1 // SPDX-License-Identifier: GPL-2.0
3 * Deadline Scheduling Class (SCHED_DEADLINE)
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
21 struct dl_bandwidth def_dl_bandwidth
;
23 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
25 return container_of(dl_se
, struct task_struct
, dl
);
28 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
30 return container_of(dl_rq
, struct rq
, dl
);
33 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
35 struct task_struct
*p
= dl_task_of(dl_se
);
36 struct rq
*rq
= task_rq(p
);
41 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
43 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
47 static inline struct dl_bw
*dl_bw_of(int i
)
49 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 "sched RCU must be held");
51 return &cpu_rq(i
)->rd
->dl_bw
;
54 static inline int dl_bw_cpus(int i
)
56 struct root_domain
*rd
= cpu_rq(i
)->rd
;
59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 "sched RCU must be held");
61 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
67 static inline struct dl_bw
*dl_bw_of(int i
)
69 return &cpu_rq(i
)->dl
.dl_bw
;
72 static inline int dl_bw_cpus(int i
)
79 void __add_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
81 u64 old
= dl_rq
->running_bw
;
83 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
84 dl_rq
->running_bw
+= dl_bw
;
85 SCHED_WARN_ON(dl_rq
->running_bw
< old
); /* overflow */
86 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
87 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
88 cpufreq_update_util(rq_of_dl_rq(dl_rq
), 0);
92 void __sub_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
94 u64 old
= dl_rq
->running_bw
;
96 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
97 dl_rq
->running_bw
-= dl_bw
;
98 SCHED_WARN_ON(dl_rq
->running_bw
> old
); /* underflow */
99 if (dl_rq
->running_bw
> old
)
100 dl_rq
->running_bw
= 0;
101 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
102 cpufreq_update_util(rq_of_dl_rq(dl_rq
), 0);
106 void __add_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
108 u64 old
= dl_rq
->this_bw
;
110 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
111 dl_rq
->this_bw
+= dl_bw
;
112 SCHED_WARN_ON(dl_rq
->this_bw
< old
); /* overflow */
116 void __sub_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
118 u64 old
= dl_rq
->this_bw
;
120 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
121 dl_rq
->this_bw
-= dl_bw
;
122 SCHED_WARN_ON(dl_rq
->this_bw
> old
); /* underflow */
123 if (dl_rq
->this_bw
> old
)
125 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
129 void add_rq_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
131 if (!dl_entity_is_special(dl_se
))
132 __add_rq_bw(dl_se
->dl_bw
, dl_rq
);
136 void sub_rq_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
138 if (!dl_entity_is_special(dl_se
))
139 __sub_rq_bw(dl_se
->dl_bw
, dl_rq
);
143 void add_running_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
145 if (!dl_entity_is_special(dl_se
))
146 __add_running_bw(dl_se
->dl_bw
, dl_rq
);
150 void sub_running_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
152 if (!dl_entity_is_special(dl_se
))
153 __sub_running_bw(dl_se
->dl_bw
, dl_rq
);
156 void dl_change_utilization(struct task_struct
*p
, u64 new_bw
)
160 BUG_ON(p
->dl
.flags
& SCHED_FLAG_SUGOV
);
162 if (task_on_rq_queued(p
))
166 if (p
->dl
.dl_non_contending
) {
167 sub_running_bw(&p
->dl
, &rq
->dl
);
168 p
->dl
.dl_non_contending
= 0;
170 * If the timer handler is currently running and the
171 * timer cannot be cancelled, inactive_task_timer()
172 * will see that dl_not_contending is not set, and
173 * will not touch the rq's active utilization,
174 * so we are still safe.
176 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
179 __sub_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
180 __add_rq_bw(new_bw
, &rq
->dl
);
184 * The utilization of a task cannot be immediately removed from
185 * the rq active utilization (running_bw) when the task blocks.
186 * Instead, we have to wait for the so called "0-lag time".
188 * If a task blocks before the "0-lag time", a timer (the inactive
189 * timer) is armed, and running_bw is decreased when the timer
192 * If the task wakes up again before the inactive timer fires,
193 * the timer is cancelled, whereas if the task wakes up after the
194 * inactive timer fired (and running_bw has been decreased) the
195 * task's utilization has to be added to running_bw again.
196 * A flag in the deadline scheduling entity (dl_non_contending)
197 * is used to avoid race conditions between the inactive timer handler
200 * The following diagram shows how running_bw is updated. A task is
201 * "ACTIVE" when its utilization contributes to running_bw; an
202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
205 * time already passed, which does not contribute to running_bw anymore.
206 * +------------------+
208 * +------------------>+ contending |
209 * | add_running_bw | |
210 * | +----+------+------+
213 * +--------+-------+ | |
214 * | | t >= 0-lag | | wakeup
215 * | INACTIVE |<---------------+ |
216 * | | sub_running_bw | |
217 * +--------+-------+ | |
222 * | +----+------+------+
223 * | sub_running_bw | ACTIVE |
224 * +-------------------+ |
225 * inactive timer | non contending |
226 * fired +------------------+
228 * The task_non_contending() function is invoked when a task
229 * blocks, and checks if the 0-lag time already passed or
230 * not (in the first case, it directly updates running_bw;
231 * in the second case, it arms the inactive timer).
233 * The task_contending() function is invoked when a task wakes
234 * up, and checks if the task is still in the "ACTIVE non contending"
235 * state or not (in the second case, it updates running_bw).
237 static void task_non_contending(struct task_struct
*p
)
239 struct sched_dl_entity
*dl_se
= &p
->dl
;
240 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
241 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
242 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
246 * If this is a non-deadline task that has been boosted,
249 if (dl_se
->dl_runtime
== 0)
252 if (dl_entity_is_special(dl_se
))
255 WARN_ON(dl_se
->dl_non_contending
);
257 zerolag_time
= dl_se
->deadline
-
258 div64_long((dl_se
->runtime
* dl_se
->dl_period
),
262 * Using relative times instead of the absolute "0-lag time"
263 * allows to simplify the code
265 zerolag_time
-= rq_clock(rq
);
268 * If the "0-lag time" already passed, decrease the active
269 * utilization now, instead of starting a timer
271 if ((zerolag_time
< 0) || hrtimer_active(&dl_se
->inactive_timer
)) {
273 sub_running_bw(dl_se
, dl_rq
);
274 if (!dl_task(p
) || p
->state
== TASK_DEAD
) {
275 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
277 if (p
->state
== TASK_DEAD
)
278 sub_rq_bw(&p
->dl
, &rq
->dl
);
279 raw_spin_lock(&dl_b
->lock
);
280 __dl_sub(dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
281 __dl_clear_params(p
);
282 raw_spin_unlock(&dl_b
->lock
);
288 dl_se
->dl_non_contending
= 1;
290 hrtimer_start(timer
, ns_to_ktime(zerolag_time
), HRTIMER_MODE_REL_HARD
);
293 static void task_contending(struct sched_dl_entity
*dl_se
, int flags
)
295 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
298 * If this is a non-deadline task that has been boosted,
301 if (dl_se
->dl_runtime
== 0)
304 if (flags
& ENQUEUE_MIGRATED
)
305 add_rq_bw(dl_se
, dl_rq
);
307 if (dl_se
->dl_non_contending
) {
308 dl_se
->dl_non_contending
= 0;
310 * If the timer handler is currently running and the
311 * timer cannot be cancelled, inactive_task_timer()
312 * will see that dl_not_contending is not set, and
313 * will not touch the rq's active utilization,
314 * so we are still safe.
316 if (hrtimer_try_to_cancel(&dl_se
->inactive_timer
) == 1)
317 put_task_struct(dl_task_of(dl_se
));
320 * Since "dl_non_contending" is not set, the
321 * task's utilization has already been removed from
322 * active utilization (either when the task blocked,
323 * when the "inactive timer" fired).
326 add_running_bw(dl_se
, dl_rq
);
330 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
332 struct sched_dl_entity
*dl_se
= &p
->dl
;
334 return dl_rq
->root
.rb_leftmost
== &dl_se
->rb_node
;
337 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
339 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
340 dl_b
->dl_period
= period
;
341 dl_b
->dl_runtime
= runtime
;
344 void init_dl_bw(struct dl_bw
*dl_b
)
346 raw_spin_lock_init(&dl_b
->lock
);
347 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
348 if (global_rt_runtime() == RUNTIME_INF
)
351 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
352 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
356 void init_dl_rq(struct dl_rq
*dl_rq
)
358 dl_rq
->root
= RB_ROOT_CACHED
;
361 /* zero means no -deadline tasks */
362 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
364 dl_rq
->dl_nr_migratory
= 0;
365 dl_rq
->overloaded
= 0;
366 dl_rq
->pushable_dl_tasks_root
= RB_ROOT_CACHED
;
368 init_dl_bw(&dl_rq
->dl_bw
);
371 dl_rq
->running_bw
= 0;
373 init_dl_rq_bw_ratio(dl_rq
);
378 static inline int dl_overloaded(struct rq
*rq
)
380 return atomic_read(&rq
->rd
->dlo_count
);
383 static inline void dl_set_overload(struct rq
*rq
)
388 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
390 * Must be visible before the overload count is
391 * set (as in sched_rt.c).
393 * Matched by the barrier in pull_dl_task().
396 atomic_inc(&rq
->rd
->dlo_count
);
399 static inline void dl_clear_overload(struct rq
*rq
)
404 atomic_dec(&rq
->rd
->dlo_count
);
405 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
408 static void update_dl_migration(struct dl_rq
*dl_rq
)
410 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
411 if (!dl_rq
->overloaded
) {
412 dl_set_overload(rq_of_dl_rq(dl_rq
));
413 dl_rq
->overloaded
= 1;
415 } else if (dl_rq
->overloaded
) {
416 dl_clear_overload(rq_of_dl_rq(dl_rq
));
417 dl_rq
->overloaded
= 0;
421 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
423 struct task_struct
*p
= dl_task_of(dl_se
);
425 if (p
->nr_cpus_allowed
> 1)
426 dl_rq
->dl_nr_migratory
++;
428 update_dl_migration(dl_rq
);
431 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
433 struct task_struct
*p
= dl_task_of(dl_se
);
435 if (p
->nr_cpus_allowed
> 1)
436 dl_rq
->dl_nr_migratory
--;
438 update_dl_migration(dl_rq
);
442 * The list of pushable -deadline task is not a plist, like in
443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
445 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
447 struct dl_rq
*dl_rq
= &rq
->dl
;
448 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_root
.rb_node
;
449 struct rb_node
*parent
= NULL
;
450 struct task_struct
*entry
;
451 bool leftmost
= true;
453 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
457 entry
= rb_entry(parent
, struct task_struct
,
459 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
460 link
= &parent
->rb_left
;
462 link
= &parent
->rb_right
;
468 dl_rq
->earliest_dl
.next
= p
->dl
.deadline
;
470 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
471 rb_insert_color_cached(&p
->pushable_dl_tasks
,
472 &dl_rq
->pushable_dl_tasks_root
, leftmost
);
475 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
477 struct dl_rq
*dl_rq
= &rq
->dl
;
479 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
482 if (dl_rq
->pushable_dl_tasks_root
.rb_leftmost
== &p
->pushable_dl_tasks
) {
483 struct rb_node
*next_node
;
485 next_node
= rb_next(&p
->pushable_dl_tasks
);
487 dl_rq
->earliest_dl
.next
= rb_entry(next_node
,
488 struct task_struct
, pushable_dl_tasks
)->dl
.deadline
;
492 rb_erase_cached(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
493 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
496 static inline int has_pushable_dl_tasks(struct rq
*rq
)
498 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
.rb_root
);
501 static int push_dl_task(struct rq
*rq
);
503 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
505 return dl_task(prev
);
508 static DEFINE_PER_CPU(struct callback_head
, dl_push_head
);
509 static DEFINE_PER_CPU(struct callback_head
, dl_pull_head
);
511 static void push_dl_tasks(struct rq
*);
512 static void pull_dl_task(struct rq
*);
514 static inline void deadline_queue_push_tasks(struct rq
*rq
)
516 if (!has_pushable_dl_tasks(rq
))
519 queue_balance_callback(rq
, &per_cpu(dl_push_head
, rq
->cpu
), push_dl_tasks
);
522 static inline void deadline_queue_pull_task(struct rq
*rq
)
524 queue_balance_callback(rq
, &per_cpu(dl_pull_head
, rq
->cpu
), pull_dl_task
);
527 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
529 static struct rq
*dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
531 struct rq
*later_rq
= NULL
;
534 later_rq
= find_lock_later_rq(p
, rq
);
539 * If we cannot preempt any rq, fall back to pick any
542 cpu
= cpumask_any_and(cpu_active_mask
, p
->cpus_ptr
);
543 if (cpu
>= nr_cpu_ids
) {
545 * Failed to find any suitable CPU.
546 * The task will never come back!
548 BUG_ON(dl_bandwidth_enabled());
551 * If admission control is disabled we
552 * try a little harder to let the task
555 cpu
= cpumask_any(cpu_active_mask
);
557 later_rq
= cpu_rq(cpu
);
558 double_lock_balance(rq
, later_rq
);
561 if (p
->dl
.dl_non_contending
|| p
->dl
.dl_throttled
) {
563 * Inactive timer is armed (or callback is running, but
564 * waiting for us to release rq locks). In any case, when it
565 * will fire (or continue), it will see running_bw of this
566 * task migrated to later_rq (and correctly handle it).
568 sub_running_bw(&p
->dl
, &rq
->dl
);
569 sub_rq_bw(&p
->dl
, &rq
->dl
);
571 add_rq_bw(&p
->dl
, &later_rq
->dl
);
572 add_running_bw(&p
->dl
, &later_rq
->dl
);
574 sub_rq_bw(&p
->dl
, &rq
->dl
);
575 add_rq_bw(&p
->dl
, &later_rq
->dl
);
579 * And we finally need to fixup root_domain(s) bandwidth accounting,
580 * since p is still hanging out in the old (now moved to default) root
583 dl_b
= &rq
->rd
->dl_bw
;
584 raw_spin_lock(&dl_b
->lock
);
585 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpumask_weight(rq
->rd
->span
));
586 raw_spin_unlock(&dl_b
->lock
);
588 dl_b
= &later_rq
->rd
->dl_bw
;
589 raw_spin_lock(&dl_b
->lock
);
590 __dl_add(dl_b
, p
->dl
.dl_bw
, cpumask_weight(later_rq
->rd
->span
));
591 raw_spin_unlock(&dl_b
->lock
);
593 set_task_cpu(p
, later_rq
->cpu
);
594 double_unlock_balance(later_rq
, rq
);
602 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
607 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
612 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
617 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
621 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
626 static inline void pull_dl_task(struct rq
*rq
)
630 static inline void deadline_queue_push_tasks(struct rq
*rq
)
634 static inline void deadline_queue_pull_task(struct rq
*rq
)
637 #endif /* CONFIG_SMP */
639 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
640 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
641 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
644 * We are being explicitly informed that a new instance is starting,
645 * and this means that:
646 * - the absolute deadline of the entity has to be placed at
647 * current time + relative deadline;
648 * - the runtime of the entity has to be set to the maximum value.
650 * The capability of specifying such event is useful whenever a -deadline
651 * entity wants to (try to!) synchronize its behaviour with the scheduler's
652 * one, and to (try to!) reconcile itself with its own scheduling
655 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
)
657 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
658 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
660 WARN_ON(dl_se
->dl_boosted
);
661 WARN_ON(dl_time_before(rq_clock(rq
), dl_se
->deadline
));
664 * We are racing with the deadline timer. So, do nothing because
665 * the deadline timer handler will take care of properly recharging
666 * the runtime and postponing the deadline
668 if (dl_se
->dl_throttled
)
672 * We use the regular wall clock time to set deadlines in the
673 * future; in fact, we must consider execution overheads (time
674 * spent on hardirq context, etc.).
676 dl_se
->deadline
= rq_clock(rq
) + dl_se
->dl_deadline
;
677 dl_se
->runtime
= dl_se
->dl_runtime
;
681 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
682 * possibility of a entity lasting more than what it declared, and thus
683 * exhausting its runtime.
685 * Here we are interested in making runtime overrun possible, but we do
686 * not want a entity which is misbehaving to affect the scheduling of all
688 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
689 * is used, in order to confine each entity within its own bandwidth.
691 * This function deals exactly with that, and ensures that when the runtime
692 * of a entity is replenished, its deadline is also postponed. That ensures
693 * the overrunning entity can't interfere with other entity in the system and
694 * can't make them miss their deadlines. Reasons why this kind of overruns
695 * could happen are, typically, a entity voluntarily trying to overcome its
696 * runtime, or it just underestimated it during sched_setattr().
698 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
,
699 struct sched_dl_entity
*pi_se
)
701 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
702 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
704 BUG_ON(pi_se
->dl_runtime
<= 0);
707 * This could be the case for a !-dl task that is boosted.
708 * Just go with full inherited parameters.
710 if (dl_se
->dl_deadline
== 0) {
711 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
712 dl_se
->runtime
= pi_se
->dl_runtime
;
715 if (dl_se
->dl_yielded
&& dl_se
->runtime
> 0)
719 * We keep moving the deadline away until we get some
720 * available runtime for the entity. This ensures correct
721 * handling of situations where the runtime overrun is
724 while (dl_se
->runtime
<= 0) {
725 dl_se
->deadline
+= pi_se
->dl_period
;
726 dl_se
->runtime
+= pi_se
->dl_runtime
;
730 * At this point, the deadline really should be "in
731 * the future" with respect to rq->clock. If it's
732 * not, we are, for some reason, lagging too much!
733 * Anyway, after having warn userspace abut that,
734 * we still try to keep the things running by
735 * resetting the deadline and the budget of the
738 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
739 printk_deferred_once("sched: DL replenish lagged too much\n");
740 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
741 dl_se
->runtime
= pi_se
->dl_runtime
;
744 if (dl_se
->dl_yielded
)
745 dl_se
->dl_yielded
= 0;
746 if (dl_se
->dl_throttled
)
747 dl_se
->dl_throttled
= 0;
751 * Here we check if --at time t-- an entity (which is probably being
752 * [re]activated or, in general, enqueued) can use its remaining runtime
753 * and its current deadline _without_ exceeding the bandwidth it is
754 * assigned (function returns true if it can't). We are in fact applying
755 * one of the CBS rules: when a task wakes up, if the residual runtime
756 * over residual deadline fits within the allocated bandwidth, then we
757 * can keep the current (absolute) deadline and residual budget without
758 * disrupting the schedulability of the system. Otherwise, we should
759 * refill the runtime and set the deadline a period in the future,
760 * because keeping the current (absolute) deadline of the task would
761 * result in breaking guarantees promised to other tasks (refer to
762 * Documentation/scheduler/sched-deadline.rst for more information).
764 * This function returns true if:
766 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
768 * IOW we can't recycle current parameters.
770 * Notice that the bandwidth check is done against the deadline. For
771 * task with deadline equal to period this is the same of using
772 * dl_period instead of dl_deadline in the equation above.
774 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
,
775 struct sched_dl_entity
*pi_se
, u64 t
)
780 * left and right are the two sides of the equation above,
781 * after a bit of shuffling to use multiplications instead
784 * Note that none of the time values involved in the two
785 * multiplications are absolute: dl_deadline and dl_runtime
786 * are the relative deadline and the maximum runtime of each
787 * instance, runtime is the runtime left for the last instance
788 * and (deadline - t), since t is rq->clock, is the time left
789 * to the (absolute) deadline. Even if overflowing the u64 type
790 * is very unlikely to occur in both cases, here we scale down
791 * as we want to avoid that risk at all. Scaling down by 10
792 * means that we reduce granularity to 1us. We are fine with it,
793 * since this is only a true/false check and, anyway, thinking
794 * of anything below microseconds resolution is actually fiction
795 * (but still we want to give the user that illusion >;).
797 left
= (pi_se
->dl_deadline
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
798 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
799 (pi_se
->dl_runtime
>> DL_SCALE
);
801 return dl_time_before(right
, left
);
805 * Revised wakeup rule [1]: For self-suspending tasks, rather then
806 * re-initializing task's runtime and deadline, the revised wakeup
807 * rule adjusts the task's runtime to avoid the task to overrun its
810 * Reasoning: a task may overrun the density if:
811 * runtime / (deadline - t) > dl_runtime / dl_deadline
813 * Therefore, runtime can be adjusted to:
814 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
816 * In such way that runtime will be equal to the maximum density
817 * the task can use without breaking any rule.
819 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
820 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
823 update_dl_revised_wakeup(struct sched_dl_entity
*dl_se
, struct rq
*rq
)
825 u64 laxity
= dl_se
->deadline
- rq_clock(rq
);
828 * If the task has deadline < period, and the deadline is in the past,
829 * it should already be throttled before this check.
831 * See update_dl_entity() comments for further details.
833 WARN_ON(dl_time_before(dl_se
->deadline
, rq_clock(rq
)));
835 dl_se
->runtime
= (dl_se
->dl_density
* laxity
) >> BW_SHIFT
;
839 * Regarding the deadline, a task with implicit deadline has a relative
840 * deadline == relative period. A task with constrained deadline has a
841 * relative deadline <= relative period.
843 * We support constrained deadline tasks. However, there are some restrictions
844 * applied only for tasks which do not have an implicit deadline. See
845 * update_dl_entity() to know more about such restrictions.
847 * The dl_is_implicit() returns true if the task has an implicit deadline.
849 static inline bool dl_is_implicit(struct sched_dl_entity
*dl_se
)
851 return dl_se
->dl_deadline
== dl_se
->dl_period
;
855 * When a deadline entity is placed in the runqueue, its runtime and deadline
856 * might need to be updated. This is done by a CBS wake up rule. There are two
857 * different rules: 1) the original CBS; and 2) the Revisited CBS.
859 * When the task is starting a new period, the Original CBS is used. In this
860 * case, the runtime is replenished and a new absolute deadline is set.
862 * When a task is queued before the begin of the next period, using the
863 * remaining runtime and deadline could make the entity to overflow, see
864 * dl_entity_overflow() to find more about runtime overflow. When such case
865 * is detected, the runtime and deadline need to be updated.
867 * If the task has an implicit deadline, i.e., deadline == period, the Original
868 * CBS is applied. the runtime is replenished and a new absolute deadline is
869 * set, as in the previous cases.
871 * However, the Original CBS does not work properly for tasks with
872 * deadline < period, which are said to have a constrained deadline. By
873 * applying the Original CBS, a constrained deadline task would be able to run
874 * runtime/deadline in a period. With deadline < period, the task would
875 * overrun the runtime/period allowed bandwidth, breaking the admission test.
877 * In order to prevent this misbehave, the Revisited CBS is used for
878 * constrained deadline tasks when a runtime overflow is detected. In the
879 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
880 * the remaining runtime of the task is reduced to avoid runtime overflow.
881 * Please refer to the comments update_dl_revised_wakeup() function to find
882 * more about the Revised CBS rule.
884 static void update_dl_entity(struct sched_dl_entity
*dl_se
,
885 struct sched_dl_entity
*pi_se
)
887 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
888 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
890 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
891 dl_entity_overflow(dl_se
, pi_se
, rq_clock(rq
))) {
893 if (unlikely(!dl_is_implicit(dl_se
) &&
894 !dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
895 !dl_se
->dl_boosted
)){
896 update_dl_revised_wakeup(dl_se
, rq
);
900 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
901 dl_se
->runtime
= pi_se
->dl_runtime
;
905 static inline u64
dl_next_period(struct sched_dl_entity
*dl_se
)
907 return dl_se
->deadline
- dl_se
->dl_deadline
+ dl_se
->dl_period
;
911 * If the entity depleted all its runtime, and if we want it to sleep
912 * while waiting for some new execution time to become available, we
913 * set the bandwidth replenishment timer to the replenishment instant
914 * and try to activate it.
916 * Notice that it is important for the caller to know if the timer
917 * actually started or not (i.e., the replenishment instant is in
918 * the future or in the past).
920 static int start_dl_timer(struct task_struct
*p
)
922 struct sched_dl_entity
*dl_se
= &p
->dl
;
923 struct hrtimer
*timer
= &dl_se
->dl_timer
;
924 struct rq
*rq
= task_rq(p
);
928 lockdep_assert_held(&rq
->lock
);
931 * We want the timer to fire at the deadline, but considering
932 * that it is actually coming from rq->clock and not from
933 * hrtimer's time base reading.
935 act
= ns_to_ktime(dl_next_period(dl_se
));
936 now
= hrtimer_cb_get_time(timer
);
937 delta
= ktime_to_ns(now
) - rq_clock(rq
);
938 act
= ktime_add_ns(act
, delta
);
941 * If the expiry time already passed, e.g., because the value
942 * chosen as the deadline is too small, don't even try to
943 * start the timer in the past!
945 if (ktime_us_delta(act
, now
) < 0)
949 * !enqueued will guarantee another callback; even if one is already in
950 * progress. This ensures a balanced {get,put}_task_struct().
952 * The race against __run_timer() clearing the enqueued state is
953 * harmless because we're holding task_rq()->lock, therefore the timer
954 * expiring after we've done the check will wait on its task_rq_lock()
955 * and observe our state.
957 if (!hrtimer_is_queued(timer
)) {
959 hrtimer_start(timer
, act
, HRTIMER_MODE_ABS_HARD
);
966 * This is the bandwidth enforcement timer callback. If here, we know
967 * a task is not on its dl_rq, since the fact that the timer was running
968 * means the task is throttled and needs a runtime replenishment.
970 * However, what we actually do depends on the fact the task is active,
971 * (it is on its rq) or has been removed from there by a call to
972 * dequeue_task_dl(). In the former case we must issue the runtime
973 * replenishment and add the task back to the dl_rq; in the latter, we just
974 * do nothing but clearing dl_throttled, so that runtime and deadline
975 * updating (and the queueing back to dl_rq) will be done by the
976 * next call to enqueue_task_dl().
978 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
980 struct sched_dl_entity
*dl_se
= container_of(timer
,
981 struct sched_dl_entity
,
983 struct task_struct
*p
= dl_task_of(dl_se
);
987 rq
= task_rq_lock(p
, &rf
);
990 * The task might have changed its scheduling policy to something
991 * different than SCHED_DEADLINE (through switched_from_dl()).
997 * The task might have been boosted by someone else and might be in the
998 * boosting/deboosting path, its not throttled.
1000 if (dl_se
->dl_boosted
)
1004 * Spurious timer due to start_dl_timer() race; or we already received
1005 * a replenishment from rt_mutex_setprio().
1007 if (!dl_se
->dl_throttled
)
1011 update_rq_clock(rq
);
1014 * If the throttle happened during sched-out; like:
1021 * __dequeue_task_dl()
1024 * We can be both throttled and !queued. Replenish the counter
1025 * but do not enqueue -- wait for our wakeup to do that.
1027 if (!task_on_rq_queued(p
)) {
1028 replenish_dl_entity(dl_se
, dl_se
);
1033 if (unlikely(!rq
->online
)) {
1035 * If the runqueue is no longer available, migrate the
1036 * task elsewhere. This necessarily changes rq.
1038 lockdep_unpin_lock(&rq
->lock
, rf
.cookie
);
1039 rq
= dl_task_offline_migration(rq
, p
);
1040 rf
.cookie
= lockdep_pin_lock(&rq
->lock
);
1041 update_rq_clock(rq
);
1044 * Now that the task has been migrated to the new RQ and we
1045 * have that locked, proceed as normal and enqueue the task
1051 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
1052 if (dl_task(rq
->curr
))
1053 check_preempt_curr_dl(rq
, p
, 0);
1059 * Queueing this task back might have overloaded rq, check if we need
1060 * to kick someone away.
1062 if (has_pushable_dl_tasks(rq
)) {
1064 * Nothing relies on rq->lock after this, so its safe to drop
1067 rq_unpin_lock(rq
, &rf
);
1069 rq_repin_lock(rq
, &rf
);
1074 task_rq_unlock(rq
, p
, &rf
);
1077 * This can free the task_struct, including this hrtimer, do not touch
1078 * anything related to that after this.
1082 return HRTIMER_NORESTART
;
1085 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
1087 struct hrtimer
*timer
= &dl_se
->dl_timer
;
1089 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
1090 timer
->function
= dl_task_timer
;
1094 * During the activation, CBS checks if it can reuse the current task's
1095 * runtime and period. If the deadline of the task is in the past, CBS
1096 * cannot use the runtime, and so it replenishes the task. This rule
1097 * works fine for implicit deadline tasks (deadline == period), and the
1098 * CBS was designed for implicit deadline tasks. However, a task with
1099 * constrained deadline (deadine < period) might be awakened after the
1100 * deadline, but before the next period. In this case, replenishing the
1101 * task would allow it to run for runtime / deadline. As in this case
1102 * deadline < period, CBS enables a task to run for more than the
1103 * runtime / period. In a very loaded system, this can cause a domino
1104 * effect, making other tasks miss their deadlines.
1106 * To avoid this problem, in the activation of a constrained deadline
1107 * task after the deadline but before the next period, throttle the
1108 * task and set the replenishing timer to the begin of the next period,
1109 * unless it is boosted.
1111 static inline void dl_check_constrained_dl(struct sched_dl_entity
*dl_se
)
1113 struct task_struct
*p
= dl_task_of(dl_se
);
1114 struct rq
*rq
= rq_of_dl_rq(dl_rq_of_se(dl_se
));
1116 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
1117 dl_time_before(rq_clock(rq
), dl_next_period(dl_se
))) {
1118 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(p
)))
1120 dl_se
->dl_throttled
= 1;
1121 if (dl_se
->runtime
> 0)
1127 int dl_runtime_exceeded(struct sched_dl_entity
*dl_se
)
1129 return (dl_se
->runtime
<= 0);
1132 extern bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
);
1135 * This function implements the GRUB accounting rule:
1136 * according to the GRUB reclaiming algorithm, the runtime is
1137 * not decreased as "dq = -dt", but as
1138 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1139 * where u is the utilization of the task, Umax is the maximum reclaimable
1140 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1141 * as the difference between the "total runqueue utilization" and the
1142 * runqueue active utilization, and Uextra is the (per runqueue) extra
1143 * reclaimable utilization.
1144 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1145 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1147 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1148 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1149 * Since delta is a 64 bit variable, to have an overflow its value
1150 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1151 * So, overflow is not an issue here.
1153 static u64
grub_reclaim(u64 delta
, struct rq
*rq
, struct sched_dl_entity
*dl_se
)
1155 u64 u_inact
= rq
->dl
.this_bw
- rq
->dl
.running_bw
; /* Utot - Uact */
1157 u64 u_act_min
= (dl_se
->dl_bw
* rq
->dl
.bw_ratio
) >> RATIO_SHIFT
;
1160 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1161 * we compare u_inact + rq->dl.extra_bw with
1162 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1163 * u_inact + rq->dl.extra_bw can be larger than
1164 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1165 * leading to wrong results)
1167 if (u_inact
+ rq
->dl
.extra_bw
> BW_UNIT
- u_act_min
)
1170 u_act
= BW_UNIT
- u_inact
- rq
->dl
.extra_bw
;
1172 return (delta
* u_act
) >> BW_SHIFT
;
1176 * Update the current task's runtime statistics (provided it is still
1177 * a -deadline task and has not been removed from the dl_rq).
1179 static void update_curr_dl(struct rq
*rq
)
1181 struct task_struct
*curr
= rq
->curr
;
1182 struct sched_dl_entity
*dl_se
= &curr
->dl
;
1183 u64 delta_exec
, scaled_delta_exec
;
1184 int cpu
= cpu_of(rq
);
1187 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
1191 * Consumed budget is computed considering the time as
1192 * observed by schedulable tasks (excluding time spent
1193 * in hardirq context, etc.). Deadlines are instead
1194 * computed using hard walltime. This seems to be the more
1195 * natural solution, but the full ramifications of this
1196 * approach need further study.
1198 now
= rq_clock_task(rq
);
1199 delta_exec
= now
- curr
->se
.exec_start
;
1200 if (unlikely((s64
)delta_exec
<= 0)) {
1201 if (unlikely(dl_se
->dl_yielded
))
1206 schedstat_set(curr
->se
.statistics
.exec_max
,
1207 max(curr
->se
.statistics
.exec_max
, delta_exec
));
1209 curr
->se
.sum_exec_runtime
+= delta_exec
;
1210 account_group_exec_runtime(curr
, delta_exec
);
1212 curr
->se
.exec_start
= now
;
1213 cgroup_account_cputime(curr
, delta_exec
);
1215 if (dl_entity_is_special(dl_se
))
1219 * For tasks that participate in GRUB, we implement GRUB-PA: the
1220 * spare reclaimed bandwidth is used to clock down frequency.
1222 * For the others, we still need to scale reservation parameters
1223 * according to current frequency and CPU maximum capacity.
1225 if (unlikely(dl_se
->flags
& SCHED_FLAG_RECLAIM
)) {
1226 scaled_delta_exec
= grub_reclaim(delta_exec
,
1230 unsigned long scale_freq
= arch_scale_freq_capacity(cpu
);
1231 unsigned long scale_cpu
= arch_scale_cpu_capacity(cpu
);
1233 scaled_delta_exec
= cap_scale(delta_exec
, scale_freq
);
1234 scaled_delta_exec
= cap_scale(scaled_delta_exec
, scale_cpu
);
1237 dl_se
->runtime
-= scaled_delta_exec
;
1240 if (dl_runtime_exceeded(dl_se
) || dl_se
->dl_yielded
) {
1241 dl_se
->dl_throttled
= 1;
1243 /* If requested, inform the user about runtime overruns. */
1244 if (dl_runtime_exceeded(dl_se
) &&
1245 (dl_se
->flags
& SCHED_FLAG_DL_OVERRUN
))
1246 dl_se
->dl_overrun
= 1;
1248 __dequeue_task_dl(rq
, curr
, 0);
1249 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(curr
)))
1250 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
1252 if (!is_leftmost(curr
, &rq
->dl
))
1257 * Because -- for now -- we share the rt bandwidth, we need to
1258 * account our runtime there too, otherwise actual rt tasks
1259 * would be able to exceed the shared quota.
1261 * Account to the root rt group for now.
1263 * The solution we're working towards is having the RT groups scheduled
1264 * using deadline servers -- however there's a few nasties to figure
1265 * out before that can happen.
1267 if (rt_bandwidth_enabled()) {
1268 struct rt_rq
*rt_rq
= &rq
->rt
;
1270 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
1272 * We'll let actual RT tasks worry about the overflow here, we
1273 * have our own CBS to keep us inline; only account when RT
1274 * bandwidth is relevant.
1276 if (sched_rt_bandwidth_account(rt_rq
))
1277 rt_rq
->rt_time
+= delta_exec
;
1278 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
1282 static enum hrtimer_restart
inactive_task_timer(struct hrtimer
*timer
)
1284 struct sched_dl_entity
*dl_se
= container_of(timer
,
1285 struct sched_dl_entity
,
1287 struct task_struct
*p
= dl_task_of(dl_se
);
1291 rq
= task_rq_lock(p
, &rf
);
1294 update_rq_clock(rq
);
1296 if (!dl_task(p
) || p
->state
== TASK_DEAD
) {
1297 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1299 if (p
->state
== TASK_DEAD
&& dl_se
->dl_non_contending
) {
1300 sub_running_bw(&p
->dl
, dl_rq_of_se(&p
->dl
));
1301 sub_rq_bw(&p
->dl
, dl_rq_of_se(&p
->dl
));
1302 dl_se
->dl_non_contending
= 0;
1305 raw_spin_lock(&dl_b
->lock
);
1306 __dl_sub(dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
1307 raw_spin_unlock(&dl_b
->lock
);
1308 __dl_clear_params(p
);
1312 if (dl_se
->dl_non_contending
== 0)
1315 sub_running_bw(dl_se
, &rq
->dl
);
1316 dl_se
->dl_non_contending
= 0;
1318 task_rq_unlock(rq
, p
, &rf
);
1321 return HRTIMER_NORESTART
;
1324 void init_dl_inactive_task_timer(struct sched_dl_entity
*dl_se
)
1326 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
1328 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
1329 timer
->function
= inactive_task_timer
;
1334 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1336 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1338 if (dl_rq
->earliest_dl
.curr
== 0 ||
1339 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
1340 dl_rq
->earliest_dl
.curr
= deadline
;
1341 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
);
1345 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1347 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1350 * Since we may have removed our earliest (and/or next earliest)
1351 * task we must recompute them.
1353 if (!dl_rq
->dl_nr_running
) {
1354 dl_rq
->earliest_dl
.curr
= 0;
1355 dl_rq
->earliest_dl
.next
= 0;
1356 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
1358 struct rb_node
*leftmost
= dl_rq
->root
.rb_leftmost
;
1359 struct sched_dl_entity
*entry
;
1361 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
1362 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
1363 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
);
1369 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1370 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1372 #endif /* CONFIG_SMP */
1375 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1377 int prio
= dl_task_of(dl_se
)->prio
;
1378 u64 deadline
= dl_se
->deadline
;
1380 WARN_ON(!dl_prio(prio
));
1381 dl_rq
->dl_nr_running
++;
1382 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
1384 inc_dl_deadline(dl_rq
, deadline
);
1385 inc_dl_migration(dl_se
, dl_rq
);
1389 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1391 int prio
= dl_task_of(dl_se
)->prio
;
1393 WARN_ON(!dl_prio(prio
));
1394 WARN_ON(!dl_rq
->dl_nr_running
);
1395 dl_rq
->dl_nr_running
--;
1396 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
1398 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
1399 dec_dl_migration(dl_se
, dl_rq
);
1402 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
1404 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1405 struct rb_node
**link
= &dl_rq
->root
.rb_root
.rb_node
;
1406 struct rb_node
*parent
= NULL
;
1407 struct sched_dl_entity
*entry
;
1410 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
1414 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
1415 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
1416 link
= &parent
->rb_left
;
1418 link
= &parent
->rb_right
;
1423 rb_link_node(&dl_se
->rb_node
, parent
, link
);
1424 rb_insert_color_cached(&dl_se
->rb_node
, &dl_rq
->root
, leftmost
);
1426 inc_dl_tasks(dl_se
, dl_rq
);
1429 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1431 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1433 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
1436 rb_erase_cached(&dl_se
->rb_node
, &dl_rq
->root
);
1437 RB_CLEAR_NODE(&dl_se
->rb_node
);
1439 dec_dl_tasks(dl_se
, dl_rq
);
1443 enqueue_dl_entity(struct sched_dl_entity
*dl_se
,
1444 struct sched_dl_entity
*pi_se
, int flags
)
1446 BUG_ON(on_dl_rq(dl_se
));
1449 * If this is a wakeup or a new instance, the scheduling
1450 * parameters of the task might need updating. Otherwise,
1451 * we want a replenishment of its runtime.
1453 if (flags
& ENQUEUE_WAKEUP
) {
1454 task_contending(dl_se
, flags
);
1455 update_dl_entity(dl_se
, pi_se
);
1456 } else if (flags
& ENQUEUE_REPLENISH
) {
1457 replenish_dl_entity(dl_se
, pi_se
);
1458 } else if ((flags
& ENQUEUE_RESTORE
) &&
1459 dl_time_before(dl_se
->deadline
,
1460 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se
))))) {
1461 setup_new_dl_entity(dl_se
);
1464 __enqueue_dl_entity(dl_se
);
1467 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1469 __dequeue_dl_entity(dl_se
);
1472 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1474 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
1475 struct sched_dl_entity
*pi_se
= &p
->dl
;
1478 * Use the scheduling parameters of the top pi-waiter task if:
1479 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1480 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1481 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1482 * boosted due to a SCHED_DEADLINE pi-waiter).
1483 * Otherwise we keep our runtime and deadline.
1485 if (pi_task
&& dl_prio(pi_task
->normal_prio
) && p
->dl
.dl_boosted
) {
1486 pi_se
= &pi_task
->dl
;
1487 } else if (!dl_prio(p
->normal_prio
)) {
1489 * Special case in which we have a !SCHED_DEADLINE task
1490 * that is going to be deboosted, but exceeds its
1491 * runtime while doing so. No point in replenishing
1492 * it, as it's going to return back to its original
1493 * scheduling class after this.
1495 BUG_ON(!p
->dl
.dl_boosted
|| flags
!= ENQUEUE_REPLENISH
);
1500 * Check if a constrained deadline task was activated
1501 * after the deadline but before the next period.
1502 * If that is the case, the task will be throttled and
1503 * the replenishment timer will be set to the next period.
1505 if (!p
->dl
.dl_throttled
&& !dl_is_implicit(&p
->dl
))
1506 dl_check_constrained_dl(&p
->dl
);
1508 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
|| flags
& ENQUEUE_RESTORE
) {
1509 add_rq_bw(&p
->dl
, &rq
->dl
);
1510 add_running_bw(&p
->dl
, &rq
->dl
);
1514 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1515 * its budget it needs a replenishment and, since it now is on
1516 * its rq, the bandwidth timer callback (which clearly has not
1517 * run yet) will take care of this.
1518 * However, the active utilization does not depend on the fact
1519 * that the task is on the runqueue or not (but depends on the
1520 * task's state - in GRUB parlance, "inactive" vs "active contending").
1521 * In other words, even if a task is throttled its utilization must
1522 * be counted in the active utilization; hence, we need to call
1525 if (p
->dl
.dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
)) {
1526 if (flags
& ENQUEUE_WAKEUP
)
1527 task_contending(&p
->dl
, flags
);
1532 enqueue_dl_entity(&p
->dl
, pi_se
, flags
);
1534 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1535 enqueue_pushable_dl_task(rq
, p
);
1538 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1540 dequeue_dl_entity(&p
->dl
);
1541 dequeue_pushable_dl_task(rq
, p
);
1544 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1547 __dequeue_task_dl(rq
, p
, flags
);
1549 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
|| flags
& DEQUEUE_SAVE
) {
1550 sub_running_bw(&p
->dl
, &rq
->dl
);
1551 sub_rq_bw(&p
->dl
, &rq
->dl
);
1555 * This check allows to start the inactive timer (or to immediately
1556 * decrease the active utilization, if needed) in two cases:
1557 * when the task blocks and when it is terminating
1558 * (p->state == TASK_DEAD). We can handle the two cases in the same
1559 * way, because from GRUB's point of view the same thing is happening
1560 * (the task moves from "active contending" to "active non contending"
1563 if (flags
& DEQUEUE_SLEEP
)
1564 task_non_contending(p
);
1568 * Yield task semantic for -deadline tasks is:
1570 * get off from the CPU until our next instance, with
1571 * a new runtime. This is of little use now, since we
1572 * don't have a bandwidth reclaiming mechanism. Anyway,
1573 * bandwidth reclaiming is planned for the future, and
1574 * yield_task_dl will indicate that some spare budget
1575 * is available for other task instances to use it.
1577 static void yield_task_dl(struct rq
*rq
)
1580 * We make the task go to sleep until its current deadline by
1581 * forcing its runtime to zero. This way, update_curr_dl() stops
1582 * it and the bandwidth timer will wake it up and will give it
1583 * new scheduling parameters (thanks to dl_yielded=1).
1585 rq
->curr
->dl
.dl_yielded
= 1;
1587 update_rq_clock(rq
);
1590 * Tell update_rq_clock() that we've just updated,
1591 * so we don't do microscopic update in schedule()
1592 * and double the fastpath cost.
1594 rq_clock_skip_update(rq
);
1599 static int find_later_rq(struct task_struct
*task
);
1602 select_task_rq_dl(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1604 struct task_struct
*curr
;
1607 if (sd_flag
!= SD_BALANCE_WAKE
)
1613 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1616 * If we are dealing with a -deadline task, we must
1617 * decide where to wake it up.
1618 * If it has a later deadline and the current task
1619 * on this rq can't move (provided the waking task
1620 * can!) we prefer to send it somewhere else. On the
1621 * other hand, if it has a shorter deadline, we
1622 * try to make it stay here, it might be important.
1624 if (unlikely(dl_task(curr
)) &&
1625 (curr
->nr_cpus_allowed
< 2 ||
1626 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
1627 (p
->nr_cpus_allowed
> 1)) {
1628 int target
= find_later_rq(p
);
1631 (dl_time_before(p
->dl
.deadline
,
1632 cpu_rq(target
)->dl
.earliest_dl
.curr
) ||
1633 (cpu_rq(target
)->dl
.dl_nr_running
== 0)))
1642 static void migrate_task_rq_dl(struct task_struct
*p
, int new_cpu __maybe_unused
)
1646 if (p
->state
!= TASK_WAKING
)
1651 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1652 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1653 * rq->lock is not... So, lock it
1655 raw_spin_lock(&rq
->lock
);
1656 if (p
->dl
.dl_non_contending
) {
1657 sub_running_bw(&p
->dl
, &rq
->dl
);
1658 p
->dl
.dl_non_contending
= 0;
1660 * If the timer handler is currently running and the
1661 * timer cannot be cancelled, inactive_task_timer()
1662 * will see that dl_not_contending is not set, and
1663 * will not touch the rq's active utilization,
1664 * so we are still safe.
1666 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
1669 sub_rq_bw(&p
->dl
, &rq
->dl
);
1670 raw_spin_unlock(&rq
->lock
);
1673 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
1676 * Current can't be migrated, useless to reschedule,
1677 * let's hope p can move out.
1679 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1680 !cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
))
1684 * p is migratable, so let's not schedule it and
1685 * see if it is pushed or pulled somewhere else.
1687 if (p
->nr_cpus_allowed
!= 1 &&
1688 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
))
1694 static int balance_dl(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1696 if (!on_dl_rq(&p
->dl
) && need_pull_dl_task(rq
, p
)) {
1698 * This is OK, because current is on_cpu, which avoids it being
1699 * picked for load-balance and preemption/IRQs are still
1700 * disabled avoiding further scheduler activity on it and we've
1701 * not yet started the picking loop.
1703 rq_unpin_lock(rq
, rf
);
1705 rq_repin_lock(rq
, rf
);
1708 return sched_stop_runnable(rq
) || sched_dl_runnable(rq
);
1710 #endif /* CONFIG_SMP */
1713 * Only called when both the current and waking task are -deadline
1716 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
1719 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
1726 * In the unlikely case current and p have the same deadline
1727 * let us try to decide what's the best thing to do...
1729 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
1730 !test_tsk_need_resched(rq
->curr
))
1731 check_preempt_equal_dl(rq
, p
);
1732 #endif /* CONFIG_SMP */
1735 #ifdef CONFIG_SCHED_HRTICK
1736 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1738 hrtick_start(rq
, p
->dl
.runtime
);
1740 #else /* !CONFIG_SCHED_HRTICK */
1741 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1746 static void set_next_task_dl(struct rq
*rq
, struct task_struct
*p
, bool first
)
1748 p
->se
.exec_start
= rq_clock_task(rq
);
1750 /* You can't push away the running task */
1751 dequeue_pushable_dl_task(rq
, p
);
1756 if (hrtick_enabled(rq
))
1757 start_hrtick_dl(rq
, p
);
1759 if (rq
->curr
->sched_class
!= &dl_sched_class
)
1760 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 0);
1762 deadline_queue_push_tasks(rq
);
1765 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
1766 struct dl_rq
*dl_rq
)
1768 struct rb_node
*left
= rb_first_cached(&dl_rq
->root
);
1773 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
1776 static struct task_struct
*pick_next_task_dl(struct rq
*rq
)
1778 struct sched_dl_entity
*dl_se
;
1779 struct dl_rq
*dl_rq
= &rq
->dl
;
1780 struct task_struct
*p
;
1782 if (!sched_dl_runnable(rq
))
1785 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1787 p
= dl_task_of(dl_se
);
1788 set_next_task_dl(rq
, p
, true);
1792 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1796 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
1797 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
1798 enqueue_pushable_dl_task(rq
, p
);
1802 * scheduler tick hitting a task of our scheduling class.
1804 * NOTE: This function can be called remotely by the tick offload that
1805 * goes along full dynticks. Therefore no local assumption can be made
1806 * and everything must be accessed through the @rq and @curr passed in
1809 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1813 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
1815 * Even when we have runtime, update_curr_dl() might have resulted in us
1816 * not being the leftmost task anymore. In that case NEED_RESCHED will
1817 * be set and schedule() will start a new hrtick for the next task.
1819 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0 &&
1820 is_leftmost(p
, &rq
->dl
))
1821 start_hrtick_dl(rq
, p
);
1824 static void task_fork_dl(struct task_struct
*p
)
1827 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1834 /* Only try algorithms three times */
1835 #define DL_MAX_TRIES 3
1837 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1839 if (!task_running(rq
, p
) &&
1840 cpumask_test_cpu(cpu
, p
->cpus_ptr
))
1846 * Return the earliest pushable rq's task, which is suitable to be executed
1847 * on the CPU, NULL otherwise:
1849 static struct task_struct
*pick_earliest_pushable_dl_task(struct rq
*rq
, int cpu
)
1851 struct rb_node
*next_node
= rq
->dl
.pushable_dl_tasks_root
.rb_leftmost
;
1852 struct task_struct
*p
= NULL
;
1854 if (!has_pushable_dl_tasks(rq
))
1859 p
= rb_entry(next_node
, struct task_struct
, pushable_dl_tasks
);
1861 if (pick_dl_task(rq
, p
, cpu
))
1864 next_node
= rb_next(next_node
);
1871 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1873 static int find_later_rq(struct task_struct
*task
)
1875 struct sched_domain
*sd
;
1876 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
1877 int this_cpu
= smp_processor_id();
1878 int cpu
= task_cpu(task
);
1880 /* Make sure the mask is initialized first */
1881 if (unlikely(!later_mask
))
1884 if (task
->nr_cpus_allowed
== 1)
1888 * We have to consider system topology and task affinity
1889 * first, then we can look for a suitable CPU.
1891 if (!cpudl_find(&task_rq(task
)->rd
->cpudl
, task
, later_mask
))
1895 * If we are here, some targets have been found, including
1896 * the most suitable which is, among the runqueues where the
1897 * current tasks have later deadlines than the task's one, the
1898 * rq with the latest possible one.
1900 * Now we check how well this matches with task's
1901 * affinity and system topology.
1903 * The last CPU where the task run is our first
1904 * guess, since it is most likely cache-hot there.
1906 if (cpumask_test_cpu(cpu
, later_mask
))
1909 * Check if this_cpu is to be skipped (i.e., it is
1910 * not in the mask) or not.
1912 if (!cpumask_test_cpu(this_cpu
, later_mask
))
1916 for_each_domain(cpu
, sd
) {
1917 if (sd
->flags
& SD_WAKE_AFFINE
) {
1921 * If possible, preempting this_cpu is
1922 * cheaper than migrating.
1924 if (this_cpu
!= -1 &&
1925 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1930 best_cpu
= cpumask_first_and(later_mask
,
1931 sched_domain_span(sd
));
1933 * Last chance: if a CPU being in both later_mask
1934 * and current sd span is valid, that becomes our
1935 * choice. Of course, the latest possible CPU is
1936 * already under consideration through later_mask.
1938 if (best_cpu
< nr_cpu_ids
) {
1947 * At this point, all our guesses failed, we just return
1948 * 'something', and let the caller sort the things out.
1953 cpu
= cpumask_any(later_mask
);
1954 if (cpu
< nr_cpu_ids
)
1960 /* Locks the rq it finds */
1961 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
1963 struct rq
*later_rq
= NULL
;
1967 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
1968 cpu
= find_later_rq(task
);
1970 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1973 later_rq
= cpu_rq(cpu
);
1975 if (later_rq
->dl
.dl_nr_running
&&
1976 !dl_time_before(task
->dl
.deadline
,
1977 later_rq
->dl
.earliest_dl
.curr
)) {
1979 * Target rq has tasks of equal or earlier deadline,
1980 * retrying does not release any lock and is unlikely
1981 * to yield a different result.
1987 /* Retry if something changed. */
1988 if (double_lock_balance(rq
, later_rq
)) {
1989 if (unlikely(task_rq(task
) != rq
||
1990 !cpumask_test_cpu(later_rq
->cpu
, task
->cpus_ptr
) ||
1991 task_running(rq
, task
) ||
1993 !task_on_rq_queued(task
))) {
1994 double_unlock_balance(rq
, later_rq
);
2001 * If the rq we found has no -deadline task, or
2002 * its earliest one has a later deadline than our
2003 * task, the rq is a good one.
2005 if (!later_rq
->dl
.dl_nr_running
||
2006 dl_time_before(task
->dl
.deadline
,
2007 later_rq
->dl
.earliest_dl
.curr
))
2010 /* Otherwise we try again. */
2011 double_unlock_balance(rq
, later_rq
);
2018 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
2020 struct task_struct
*p
;
2022 if (!has_pushable_dl_tasks(rq
))
2025 p
= rb_entry(rq
->dl
.pushable_dl_tasks_root
.rb_leftmost
,
2026 struct task_struct
, pushable_dl_tasks
);
2028 BUG_ON(rq
->cpu
!= task_cpu(p
));
2029 BUG_ON(task_current(rq
, p
));
2030 BUG_ON(p
->nr_cpus_allowed
<= 1);
2032 BUG_ON(!task_on_rq_queued(p
));
2033 BUG_ON(!dl_task(p
));
2039 * See if the non running -deadline tasks on this rq
2040 * can be sent to some other CPU where they can preempt
2041 * and start executing.
2043 static int push_dl_task(struct rq
*rq
)
2045 struct task_struct
*next_task
;
2046 struct rq
*later_rq
;
2049 if (!rq
->dl
.overloaded
)
2052 next_task
= pick_next_pushable_dl_task(rq
);
2057 if (WARN_ON(next_task
== rq
->curr
))
2061 * If next_task preempts rq->curr, and rq->curr
2062 * can move away, it makes sense to just reschedule
2063 * without going further in pushing next_task.
2065 if (dl_task(rq
->curr
) &&
2066 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
2067 rq
->curr
->nr_cpus_allowed
> 1) {
2072 /* We might release rq lock */
2073 get_task_struct(next_task
);
2075 /* Will lock the rq it'll find */
2076 later_rq
= find_lock_later_rq(next_task
, rq
);
2078 struct task_struct
*task
;
2081 * We must check all this again, since
2082 * find_lock_later_rq releases rq->lock and it is
2083 * then possible that next_task has migrated.
2085 task
= pick_next_pushable_dl_task(rq
);
2086 if (task
== next_task
) {
2088 * The task is still there. We don't try
2089 * again, some other CPU will pull it when ready.
2098 put_task_struct(next_task
);
2103 deactivate_task(rq
, next_task
, 0);
2104 set_task_cpu(next_task
, later_rq
->cpu
);
2107 * Update the later_rq clock here, because the clock is used
2108 * by the cpufreq_update_util() inside __add_running_bw().
2110 update_rq_clock(later_rq
);
2111 activate_task(later_rq
, next_task
, ENQUEUE_NOCLOCK
);
2114 resched_curr(later_rq
);
2116 double_unlock_balance(rq
, later_rq
);
2119 put_task_struct(next_task
);
2124 static void push_dl_tasks(struct rq
*rq
)
2126 /* push_dl_task() will return true if it moved a -deadline task */
2127 while (push_dl_task(rq
))
2131 static void pull_dl_task(struct rq
*this_rq
)
2133 int this_cpu
= this_rq
->cpu
, cpu
;
2134 struct task_struct
*p
;
2135 bool resched
= false;
2137 u64 dmin
= LONG_MAX
;
2139 if (likely(!dl_overloaded(this_rq
)))
2143 * Match the barrier from dl_set_overloaded; this guarantees that if we
2144 * see overloaded we must also see the dlo_mask bit.
2148 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
2149 if (this_cpu
== cpu
)
2152 src_rq
= cpu_rq(cpu
);
2155 * It looks racy, abd it is! However, as in sched_rt.c,
2156 * we are fine with this.
2158 if (this_rq
->dl
.dl_nr_running
&&
2159 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
2160 src_rq
->dl
.earliest_dl
.next
))
2163 /* Might drop this_rq->lock */
2164 double_lock_balance(this_rq
, src_rq
);
2167 * If there are no more pullable tasks on the
2168 * rq, we're done with it.
2170 if (src_rq
->dl
.dl_nr_running
<= 1)
2173 p
= pick_earliest_pushable_dl_task(src_rq
, this_cpu
);
2176 * We found a task to be pulled if:
2177 * - it preempts our current (if there's one),
2178 * - it will preempt the last one we pulled (if any).
2180 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
2181 (!this_rq
->dl
.dl_nr_running
||
2182 dl_time_before(p
->dl
.deadline
,
2183 this_rq
->dl
.earliest_dl
.curr
))) {
2184 WARN_ON(p
== src_rq
->curr
);
2185 WARN_ON(!task_on_rq_queued(p
));
2188 * Then we pull iff p has actually an earlier
2189 * deadline than the current task of its runqueue.
2191 if (dl_time_before(p
->dl
.deadline
,
2192 src_rq
->curr
->dl
.deadline
))
2197 deactivate_task(src_rq
, p
, 0);
2198 set_task_cpu(p
, this_cpu
);
2199 activate_task(this_rq
, p
, 0);
2200 dmin
= p
->dl
.deadline
;
2202 /* Is there any other task even earlier? */
2205 double_unlock_balance(this_rq
, src_rq
);
2209 resched_curr(this_rq
);
2213 * Since the task is not running and a reschedule is not going to happen
2214 * anytime soon on its runqueue, we try pushing it away now.
2216 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
2218 if (!task_running(rq
, p
) &&
2219 !test_tsk_need_resched(rq
->curr
) &&
2220 p
->nr_cpus_allowed
> 1 &&
2221 dl_task(rq
->curr
) &&
2222 (rq
->curr
->nr_cpus_allowed
< 2 ||
2223 !dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
))) {
2228 static void set_cpus_allowed_dl(struct task_struct
*p
,
2229 const struct cpumask
*new_mask
)
2231 struct root_domain
*src_rd
;
2234 BUG_ON(!dl_task(p
));
2239 * Migrating a SCHED_DEADLINE task between exclusive
2240 * cpusets (different root_domains) entails a bandwidth
2241 * update. We already made space for us in the destination
2242 * domain (see cpuset_can_attach()).
2244 if (!cpumask_intersects(src_rd
->span
, new_mask
)) {
2245 struct dl_bw
*src_dl_b
;
2247 src_dl_b
= dl_bw_of(cpu_of(rq
));
2249 * We now free resources of the root_domain we are migrating
2250 * off. In the worst case, sched_setattr() may temporary fail
2251 * until we complete the update.
2253 raw_spin_lock(&src_dl_b
->lock
);
2254 __dl_sub(src_dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
2255 raw_spin_unlock(&src_dl_b
->lock
);
2258 set_cpus_allowed_common(p
, new_mask
);
2261 /* Assumes rq->lock is held */
2262 static void rq_online_dl(struct rq
*rq
)
2264 if (rq
->dl
.overloaded
)
2265 dl_set_overload(rq
);
2267 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2268 if (rq
->dl
.dl_nr_running
> 0)
2269 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
);
2272 /* Assumes rq->lock is held */
2273 static void rq_offline_dl(struct rq
*rq
)
2275 if (rq
->dl
.overloaded
)
2276 dl_clear_overload(rq
);
2278 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
2279 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2282 void __init
init_sched_dl_class(void)
2286 for_each_possible_cpu(i
)
2287 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
2288 GFP_KERNEL
, cpu_to_node(i
));
2291 void dl_add_task_root_domain(struct task_struct
*p
)
2297 rq
= task_rq_lock(p
, &rf
);
2301 dl_b
= &rq
->rd
->dl_bw
;
2302 raw_spin_lock(&dl_b
->lock
);
2304 __dl_add(dl_b
, p
->dl
.dl_bw
, cpumask_weight(rq
->rd
->span
));
2306 raw_spin_unlock(&dl_b
->lock
);
2309 task_rq_unlock(rq
, p
, &rf
);
2312 void dl_clear_root_domain(struct root_domain
*rd
)
2314 unsigned long flags
;
2316 raw_spin_lock_irqsave(&rd
->dl_bw
.lock
, flags
);
2317 rd
->dl_bw
.total_bw
= 0;
2318 raw_spin_unlock_irqrestore(&rd
->dl_bw
.lock
, flags
);
2321 #endif /* CONFIG_SMP */
2323 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
2326 * task_non_contending() can start the "inactive timer" (if the 0-lag
2327 * time is in the future). If the task switches back to dl before
2328 * the "inactive timer" fires, it can continue to consume its current
2329 * runtime using its current deadline. If it stays outside of
2330 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2331 * will reset the task parameters.
2333 if (task_on_rq_queued(p
) && p
->dl
.dl_runtime
)
2334 task_non_contending(p
);
2336 if (!task_on_rq_queued(p
)) {
2338 * Inactive timer is armed. However, p is leaving DEADLINE and
2339 * might migrate away from this rq while continuing to run on
2340 * some other class. We need to remove its contribution from
2341 * this rq running_bw now, or sub_rq_bw (below) will complain.
2343 if (p
->dl
.dl_non_contending
)
2344 sub_running_bw(&p
->dl
, &rq
->dl
);
2345 sub_rq_bw(&p
->dl
, &rq
->dl
);
2349 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2350 * at the 0-lag time, because the task could have been migrated
2351 * while SCHED_OTHER in the meanwhile.
2353 if (p
->dl
.dl_non_contending
)
2354 p
->dl
.dl_non_contending
= 0;
2357 * Since this might be the only -deadline task on the rq,
2358 * this is the right place to try to pull some other one
2359 * from an overloaded CPU, if any.
2361 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
2364 deadline_queue_pull_task(rq
);
2368 * When switching to -deadline, we may overload the rq, then
2369 * we try to push someone off, if possible.
2371 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
2373 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
2376 /* If p is not queued we will update its parameters at next wakeup. */
2377 if (!task_on_rq_queued(p
)) {
2378 add_rq_bw(&p
->dl
, &rq
->dl
);
2383 if (rq
->curr
!= p
) {
2385 if (p
->nr_cpus_allowed
> 1 && rq
->dl
.overloaded
)
2386 deadline_queue_push_tasks(rq
);
2388 if (dl_task(rq
->curr
))
2389 check_preempt_curr_dl(rq
, p
, 0);
2396 * If the scheduling parameters of a -deadline task changed,
2397 * a push or pull operation might be needed.
2399 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
2402 if (task_on_rq_queued(p
) || rq
->curr
== p
) {
2405 * This might be too much, but unfortunately
2406 * we don't have the old deadline value, and
2407 * we can't argue if the task is increasing
2408 * or lowering its prio, so...
2410 if (!rq
->dl
.overloaded
)
2411 deadline_queue_pull_task(rq
);
2414 * If we now have a earlier deadline task than p,
2415 * then reschedule, provided p is still on this
2418 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
))
2422 * Again, we don't know if p has a earlier
2423 * or later deadline, so let's blindly set a
2424 * (maybe not needed) rescheduling point.
2427 #endif /* CONFIG_SMP */
2431 const struct sched_class dl_sched_class
= {
2432 .next
= &rt_sched_class
,
2433 .enqueue_task
= enqueue_task_dl
,
2434 .dequeue_task
= dequeue_task_dl
,
2435 .yield_task
= yield_task_dl
,
2437 .check_preempt_curr
= check_preempt_curr_dl
,
2439 .pick_next_task
= pick_next_task_dl
,
2440 .put_prev_task
= put_prev_task_dl
,
2441 .set_next_task
= set_next_task_dl
,
2444 .balance
= balance_dl
,
2445 .select_task_rq
= select_task_rq_dl
,
2446 .migrate_task_rq
= migrate_task_rq_dl
,
2447 .set_cpus_allowed
= set_cpus_allowed_dl
,
2448 .rq_online
= rq_online_dl
,
2449 .rq_offline
= rq_offline_dl
,
2450 .task_woken
= task_woken_dl
,
2453 .task_tick
= task_tick_dl
,
2454 .task_fork
= task_fork_dl
,
2456 .prio_changed
= prio_changed_dl
,
2457 .switched_from
= switched_from_dl
,
2458 .switched_to
= switched_to_dl
,
2460 .update_curr
= update_curr_dl
,
2463 int sched_dl_global_validate(void)
2465 u64 runtime
= global_rt_runtime();
2466 u64 period
= global_rt_period();
2467 u64 new_bw
= to_ratio(period
, runtime
);
2470 unsigned long flags
;
2473 * Here we want to check the bandwidth not being set to some
2474 * value smaller than the currently allocated bandwidth in
2475 * any of the root_domains.
2477 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2478 * cycling on root_domains... Discussion on different/better
2479 * solutions is welcome!
2481 for_each_possible_cpu(cpu
) {
2482 rcu_read_lock_sched();
2483 dl_b
= dl_bw_of(cpu
);
2485 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2486 if (new_bw
< dl_b
->total_bw
)
2488 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2490 rcu_read_unlock_sched();
2499 void init_dl_rq_bw_ratio(struct dl_rq
*dl_rq
)
2501 if (global_rt_runtime() == RUNTIME_INF
) {
2502 dl_rq
->bw_ratio
= 1 << RATIO_SHIFT
;
2503 dl_rq
->extra_bw
= 1 << BW_SHIFT
;
2505 dl_rq
->bw_ratio
= to_ratio(global_rt_runtime(),
2506 global_rt_period()) >> (BW_SHIFT
- RATIO_SHIFT
);
2507 dl_rq
->extra_bw
= to_ratio(global_rt_period(),
2508 global_rt_runtime());
2512 void sched_dl_do_global(void)
2517 unsigned long flags
;
2519 def_dl_bandwidth
.dl_period
= global_rt_period();
2520 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
2522 if (global_rt_runtime() != RUNTIME_INF
)
2523 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
2526 * FIXME: As above...
2528 for_each_possible_cpu(cpu
) {
2529 rcu_read_lock_sched();
2530 dl_b
= dl_bw_of(cpu
);
2532 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2534 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2536 rcu_read_unlock_sched();
2537 init_dl_rq_bw_ratio(&cpu_rq(cpu
)->dl
);
2542 * We must be sure that accepting a new task (or allowing changing the
2543 * parameters of an existing one) is consistent with the bandwidth
2544 * constraints. If yes, this function also accordingly updates the currently
2545 * allocated bandwidth to reflect the new situation.
2547 * This function is called while holding p's rq->lock.
2549 int sched_dl_overflow(struct task_struct
*p
, int policy
,
2550 const struct sched_attr
*attr
)
2552 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
2553 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2554 u64 runtime
= attr
->sched_runtime
;
2555 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2558 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
2561 /* !deadline task may carry old deadline bandwidth */
2562 if (new_bw
== p
->dl
.dl_bw
&& task_has_dl_policy(p
))
2566 * Either if a task, enters, leave, or stays -deadline but changes
2567 * its parameters, we may need to update accordingly the total
2568 * allocated bandwidth of the container.
2570 raw_spin_lock(&dl_b
->lock
);
2571 cpus
= dl_bw_cpus(task_cpu(p
));
2572 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2573 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
2574 if (hrtimer_active(&p
->dl
.inactive_timer
))
2575 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
2576 __dl_add(dl_b
, new_bw
, cpus
);
2578 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2579 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
2581 * XXX this is slightly incorrect: when the task
2582 * utilization decreases, we should delay the total
2583 * utilization change until the task's 0-lag point.
2584 * But this would require to set the task's "inactive
2585 * timer" when the task is not inactive.
2587 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
2588 __dl_add(dl_b
, new_bw
, cpus
);
2589 dl_change_utilization(p
, new_bw
);
2591 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2593 * Do not decrease the total deadline utilization here,
2594 * switched_from_dl() will take care to do it at the correct
2599 raw_spin_unlock(&dl_b
->lock
);
2605 * This function initializes the sched_dl_entity of a newly becoming
2606 * SCHED_DEADLINE task.
2608 * Only the static values are considered here, the actual runtime and the
2609 * absolute deadline will be properly calculated when the task is enqueued
2610 * for the first time with its new policy.
2612 void __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
2614 struct sched_dl_entity
*dl_se
= &p
->dl
;
2616 dl_se
->dl_runtime
= attr
->sched_runtime
;
2617 dl_se
->dl_deadline
= attr
->sched_deadline
;
2618 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
2619 dl_se
->flags
= attr
->sched_flags
;
2620 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
2621 dl_se
->dl_density
= to_ratio(dl_se
->dl_deadline
, dl_se
->dl_runtime
);
2624 void __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
2626 struct sched_dl_entity
*dl_se
= &p
->dl
;
2628 attr
->sched_priority
= p
->rt_priority
;
2629 attr
->sched_runtime
= dl_se
->dl_runtime
;
2630 attr
->sched_deadline
= dl_se
->dl_deadline
;
2631 attr
->sched_period
= dl_se
->dl_period
;
2632 attr
->sched_flags
= dl_se
->flags
;
2636 * This function validates the new parameters of a -deadline task.
2637 * We ask for the deadline not being zero, and greater or equal
2638 * than the runtime, as well as the period of being zero or
2639 * greater than deadline. Furthermore, we have to be sure that
2640 * user parameters are above the internal resolution of 1us (we
2641 * check sched_runtime only since it is always the smaller one) and
2642 * below 2^63 ns (we have to check both sched_deadline and
2643 * sched_period, as the latter can be zero).
2645 bool __checkparam_dl(const struct sched_attr
*attr
)
2647 /* special dl tasks don't actually use any parameter */
2648 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
2652 if (attr
->sched_deadline
== 0)
2656 * Since we truncate DL_SCALE bits, make sure we're at least
2659 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
2663 * Since we use the MSB for wrap-around and sign issues, make
2664 * sure it's not set (mind that period can be equal to zero).
2666 if (attr
->sched_deadline
& (1ULL << 63) ||
2667 attr
->sched_period
& (1ULL << 63))
2670 /* runtime <= deadline <= period (if period != 0) */
2671 if ((attr
->sched_period
!= 0 &&
2672 attr
->sched_period
< attr
->sched_deadline
) ||
2673 attr
->sched_deadline
< attr
->sched_runtime
)
2680 * This function clears the sched_dl_entity static params.
2682 void __dl_clear_params(struct task_struct
*p
)
2684 struct sched_dl_entity
*dl_se
= &p
->dl
;
2686 dl_se
->dl_runtime
= 0;
2687 dl_se
->dl_deadline
= 0;
2688 dl_se
->dl_period
= 0;
2691 dl_se
->dl_density
= 0;
2693 dl_se
->dl_throttled
= 0;
2694 dl_se
->dl_yielded
= 0;
2695 dl_se
->dl_non_contending
= 0;
2696 dl_se
->dl_overrun
= 0;
2699 bool dl_param_changed(struct task_struct
*p
, const struct sched_attr
*attr
)
2701 struct sched_dl_entity
*dl_se
= &p
->dl
;
2703 if (dl_se
->dl_runtime
!= attr
->sched_runtime
||
2704 dl_se
->dl_deadline
!= attr
->sched_deadline
||
2705 dl_se
->dl_period
!= attr
->sched_period
||
2706 dl_se
->flags
!= attr
->sched_flags
)
2713 int dl_task_can_attach(struct task_struct
*p
, const struct cpumask
*cs_cpus_allowed
)
2715 unsigned int dest_cpu
;
2719 unsigned long flags
;
2721 dest_cpu
= cpumask_any_and(cpu_active_mask
, cs_cpus_allowed
);
2723 rcu_read_lock_sched();
2724 dl_b
= dl_bw_of(dest_cpu
);
2725 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2726 cpus
= dl_bw_cpus(dest_cpu
);
2727 overflow
= __dl_overflow(dl_b
, cpus
, 0, p
->dl
.dl_bw
);
2732 * We reserve space for this task in the destination
2733 * root_domain, as we can't fail after this point.
2734 * We will free resources in the source root_domain
2735 * later on (see set_cpus_allowed_dl()).
2737 __dl_add(dl_b
, p
->dl
.dl_bw
, cpus
);
2740 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2741 rcu_read_unlock_sched();
2746 int dl_cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
2747 const struct cpumask
*trial
)
2749 int ret
= 1, trial_cpus
;
2750 struct dl_bw
*cur_dl_b
;
2751 unsigned long flags
;
2753 rcu_read_lock_sched();
2754 cur_dl_b
= dl_bw_of(cpumask_any(cur
));
2755 trial_cpus
= cpumask_weight(trial
);
2757 raw_spin_lock_irqsave(&cur_dl_b
->lock
, flags
);
2758 if (cur_dl_b
->bw
!= -1 &&
2759 cur_dl_b
->bw
* trial_cpus
< cur_dl_b
->total_bw
)
2761 raw_spin_unlock_irqrestore(&cur_dl_b
->lock
, flags
);
2762 rcu_read_unlock_sched();
2767 bool dl_cpu_busy(unsigned int cpu
)
2769 unsigned long flags
;
2774 rcu_read_lock_sched();
2775 dl_b
= dl_bw_of(cpu
);
2776 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2777 cpus
= dl_bw_cpus(cpu
);
2778 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
2779 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2780 rcu_read_unlock_sched();
2786 #ifdef CONFIG_SCHED_DEBUG
2787 void print_dl_stats(struct seq_file
*m
, int cpu
)
2789 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
2791 #endif /* CONFIG_SCHED_DEBUG */