static void rcu_spawn_one_nocb_kthread(int cpu
)
2235 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2236 struct rcu_data
*rdp_gp
;
2237 struct task_struct
*t
;
2240 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2241 * then nothing to do.
2243 if (!rcu_is_nocb_cpu(cpu
) || rdp
->nocb_cb_kthread
)
2246 /* If we didn't spawn the GP kthread first, reorganize! */
2247 rdp_gp
= rdp
->nocb_gp_rdp
;
2248 if (!rdp_gp
->nocb_gp_kthread
) {
2249 t
= kthread_run(rcu_nocb_gp_kthread
, rdp_gp
,
2250 "rcuog/%d", rdp_gp
->cpu
);
2251 if (WARN_ONCE(IS_ERR(t
), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__
))
2253 WRITE_ONCE(rdp_gp
->nocb_gp_kthread
, t
);
2256 /* Spawn the kthread for this CPU. */
2257 t
= kthread_run(rcu_nocb_cb_kthread
, rdp
,
2258 "rcuo%c/%d", rcu_state
.abbr
, cpu
);
2259 if (WARN_ONCE(IS_ERR(t
), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__
))
2261 WRITE_ONCE(rdp
->nocb_cb_kthread
, t
);
2262 WRITE_ONCE(rdp
->nocb_gp_kthread
, rdp_gp
->nocb_gp_kthread
);
2266 * If the specified CPU is a no-CBs CPU that does not already have its
2267 * rcuo kthread, spawn it.
2269 static void rcu_spawn_cpu_nocb_kthread(int cpu
)
2271 if (rcu_scheduler_fully_active
)
2272 rcu_spawn_one_nocb_kthread(cpu
);
2276 * Once the scheduler is running, spawn rcuo kthreads for all online
2277 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2278 * non-boot CPUs come online -- if this changes, we will need to add
2279 * some mutual exclusion.
2281 static void __init
rcu_spawn_nocb_kthreads(void)
2285 for_each_online_cpu(cpu
)
2286 rcu_spawn_cpu_nocb_kthread(cpu
);
2289 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2290 static int rcu_nocb_gp_stride
= -1;
2291 module_param(rcu_nocb_gp_stride
, int, 0444);
2294 * Initialize GP-CB relationships for all no-CBs CPU.
2296 static void __init
rcu_organize_nocb_kthreads(void)
2299 bool firsttime
= true;
2300 bool gotnocbs
= false;
2301 bool gotnocbscbs
= true;
2302 int ls
= rcu_nocb_gp_stride
;
2303 int nl
= 0; /* Next GP kthread. */
2304 struct rcu_data
*rdp
;
2305 struct rcu_data
*rdp_gp
= NULL
; /* Suppress misguided gcc warn. */
2306 struct rcu_data
*rdp_prev
= NULL
;
2308 if (!cpumask_available(rcu_nocb_mask
))
2311 ls
= nr_cpu_ids
/ int_sqrt(nr_cpu_ids
);
2312 rcu_nocb_gp_stride
= ls
;
2316 * Each pass through this loop sets up one rcu_data structure.
2317 * Should the corresponding CPU come online in the future, then
2318 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2320 for_each_cpu(cpu
, rcu_nocb_mask
) {
2321 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2322 if (rdp
->cpu
>= nl
) {
2323 /* New GP kthread, set up for CBs & next GP. */
2325 nl
= DIV_ROUND_UP(rdp
->cpu
+ 1, ls
) * ls
;
2326 rdp
->nocb_gp_rdp
= rdp
;
2330 pr_cont("%s\n", gotnocbscbs
2331 ? "" : " (self only)");
2332 gotnocbscbs
= false;
2334 pr_alert("%s: No-CB GP kthread CPU %d:",
2338 /* Another CB kthread, link to previous GP kthread. */
2340 rdp
->nocb_gp_rdp
= rdp_gp
;
2341 rdp_prev
->nocb_next_cb_rdp
= rdp
;
2343 pr_cont(" %d", cpu
);
2347 if (gotnocbs
&& dump_tree
)
2348 pr_cont("%s\n", gotnocbscbs
? "" : " (self only)");
2352 * Bind the current task to the offloaded CPUs. If there are no offloaded
2353 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2355 void rcu_bind_current_to_nocb(void)
2357 if (cpumask_available(rcu_nocb_mask
) && cpumask_weight(rcu_nocb_mask
))
2358 WARN_ON(sched_setaffinity(current
->pid
, rcu_nocb_mask
));
2360 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb
);
2363 * Dump out nocb grace-period kthread state for the specified rcu_data
2366 static void show_rcu_nocb_gp_state(struct rcu_data
*rdp
)
2368 struct rcu_node
*rnp
= rdp
->mynode
;
2370 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2372 "kK"[!!rdp
->nocb_gp_kthread
],
2373 "lL"[raw_spin_is_locked(&rdp
->nocb_gp_lock
)],
2374 "dD"[!!rdp
->nocb_defer_wakeup
],
2375 "tT"[timer_pending(&rdp
->nocb_timer
)],
2376 "bB"[timer_pending(&rdp
->nocb_bypass_timer
)],
2377 "sS"[!!rdp
->nocb_gp_sleep
],
2378 ".W"[swait_active(&rdp
->nocb_gp_wq
)],
2379 ".W"[swait_active(&rnp
->nocb_gp_wq
[0])],
2380 ".W"[swait_active(&rnp
->nocb_gp_wq
[1])],
2381 ".B"[!!rdp
->nocb_gp_bypass
],
2382 ".G"[!!rdp
->nocb_gp_gp
],
2383 (long)rdp
->nocb_gp_seq
,
2384 rnp
->grplo
, rnp
->grphi
, READ_ONCE(rdp
->nocb_gp_loops
));
2387 /* Dump out nocb kthread state for the specified rcu_data structure. */
2388 static void show_rcu_nocb_state(struct rcu_data
*rdp
)
2390 struct rcu_segcblist
*rsclp
= &rdp
->cblist
;
2395 if (rdp
->nocb_gp_rdp
== rdp
)
2396 show_rcu_nocb_gp_state(rdp
);
2398 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2399 rdp
->cpu
, rdp
->nocb_gp_rdp
->cpu
,
2400 "kK"[!!rdp
->nocb_cb_kthread
],
2401 "bB"[raw_spin_is_locked(&rdp
->nocb_bypass_lock
)],
2402 "cC"[!!atomic_read(&rdp
->nocb_lock_contended
)],
2403 "lL"[raw_spin_is_locked(&rdp
->nocb_lock
)],
2404 "sS"[!!rdp
->nocb_cb_sleep
],
2405 ".W"[swait_active(&rdp
->nocb_cb_wq
)],
2406 jiffies
- rdp
->nocb_bypass_first
,
2407 jiffies
- rdp
->nocb_nobypass_last
,
2408 rdp
->nocb_nobypass_count
,
2409 ".D"[rcu_segcblist_ready_cbs(rsclp
)],
2410 ".W"[!rcu_segcblist_restempty(rsclp
, RCU_DONE_TAIL
)],
2411 ".R"[!rcu_segcblist_restempty(rsclp
, RCU_WAIT_TAIL
)],
2412 ".N"[!rcu_segcblist_restempty(rsclp
, RCU_NEXT_READY_TAIL
)],
2413 ".B"[!!rcu_cblist_n_cbs(&rdp
->nocb_bypass
)],
2414 rcu_segcblist_n_cbs(&rdp
->cblist
));
2416 /* It is OK for GP kthreads to have GP state. */
2417 if (rdp
->nocb_gp_rdp
== rdp
)
2420 waslocked
= raw_spin_is_locked(&rdp
->nocb_gp_lock
);
2421 wastimer
= timer_pending(&rdp
->nocb_timer
);
2422 wassleep
= swait_active(&rdp
->nocb_gp_wq
);
2423 if (!rdp
->nocb_defer_wakeup
&& !rdp
->nocb_gp_sleep
&&
2424 !waslocked
&& !wastimer
&& !wassleep
)
2425 return; /* Nothing untowards. */
2427 pr_info(" !!! %c%c%c%c %c\n",
2429 "dD"[!!rdp
->nocb_defer_wakeup
],
2431 "sS"[!!rdp
->nocb_gp_sleep
],
2435 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2437 /* No ->nocb_lock to acquire. */
2438 static void rcu_nocb_lock(struct rcu_data
*rdp
)
2442 /* No ->nocb_lock to release. */
2443 static void rcu_nocb_unlock(struct rcu_data
*rdp
)
2447 /* No ->nocb_lock to release. */
2448 static void rcu_nocb_unlock_irqrestore(struct rcu_data
*rdp
,
2449 unsigned long flags
)
2451 local_irq_restore(flags
);
2454 /* Lockdep check that ->cblist may be safely accessed. */
2455 static void rcu_lockdep_assert_cblist_protected(struct rcu_data
*rdp
)
2457 lockdep_assert_irqs_disabled();
2460 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
2464 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
2469 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2473 static bool rcu_nocb_flush_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2479 static bool rcu_nocb_try_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2480 bool *was_alldone
, unsigned long flags
)
2485 static void __call_rcu_nocb_wake(struct rcu_data
*rdp
, bool was_empty
,
2486 unsigned long flags
)
2488 WARN_ON_ONCE(1); /* Should be dead code! */
2491 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2495 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2500 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2504 static void rcu_spawn_cpu_nocb_kthread(int cpu
)
2508 static void __init
rcu_spawn_nocb_kthreads(void)
2512 static void show_rcu_nocb_state(struct rcu_data
*rdp
)
2516 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2519 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2520 * grace-period kthread will do force_quiescent_state() processing?
2521 * The idea is to avoid waking up RCU core processing on such a
2522 * CPU unless the grace period has extended for too long.
2524 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2525 * CONFIG_RCU_NOCB_CPU CPUs.
2527 static bool rcu_nohz_full_cpu(void)
2529 #ifdef CONFIG_NO_HZ_FULL
2530 if (tick_nohz_full_cpu(smp_processor_id()) &&
2531 (!rcu_gp_in_progress() ||
2532 ULONG_CMP_LT(jiffies
, READ_ONCE(rcu_state
.gp_start
) + HZ
)))
2534 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2539 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2541 static void rcu_bind_gp_kthread(void)
2543 if (!tick_nohz_full_enabled())
2545 housekeeping_affine(current
, HK_FLAG_RCU
);
2548 /* Record the current task on dyntick-idle entry. */
2549 static void rcu_dynticks_task_enter(void)
2551 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2552 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, smp_processor_id());
2553 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2556 /* Record no current task on dyntick-idle exit. */
2557 static void rcu_dynticks_task_exit(void)
2559 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2560 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, -1);
2561 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */