drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / kernel / rcu / tree_plugin.h
blobc6ea81cd41890e8f51ff6da9eb5565d34d1ffcef
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
14 #include "../locking/rtmutex_common.h"
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
22 * Check the RCU kernel configuration parameters and print informative
23 * messages about anything out of the ordinary.
25 static void __init rcu_bootup_announce_oddness(void)
27 if (IS_ENABLED(CONFIG_RCU_TRACE))
28 pr_info("\tRCU event tracing is enabled.\n");
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
33 if (rcu_fanout_exact)
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 if (IS_ENABLED(CONFIG_PROVE_RCU))
38 pr_info("\tRCU lockdep checking is enabled.\n");
39 if (RCU_NUM_LVLS >= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 if (RCU_FANOUT_LEAF != 16)
42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 RCU_FANOUT_LEAF);
44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 rcu_fanout_leaf);
47 if (nr_cpu_ids != NR_CPUS)
48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 if (blimit != DEFAULT_RCU_BLIMIT)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 if (qhimark != DEFAULT_RCU_QHIMARK)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 if (qlowmark != DEFAULT_RCU_QLOMARK)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 if (jiffies_till_first_fqs != ULONG_MAX)
60 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61 if (jiffies_till_next_fqs != ULONG_MAX)
62 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
63 if (jiffies_till_sched_qs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
65 if (rcu_kick_kthreads)
66 pr_info("\tKick kthreads if too-long grace period.\n");
67 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
69 if (gp_preinit_delay)
70 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
71 if (gp_init_delay)
72 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
73 if (gp_cleanup_delay)
74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
75 if (!use_softirq)
76 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78 pr_info("\tRCU debug extended QS entry/exit.\n");
79 rcupdate_announce_bootup_oddness();
82 #ifdef CONFIG_PREEMPT_RCU
84 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
85 static void rcu_read_unlock_special(struct task_struct *t);
88 * Tell them what RCU they are running.
90 static void __init rcu_bootup_announce(void)
92 pr_info("Preemptible hierarchical RCU implementation.\n");
93 rcu_bootup_announce_oddness();
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS 0x8
98 #define RCU_EXP_TASKS 0x4
99 #define RCU_GP_BLKD 0x2
100 #define RCU_EXP_BLKD 0x1
103 * Queues a task preempted within an RCU-preempt read-side critical
104 * section into the appropriate location within the ->blkd_tasks list,
105 * depending on the states of any ongoing normal and expedited grace
106 * periods. The ->gp_tasks pointer indicates which element the normal
107 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108 * indicates which element the expedited grace period is waiting on (again,
109 * NULL if none). If a grace period is waiting on a given element in the
110 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
111 * adding a task to the tail of the list blocks any grace period that is
112 * already waiting on one of the elements. In contrast, adding a task
113 * to the head of the list won't block any grace period that is already
114 * waiting on one of the elements.
116 * This queuing is imprecise, and can sometimes make an ongoing grace
117 * period wait for a task that is not strictly speaking blocking it.
118 * Given the choice, we needlessly block a normal grace period rather than
119 * blocking an expedited grace period.
121 * Note that an endless sequence of expedited grace periods still cannot
122 * indefinitely postpone a normal grace period. Eventually, all of the
123 * fixed number of preempted tasks blocking the normal grace period that are
124 * not also blocking the expedited grace period will resume and complete
125 * their RCU read-side critical sections. At that point, the ->gp_tasks
126 * pointer will equal the ->exp_tasks pointer, at which point the end of
127 * the corresponding expedited grace period will also be the end of the
128 * normal grace period.
130 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131 __releases(rnp->lock) /* But leaves rrupts disabled. */
133 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137 struct task_struct *t = current;
139 raw_lockdep_assert_held_rcu_node(rnp);
140 WARN_ON_ONCE(rdp->mynode != rnp);
141 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
142 /* RCU better not be waiting on newly onlined CPUs! */
143 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144 rdp->grpmask);
147 * Decide where to queue the newly blocked task. In theory,
148 * this could be an if-statement. In practice, when I tried
149 * that, it was quite messy.
151 switch (blkd_state) {
152 case 0:
153 case RCU_EXP_TASKS:
154 case RCU_EXP_TASKS + RCU_GP_BLKD:
155 case RCU_GP_TASKS:
156 case RCU_GP_TASKS + RCU_EXP_TASKS:
159 * Blocking neither GP, or first task blocking the normal
160 * GP but not blocking the already-waiting expedited GP.
161 * Queue at the head of the list to avoid unnecessarily
162 * blocking the already-waiting GPs.
164 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165 break;
167 case RCU_EXP_BLKD:
168 case RCU_GP_BLKD:
169 case RCU_GP_BLKD + RCU_EXP_BLKD:
170 case RCU_GP_TASKS + RCU_EXP_BLKD:
171 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
172 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
175 * First task arriving that blocks either GP, or first task
176 * arriving that blocks the expedited GP (with the normal
177 * GP already waiting), or a task arriving that blocks
178 * both GPs with both GPs already waiting. Queue at the
179 * tail of the list to avoid any GP waiting on any of the
180 * already queued tasks that are not blocking it.
182 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183 break;
185 case RCU_EXP_TASKS + RCU_EXP_BLKD:
186 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
190 * Second or subsequent task blocking the expedited GP.
191 * The task either does not block the normal GP, or is the
192 * first task blocking the normal GP. Queue just after
193 * the first task blocking the expedited GP.
195 list_add(&t->rcu_node_entry, rnp->exp_tasks);
196 break;
198 case RCU_GP_TASKS + RCU_GP_BLKD:
199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
202 * Second or subsequent task blocking the normal GP.
203 * The task does not block the expedited GP. Queue just
204 * after the first task blocking the normal GP.
206 list_add(&t->rcu_node_entry, rnp->gp_tasks);
207 break;
209 default:
211 /* Yet another exercise in excessive paranoia. */
212 WARN_ON_ONCE(1);
213 break;
217 * We have now queued the task. If it was the first one to
218 * block either grace period, update the ->gp_tasks and/or
219 * ->exp_tasks pointers, respectively, to reference the newly
220 * blocked tasks.
222 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
223 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
224 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
226 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227 rnp->exp_tasks = &t->rcu_node_entry;
228 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229 !(rnp->qsmask & rdp->grpmask));
230 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231 !(rnp->expmask & rdp->grpmask));
232 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
235 * Report the quiescent state for the expedited GP. This expedited
236 * GP should not be able to end until we report, so there should be
237 * no need to check for a subsequent expedited GP. (Though we are
238 * still in a quiescent state in any case.)
240 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
241 rcu_report_exp_rdp(rdp);
242 else
243 WARN_ON_ONCE(rdp->exp_deferred_qs);
247 * Record a preemptible-RCU quiescent state for the specified CPU.
248 * Note that this does not necessarily mean that the task currently running
249 * on the CPU is in a quiescent state: Instead, it means that the current
250 * grace period need not wait on any RCU read-side critical section that
251 * starts later on this CPU. It also means that if the current task is
252 * in an RCU read-side critical section, it has already added itself to
253 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
254 * current task, there might be any number of other tasks blocked while
255 * in an RCU read-side critical section.
257 * Callers to this function must disable preemption.
259 static void rcu_qs(void)
261 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
263 trace_rcu_grace_period(TPS("rcu_preempt"),
264 __this_cpu_read(rcu_data.gp_seq),
265 TPS("cpuqs"));
266 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
267 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
273 * We have entered the scheduler, and the current task might soon be
274 * context-switched away from. If this task is in an RCU read-side
275 * critical section, we will no longer be able to rely on the CPU to
276 * record that fact, so we enqueue the task on the blkd_tasks list.
277 * The task will dequeue itself when it exits the outermost enclosing
278 * RCU read-side critical section. Therefore, the current grace period
279 * cannot be permitted to complete until the blkd_tasks list entries
280 * predating the current grace period drain, in other words, until
281 * rnp->gp_tasks becomes NULL.
283 * Caller must disable interrupts.
285 void rcu_note_context_switch(bool preempt)
287 struct task_struct *t = current;
288 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
289 struct rcu_node *rnp;
291 trace_rcu_utilization(TPS("Start context switch"));
292 lockdep_assert_irqs_disabled();
293 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
294 if (rcu_preempt_depth() > 0 &&
295 !t->rcu_read_unlock_special.b.blocked) {
297 /* Possibly blocking in an RCU read-side critical section. */
298 rnp = rdp->mynode;
299 raw_spin_lock_rcu_node(rnp);
300 t->rcu_read_unlock_special.b.blocked = true;
301 t->rcu_blocked_node = rnp;
304 * Verify the CPU's sanity, trace the preemption, and
305 * then queue the task as required based on the states
306 * of any ongoing and expedited grace periods.
308 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310 trace_rcu_preempt_task(rcu_state.name,
311 t->pid,
312 (rnp->qsmask & rdp->grpmask)
313 ? rnp->gp_seq
314 : rcu_seq_snap(&rnp->gp_seq));
315 rcu_preempt_ctxt_queue(rnp, rdp);
316 } else {
317 rcu_preempt_deferred_qs(t);
321 * Either we were not in an RCU read-side critical section to
322 * begin with, or we have now recorded that critical section
323 * globally. Either way, we can now note a quiescent state
324 * for this CPU. Again, if we were in an RCU read-side critical
325 * section, and if that critical section was blocking the current
326 * grace period, then the fact that the task has been enqueued
327 * means that we continue to block the current grace period.
329 rcu_qs();
330 if (rdp->exp_deferred_qs)
331 rcu_report_exp_rdp(rdp);
332 trace_rcu_utilization(TPS("End context switch"));
334 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
337 * Check for preempted RCU readers blocking the current grace period
338 * for the specified rcu_node structure. If the caller needs a reliable
339 * answer, it must hold the rcu_node's ->lock.
341 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
343 return READ_ONCE(rnp->gp_tasks) != NULL;
346 /* Bias and limit values for ->rcu_read_lock_nesting. */
347 #define RCU_NEST_BIAS INT_MAX
348 #define RCU_NEST_NMAX (-INT_MAX / 2)
349 #define RCU_NEST_PMAX (INT_MAX / 2)
351 static void rcu_preempt_read_enter(void)
353 current->rcu_read_lock_nesting++;
356 static void rcu_preempt_read_exit(void)
358 current->rcu_read_lock_nesting--;
361 static void rcu_preempt_depth_set(int val)
363 current->rcu_read_lock_nesting = val;
367 * Preemptible RCU implementation for rcu_read_lock().
368 * Just increment ->rcu_read_lock_nesting, shared state will be updated
369 * if we block.
371 void __rcu_read_lock(void)
373 rcu_preempt_read_enter();
374 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
375 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
376 barrier(); /* critical section after entry code. */
378 EXPORT_SYMBOL_GPL(__rcu_read_lock);
381 * Preemptible RCU implementation for rcu_read_unlock().
382 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
383 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
384 * invoke rcu_read_unlock_special() to clean up after a context switch
385 * in an RCU read-side critical section and other special cases.
387 void __rcu_read_unlock(void)
389 struct task_struct *t = current;
391 if (rcu_preempt_depth() != 1) {
392 rcu_preempt_read_exit();
393 } else {
394 barrier(); /* critical section before exit code. */
395 rcu_preempt_depth_set(-RCU_NEST_BIAS);
396 barrier(); /* assign before ->rcu_read_unlock_special load */
397 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
398 rcu_read_unlock_special(t);
399 barrier(); /* ->rcu_read_unlock_special load before assign */
400 rcu_preempt_depth_set(0);
402 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
403 int rrln = rcu_preempt_depth();
405 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
408 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
411 * Advance a ->blkd_tasks-list pointer to the next entry, instead
412 * returning NULL if at the end of the list.
414 static struct list_head *rcu_next_node_entry(struct task_struct *t,
415 struct rcu_node *rnp)
417 struct list_head *np;
419 np = t->rcu_node_entry.next;
420 if (np == &rnp->blkd_tasks)
421 np = NULL;
422 return np;
426 * Return true if the specified rcu_node structure has tasks that were
427 * preempted within an RCU read-side critical section.
429 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
431 return !list_empty(&rnp->blkd_tasks);
435 * Report deferred quiescent states. The deferral time can
436 * be quite short, for example, in the case of the call from
437 * rcu_read_unlock_special().
439 static void
440 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
442 bool empty_exp;
443 bool empty_norm;
444 bool empty_exp_now;
445 struct list_head *np;
446 bool drop_boost_mutex = false;
447 struct rcu_data *rdp;
448 struct rcu_node *rnp;
449 union rcu_special special;
452 * If RCU core is waiting for this CPU to exit its critical section,
453 * report the fact that it has exited. Because irqs are disabled,
454 * t->rcu_read_unlock_special cannot change.
456 special = t->rcu_read_unlock_special;
457 rdp = this_cpu_ptr(&rcu_data);
458 if (!special.s && !rdp->exp_deferred_qs) {
459 local_irq_restore(flags);
460 return;
462 t->rcu_read_unlock_special.s = 0;
463 if (special.b.need_qs)
464 rcu_qs();
467 * Respond to a request by an expedited grace period for a
468 * quiescent state from this CPU. Note that requests from
469 * tasks are handled when removing the task from the
470 * blocked-tasks list below.
472 if (rdp->exp_deferred_qs)
473 rcu_report_exp_rdp(rdp);
475 /* Clean up if blocked during RCU read-side critical section. */
476 if (special.b.blocked) {
479 * Remove this task from the list it blocked on. The task
480 * now remains queued on the rcu_node corresponding to the
481 * CPU it first blocked on, so there is no longer any need
482 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
484 rnp = t->rcu_blocked_node;
485 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
486 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
487 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
488 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
489 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
490 (!empty_norm || rnp->qsmask));
491 empty_exp = sync_rcu_exp_done(rnp);
492 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
493 np = rcu_next_node_entry(t, rnp);
494 list_del_init(&t->rcu_node_entry);
495 t->rcu_blocked_node = NULL;
496 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
497 rnp->gp_seq, t->pid);
498 if (&t->rcu_node_entry == rnp->gp_tasks)
499 WRITE_ONCE(rnp->gp_tasks, np);
500 if (&t->rcu_node_entry == rnp->exp_tasks)
501 rnp->exp_tasks = np;
502 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
503 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
504 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
505 if (&t->rcu_node_entry == rnp->boost_tasks)
506 rnp->boost_tasks = np;
510 * If this was the last task on the current list, and if
511 * we aren't waiting on any CPUs, report the quiescent state.
512 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
513 * so we must take a snapshot of the expedited state.
515 empty_exp_now = sync_rcu_exp_done(rnp);
516 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
517 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
518 rnp->gp_seq,
519 0, rnp->qsmask,
520 rnp->level,
521 rnp->grplo,
522 rnp->grphi,
523 !!rnp->gp_tasks);
524 rcu_report_unblock_qs_rnp(rnp, flags);
525 } else {
526 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 /* Unboost if we were boosted. */
530 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
531 rt_mutex_futex_unlock(&rnp->boost_mtx);
534 * If this was the last task on the expedited lists,
535 * then we need to report up the rcu_node hierarchy.
537 if (!empty_exp && empty_exp_now)
538 rcu_report_exp_rnp(rnp, true);
539 } else {
540 local_irq_restore(flags);
545 * Is a deferred quiescent-state pending, and are we also not in
546 * an RCU read-side critical section? It is the caller's responsibility
547 * to ensure it is otherwise safe to report any deferred quiescent
548 * states. The reason for this is that it is safe to report a
549 * quiescent state during context switch even though preemption
550 * is disabled. This function cannot be expected to understand these
551 * nuances, so the caller must handle them.
553 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
555 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
556 READ_ONCE(t->rcu_read_unlock_special.s)) &&
557 rcu_preempt_depth() <= 0;
561 * Report a deferred quiescent state if needed and safe to do so.
562 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
563 * not being in an RCU read-side critical section. The caller must
564 * evaluate safety in terms of interrupt, softirq, and preemption
565 * disabling.
567 static void rcu_preempt_deferred_qs(struct task_struct *t)
569 unsigned long flags;
570 bool couldrecurse = rcu_preempt_depth() >= 0;
572 if (!rcu_preempt_need_deferred_qs(t))
573 return;
574 if (couldrecurse)
575 rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS);
576 local_irq_save(flags);
577 rcu_preempt_deferred_qs_irqrestore(t, flags);
578 if (couldrecurse)
579 rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS);
583 * Minimal handler to give the scheduler a chance to re-evaluate.
585 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
587 struct rcu_data *rdp;
589 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
590 rdp->defer_qs_iw_pending = false;
594 * Handle special cases during rcu_read_unlock(), such as needing to
595 * notify RCU core processing or task having blocked during the RCU
596 * read-side critical section.
598 static void rcu_read_unlock_special(struct task_struct *t)
600 unsigned long flags;
601 bool preempt_bh_were_disabled =
602 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
603 bool irqs_were_disabled;
605 /* NMI handlers cannot block and cannot safely manipulate state. */
606 if (in_nmi())
607 return;
609 local_irq_save(flags);
610 irqs_were_disabled = irqs_disabled_flags(flags);
611 if (preempt_bh_were_disabled || irqs_were_disabled) {
612 bool exp;
613 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
614 struct rcu_node *rnp = rdp->mynode;
616 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
617 (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
618 tick_nohz_full_cpu(rdp->cpu);
619 // Need to defer quiescent state until everything is enabled.
620 if (irqs_were_disabled && use_softirq &&
621 (in_interrupt() ||
622 (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
623 // Using softirq, safe to awaken, and we get
624 // no help from enabling irqs, unlike bh/preempt.
625 raise_softirq_irqoff(RCU_SOFTIRQ);
626 } else {
627 // Enabling BH or preempt does reschedule, so...
628 // Also if no expediting or NO_HZ_FULL, slow is OK.
629 set_tsk_need_resched(current);
630 set_preempt_need_resched();
631 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
632 !rdp->defer_qs_iw_pending && exp) {
633 // Get scheduler to re-evaluate and call hooks.
634 // If !IRQ_WORK, FQS scan will eventually IPI.
635 init_irq_work(&rdp->defer_qs_iw,
636 rcu_preempt_deferred_qs_handler);
637 rdp->defer_qs_iw_pending = true;
638 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
641 t->rcu_read_unlock_special.b.deferred_qs = true;
642 local_irq_restore(flags);
643 return;
645 rcu_preempt_deferred_qs_irqrestore(t, flags);
649 * Check that the list of blocked tasks for the newly completed grace
650 * period is in fact empty. It is a serious bug to complete a grace
651 * period that still has RCU readers blocked! This function must be
652 * invoked -before- updating this rnp's ->gp_seq.
654 * Also, if there are blocked tasks on the list, they automatically
655 * block the newly created grace period, so set up ->gp_tasks accordingly.
657 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
659 struct task_struct *t;
661 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
662 raw_lockdep_assert_held_rcu_node(rnp);
663 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
664 dump_blkd_tasks(rnp, 10);
665 if (rcu_preempt_has_tasks(rnp) &&
666 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
667 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
668 t = container_of(rnp->gp_tasks, struct task_struct,
669 rcu_node_entry);
670 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
671 rnp->gp_seq, t->pid);
673 WARN_ON_ONCE(rnp->qsmask);
677 * Check for a quiescent state from the current CPU, including voluntary
678 * context switches for Tasks RCU. When a task blocks, the task is
679 * recorded in the corresponding CPU's rcu_node structure, which is checked
680 * elsewhere, hence this function need only check for quiescent states
681 * related to the current CPU, not to those related to tasks.
683 static void rcu_flavor_sched_clock_irq(int user)
685 struct task_struct *t = current;
687 if (user || rcu_is_cpu_rrupt_from_idle()) {
688 rcu_note_voluntary_context_switch(current);
690 if (rcu_preempt_depth() > 0 ||
691 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
692 /* No QS, force context switch if deferred. */
693 if (rcu_preempt_need_deferred_qs(t)) {
694 set_tsk_need_resched(t);
695 set_preempt_need_resched();
697 } else if (rcu_preempt_need_deferred_qs(t)) {
698 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
699 return;
700 } else if (!rcu_preempt_depth()) {
701 rcu_qs(); /* Report immediate QS. */
702 return;
705 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
706 if (rcu_preempt_depth() > 0 &&
707 __this_cpu_read(rcu_data.core_needs_qs) &&
708 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
709 !t->rcu_read_unlock_special.b.need_qs &&
710 time_after(jiffies, rcu_state.gp_start + HZ))
711 t->rcu_read_unlock_special.b.need_qs = true;
715 * Check for a task exiting while in a preemptible-RCU read-side
716 * critical section, clean up if so. No need to issue warnings, as
717 * debug_check_no_locks_held() already does this if lockdep is enabled.
718 * Besides, if this function does anything other than just immediately
719 * return, there was a bug of some sort. Spewing warnings from this
720 * function is like as not to simply obscure important prior warnings.
722 void exit_rcu(void)
724 struct task_struct *t = current;
726 if (unlikely(!list_empty(&current->rcu_node_entry))) {
727 rcu_preempt_depth_set(1);
728 barrier();
729 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
730 } else if (unlikely(rcu_preempt_depth())) {
731 rcu_preempt_depth_set(1);
732 } else {
733 return;
735 __rcu_read_unlock();
736 rcu_preempt_deferred_qs(current);
740 * Dump the blocked-tasks state, but limit the list dump to the
741 * specified number of elements.
743 static void
744 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
746 int cpu;
747 int i;
748 struct list_head *lhp;
749 bool onl;
750 struct rcu_data *rdp;
751 struct rcu_node *rnp1;
753 raw_lockdep_assert_held_rcu_node(rnp);
754 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
755 __func__, rnp->grplo, rnp->grphi, rnp->level,
756 (long)rnp->gp_seq, (long)rnp->completedqs);
757 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
758 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
759 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
760 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
761 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
762 rnp->exp_tasks);
763 pr_info("%s: ->blkd_tasks", __func__);
764 i = 0;
765 list_for_each(lhp, &rnp->blkd_tasks) {
766 pr_cont(" %p", lhp);
767 if (++i >= ncheck)
768 break;
770 pr_cont("\n");
771 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
772 rdp = per_cpu_ptr(&rcu_data, cpu);
773 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
774 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
775 cpu, ".o"[onl],
776 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
777 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
781 #else /* #ifdef CONFIG_PREEMPT_RCU */
784 * Tell them what RCU they are running.
786 static void __init rcu_bootup_announce(void)
788 pr_info("Hierarchical RCU implementation.\n");
789 rcu_bootup_announce_oddness();
793 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
794 * how many quiescent states passed, just if there was at least one since
795 * the start of the grace period, this just sets a flag. The caller must
796 * have disabled preemption.
798 static void rcu_qs(void)
800 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
801 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
802 return;
803 trace_rcu_grace_period(TPS("rcu_sched"),
804 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
805 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
806 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
807 return;
808 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
809 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
813 * Register an urgently needed quiescent state. If there is an
814 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
815 * dyntick-idle quiescent state visible to other CPUs, which will in
816 * some cases serve for expedited as well as normal grace periods.
817 * Either way, register a lightweight quiescent state.
819 void rcu_all_qs(void)
821 unsigned long flags;
823 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
824 return;
825 preempt_disable();
826 /* Load rcu_urgent_qs before other flags. */
827 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
828 preempt_enable();
829 return;
831 this_cpu_write(rcu_data.rcu_urgent_qs, false);
832 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
833 local_irq_save(flags);
834 rcu_momentary_dyntick_idle();
835 local_irq_restore(flags);
837 rcu_qs();
838 preempt_enable();
840 EXPORT_SYMBOL_GPL(rcu_all_qs);
843 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
845 void rcu_note_context_switch(bool preempt)
847 trace_rcu_utilization(TPS("Start context switch"));
848 rcu_qs();
849 /* Load rcu_urgent_qs before other flags. */
850 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
851 goto out;
852 this_cpu_write(rcu_data.rcu_urgent_qs, false);
853 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
854 rcu_momentary_dyntick_idle();
855 if (!preempt)
856 rcu_tasks_qs(current);
857 out:
858 trace_rcu_utilization(TPS("End context switch"));
860 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
863 * Because preemptible RCU does not exist, there are never any preempted
864 * RCU readers.
866 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
868 return 0;
872 * Because there is no preemptible RCU, there can be no readers blocked.
874 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
876 return false;
880 * Because there is no preemptible RCU, there can be no deferred quiescent
881 * states.
883 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
885 return false;
887 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
890 * Because there is no preemptible RCU, there can be no readers blocked,
891 * so there is no need to check for blocked tasks. So check only for
892 * bogus qsmask values.
894 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
896 WARN_ON_ONCE(rnp->qsmask);
900 * Check to see if this CPU is in a non-context-switch quiescent state,
901 * namely user mode and idle loop.
903 static void rcu_flavor_sched_clock_irq(int user)
905 if (user || rcu_is_cpu_rrupt_from_idle()) {
908 * Get here if this CPU took its interrupt from user
909 * mode or from the idle loop, and if this is not a
910 * nested interrupt. In this case, the CPU is in
911 * a quiescent state, so note it.
913 * No memory barrier is required here because rcu_qs()
914 * references only CPU-local variables that other CPUs
915 * neither access nor modify, at least not while the
916 * corresponding CPU is online.
919 rcu_qs();
924 * Because preemptible RCU does not exist, tasks cannot possibly exit
925 * while in preemptible RCU read-side critical sections.
927 void exit_rcu(void)
932 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
934 static void
935 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
937 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
940 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
943 * If boosting, set rcuc kthreads to realtime priority.
945 static void rcu_cpu_kthread_setup(unsigned int cpu)
947 #ifdef CONFIG_RCU_BOOST
948 struct sched_param sp;
950 sp.sched_priority = kthread_prio;
951 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
952 #endif /* #ifdef CONFIG_RCU_BOOST */
955 #ifdef CONFIG_RCU_BOOST
958 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
959 * or ->boost_tasks, advancing the pointer to the next task in the
960 * ->blkd_tasks list.
962 * Note that irqs must be enabled: boosting the task can block.
963 * Returns 1 if there are more tasks needing to be boosted.
965 static int rcu_boost(struct rcu_node *rnp)
967 unsigned long flags;
968 struct task_struct *t;
969 struct list_head *tb;
971 if (READ_ONCE(rnp->exp_tasks) == NULL &&
972 READ_ONCE(rnp->boost_tasks) == NULL)
973 return 0; /* Nothing left to boost. */
975 raw_spin_lock_irqsave_rcu_node(rnp, flags);
978 * Recheck under the lock: all tasks in need of boosting
979 * might exit their RCU read-side critical sections on their own.
981 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
982 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
983 return 0;
987 * Preferentially boost tasks blocking expedited grace periods.
988 * This cannot starve the normal grace periods because a second
989 * expedited grace period must boost all blocked tasks, including
990 * those blocking the pre-existing normal grace period.
992 if (rnp->exp_tasks != NULL)
993 tb = rnp->exp_tasks;
994 else
995 tb = rnp->boost_tasks;
998 * We boost task t by manufacturing an rt_mutex that appears to
999 * be held by task t. We leave a pointer to that rt_mutex where
1000 * task t can find it, and task t will release the mutex when it
1001 * exits its outermost RCU read-side critical section. Then
1002 * simply acquiring this artificial rt_mutex will boost task
1003 * t's priority. (Thanks to tglx for suggesting this approach!)
1005 * Note that task t must acquire rnp->lock to remove itself from
1006 * the ->blkd_tasks list, which it will do from exit() if from
1007 * nowhere else. We therefore are guaranteed that task t will
1008 * stay around at least until we drop rnp->lock. Note that
1009 * rnp->lock also resolves races between our priority boosting
1010 * and task t's exiting its outermost RCU read-side critical
1011 * section.
1013 t = container_of(tb, struct task_struct, rcu_node_entry);
1014 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1015 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1016 /* Lock only for side effect: boosts task t's priority. */
1017 rt_mutex_lock(&rnp->boost_mtx);
1018 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1020 return READ_ONCE(rnp->exp_tasks) != NULL ||
1021 READ_ONCE(rnp->boost_tasks) != NULL;
1025 * Priority-boosting kthread, one per leaf rcu_node.
1027 static int rcu_boost_kthread(void *arg)
1029 struct rcu_node *rnp = (struct rcu_node *)arg;
1030 int spincnt = 0;
1031 int more2boost;
1033 trace_rcu_utilization(TPS("Start boost kthread@init"));
1034 for (;;) {
1035 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1036 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1037 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1038 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1039 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1040 more2boost = rcu_boost(rnp);
1041 if (more2boost)
1042 spincnt++;
1043 else
1044 spincnt = 0;
1045 if (spincnt > 10) {
1046 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1047 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1048 schedule_timeout_interruptible(2);
1049 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1050 spincnt = 0;
1053 /* NOTREACHED */
1054 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1055 return 0;
1059 * Check to see if it is time to start boosting RCU readers that are
1060 * blocking the current grace period, and, if so, tell the per-rcu_node
1061 * kthread to start boosting them. If there is an expedited grace
1062 * period in progress, it is always time to boost.
1064 * The caller must hold rnp->lock, which this function releases.
1065 * The ->boost_kthread_task is immortal, so we don't need to worry
1066 * about it going away.
1068 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1069 __releases(rnp->lock)
1071 raw_lockdep_assert_held_rcu_node(rnp);
1072 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1073 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1074 return;
1076 if (rnp->exp_tasks != NULL ||
1077 (rnp->gp_tasks != NULL &&
1078 rnp->boost_tasks == NULL &&
1079 rnp->qsmask == 0 &&
1080 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1081 if (rnp->exp_tasks == NULL)
1082 rnp->boost_tasks = rnp->gp_tasks;
1083 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1084 rcu_wake_cond(rnp->boost_kthread_task,
1085 rnp->boost_kthread_status);
1086 } else {
1087 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1092 * Is the current CPU running the RCU-callbacks kthread?
1093 * Caller must have preemption disabled.
1095 static bool rcu_is_callbacks_kthread(void)
1097 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1100 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1103 * Do priority-boost accounting for the start of a new grace period.
1105 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1107 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1111 * Create an RCU-boost kthread for the specified node if one does not
1112 * already exist. We only create this kthread for preemptible RCU.
1113 * Returns zero if all is well, a negated errno otherwise.
1115 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1117 int rnp_index = rnp - rcu_get_root();
1118 unsigned long flags;
1119 struct sched_param sp;
1120 struct task_struct *t;
1122 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1123 return;
1125 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1126 return;
1128 rcu_state.boost = 1;
1130 if (rnp->boost_kthread_task != NULL)
1131 return;
1133 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1134 "rcub/%d", rnp_index);
1135 if (WARN_ON_ONCE(IS_ERR(t)))
1136 return;
1138 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1139 rnp->boost_kthread_task = t;
1140 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1141 sp.sched_priority = kthread_prio;
1142 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1143 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1147 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1148 * served by the rcu_node in question. The CPU hotplug lock is still
1149 * held, so the value of rnp->qsmaskinit will be stable.
1151 * We don't include outgoingcpu in the affinity set, use -1 if there is
1152 * no outgoing CPU. If there are no CPUs left in the affinity set,
1153 * this function allows the kthread to execute on any CPU.
1155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1157 struct task_struct *t = rnp->boost_kthread_task;
1158 unsigned long mask = rcu_rnp_online_cpus(rnp);
1159 cpumask_var_t cm;
1160 int cpu;
1162 if (!t)
1163 return;
1164 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1165 return;
1166 for_each_leaf_node_possible_cpu(rnp, cpu)
1167 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1168 cpu != outgoingcpu)
1169 cpumask_set_cpu(cpu, cm);
1170 if (cpumask_weight(cm) == 0)
1171 cpumask_setall(cm);
1172 set_cpus_allowed_ptr(t, cm);
1173 free_cpumask_var(cm);
1177 * Spawn boost kthreads -- called as soon as the scheduler is running.
1179 static void __init rcu_spawn_boost_kthreads(void)
1181 struct rcu_node *rnp;
1183 rcu_for_each_leaf_node(rnp)
1184 rcu_spawn_one_boost_kthread(rnp);
1187 static void rcu_prepare_kthreads(int cpu)
1189 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1190 struct rcu_node *rnp = rdp->mynode;
1192 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1193 if (rcu_scheduler_fully_active)
1194 rcu_spawn_one_boost_kthread(rnp);
1197 #else /* #ifdef CONFIG_RCU_BOOST */
1199 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1200 __releases(rnp->lock)
1202 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1205 static bool rcu_is_callbacks_kthread(void)
1207 return false;
1210 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1214 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1218 static void __init rcu_spawn_boost_kthreads(void)
1222 static void rcu_prepare_kthreads(int cpu)
1226 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1228 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1231 * Check to see if any future non-offloaded RCU-related work will need
1232 * to be done by the current CPU, even if none need be done immediately,
1233 * returning 1 if so. This function is part of the RCU implementation;
1234 * it is -not- an exported member of the RCU API.
1236 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1237 * CPU has RCU callbacks queued.
1239 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1241 *nextevt = KTIME_MAX;
1242 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1243 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1247 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1248 * after it.
1250 static void rcu_cleanup_after_idle(void)
1255 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1256 * is nothing.
1258 static void rcu_prepare_for_idle(void)
1262 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1265 * This code is invoked when a CPU goes idle, at which point we want
1266 * to have the CPU do everything required for RCU so that it can enter
1267 * the energy-efficient dyntick-idle mode.
1269 * The following preprocessor symbol controls this:
1271 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1272 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1273 * is sized to be roughly one RCU grace period. Those energy-efficiency
1274 * benchmarkers who might otherwise be tempted to set this to a large
1275 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1276 * system. And if you are -that- concerned about energy efficiency,
1277 * just power the system down and be done with it!
1279 * The value below works well in practice. If future workloads require
1280 * adjustment, they can be converted into kernel config parameters, though
1281 * making the state machine smarter might be a better option.
1283 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1285 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1286 module_param(rcu_idle_gp_delay, int, 0644);
1289 * Try to advance callbacks on the current CPU, but only if it has been
1290 * awhile since the last time we did so. Afterwards, if there are any
1291 * callbacks ready for immediate invocation, return true.
1293 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1295 bool cbs_ready = false;
1296 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1297 struct rcu_node *rnp;
1299 /* Exit early if we advanced recently. */
1300 if (jiffies == rdp->last_advance_all)
1301 return false;
1302 rdp->last_advance_all = jiffies;
1304 rnp = rdp->mynode;
1307 * Don't bother checking unless a grace period has
1308 * completed since we last checked and there are
1309 * callbacks not yet ready to invoke.
1311 if ((rcu_seq_completed_gp(rdp->gp_seq,
1312 rcu_seq_current(&rnp->gp_seq)) ||
1313 unlikely(READ_ONCE(rdp->gpwrap))) &&
1314 rcu_segcblist_pend_cbs(&rdp->cblist))
1315 note_gp_changes(rdp);
1317 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1318 cbs_ready = true;
1319 return cbs_ready;
1323 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1324 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1325 * caller about what to set the timeout.
1327 * The caller must have disabled interrupts.
1329 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1331 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1332 unsigned long dj;
1334 lockdep_assert_irqs_disabled();
1336 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1337 if (rcu_segcblist_empty(&rdp->cblist) ||
1338 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1339 *nextevt = KTIME_MAX;
1340 return 0;
1343 /* Attempt to advance callbacks. */
1344 if (rcu_try_advance_all_cbs()) {
1345 /* Some ready to invoke, so initiate later invocation. */
1346 invoke_rcu_core();
1347 return 1;
1349 rdp->last_accelerate = jiffies;
1351 /* Request timer and round. */
1352 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1354 *nextevt = basemono + dj * TICK_NSEC;
1355 return 0;
1359 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1360 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1361 * major task is to accelerate (that is, assign grace-period numbers to) any
1362 * recently arrived callbacks.
1364 * The caller must have disabled interrupts.
1366 static void rcu_prepare_for_idle(void)
1368 bool needwake;
1369 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1370 struct rcu_node *rnp;
1371 int tne;
1373 lockdep_assert_irqs_disabled();
1374 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1375 return;
1377 /* Handle nohz enablement switches conservatively. */
1378 tne = READ_ONCE(tick_nohz_active);
1379 if (tne != rdp->tick_nohz_enabled_snap) {
1380 if (!rcu_segcblist_empty(&rdp->cblist))
1381 invoke_rcu_core(); /* force nohz to see update. */
1382 rdp->tick_nohz_enabled_snap = tne;
1383 return;
1385 if (!tne)
1386 return;
1389 * If we have not yet accelerated this jiffy, accelerate all
1390 * callbacks on this CPU.
1392 if (rdp->last_accelerate == jiffies)
1393 return;
1394 rdp->last_accelerate = jiffies;
1395 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1396 rnp = rdp->mynode;
1397 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1398 needwake = rcu_accelerate_cbs(rnp, rdp);
1399 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1400 if (needwake)
1401 rcu_gp_kthread_wake();
1406 * Clean up for exit from idle. Attempt to advance callbacks based on
1407 * any grace periods that elapsed while the CPU was idle, and if any
1408 * callbacks are now ready to invoke, initiate invocation.
1410 static void rcu_cleanup_after_idle(void)
1412 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1414 lockdep_assert_irqs_disabled();
1415 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1416 return;
1417 if (rcu_try_advance_all_cbs())
1418 invoke_rcu_core();
1421 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1423 #ifdef CONFIG_RCU_NOCB_CPU
1426 * Offload callback processing from the boot-time-specified set of CPUs
1427 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1428 * created that pull the callbacks from the corresponding CPU, wait for
1429 * a grace period to elapse, and invoke the callbacks. These kthreads
1430 * are organized into GP kthreads, which manage incoming callbacks, wait for
1431 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1432 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1433 * do a wake_up() on their GP kthread when they insert a callback into any
1434 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1435 * in which case each kthread actively polls its CPU. (Which isn't so great
1436 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1438 * This is intended to be used in conjunction with Frederic Weisbecker's
1439 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1440 * running CPU-bound user-mode computations.
1442 * Offloading of callbacks can also be used as an energy-efficiency
1443 * measure because CPUs with no RCU callbacks queued are more aggressive
1444 * about entering dyntick-idle mode.
1449 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1450 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1451 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1452 * given, a warning is emitted and all CPUs are offloaded.
1454 static int __init rcu_nocb_setup(char *str)
1456 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1457 if (!strcasecmp(str, "all"))
1458 cpumask_setall(rcu_nocb_mask);
1459 else
1460 if (cpulist_parse(str, rcu_nocb_mask)) {
1461 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1462 cpumask_setall(rcu_nocb_mask);
1464 return 1;
1466 __setup("rcu_nocbs=", rcu_nocb_setup);
1468 static int __init parse_rcu_nocb_poll(char *arg)
1470 rcu_nocb_poll = true;
1471 return 0;
1473 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1476 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1477 * After all, the main point of bypassing is to avoid lock contention
1478 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1480 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1481 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1484 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1485 * lock isn't immediately available, increment ->nocb_lock_contended to
1486 * flag the contention.
1488 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1490 lockdep_assert_irqs_disabled();
1491 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1492 return;
1493 atomic_inc(&rdp->nocb_lock_contended);
1494 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1495 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1496 raw_spin_lock(&rdp->nocb_bypass_lock);
1497 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1498 atomic_dec(&rdp->nocb_lock_contended);
1502 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1503 * not contended. Please note that this is extremely special-purpose,
1504 * relying on the fact that at most two kthreads and one CPU contend for
1505 * this lock, and also that the two kthreads are guaranteed to have frequent
1506 * grace-period-duration time intervals between successive acquisitions
1507 * of the lock. This allows us to use an extremely simple throttling
1508 * mechanism, and further to apply it only to the CPU doing floods of
1509 * call_rcu() invocations. Don't try this at home!
1511 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1513 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1514 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1515 cpu_relax();
1519 * Conditionally acquire the specified rcu_data structure's
1520 * ->nocb_bypass_lock.
1522 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1524 lockdep_assert_irqs_disabled();
1525 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1529 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1531 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1533 lockdep_assert_irqs_disabled();
1534 raw_spin_unlock(&rdp->nocb_bypass_lock);
1538 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1539 * if it corresponds to a no-CBs CPU.
1541 static void rcu_nocb_lock(struct rcu_data *rdp)
1543 lockdep_assert_irqs_disabled();
1544 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1545 return;
1546 raw_spin_lock(&rdp->nocb_lock);
1550 * Release the specified rcu_data structure's ->nocb_lock, but only
1551 * if it corresponds to a no-CBs CPU.
1553 static void rcu_nocb_unlock(struct rcu_data *rdp)
1555 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1556 lockdep_assert_irqs_disabled();
1557 raw_spin_unlock(&rdp->nocb_lock);
1562 * Release the specified rcu_data structure's ->nocb_lock and restore
1563 * interrupts, but only if it corresponds to a no-CBs CPU.
1565 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1566 unsigned long flags)
1568 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1569 lockdep_assert_irqs_disabled();
1570 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1571 } else {
1572 local_irq_restore(flags);
1576 /* Lockdep check that ->cblist may be safely accessed. */
1577 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1579 lockdep_assert_irqs_disabled();
1580 if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1581 cpu_online(rdp->cpu))
1582 lockdep_assert_held(&rdp->nocb_lock);
1586 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1587 * grace period.
1589 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1591 swake_up_all(sq);
1594 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1596 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1599 static void rcu_init_one_nocb(struct rcu_node *rnp)
1601 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1602 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1605 /* Is the specified CPU a no-CBs CPU? */
1606 bool rcu_is_nocb_cpu(int cpu)
1608 if (cpumask_available(rcu_nocb_mask))
1609 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1610 return false;
1614 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
1615 * and this function releases it.
1617 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1618 unsigned long flags)
1619 __releases(rdp->nocb_lock)
1621 bool needwake = false;
1622 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1624 lockdep_assert_held(&rdp->nocb_lock);
1625 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1626 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1627 TPS("AlreadyAwake"));
1628 rcu_nocb_unlock_irqrestore(rdp, flags);
1629 return;
1631 del_timer(&rdp->nocb_timer);
1632 rcu_nocb_unlock_irqrestore(rdp, flags);
1633 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1634 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1635 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1636 needwake = true;
1637 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1639 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1640 if (needwake)
1641 wake_up_process(rdp_gp->nocb_gp_kthread);
1645 * Arrange to wake the GP kthread for this NOCB group at some future
1646 * time when it is safe to do so.
1648 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1649 const char *reason)
1651 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1652 mod_timer(&rdp->nocb_timer, jiffies + 1);
1653 if (rdp->nocb_defer_wakeup < waketype)
1654 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1655 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1659 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1660 * However, if there is a callback to be enqueued and if ->nocb_bypass
1661 * proves to be initially empty, just return false because the no-CB GP
1662 * kthread may need to be awakened in this case.
1664 * Note that this function always returns true if rhp is NULL.
1666 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1667 unsigned long j)
1669 struct rcu_cblist rcl;
1671 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1672 rcu_lockdep_assert_cblist_protected(rdp);
1673 lockdep_assert_held(&rdp->nocb_bypass_lock);
1674 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1675 raw_spin_unlock(&rdp->nocb_bypass_lock);
1676 return false;
1678 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1679 if (rhp)
1680 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1681 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1682 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1683 WRITE_ONCE(rdp->nocb_bypass_first, j);
1684 rcu_nocb_bypass_unlock(rdp);
1685 return true;
1689 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1690 * However, if there is a callback to be enqueued and if ->nocb_bypass
1691 * proves to be initially empty, just return false because the no-CB GP
1692 * kthread may need to be awakened in this case.
1694 * Note that this function always returns true if rhp is NULL.
1696 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1697 unsigned long j)
1699 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1700 return true;
1701 rcu_lockdep_assert_cblist_protected(rdp);
1702 rcu_nocb_bypass_lock(rdp);
1703 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1707 * If the ->nocb_bypass_lock is immediately available, flush the
1708 * ->nocb_bypass queue into ->cblist.
1710 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1712 rcu_lockdep_assert_cblist_protected(rdp);
1713 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1714 !rcu_nocb_bypass_trylock(rdp))
1715 return;
1716 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1720 * See whether it is appropriate to use the ->nocb_bypass list in order
1721 * to control contention on ->nocb_lock. A limited number of direct
1722 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1723 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1724 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1725 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1726 * used if ->cblist is empty, because otherwise callbacks can be stranded
1727 * on ->nocb_bypass because we cannot count on the current CPU ever again
1728 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1729 * non-empty, the corresponding no-CBs grace-period kthread must not be
1730 * in an indefinite sleep state.
1732 * Finally, it is not permitted to use the bypass during early boot,
1733 * as doing so would confuse the auto-initialization code. Besides
1734 * which, there is no point in worrying about lock contention while
1735 * there is only one CPU in operation.
1737 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1738 bool *was_alldone, unsigned long flags)
1740 unsigned long c;
1741 unsigned long cur_gp_seq;
1742 unsigned long j = jiffies;
1743 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1745 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1746 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1747 return false; /* Not offloaded, no bypassing. */
1749 lockdep_assert_irqs_disabled();
1751 // Don't use ->nocb_bypass during early boot.
1752 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1753 rcu_nocb_lock(rdp);
1754 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1755 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1756 return false;
1759 // If we have advanced to a new jiffy, reset counts to allow
1760 // moving back from ->nocb_bypass to ->cblist.
1761 if (j == rdp->nocb_nobypass_last) {
1762 c = rdp->nocb_nobypass_count + 1;
1763 } else {
1764 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1765 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1766 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1767 nocb_nobypass_lim_per_jiffy))
1768 c = 0;
1769 else if (c > nocb_nobypass_lim_per_jiffy)
1770 c = nocb_nobypass_lim_per_jiffy;
1772 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1774 // If there hasn't yet been all that many ->cblist enqueues
1775 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1776 // ->nocb_bypass first.
1777 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1778 rcu_nocb_lock(rdp);
1779 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1780 if (*was_alldone)
1781 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1782 TPS("FirstQ"));
1783 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1784 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1785 return false; // Caller must enqueue the callback.
1788 // If ->nocb_bypass has been used too long or is too full,
1789 // flush ->nocb_bypass to ->cblist.
1790 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1791 ncbs >= qhimark) {
1792 rcu_nocb_lock(rdp);
1793 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1794 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1795 if (*was_alldone)
1796 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1797 TPS("FirstQ"));
1798 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1799 return false; // Caller must enqueue the callback.
1801 if (j != rdp->nocb_gp_adv_time &&
1802 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1803 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1804 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1805 rdp->nocb_gp_adv_time = j;
1807 rcu_nocb_unlock_irqrestore(rdp, flags);
1808 return true; // Callback already enqueued.
1811 // We need to use the bypass.
1812 rcu_nocb_wait_contended(rdp);
1813 rcu_nocb_bypass_lock(rdp);
1814 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1815 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1816 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1817 if (!ncbs) {
1818 WRITE_ONCE(rdp->nocb_bypass_first, j);
1819 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1821 rcu_nocb_bypass_unlock(rdp);
1822 smp_mb(); /* Order enqueue before wake. */
1823 if (ncbs) {
1824 local_irq_restore(flags);
1825 } else {
1826 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1827 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1828 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1829 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1830 TPS("FirstBQwake"));
1831 __call_rcu_nocb_wake(rdp, true, flags);
1832 } else {
1833 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1834 TPS("FirstBQnoWake"));
1835 rcu_nocb_unlock_irqrestore(rdp, flags);
1838 return true; // Callback already enqueued.
1842 * Awaken the no-CBs grace-period kthead if needed, either due to it
1843 * legitimately being asleep or due to overload conditions.
1845 * If warranted, also wake up the kthread servicing this CPUs queues.
1847 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1848 unsigned long flags)
1849 __releases(rdp->nocb_lock)
1851 unsigned long cur_gp_seq;
1852 unsigned long j;
1853 long len;
1854 struct task_struct *t;
1856 // If we are being polled or there is no kthread, just leave.
1857 t = READ_ONCE(rdp->nocb_gp_kthread);
1858 if (rcu_nocb_poll || !t) {
1859 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1860 TPS("WakeNotPoll"));
1861 rcu_nocb_unlock_irqrestore(rdp, flags);
1862 return;
1864 // Need to actually to a wakeup.
1865 len = rcu_segcblist_n_cbs(&rdp->cblist);
1866 if (was_alldone) {
1867 rdp->qlen_last_fqs_check = len;
1868 if (!irqs_disabled_flags(flags)) {
1869 /* ... if queue was empty ... */
1870 wake_nocb_gp(rdp, false, flags);
1871 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1872 TPS("WakeEmpty"));
1873 } else {
1874 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1875 TPS("WakeEmptyIsDeferred"));
1876 rcu_nocb_unlock_irqrestore(rdp, flags);
1878 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1879 /* ... or if many callbacks queued. */
1880 rdp->qlen_last_fqs_check = len;
1881 j = jiffies;
1882 if (j != rdp->nocb_gp_adv_time &&
1883 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1884 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1885 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1886 rdp->nocb_gp_adv_time = j;
1888 smp_mb(); /* Enqueue before timer_pending(). */
1889 if ((rdp->nocb_cb_sleep ||
1890 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1891 !timer_pending(&rdp->nocb_bypass_timer))
1892 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1893 TPS("WakeOvfIsDeferred"));
1894 rcu_nocb_unlock_irqrestore(rdp, flags);
1895 } else {
1896 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1897 rcu_nocb_unlock_irqrestore(rdp, flags);
1899 return;
1902 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1903 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1905 unsigned long flags;
1906 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1908 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1909 rcu_nocb_lock_irqsave(rdp, flags);
1910 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1911 __call_rcu_nocb_wake(rdp, true, flags);
1915 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1916 * or for grace periods to end.
1918 static void nocb_gp_wait(struct rcu_data *my_rdp)
1920 bool bypass = false;
1921 long bypass_ncbs;
1922 int __maybe_unused cpu = my_rdp->cpu;
1923 unsigned long cur_gp_seq;
1924 unsigned long flags;
1925 bool gotcbs = false;
1926 unsigned long j = jiffies;
1927 bool needwait_gp = false; // This prevents actual uninitialized use.
1928 bool needwake;
1929 bool needwake_gp;
1930 struct rcu_data *rdp;
1931 struct rcu_node *rnp;
1932 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1935 * Each pass through the following loop checks for CBs and for the
1936 * nearest grace period (if any) to wait for next. The CB kthreads
1937 * and the global grace-period kthread are awakened if needed.
1939 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1940 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1941 rcu_nocb_lock_irqsave(rdp, flags);
1942 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1943 if (bypass_ncbs &&
1944 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1945 bypass_ncbs > 2 * qhimark)) {
1946 // Bypass full or old, so flush it.
1947 (void)rcu_nocb_try_flush_bypass(rdp, j);
1948 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1949 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1950 rcu_nocb_unlock_irqrestore(rdp, flags);
1951 continue; /* No callbacks here, try next. */
1953 if (bypass_ncbs) {
1954 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1955 TPS("Bypass"));
1956 bypass = true;
1958 rnp = rdp->mynode;
1959 if (bypass) { // Avoid race with first bypass CB.
1960 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1961 RCU_NOCB_WAKE_NOT);
1962 del_timer(&my_rdp->nocb_timer);
1964 // Advance callbacks if helpful and low contention.
1965 needwake_gp = false;
1966 if (!rcu_segcblist_restempty(&rdp->cblist,
1967 RCU_NEXT_READY_TAIL) ||
1968 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1969 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1970 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1971 needwake_gp = rcu_advance_cbs(rnp, rdp);
1972 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1974 // Need to wait on some grace period?
1975 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
1976 RCU_NEXT_READY_TAIL));
1977 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1978 if (!needwait_gp ||
1979 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1980 wait_gp_seq = cur_gp_seq;
1981 needwait_gp = true;
1982 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1983 TPS("NeedWaitGP"));
1985 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1986 needwake = rdp->nocb_cb_sleep;
1987 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1988 smp_mb(); /* CB invocation -after- GP end. */
1989 } else {
1990 needwake = false;
1992 rcu_nocb_unlock_irqrestore(rdp, flags);
1993 if (needwake) {
1994 swake_up_one(&rdp->nocb_cb_wq);
1995 gotcbs = true;
1997 if (needwake_gp)
1998 rcu_gp_kthread_wake();
2001 my_rdp->nocb_gp_bypass = bypass;
2002 my_rdp->nocb_gp_gp = needwait_gp;
2003 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2004 if (bypass && !rcu_nocb_poll) {
2005 // At least one child with non-empty ->nocb_bypass, so set
2006 // timer in order to avoid stranding its callbacks.
2007 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2008 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2009 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2011 if (rcu_nocb_poll) {
2012 /* Polling, so trace if first poll in the series. */
2013 if (gotcbs)
2014 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2015 schedule_timeout_interruptible(1);
2016 } else if (!needwait_gp) {
2017 /* Wait for callbacks to appear. */
2018 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2019 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2020 !READ_ONCE(my_rdp->nocb_gp_sleep));
2021 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2022 } else {
2023 rnp = my_rdp->mynode;
2024 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2025 swait_event_interruptible_exclusive(
2026 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2027 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2028 !READ_ONCE(my_rdp->nocb_gp_sleep));
2029 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2031 if (!rcu_nocb_poll) {
2032 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2033 if (bypass)
2034 del_timer(&my_rdp->nocb_bypass_timer);
2035 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2036 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2038 my_rdp->nocb_gp_seq = -1;
2039 WARN_ON(signal_pending(current));
2043 * No-CBs grace-period-wait kthread. There is one of these per group
2044 * of CPUs, but only once at least one CPU in that group has come online
2045 * at least once since boot. This kthread checks for newly posted
2046 * callbacks from any of the CPUs it is responsible for, waits for a
2047 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2048 * that then have callback-invocation work to do.
2050 static int rcu_nocb_gp_kthread(void *arg)
2052 struct rcu_data *rdp = arg;
2054 for (;;) {
2055 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2056 nocb_gp_wait(rdp);
2057 cond_resched_tasks_rcu_qs();
2059 return 0;
2063 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2064 * then, if there are no more, wait for more to appear.
2066 static void nocb_cb_wait(struct rcu_data *rdp)
2068 unsigned long cur_gp_seq;
2069 unsigned long flags;
2070 bool needwake_gp = false;
2071 struct rcu_node *rnp = rdp->mynode;
2073 local_irq_save(flags);
2074 rcu_momentary_dyntick_idle();
2075 local_irq_restore(flags);
2076 local_bh_disable();
2077 rcu_do_batch(rdp);
2078 local_bh_enable();
2079 lockdep_assert_irqs_enabled();
2080 rcu_nocb_lock_irqsave(rdp, flags);
2081 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2082 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2083 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2084 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2085 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2087 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2088 rcu_nocb_unlock_irqrestore(rdp, flags);
2089 if (needwake_gp)
2090 rcu_gp_kthread_wake();
2091 return;
2094 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2095 WRITE_ONCE(rdp->nocb_cb_sleep, true);
2096 rcu_nocb_unlock_irqrestore(rdp, flags);
2097 if (needwake_gp)
2098 rcu_gp_kthread_wake();
2099 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2100 !READ_ONCE(rdp->nocb_cb_sleep));
2101 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2102 /* ^^^ Ensure CB invocation follows _sleep test. */
2103 return;
2105 WARN_ON(signal_pending(current));
2106 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2110 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2111 * nocb_cb_wait() to do the dirty work.
2113 static int rcu_nocb_cb_kthread(void *arg)
2115 struct rcu_data *rdp = arg;
2117 // Each pass through this loop does one callback batch, and,
2118 // if there are no more ready callbacks, waits for them.
2119 for (;;) {
2120 nocb_cb_wait(rdp);
2121 cond_resched_tasks_rcu_qs();
2123 return 0;
2126 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2127 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2129 return READ_ONCE(rdp->nocb_defer_wakeup);
2132 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2133 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2135 unsigned long flags;
2136 int ndw;
2138 rcu_nocb_lock_irqsave(rdp, flags);
2139 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2140 rcu_nocb_unlock_irqrestore(rdp, flags);
2141 return;
2143 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2144 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2145 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2146 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2149 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2150 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2152 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2154 do_nocb_deferred_wakeup_common(rdp);
2158 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2159 * This means we do an inexact common-case check. Note that if
2160 * we miss, ->nocb_timer will eventually clean things up.
2162 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2164 if (rcu_nocb_need_deferred_wakeup(rdp))
2165 do_nocb_deferred_wakeup_common(rdp);
2168 void __init rcu_init_nohz(void)
2170 int cpu;
2171 bool need_rcu_nocb_mask = false;
2172 struct rcu_data *rdp;
2174 #if defined(CONFIG_NO_HZ_FULL)
2175 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2176 need_rcu_nocb_mask = true;
2177 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2179 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2180 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2181 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2182 return;
2185 if (!cpumask_available(rcu_nocb_mask))
2186 return;
2188 #if defined(CONFIG_NO_HZ_FULL)
2189 if (tick_nohz_full_running)
2190 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2191 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2193 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2194 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2195 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2196 rcu_nocb_mask);
2198 if (cpumask_empty(rcu_nocb_mask))
2199 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2200 else
2201 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2202 cpumask_pr_args(rcu_nocb_mask));
2203 if (rcu_nocb_poll)
2204 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2206 for_each_cpu(cpu, rcu_nocb_mask) {
2207 rdp = per_cpu_ptr(&rcu_data, cpu);
2208 if (rcu_segcblist_empty(&rdp->cblist))
2209 rcu_segcblist_init(&rdp->cblist);
2210 rcu_segcblist_offload(&rdp->cblist);
2212 rcu_organize_nocb_kthreads();
2215 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2216 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2218 init_swait_queue_head(&rdp->nocb_cb_wq);
2219 init_swait_queue_head(&rdp->nocb_gp_wq);
2220 raw_spin_lock_init(&rdp->nocb_lock);
2221 raw_spin_lock_init(&rdp->nocb_bypass_lock);
2222 raw_spin_lock_init(&rdp->nocb_gp_lock);
2223 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2224 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2225 rcu_cblist_init(&rdp->nocb_bypass);
2229 * If the specified CPU is a no-CBs CPU that does not already have its
2230 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2231 * for this CPU's group has not yet been created, spawn it as well.
2233 static void rcu_spawn_one_nocb_kthread(int cpu)
2235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2236 struct rcu_data *rdp_gp;
2237 struct task_struct *t;
2240 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2241 * then nothing to do.
2243 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2244 return;
2246 /* If we didn't spawn the GP kthread first, reorganize! */
2247 rdp_gp = rdp->nocb_gp_rdp;
2248 if (!rdp_gp->nocb_gp_kthread) {
2249 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2250 "rcuog/%d", rdp_gp->cpu);
2251 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2252 return;
2253 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2256 /* Spawn the kthread for this CPU. */
2257 t = kthread_run(rcu_nocb_cb_kthread, rdp,
2258 "rcuo%c/%d", rcu_state.abbr, cpu);
2259 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2260 return;
2261 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2262 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2266 * If the specified CPU is a no-CBs CPU that does not already have its
2267 * rcuo kthread, spawn it.
2269 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2271 if (rcu_scheduler_fully_active)
2272 rcu_spawn_one_nocb_kthread(cpu);
2276 * Once the scheduler is running, spawn rcuo kthreads for all online
2277 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2278 * non-boot CPUs come online -- if this changes, we will need to add
2279 * some mutual exclusion.
2281 static void __init rcu_spawn_nocb_kthreads(void)
2283 int cpu;
2285 for_each_online_cpu(cpu)
2286 rcu_spawn_cpu_nocb_kthread(cpu);
2289 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2290 static int rcu_nocb_gp_stride = -1;
2291 module_param(rcu_nocb_gp_stride, int, 0444);
2294 * Initialize GP-CB relationships for all no-CBs CPU.
2296 static void __init rcu_organize_nocb_kthreads(void)
2298 int cpu;
2299 bool firsttime = true;
2300 bool gotnocbs = false;
2301 bool gotnocbscbs = true;
2302 int ls = rcu_nocb_gp_stride;
2303 int nl = 0; /* Next GP kthread. */
2304 struct rcu_data *rdp;
2305 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
2306 struct rcu_data *rdp_prev = NULL;
2308 if (!cpumask_available(rcu_nocb_mask))
2309 return;
2310 if (ls == -1) {
2311 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2312 rcu_nocb_gp_stride = ls;
2316 * Each pass through this loop sets up one rcu_data structure.
2317 * Should the corresponding CPU come online in the future, then
2318 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2320 for_each_cpu(cpu, rcu_nocb_mask) {
2321 rdp = per_cpu_ptr(&rcu_data, cpu);
2322 if (rdp->cpu >= nl) {
2323 /* New GP kthread, set up for CBs & next GP. */
2324 gotnocbs = true;
2325 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2326 rdp->nocb_gp_rdp = rdp;
2327 rdp_gp = rdp;
2328 if (dump_tree) {
2329 if (!firsttime)
2330 pr_cont("%s\n", gotnocbscbs
2331 ? "" : " (self only)");
2332 gotnocbscbs = false;
2333 firsttime = false;
2334 pr_alert("%s: No-CB GP kthread CPU %d:",
2335 __func__, cpu);
2337 } else {
2338 /* Another CB kthread, link to previous GP kthread. */
2339 gotnocbscbs = true;
2340 rdp->nocb_gp_rdp = rdp_gp;
2341 rdp_prev->nocb_next_cb_rdp = rdp;
2342 if (dump_tree)
2343 pr_cont(" %d", cpu);
2345 rdp_prev = rdp;
2347 if (gotnocbs && dump_tree)
2348 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2352 * Bind the current task to the offloaded CPUs. If there are no offloaded
2353 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2355 void rcu_bind_current_to_nocb(void)
2357 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2358 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2360 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2363 * Dump out nocb grace-period kthread state for the specified rcu_data
2364 * structure.
2366 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2368 struct rcu_node *rnp = rdp->mynode;
2370 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2371 rdp->cpu,
2372 "kK"[!!rdp->nocb_gp_kthread],
2373 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2374 "dD"[!!rdp->nocb_defer_wakeup],
2375 "tT"[timer_pending(&rdp->nocb_timer)],
2376 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2377 "sS"[!!rdp->nocb_gp_sleep],
2378 ".W"[swait_active(&rdp->nocb_gp_wq)],
2379 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2380 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2381 ".B"[!!rdp->nocb_gp_bypass],
2382 ".G"[!!rdp->nocb_gp_gp],
2383 (long)rdp->nocb_gp_seq,
2384 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2387 /* Dump out nocb kthread state for the specified rcu_data structure. */
2388 static void show_rcu_nocb_state(struct rcu_data *rdp)
2390 struct rcu_segcblist *rsclp = &rdp->cblist;
2391 bool waslocked;
2392 bool wastimer;
2393 bool wassleep;
2395 if (rdp->nocb_gp_rdp == rdp)
2396 show_rcu_nocb_gp_state(rdp);
2398 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2399 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2400 "kK"[!!rdp->nocb_cb_kthread],
2401 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2402 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2403 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2404 "sS"[!!rdp->nocb_cb_sleep],
2405 ".W"[swait_active(&rdp->nocb_cb_wq)],
2406 jiffies - rdp->nocb_bypass_first,
2407 jiffies - rdp->nocb_nobypass_last,
2408 rdp->nocb_nobypass_count,
2409 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2410 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2411 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2412 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2413 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2414 rcu_segcblist_n_cbs(&rdp->cblist));
2416 /* It is OK for GP kthreads to have GP state. */
2417 if (rdp->nocb_gp_rdp == rdp)
2418 return;
2420 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2421 wastimer = timer_pending(&rdp->nocb_timer);
2422 wassleep = swait_active(&rdp->nocb_gp_wq);
2423 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2424 !waslocked && !wastimer && !wassleep)
2425 return; /* Nothing untowards. */
2427 pr_info(" !!! %c%c%c%c %c\n",
2428 "lL"[waslocked],
2429 "dD"[!!rdp->nocb_defer_wakeup],
2430 "tT"[wastimer],
2431 "sS"[!!rdp->nocb_gp_sleep],
2432 ".W"[wassleep]);
2435 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2437 /* No ->nocb_lock to acquire. */
2438 static void rcu_nocb_lock(struct rcu_data *rdp)
2442 /* No ->nocb_lock to release. */
2443 static void rcu_nocb_unlock(struct rcu_data *rdp)
2447 /* No ->nocb_lock to release. */
2448 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2449 unsigned long flags)
2451 local_irq_restore(flags);
2454 /* Lockdep check that ->cblist may be safely accessed. */
2455 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2457 lockdep_assert_irqs_disabled();
2460 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2464 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2466 return NULL;
2469 static void rcu_init_one_nocb(struct rcu_node *rnp)
2473 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2474 unsigned long j)
2476 return true;
2479 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2480 bool *was_alldone, unsigned long flags)
2482 return false;
2485 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2486 unsigned long flags)
2488 WARN_ON_ONCE(1); /* Should be dead code! */
2491 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2495 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2497 return false;
2500 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2504 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2508 static void __init rcu_spawn_nocb_kthreads(void)
2512 static void show_rcu_nocb_state(struct rcu_data *rdp)
2516 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2519 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2520 * grace-period kthread will do force_quiescent_state() processing?
2521 * The idea is to avoid waking up RCU core processing on such a
2522 * CPU unless the grace period has extended for too long.
2524 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2525 * CONFIG_RCU_NOCB_CPU CPUs.
2527 static bool rcu_nohz_full_cpu(void)
2529 #ifdef CONFIG_NO_HZ_FULL
2530 if (tick_nohz_full_cpu(smp_processor_id()) &&
2531 (!rcu_gp_in_progress() ||
2532 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2533 return true;
2534 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2535 return false;
2539 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2541 static void rcu_bind_gp_kthread(void)
2543 if (!tick_nohz_full_enabled())
2544 return;
2545 housekeeping_affine(current, HK_FLAG_RCU);
2548 /* Record the current task on dyntick-idle entry. */
2549 static void rcu_dynticks_task_enter(void)
2551 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2552 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2553 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2556 /* Record no current task on dyntick-idle exit. */
2557 static void rcu_dynticks_task_exit(void)
2559 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2560 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2561 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */