1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
25 #include <trace/events/sched.h>
28 * Targeted preemption latency for CPU-bound tasks:
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 unsigned int sysctl_sched_latency
= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
44 * The initial- and re-scaling of tunables is configurable
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG
;
57 * Minimal preemption granularity for CPU-bound tasks:
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61 unsigned int sysctl_sched_min_granularity
= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67 static unsigned int sched_nr_latency
= 8;
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
73 unsigned int sysctl_sched_child_runs_first __read_mostly
;
76 * SCHED_OTHER wake-up granularity.
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
87 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
91 * For asym packing, by default the lower numbered CPU has higher priority.
93 int __weak
arch_asym_cpu_priority(int cpu
)
99 * The margin used when comparing utilization with CPU capacity.
103 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
107 #ifdef CONFIG_CFS_BANDWIDTH
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
116 * (default: 5 msec, units: microseconds)
118 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
121 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
127 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
133 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
146 * This idea comes from the SD scheduler of Con Kolivas:
148 static unsigned int get_update_sysctl_factor(void)
150 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
153 switch (sysctl_sched_tunable_scaling
) {
154 case SCHED_TUNABLESCALING_NONE
:
157 case SCHED_TUNABLESCALING_LINEAR
:
160 case SCHED_TUNABLESCALING_LOG
:
162 factor
= 1 + ilog2(cpus
);
169 static void update_sysctl(void)
171 unsigned int factor
= get_update_sysctl_factor();
173 #define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity
);
176 SET_SYSCTL(sched_latency
);
177 SET_SYSCTL(sched_wakeup_granularity
);
181 void sched_init_granularity(void)
186 #define WMULT_CONST (~0U)
187 #define WMULT_SHIFT 32
189 static void __update_inv_weight(struct load_weight
*lw
)
193 if (likely(lw
->inv_weight
))
196 w
= scale_load_down(lw
->weight
);
198 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
200 else if (unlikely(!w
))
201 lw
->inv_weight
= WMULT_CONST
;
203 lw
->inv_weight
= WMULT_CONST
/ w
;
207 * delta_exec * weight / lw.weight
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
218 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
220 u64 fact
= scale_load_down(weight
);
221 int shift
= WMULT_SHIFT
;
223 __update_inv_weight(lw
);
225 if (unlikely(fact
>> 32)) {
232 fact
= mul_u32_u32(fact
, lw
->inv_weight
);
239 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
243 const struct sched_class fair_sched_class
;
245 /**************************************************************
246 * CFS operations on generic schedulable entities:
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 static inline struct task_struct
*task_of(struct sched_entity
*se
)
252 SCHED_WARN_ON(!entity_is_task(se
));
253 return container_of(se
, struct task_struct
, se
);
256 /* Walk up scheduling entities hierarchy */
257 #define for_each_sched_entity(se) \
258 for (; se; se = se->parent)
260 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
265 /* runqueue on which this entity is (to be) queued */
266 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
271 /* runqueue "owned" by this group */
272 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
277 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
282 if (cfs_rq
&& task_group_is_autogroup(cfs_rq
->tg
))
283 autogroup_path(cfs_rq
->tg
, path
, len
);
284 else if (cfs_rq
&& cfs_rq
->tg
->css
.cgroup
)
285 cgroup_path(cfs_rq
->tg
->css
.cgroup
, path
, len
);
287 strlcpy(path
, "(null)", len
);
290 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
292 struct rq
*rq
= rq_of(cfs_rq
);
293 int cpu
= cpu_of(rq
);
296 return rq
->tmp_alone_branch
== &rq
->leaf_cfs_rq_list
;
301 * Ensure we either appear before our parent (if already
302 * enqueued) or force our parent to appear after us when it is
303 * enqueued. The fact that we always enqueue bottom-up
304 * reduces this to two cases and a special case for the root
305 * cfs_rq. Furthermore, it also means that we will always reset
306 * tmp_alone_branch either when the branch is connected
307 * to a tree or when we reach the top of the tree
309 if (cfs_rq
->tg
->parent
&&
310 cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->on_list
) {
312 * If parent is already on the list, we add the child
313 * just before. Thanks to circular linked property of
314 * the list, this means to put the child at the tail
315 * of the list that starts by parent.
317 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
318 &(cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->leaf_cfs_rq_list
));
320 * The branch is now connected to its tree so we can
321 * reset tmp_alone_branch to the beginning of the
324 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
328 if (!cfs_rq
->tg
->parent
) {
330 * cfs rq without parent should be put
331 * at the tail of the list.
333 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
334 &rq
->leaf_cfs_rq_list
);
336 * We have reach the top of a tree so we can reset
337 * tmp_alone_branch to the beginning of the list.
339 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
344 * The parent has not already been added so we want to
345 * make sure that it will be put after us.
346 * tmp_alone_branch points to the begin of the branch
347 * where we will add parent.
349 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, rq
->tmp_alone_branch
);
351 * update tmp_alone_branch to points to the new begin
354 rq
->tmp_alone_branch
= &cfs_rq
->leaf_cfs_rq_list
;
358 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
360 if (cfs_rq
->on_list
) {
361 struct rq
*rq
= rq_of(cfs_rq
);
364 * With cfs_rq being unthrottled/throttled during an enqueue,
365 * it can happen the tmp_alone_branch points the a leaf that
366 * we finally want to del. In this case, tmp_alone_branch moves
367 * to the prev element but it will point to rq->leaf_cfs_rq_list
368 * at the end of the enqueue.
370 if (rq
->tmp_alone_branch
== &cfs_rq
->leaf_cfs_rq_list
)
371 rq
->tmp_alone_branch
= cfs_rq
->leaf_cfs_rq_list
.prev
;
373 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
378 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
380 SCHED_WARN_ON(rq
->tmp_alone_branch
!= &rq
->leaf_cfs_rq_list
);
383 /* Iterate thr' all leaf cfs_rq's on a runqueue */
384 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
385 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
388 /* Do the two (enqueued) entities belong to the same group ? */
389 static inline struct cfs_rq
*
390 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
392 if (se
->cfs_rq
== pse
->cfs_rq
)
398 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
404 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
406 int se_depth
, pse_depth
;
409 * preemption test can be made between sibling entities who are in the
410 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
411 * both tasks until we find their ancestors who are siblings of common
415 /* First walk up until both entities are at same depth */
416 se_depth
= (*se
)->depth
;
417 pse_depth
= (*pse
)->depth
;
419 while (se_depth
> pse_depth
) {
421 *se
= parent_entity(*se
);
424 while (pse_depth
> se_depth
) {
426 *pse
= parent_entity(*pse
);
429 while (!is_same_group(*se
, *pse
)) {
430 *se
= parent_entity(*se
);
431 *pse
= parent_entity(*pse
);
435 #else /* !CONFIG_FAIR_GROUP_SCHED */
437 static inline struct task_struct
*task_of(struct sched_entity
*se
)
439 return container_of(se
, struct task_struct
, se
);
442 #define for_each_sched_entity(se) \
443 for (; se; se = NULL)
445 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
447 return &task_rq(p
)->cfs
;
450 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
452 struct task_struct
*p
= task_of(se
);
453 struct rq
*rq
= task_rq(p
);
458 /* runqueue "owned" by this group */
459 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
464 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
467 strlcpy(path
, "(null)", len
);
470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
475 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
479 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
486 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
492 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
496 #endif /* CONFIG_FAIR_GROUP_SCHED */
498 static __always_inline
499 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
501 /**************************************************************
502 * Scheduling class tree data structure manipulation methods:
505 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
507 s64 delta
= (s64
)(vruntime
- max_vruntime
);
509 max_vruntime
= vruntime
;
514 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
516 s64 delta
= (s64
)(vruntime
- min_vruntime
);
518 min_vruntime
= vruntime
;
523 static inline int entity_before(struct sched_entity
*a
,
524 struct sched_entity
*b
)
526 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
529 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
531 struct sched_entity
*curr
= cfs_rq
->curr
;
532 struct rb_node
*leftmost
= rb_first_cached(&cfs_rq
->tasks_timeline
);
534 u64 vruntime
= cfs_rq
->min_vruntime
;
538 vruntime
= curr
->vruntime
;
543 if (leftmost
) { /* non-empty tree */
544 struct sched_entity
*se
;
545 se
= rb_entry(leftmost
, struct sched_entity
, run_node
);
548 vruntime
= se
->vruntime
;
550 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
553 /* ensure we never gain time by being placed backwards. */
554 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
557 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
562 * Enqueue an entity into the rb-tree:
564 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
566 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_root
.rb_node
;
567 struct rb_node
*parent
= NULL
;
568 struct sched_entity
*entry
;
569 bool leftmost
= true;
572 * Find the right place in the rbtree:
576 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
578 * We dont care about collisions. Nodes with
579 * the same key stay together.
581 if (entity_before(se
, entry
)) {
582 link
= &parent
->rb_left
;
584 link
= &parent
->rb_right
;
589 rb_link_node(&se
->run_node
, parent
, link
);
590 rb_insert_color_cached(&se
->run_node
,
591 &cfs_rq
->tasks_timeline
, leftmost
);
594 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
596 rb_erase_cached(&se
->run_node
, &cfs_rq
->tasks_timeline
);
599 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
601 struct rb_node
*left
= rb_first_cached(&cfs_rq
->tasks_timeline
);
606 return rb_entry(left
, struct sched_entity
, run_node
);
609 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
611 struct rb_node
*next
= rb_next(&se
->run_node
);
616 return rb_entry(next
, struct sched_entity
, run_node
);
619 #ifdef CONFIG_SCHED_DEBUG
620 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
622 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
.rb_root
);
627 return rb_entry(last
, struct sched_entity
, run_node
);
630 /**************************************************************
631 * Scheduling class statistics methods:
634 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
635 void __user
*buffer
, size_t *lenp
,
638 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
639 unsigned int factor
= get_update_sysctl_factor();
644 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
645 sysctl_sched_min_granularity
);
647 #define WRT_SYSCTL(name) \
648 (normalized_sysctl_##name = sysctl_##name / (factor))
649 WRT_SYSCTL(sched_min_granularity
);
650 WRT_SYSCTL(sched_latency
);
651 WRT_SYSCTL(sched_wakeup_granularity
);
661 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
663 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
664 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
670 * The idea is to set a period in which each task runs once.
672 * When there are too many tasks (sched_nr_latency) we have to stretch
673 * this period because otherwise the slices get too small.
675 * p = (nr <= nl) ? l : l*nr/nl
677 static u64
__sched_period(unsigned long nr_running
)
679 if (unlikely(nr_running
> sched_nr_latency
))
680 return nr_running
* sysctl_sched_min_granularity
;
682 return sysctl_sched_latency
;
686 * We calculate the wall-time slice from the period by taking a part
687 * proportional to the weight.
691 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
693 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
695 for_each_sched_entity(se
) {
696 struct load_weight
*load
;
697 struct load_weight lw
;
699 cfs_rq
= cfs_rq_of(se
);
700 load
= &cfs_rq
->load
;
702 if (unlikely(!se
->on_rq
)) {
705 update_load_add(&lw
, se
->load
.weight
);
708 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
714 * We calculate the vruntime slice of a to-be-inserted task.
718 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
720 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
726 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
727 static unsigned long task_h_load(struct task_struct
*p
);
728 static unsigned long capacity_of(int cpu
);
730 /* Give new sched_entity start runnable values to heavy its load in infant time */
731 void init_entity_runnable_average(struct sched_entity
*se
)
733 struct sched_avg
*sa
= &se
->avg
;
735 memset(sa
, 0, sizeof(*sa
));
738 * Tasks are initialized with full load to be seen as heavy tasks until
739 * they get a chance to stabilize to their real load level.
740 * Group entities are initialized with zero load to reflect the fact that
741 * nothing has been attached to the task group yet.
743 if (entity_is_task(se
))
744 sa
->runnable_load_avg
= sa
->load_avg
= scale_load_down(se
->load
.weight
);
746 se
->runnable_weight
= se
->load
.weight
;
748 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
751 static void attach_entity_cfs_rq(struct sched_entity
*se
);
754 * With new tasks being created, their initial util_avgs are extrapolated
755 * based on the cfs_rq's current util_avg:
757 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
759 * However, in many cases, the above util_avg does not give a desired
760 * value. Moreover, the sum of the util_avgs may be divergent, such
761 * as when the series is a harmonic series.
763 * To solve this problem, we also cap the util_avg of successive tasks to
764 * only 1/2 of the left utilization budget:
766 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
768 * where n denotes the nth task and cpu_scale the CPU capacity.
770 * For example, for a CPU with 1024 of capacity, a simplest series from
771 * the beginning would be like:
773 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
774 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
776 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
777 * if util_avg > util_avg_cap.
779 void post_init_entity_util_avg(struct task_struct
*p
)
781 struct sched_entity
*se
= &p
->se
;
782 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
783 struct sched_avg
*sa
= &se
->avg
;
784 long cpu_scale
= arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq
)));
785 long cap
= (long)(cpu_scale
- cfs_rq
->avg
.util_avg
) / 2;
788 if (cfs_rq
->avg
.util_avg
!= 0) {
789 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
790 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
792 if (sa
->util_avg
> cap
)
799 if (p
->sched_class
!= &fair_sched_class
) {
801 * For !fair tasks do:
803 update_cfs_rq_load_avg(now, cfs_rq);
804 attach_entity_load_avg(cfs_rq, se);
805 switched_from_fair(rq, p);
807 * such that the next switched_to_fair() has the
810 se
->avg
.last_update_time
= cfs_rq_clock_pelt(cfs_rq
);
814 attach_entity_cfs_rq(se
);
817 #else /* !CONFIG_SMP */
818 void init_entity_runnable_average(struct sched_entity
*se
)
821 void post_init_entity_util_avg(struct task_struct
*p
)
824 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
827 #endif /* CONFIG_SMP */
830 * Update the current task's runtime statistics.
832 static void update_curr(struct cfs_rq
*cfs_rq
)
834 struct sched_entity
*curr
= cfs_rq
->curr
;
835 u64 now
= rq_clock_task(rq_of(cfs_rq
));
841 delta_exec
= now
- curr
->exec_start
;
842 if (unlikely((s64
)delta_exec
<= 0))
845 curr
->exec_start
= now
;
847 schedstat_set(curr
->statistics
.exec_max
,
848 max(delta_exec
, curr
->statistics
.exec_max
));
850 curr
->sum_exec_runtime
+= delta_exec
;
851 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
853 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
854 update_min_vruntime(cfs_rq
);
856 if (entity_is_task(curr
)) {
857 struct task_struct
*curtask
= task_of(curr
);
859 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
860 cgroup_account_cputime(curtask
, delta_exec
);
861 account_group_exec_runtime(curtask
, delta_exec
);
864 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
867 static void update_curr_fair(struct rq
*rq
)
869 update_curr(cfs_rq_of(&rq
->curr
->se
));
873 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
875 u64 wait_start
, prev_wait_start
;
877 if (!schedstat_enabled())
880 wait_start
= rq_clock(rq_of(cfs_rq
));
881 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
883 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
884 likely(wait_start
> prev_wait_start
))
885 wait_start
-= prev_wait_start
;
887 __schedstat_set(se
->statistics
.wait_start
, wait_start
);
891 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
893 struct task_struct
*p
;
896 if (!schedstat_enabled())
899 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
901 if (entity_is_task(se
)) {
903 if (task_on_rq_migrating(p
)) {
905 * Preserve migrating task's wait time so wait_start
906 * time stamp can be adjusted to accumulate wait time
907 * prior to migration.
909 __schedstat_set(se
->statistics
.wait_start
, delta
);
912 trace_sched_stat_wait(p
, delta
);
915 __schedstat_set(se
->statistics
.wait_max
,
916 max(schedstat_val(se
->statistics
.wait_max
), delta
));
917 __schedstat_inc(se
->statistics
.wait_count
);
918 __schedstat_add(se
->statistics
.wait_sum
, delta
);
919 __schedstat_set(se
->statistics
.wait_start
, 0);
923 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
925 struct task_struct
*tsk
= NULL
;
926 u64 sleep_start
, block_start
;
928 if (!schedstat_enabled())
931 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
932 block_start
= schedstat_val(se
->statistics
.block_start
);
934 if (entity_is_task(se
))
938 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
943 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
944 __schedstat_set(se
->statistics
.sleep_max
, delta
);
946 __schedstat_set(se
->statistics
.sleep_start
, 0);
947 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
950 account_scheduler_latency(tsk
, delta
>> 10, 1);
951 trace_sched_stat_sleep(tsk
, delta
);
955 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
960 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
961 __schedstat_set(se
->statistics
.block_max
, delta
);
963 __schedstat_set(se
->statistics
.block_start
, 0);
964 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
967 if (tsk
->in_iowait
) {
968 __schedstat_add(se
->statistics
.iowait_sum
, delta
);
969 __schedstat_inc(se
->statistics
.iowait_count
);
970 trace_sched_stat_iowait(tsk
, delta
);
973 trace_sched_stat_blocked(tsk
, delta
);
976 * Blocking time is in units of nanosecs, so shift by
977 * 20 to get a milliseconds-range estimation of the
978 * amount of time that the task spent sleeping:
980 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
981 profile_hits(SLEEP_PROFILING
,
982 (void *)get_wchan(tsk
),
985 account_scheduler_latency(tsk
, delta
>> 10, 0);
991 * Task is being enqueued - update stats:
994 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
996 if (!schedstat_enabled())
1000 * Are we enqueueing a waiting task? (for current tasks
1001 * a dequeue/enqueue event is a NOP)
1003 if (se
!= cfs_rq
->curr
)
1004 update_stats_wait_start(cfs_rq
, se
);
1006 if (flags
& ENQUEUE_WAKEUP
)
1007 update_stats_enqueue_sleeper(cfs_rq
, se
);
1011 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1014 if (!schedstat_enabled())
1018 * Mark the end of the wait period if dequeueing a
1021 if (se
!= cfs_rq
->curr
)
1022 update_stats_wait_end(cfs_rq
, se
);
1024 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
1025 struct task_struct
*tsk
= task_of(se
);
1027 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1028 __schedstat_set(se
->statistics
.sleep_start
,
1029 rq_clock(rq_of(cfs_rq
)));
1030 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1031 __schedstat_set(se
->statistics
.block_start
,
1032 rq_clock(rq_of(cfs_rq
)));
1037 * We are picking a new current task - update its stats:
1040 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1043 * We are starting a new run period:
1045 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1048 /**************************************************
1049 * Scheduling class queueing methods:
1052 #ifdef CONFIG_NUMA_BALANCING
1054 * Approximate time to scan a full NUMA task in ms. The task scan period is
1055 * calculated based on the tasks virtual memory size and
1056 * numa_balancing_scan_size.
1058 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1059 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1061 /* Portion of address space to scan in MB */
1062 unsigned int sysctl_numa_balancing_scan_size
= 256;
1064 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1065 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1068 refcount_t refcount
;
1070 spinlock_t lock
; /* nr_tasks, tasks */
1075 struct rcu_head rcu
;
1076 unsigned long total_faults
;
1077 unsigned long max_faults_cpu
;
1079 * Faults_cpu is used to decide whether memory should move
1080 * towards the CPU. As a consequence, these stats are weighted
1081 * more by CPU use than by memory faults.
1083 unsigned long *faults_cpu
;
1084 unsigned long faults
[0];
1088 * For functions that can be called in multiple contexts that permit reading
1089 * ->numa_group (see struct task_struct for locking rules).
1091 static struct numa_group
*deref_task_numa_group(struct task_struct
*p
)
1093 return rcu_dereference_check(p
->numa_group
, p
== current
||
1094 (lockdep_is_held(&task_rq(p
)->lock
) && !READ_ONCE(p
->on_cpu
)));
1097 static struct numa_group
*deref_curr_numa_group(struct task_struct
*p
)
1099 return rcu_dereference_protected(p
->numa_group
, p
== current
);
1102 static inline unsigned long group_faults_priv(struct numa_group
*ng
);
1103 static inline unsigned long group_faults_shared(struct numa_group
*ng
);
1105 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1107 unsigned long rss
= 0;
1108 unsigned long nr_scan_pages
;
1111 * Calculations based on RSS as non-present and empty pages are skipped
1112 * by the PTE scanner and NUMA hinting faults should be trapped based
1115 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1116 rss
= get_mm_rss(p
->mm
);
1118 rss
= nr_scan_pages
;
1120 rss
= round_up(rss
, nr_scan_pages
);
1121 return rss
/ nr_scan_pages
;
1124 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1125 #define MAX_SCAN_WINDOW 2560
1127 static unsigned int task_scan_min(struct task_struct
*p
)
1129 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1130 unsigned int scan
, floor
;
1131 unsigned int windows
= 1;
1133 if (scan_size
< MAX_SCAN_WINDOW
)
1134 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1135 floor
= 1000 / windows
;
1137 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1138 return max_t(unsigned int, floor
, scan
);
1141 static unsigned int task_scan_start(struct task_struct
*p
)
1143 unsigned long smin
= task_scan_min(p
);
1144 unsigned long period
= smin
;
1145 struct numa_group
*ng
;
1147 /* Scale the maximum scan period with the amount of shared memory. */
1149 ng
= rcu_dereference(p
->numa_group
);
1151 unsigned long shared
= group_faults_shared(ng
);
1152 unsigned long private = group_faults_priv(ng
);
1154 period
*= refcount_read(&ng
->refcount
);
1155 period
*= shared
+ 1;
1156 period
/= private + shared
+ 1;
1160 return max(smin
, period
);
1163 static unsigned int task_scan_max(struct task_struct
*p
)
1165 unsigned long smin
= task_scan_min(p
);
1167 struct numa_group
*ng
;
1169 /* Watch for min being lower than max due to floor calculations */
1170 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1172 /* Scale the maximum scan period with the amount of shared memory. */
1173 ng
= deref_curr_numa_group(p
);
1175 unsigned long shared
= group_faults_shared(ng
);
1176 unsigned long private = group_faults_priv(ng
);
1177 unsigned long period
= smax
;
1179 period
*= refcount_read(&ng
->refcount
);
1180 period
*= shared
+ 1;
1181 period
/= private + shared
+ 1;
1183 smax
= max(smax
, period
);
1186 return max(smin
, smax
);
1189 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1191 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1192 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1195 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1197 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1198 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1201 /* Shared or private faults. */
1202 #define NR_NUMA_HINT_FAULT_TYPES 2
1204 /* Memory and CPU locality */
1205 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1207 /* Averaged statistics, and temporary buffers. */
1208 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1210 pid_t
task_numa_group_id(struct task_struct
*p
)
1212 struct numa_group
*ng
;
1216 ng
= rcu_dereference(p
->numa_group
);
1225 * The averaged statistics, shared & private, memory & CPU,
1226 * occupy the first half of the array. The second half of the
1227 * array is for current counters, which are averaged into the
1228 * first set by task_numa_placement.
1230 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1232 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1235 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1237 if (!p
->numa_faults
)
1240 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1241 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1244 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1246 struct numa_group
*ng
= deref_task_numa_group(p
);
1251 return ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1252 ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1255 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1257 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1258 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1261 static inline unsigned long group_faults_priv(struct numa_group
*ng
)
1263 unsigned long faults
= 0;
1266 for_each_online_node(node
) {
1267 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
1273 static inline unsigned long group_faults_shared(struct numa_group
*ng
)
1275 unsigned long faults
= 0;
1278 for_each_online_node(node
) {
1279 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
1286 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1287 * considered part of a numa group's pseudo-interleaving set. Migrations
1288 * between these nodes are slowed down, to allow things to settle down.
1290 #define ACTIVE_NODE_FRACTION 3
1292 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1294 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1297 /* Handle placement on systems where not all nodes are directly connected. */
1298 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1299 int maxdist
, bool task
)
1301 unsigned long score
= 0;
1305 * All nodes are directly connected, and the same distance
1306 * from each other. No need for fancy placement algorithms.
1308 if (sched_numa_topology_type
== NUMA_DIRECT
)
1312 * This code is called for each node, introducing N^2 complexity,
1313 * which should be ok given the number of nodes rarely exceeds 8.
1315 for_each_online_node(node
) {
1316 unsigned long faults
;
1317 int dist
= node_distance(nid
, node
);
1320 * The furthest away nodes in the system are not interesting
1321 * for placement; nid was already counted.
1323 if (dist
== sched_max_numa_distance
|| node
== nid
)
1327 * On systems with a backplane NUMA topology, compare groups
1328 * of nodes, and move tasks towards the group with the most
1329 * memory accesses. When comparing two nodes at distance
1330 * "hoplimit", only nodes closer by than "hoplimit" are part
1331 * of each group. Skip other nodes.
1333 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1337 /* Add up the faults from nearby nodes. */
1339 faults
= task_faults(p
, node
);
1341 faults
= group_faults(p
, node
);
1344 * On systems with a glueless mesh NUMA topology, there are
1345 * no fixed "groups of nodes". Instead, nodes that are not
1346 * directly connected bounce traffic through intermediate
1347 * nodes; a numa_group can occupy any set of nodes.
1348 * The further away a node is, the less the faults count.
1349 * This seems to result in good task placement.
1351 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1352 faults
*= (sched_max_numa_distance
- dist
);
1353 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1363 * These return the fraction of accesses done by a particular task, or
1364 * task group, on a particular numa node. The group weight is given a
1365 * larger multiplier, in order to group tasks together that are almost
1366 * evenly spread out between numa nodes.
1368 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1371 unsigned long faults
, total_faults
;
1373 if (!p
->numa_faults
)
1376 total_faults
= p
->total_numa_faults
;
1381 faults
= task_faults(p
, nid
);
1382 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1384 return 1000 * faults
/ total_faults
;
1387 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1390 struct numa_group
*ng
= deref_task_numa_group(p
);
1391 unsigned long faults
, total_faults
;
1396 total_faults
= ng
->total_faults
;
1401 faults
= group_faults(p
, nid
);
1402 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1404 return 1000 * faults
/ total_faults
;
1407 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1408 int src_nid
, int dst_cpu
)
1410 struct numa_group
*ng
= deref_curr_numa_group(p
);
1411 int dst_nid
= cpu_to_node(dst_cpu
);
1412 int last_cpupid
, this_cpupid
;
1414 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1415 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1418 * Allow first faults or private faults to migrate immediately early in
1419 * the lifetime of a task. The magic number 4 is based on waiting for
1420 * two full passes of the "multi-stage node selection" test that is
1423 if ((p
->numa_preferred_nid
== NUMA_NO_NODE
|| p
->numa_scan_seq
<= 4) &&
1424 (cpupid_pid_unset(last_cpupid
) || cpupid_match_pid(p
, last_cpupid
)))
1428 * Multi-stage node selection is used in conjunction with a periodic
1429 * migration fault to build a temporal task<->page relation. By using
1430 * a two-stage filter we remove short/unlikely relations.
1432 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1433 * a task's usage of a particular page (n_p) per total usage of this
1434 * page (n_t) (in a given time-span) to a probability.
1436 * Our periodic faults will sample this probability and getting the
1437 * same result twice in a row, given these samples are fully
1438 * independent, is then given by P(n)^2, provided our sample period
1439 * is sufficiently short compared to the usage pattern.
1441 * This quadric squishes small probabilities, making it less likely we
1442 * act on an unlikely task<->page relation.
1444 if (!cpupid_pid_unset(last_cpupid
) &&
1445 cpupid_to_nid(last_cpupid
) != dst_nid
)
1448 /* Always allow migrate on private faults */
1449 if (cpupid_match_pid(p
, last_cpupid
))
1452 /* A shared fault, but p->numa_group has not been set up yet. */
1457 * Destination node is much more heavily used than the source
1458 * node? Allow migration.
1460 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1461 ACTIVE_NODE_FRACTION
)
1465 * Distribute memory according to CPU & memory use on each node,
1466 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1468 * faults_cpu(dst) 3 faults_cpu(src)
1469 * --------------- * - > ---------------
1470 * faults_mem(dst) 4 faults_mem(src)
1472 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1473 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1476 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq
*cfs_rq
);
1478 static unsigned long cpu_runnable_load(struct rq
*rq
)
1480 return cfs_rq_runnable_load_avg(&rq
->cfs
);
1483 /* Cached statistics for all CPUs within a node */
1487 /* Total compute capacity of CPUs on a node */
1488 unsigned long compute_capacity
;
1492 * XXX borrowed from update_sg_lb_stats
1494 static void update_numa_stats(struct numa_stats
*ns
, int nid
)
1498 memset(ns
, 0, sizeof(*ns
));
1499 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1500 struct rq
*rq
= cpu_rq(cpu
);
1502 ns
->load
+= cpu_runnable_load(rq
);
1503 ns
->compute_capacity
+= capacity_of(cpu
);
1508 struct task_numa_env
{
1509 struct task_struct
*p
;
1511 int src_cpu
, src_nid
;
1512 int dst_cpu
, dst_nid
;
1514 struct numa_stats src_stats
, dst_stats
;
1519 struct task_struct
*best_task
;
1524 static void task_numa_assign(struct task_numa_env
*env
,
1525 struct task_struct
*p
, long imp
)
1527 struct rq
*rq
= cpu_rq(env
->dst_cpu
);
1529 /* Bail out if run-queue part of active NUMA balance. */
1530 if (xchg(&rq
->numa_migrate_on
, 1))
1534 * Clear previous best_cpu/rq numa-migrate flag, since task now
1535 * found a better CPU to move/swap.
1537 if (env
->best_cpu
!= -1) {
1538 rq
= cpu_rq(env
->best_cpu
);
1539 WRITE_ONCE(rq
->numa_migrate_on
, 0);
1543 put_task_struct(env
->best_task
);
1548 env
->best_imp
= imp
;
1549 env
->best_cpu
= env
->dst_cpu
;
1552 static bool load_too_imbalanced(long src_load
, long dst_load
,
1553 struct task_numa_env
*env
)
1556 long orig_src_load
, orig_dst_load
;
1557 long src_capacity
, dst_capacity
;
1560 * The load is corrected for the CPU capacity available on each node.
1563 * ------------ vs ---------
1564 * src_capacity dst_capacity
1566 src_capacity
= env
->src_stats
.compute_capacity
;
1567 dst_capacity
= env
->dst_stats
.compute_capacity
;
1569 imb
= abs(dst_load
* src_capacity
- src_load
* dst_capacity
);
1571 orig_src_load
= env
->src_stats
.load
;
1572 orig_dst_load
= env
->dst_stats
.load
;
1574 old_imb
= abs(orig_dst_load
* src_capacity
- orig_src_load
* dst_capacity
);
1576 /* Would this change make things worse? */
1577 return (imb
> old_imb
);
1581 * Maximum NUMA importance can be 1998 (2*999);
1582 * SMALLIMP @ 30 would be close to 1998/64.
1583 * Used to deter task migration.
1588 * This checks if the overall compute and NUMA accesses of the system would
1589 * be improved if the source tasks was migrated to the target dst_cpu taking
1590 * into account that it might be best if task running on the dst_cpu should
1591 * be exchanged with the source task
1593 static void task_numa_compare(struct task_numa_env
*env
,
1594 long taskimp
, long groupimp
, bool maymove
)
1596 struct numa_group
*cur_ng
, *p_ng
= deref_curr_numa_group(env
->p
);
1597 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1598 long imp
= p_ng
? groupimp
: taskimp
;
1599 struct task_struct
*cur
;
1600 long src_load
, dst_load
;
1601 int dist
= env
->dist
;
1605 if (READ_ONCE(dst_rq
->numa_migrate_on
))
1609 cur
= rcu_dereference(dst_rq
->curr
);
1610 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1614 * Because we have preemption enabled we can get migrated around and
1615 * end try selecting ourselves (current == env->p) as a swap candidate.
1621 if (maymove
&& moveimp
>= env
->best_imp
)
1628 * "imp" is the fault differential for the source task between the
1629 * source and destination node. Calculate the total differential for
1630 * the source task and potential destination task. The more negative
1631 * the value is, the more remote accesses that would be expected to
1632 * be incurred if the tasks were swapped.
1634 /* Skip this swap candidate if cannot move to the source cpu */
1635 if (!cpumask_test_cpu(env
->src_cpu
, cur
->cpus_ptr
))
1639 * If dst and source tasks are in the same NUMA group, or not
1640 * in any group then look only at task weights.
1642 cur_ng
= rcu_dereference(cur
->numa_group
);
1643 if (cur_ng
== p_ng
) {
1644 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1645 task_weight(cur
, env
->dst_nid
, dist
);
1647 * Add some hysteresis to prevent swapping the
1648 * tasks within a group over tiny differences.
1654 * Compare the group weights. If a task is all by itself
1655 * (not part of a group), use the task weight instead.
1658 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1659 group_weight(cur
, env
->dst_nid
, dist
);
1661 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1662 task_weight(cur
, env
->dst_nid
, dist
);
1665 if (maymove
&& moveimp
> imp
&& moveimp
> env
->best_imp
) {
1672 * If the NUMA importance is less than SMALLIMP,
1673 * task migration might only result in ping pong
1674 * of tasks and also hurt performance due to cache
1677 if (imp
< SMALLIMP
|| imp
<= env
->best_imp
+ SMALLIMP
/ 2)
1681 * In the overloaded case, try and keep the load balanced.
1683 load
= task_h_load(env
->p
) - task_h_load(cur
);
1687 dst_load
= env
->dst_stats
.load
+ load
;
1688 src_load
= env
->src_stats
.load
- load
;
1690 if (load_too_imbalanced(src_load
, dst_load
, env
))
1695 * One idle CPU per node is evaluated for a task numa move.
1696 * Call select_idle_sibling to maybe find a better one.
1700 * select_idle_siblings() uses an per-CPU cpumask that
1701 * can be used from IRQ context.
1703 local_irq_disable();
1704 env
->dst_cpu
= select_idle_sibling(env
->p
, env
->src_cpu
,
1709 task_numa_assign(env
, cur
, imp
);
1714 static void task_numa_find_cpu(struct task_numa_env
*env
,
1715 long taskimp
, long groupimp
)
1717 long src_load
, dst_load
, load
;
1718 bool maymove
= false;
1721 load
= task_h_load(env
->p
);
1722 dst_load
= env
->dst_stats
.load
+ load
;
1723 src_load
= env
->src_stats
.load
- load
;
1726 * If the improvement from just moving env->p direction is better
1727 * than swapping tasks around, check if a move is possible.
1729 maymove
= !load_too_imbalanced(src_load
, dst_load
, env
);
1731 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1732 /* Skip this CPU if the source task cannot migrate */
1733 if (!cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
1737 task_numa_compare(env
, taskimp
, groupimp
, maymove
);
1741 static int task_numa_migrate(struct task_struct
*p
)
1743 struct task_numa_env env
= {
1746 .src_cpu
= task_cpu(p
),
1747 .src_nid
= task_node(p
),
1749 .imbalance_pct
= 112,
1755 unsigned long taskweight
, groupweight
;
1756 struct sched_domain
*sd
;
1757 long taskimp
, groupimp
;
1758 struct numa_group
*ng
;
1763 * Pick the lowest SD_NUMA domain, as that would have the smallest
1764 * imbalance and would be the first to start moving tasks about.
1766 * And we want to avoid any moving of tasks about, as that would create
1767 * random movement of tasks -- counter the numa conditions we're trying
1771 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1773 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
1777 * Cpusets can break the scheduler domain tree into smaller
1778 * balance domains, some of which do not cross NUMA boundaries.
1779 * Tasks that are "trapped" in such domains cannot be migrated
1780 * elsewhere, so there is no point in (re)trying.
1782 if (unlikely(!sd
)) {
1783 sched_setnuma(p
, task_node(p
));
1787 env
.dst_nid
= p
->numa_preferred_nid
;
1788 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1789 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1790 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1791 update_numa_stats(&env
.src_stats
, env
.src_nid
);
1792 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
1793 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
1794 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1796 /* Try to find a spot on the preferred nid. */
1797 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1800 * Look at other nodes in these cases:
1801 * - there is no space available on the preferred_nid
1802 * - the task is part of a numa_group that is interleaved across
1803 * multiple NUMA nodes; in order to better consolidate the group,
1804 * we need to check other locations.
1806 ng
= deref_curr_numa_group(p
);
1807 if (env
.best_cpu
== -1 || (ng
&& ng
->active_nodes
> 1)) {
1808 for_each_online_node(nid
) {
1809 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
1812 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1813 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1815 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1816 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1819 /* Only consider nodes where both task and groups benefit */
1820 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
1821 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
1822 if (taskimp
< 0 && groupimp
< 0)
1827 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1828 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1833 * If the task is part of a workload that spans multiple NUMA nodes,
1834 * and is migrating into one of the workload's active nodes, remember
1835 * this node as the task's preferred numa node, so the workload can
1837 * A task that migrated to a second choice node will be better off
1838 * trying for a better one later. Do not set the preferred node here.
1841 if (env
.best_cpu
== -1)
1844 nid
= cpu_to_node(env
.best_cpu
);
1846 if (nid
!= p
->numa_preferred_nid
)
1847 sched_setnuma(p
, nid
);
1850 /* No better CPU than the current one was found. */
1851 if (env
.best_cpu
== -1)
1854 best_rq
= cpu_rq(env
.best_cpu
);
1855 if (env
.best_task
== NULL
) {
1856 ret
= migrate_task_to(p
, env
.best_cpu
);
1857 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
1859 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_cpu
);
1863 ret
= migrate_swap(p
, env
.best_task
, env
.best_cpu
, env
.src_cpu
);
1864 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
1867 trace_sched_stick_numa(p
, env
.src_cpu
, task_cpu(env
.best_task
));
1868 put_task_struct(env
.best_task
);
1872 /* Attempt to migrate a task to a CPU on the preferred node. */
1873 static void numa_migrate_preferred(struct task_struct
*p
)
1875 unsigned long interval
= HZ
;
1877 /* This task has no NUMA fault statistics yet */
1878 if (unlikely(p
->numa_preferred_nid
== NUMA_NO_NODE
|| !p
->numa_faults
))
1881 /* Periodically retry migrating the task to the preferred node */
1882 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
1883 p
->numa_migrate_retry
= jiffies
+ interval
;
1885 /* Success if task is already running on preferred CPU */
1886 if (task_node(p
) == p
->numa_preferred_nid
)
1889 /* Otherwise, try migrate to a CPU on the preferred node */
1890 task_numa_migrate(p
);
1894 * Find out how many nodes on the workload is actively running on. Do this by
1895 * tracking the nodes from which NUMA hinting faults are triggered. This can
1896 * be different from the set of nodes where the workload's memory is currently
1899 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
1901 unsigned long faults
, max_faults
= 0;
1902 int nid
, active_nodes
= 0;
1904 for_each_online_node(nid
) {
1905 faults
= group_faults_cpu(numa_group
, nid
);
1906 if (faults
> max_faults
)
1907 max_faults
= faults
;
1910 for_each_online_node(nid
) {
1911 faults
= group_faults_cpu(numa_group
, nid
);
1912 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
1916 numa_group
->max_faults_cpu
= max_faults
;
1917 numa_group
->active_nodes
= active_nodes
;
1921 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1922 * increments. The more local the fault statistics are, the higher the scan
1923 * period will be for the next scan window. If local/(local+remote) ratio is
1924 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1925 * the scan period will decrease. Aim for 70% local accesses.
1927 #define NUMA_PERIOD_SLOTS 10
1928 #define NUMA_PERIOD_THRESHOLD 7
1931 * Increase the scan period (slow down scanning) if the majority of
1932 * our memory is already on our local node, or if the majority of
1933 * the page accesses are shared with other processes.
1934 * Otherwise, decrease the scan period.
1936 static void update_task_scan_period(struct task_struct
*p
,
1937 unsigned long shared
, unsigned long private)
1939 unsigned int period_slot
;
1940 int lr_ratio
, ps_ratio
;
1943 unsigned long remote
= p
->numa_faults_locality
[0];
1944 unsigned long local
= p
->numa_faults_locality
[1];
1947 * If there were no record hinting faults then either the task is
1948 * completely idle or all activity is areas that are not of interest
1949 * to automatic numa balancing. Related to that, if there were failed
1950 * migration then it implies we are migrating too quickly or the local
1951 * node is overloaded. In either case, scan slower
1953 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
1954 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
1955 p
->numa_scan_period
<< 1);
1957 p
->mm
->numa_next_scan
= jiffies
+
1958 msecs_to_jiffies(p
->numa_scan_period
);
1964 * Prepare to scale scan period relative to the current period.
1965 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1966 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1967 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1969 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
1970 lr_ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
1971 ps_ratio
= (private * NUMA_PERIOD_SLOTS
) / (private + shared
);
1973 if (ps_ratio
>= NUMA_PERIOD_THRESHOLD
) {
1975 * Most memory accesses are local. There is no need to
1976 * do fast NUMA scanning, since memory is already local.
1978 int slot
= ps_ratio
- NUMA_PERIOD_THRESHOLD
;
1981 diff
= slot
* period_slot
;
1982 } else if (lr_ratio
>= NUMA_PERIOD_THRESHOLD
) {
1984 * Most memory accesses are shared with other tasks.
1985 * There is no point in continuing fast NUMA scanning,
1986 * since other tasks may just move the memory elsewhere.
1988 int slot
= lr_ratio
- NUMA_PERIOD_THRESHOLD
;
1991 diff
= slot
* period_slot
;
1994 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1995 * yet they are not on the local NUMA node. Speed up
1996 * NUMA scanning to get the memory moved over.
1998 int ratio
= max(lr_ratio
, ps_ratio
);
1999 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
2002 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
2003 task_scan_min(p
), task_scan_max(p
));
2004 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2008 * Get the fraction of time the task has been running since the last
2009 * NUMA placement cycle. The scheduler keeps similar statistics, but
2010 * decays those on a 32ms period, which is orders of magnitude off
2011 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2012 * stats only if the task is so new there are no NUMA statistics yet.
2014 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
2016 u64 runtime
, delta
, now
;
2017 /* Use the start of this time slice to avoid calculations. */
2018 now
= p
->se
.exec_start
;
2019 runtime
= p
->se
.sum_exec_runtime
;
2021 if (p
->last_task_numa_placement
) {
2022 delta
= runtime
- p
->last_sum_exec_runtime
;
2023 *period
= now
- p
->last_task_numa_placement
;
2025 /* Avoid time going backwards, prevent potential divide error: */
2026 if (unlikely((s64
)*period
< 0))
2029 delta
= p
->se
.avg
.load_sum
;
2030 *period
= LOAD_AVG_MAX
;
2033 p
->last_sum_exec_runtime
= runtime
;
2034 p
->last_task_numa_placement
= now
;
2040 * Determine the preferred nid for a task in a numa_group. This needs to
2041 * be done in a way that produces consistent results with group_weight,
2042 * otherwise workloads might not converge.
2044 static int preferred_group_nid(struct task_struct
*p
, int nid
)
2049 /* Direct connections between all NUMA nodes. */
2050 if (sched_numa_topology_type
== NUMA_DIRECT
)
2054 * On a system with glueless mesh NUMA topology, group_weight
2055 * scores nodes according to the number of NUMA hinting faults on
2056 * both the node itself, and on nearby nodes.
2058 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
2059 unsigned long score
, max_score
= 0;
2060 int node
, max_node
= nid
;
2062 dist
= sched_max_numa_distance
;
2064 for_each_online_node(node
) {
2065 score
= group_weight(p
, node
, dist
);
2066 if (score
> max_score
) {
2075 * Finding the preferred nid in a system with NUMA backplane
2076 * interconnect topology is more involved. The goal is to locate
2077 * tasks from numa_groups near each other in the system, and
2078 * untangle workloads from different sides of the system. This requires
2079 * searching down the hierarchy of node groups, recursively searching
2080 * inside the highest scoring group of nodes. The nodemask tricks
2081 * keep the complexity of the search down.
2083 nodes
= node_online_map
;
2084 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
2085 unsigned long max_faults
= 0;
2086 nodemask_t max_group
= NODE_MASK_NONE
;
2089 /* Are there nodes at this distance from each other? */
2090 if (!find_numa_distance(dist
))
2093 for_each_node_mask(a
, nodes
) {
2094 unsigned long faults
= 0;
2095 nodemask_t this_group
;
2096 nodes_clear(this_group
);
2098 /* Sum group's NUMA faults; includes a==b case. */
2099 for_each_node_mask(b
, nodes
) {
2100 if (node_distance(a
, b
) < dist
) {
2101 faults
+= group_faults(p
, b
);
2102 node_set(b
, this_group
);
2103 node_clear(b
, nodes
);
2107 /* Remember the top group. */
2108 if (faults
> max_faults
) {
2109 max_faults
= faults
;
2110 max_group
= this_group
;
2112 * subtle: at the smallest distance there is
2113 * just one node left in each "group", the
2114 * winner is the preferred nid.
2119 /* Next round, evaluate the nodes within max_group. */
2127 static void task_numa_placement(struct task_struct
*p
)
2129 int seq
, nid
, max_nid
= NUMA_NO_NODE
;
2130 unsigned long max_faults
= 0;
2131 unsigned long fault_types
[2] = { 0, 0 };
2132 unsigned long total_faults
;
2133 u64 runtime
, period
;
2134 spinlock_t
*group_lock
= NULL
;
2135 struct numa_group
*ng
;
2138 * The p->mm->numa_scan_seq field gets updated without
2139 * exclusive access. Use READ_ONCE() here to ensure
2140 * that the field is read in a single access:
2142 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2143 if (p
->numa_scan_seq
== seq
)
2145 p
->numa_scan_seq
= seq
;
2146 p
->numa_scan_period_max
= task_scan_max(p
);
2148 total_faults
= p
->numa_faults_locality
[0] +
2149 p
->numa_faults_locality
[1];
2150 runtime
= numa_get_avg_runtime(p
, &period
);
2152 /* If the task is part of a group prevent parallel updates to group stats */
2153 ng
= deref_curr_numa_group(p
);
2155 group_lock
= &ng
->lock
;
2156 spin_lock_irq(group_lock
);
2159 /* Find the node with the highest number of faults */
2160 for_each_online_node(nid
) {
2161 /* Keep track of the offsets in numa_faults array */
2162 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2163 unsigned long faults
= 0, group_faults
= 0;
2166 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2167 long diff
, f_diff
, f_weight
;
2169 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2170 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2171 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2172 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2174 /* Decay existing window, copy faults since last scan */
2175 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2176 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2177 p
->numa_faults
[membuf_idx
] = 0;
2180 * Normalize the faults_from, so all tasks in a group
2181 * count according to CPU use, instead of by the raw
2182 * number of faults. Tasks with little runtime have
2183 * little over-all impact on throughput, and thus their
2184 * faults are less important.
2186 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2187 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2189 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2190 p
->numa_faults
[cpubuf_idx
] = 0;
2192 p
->numa_faults
[mem_idx
] += diff
;
2193 p
->numa_faults
[cpu_idx
] += f_diff
;
2194 faults
+= p
->numa_faults
[mem_idx
];
2195 p
->total_numa_faults
+= diff
;
2198 * safe because we can only change our own group
2200 * mem_idx represents the offset for a given
2201 * nid and priv in a specific region because it
2202 * is at the beginning of the numa_faults array.
2204 ng
->faults
[mem_idx
] += diff
;
2205 ng
->faults_cpu
[mem_idx
] += f_diff
;
2206 ng
->total_faults
+= diff
;
2207 group_faults
+= ng
->faults
[mem_idx
];
2212 if (faults
> max_faults
) {
2213 max_faults
= faults
;
2216 } else if (group_faults
> max_faults
) {
2217 max_faults
= group_faults
;
2223 numa_group_count_active_nodes(ng
);
2224 spin_unlock_irq(group_lock
);
2225 max_nid
= preferred_group_nid(p
, max_nid
);
2229 /* Set the new preferred node */
2230 if (max_nid
!= p
->numa_preferred_nid
)
2231 sched_setnuma(p
, max_nid
);
2234 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2237 static inline int get_numa_group(struct numa_group
*grp
)
2239 return refcount_inc_not_zero(&grp
->refcount
);
2242 static inline void put_numa_group(struct numa_group
*grp
)
2244 if (refcount_dec_and_test(&grp
->refcount
))
2245 kfree_rcu(grp
, rcu
);
2248 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2251 struct numa_group
*grp
, *my_grp
;
2252 struct task_struct
*tsk
;
2254 int cpu
= cpupid_to_cpu(cpupid
);
2257 if (unlikely(!deref_curr_numa_group(p
))) {
2258 unsigned int size
= sizeof(struct numa_group
) +
2259 4*nr_node_ids
*sizeof(unsigned long);
2261 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2265 refcount_set(&grp
->refcount
, 1);
2266 grp
->active_nodes
= 1;
2267 grp
->max_faults_cpu
= 0;
2268 spin_lock_init(&grp
->lock
);
2270 /* Second half of the array tracks nids where faults happen */
2271 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2274 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2275 grp
->faults
[i
] = p
->numa_faults
[i
];
2277 grp
->total_faults
= p
->total_numa_faults
;
2280 rcu_assign_pointer(p
->numa_group
, grp
);
2284 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2286 if (!cpupid_match_pid(tsk
, cpupid
))
2289 grp
= rcu_dereference(tsk
->numa_group
);
2293 my_grp
= deref_curr_numa_group(p
);
2298 * Only join the other group if its bigger; if we're the bigger group,
2299 * the other task will join us.
2301 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2305 * Tie-break on the grp address.
2307 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2310 /* Always join threads in the same process. */
2311 if (tsk
->mm
== current
->mm
)
2314 /* Simple filter to avoid false positives due to PID collisions */
2315 if (flags
& TNF_SHARED
)
2318 /* Update priv based on whether false sharing was detected */
2321 if (join
&& !get_numa_group(grp
))
2329 BUG_ON(irqs_disabled());
2330 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2332 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2333 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2334 grp
->faults
[i
] += p
->numa_faults
[i
];
2336 my_grp
->total_faults
-= p
->total_numa_faults
;
2337 grp
->total_faults
+= p
->total_numa_faults
;
2342 spin_unlock(&my_grp
->lock
);
2343 spin_unlock_irq(&grp
->lock
);
2345 rcu_assign_pointer(p
->numa_group
, grp
);
2347 put_numa_group(my_grp
);
2356 * Get rid of NUMA staticstics associated with a task (either current or dead).
2357 * If @final is set, the task is dead and has reached refcount zero, so we can
2358 * safely free all relevant data structures. Otherwise, there might be
2359 * concurrent reads from places like load balancing and procfs, and we should
2360 * reset the data back to default state without freeing ->numa_faults.
2362 void task_numa_free(struct task_struct
*p
, bool final
)
2364 /* safe: p either is current or is being freed by current */
2365 struct numa_group
*grp
= rcu_dereference_raw(p
->numa_group
);
2366 unsigned long *numa_faults
= p
->numa_faults
;
2367 unsigned long flags
;
2374 spin_lock_irqsave(&grp
->lock
, flags
);
2375 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2376 grp
->faults
[i
] -= p
->numa_faults
[i
];
2377 grp
->total_faults
-= p
->total_numa_faults
;
2380 spin_unlock_irqrestore(&grp
->lock
, flags
);
2381 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2382 put_numa_group(grp
);
2386 p
->numa_faults
= NULL
;
2389 p
->total_numa_faults
= 0;
2390 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2396 * Got a PROT_NONE fault for a page on @node.
2398 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2400 struct task_struct
*p
= current
;
2401 bool migrated
= flags
& TNF_MIGRATED
;
2402 int cpu_node
= task_node(current
);
2403 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2404 struct numa_group
*ng
;
2407 if (!static_branch_likely(&sched_numa_balancing
))
2410 /* for example, ksmd faulting in a user's mm */
2414 /* Allocate buffer to track faults on a per-node basis */
2415 if (unlikely(!p
->numa_faults
)) {
2416 int size
= sizeof(*p
->numa_faults
) *
2417 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2419 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2420 if (!p
->numa_faults
)
2423 p
->total_numa_faults
= 0;
2424 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2428 * First accesses are treated as private, otherwise consider accesses
2429 * to be private if the accessing pid has not changed
2431 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2434 priv
= cpupid_match_pid(p
, last_cpupid
);
2435 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2436 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2440 * If a workload spans multiple NUMA nodes, a shared fault that
2441 * occurs wholly within the set of nodes that the workload is
2442 * actively using should be counted as local. This allows the
2443 * scan rate to slow down when a workload has settled down.
2445 ng
= deref_curr_numa_group(p
);
2446 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2447 numa_is_active_node(cpu_node
, ng
) &&
2448 numa_is_active_node(mem_node
, ng
))
2452 * Retry to migrate task to preferred node periodically, in case it
2453 * previously failed, or the scheduler moved us.
2455 if (time_after(jiffies
, p
->numa_migrate_retry
)) {
2456 task_numa_placement(p
);
2457 numa_migrate_preferred(p
);
2461 p
->numa_pages_migrated
+= pages
;
2462 if (flags
& TNF_MIGRATE_FAIL
)
2463 p
->numa_faults_locality
[2] += pages
;
2465 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2466 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2467 p
->numa_faults_locality
[local
] += pages
;
2470 static void reset_ptenuma_scan(struct task_struct
*p
)
2473 * We only did a read acquisition of the mmap sem, so
2474 * p->mm->numa_scan_seq is written to without exclusive access
2475 * and the update is not guaranteed to be atomic. That's not
2476 * much of an issue though, since this is just used for
2477 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2478 * expensive, to avoid any form of compiler optimizations:
2480 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2481 p
->mm
->numa_scan_offset
= 0;
2485 * The expensive part of numa migration is done from task_work context.
2486 * Triggered from task_tick_numa().
2488 static void task_numa_work(struct callback_head
*work
)
2490 unsigned long migrate
, next_scan
, now
= jiffies
;
2491 struct task_struct
*p
= current
;
2492 struct mm_struct
*mm
= p
->mm
;
2493 u64 runtime
= p
->se
.sum_exec_runtime
;
2494 struct vm_area_struct
*vma
;
2495 unsigned long start
, end
;
2496 unsigned long nr_pte_updates
= 0;
2497 long pages
, virtpages
;
2499 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2503 * Who cares about NUMA placement when they're dying.
2505 * NOTE: make sure not to dereference p->mm before this check,
2506 * exit_task_work() happens _after_ exit_mm() so we could be called
2507 * without p->mm even though we still had it when we enqueued this
2510 if (p
->flags
& PF_EXITING
)
2513 if (!mm
->numa_next_scan
) {
2514 mm
->numa_next_scan
= now
+
2515 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2519 * Enforce maximal scan/migration frequency..
2521 migrate
= mm
->numa_next_scan
;
2522 if (time_before(now
, migrate
))
2525 if (p
->numa_scan_period
== 0) {
2526 p
->numa_scan_period_max
= task_scan_max(p
);
2527 p
->numa_scan_period
= task_scan_start(p
);
2530 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2531 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2535 * Delay this task enough that another task of this mm will likely win
2536 * the next time around.
2538 p
->node_stamp
+= 2 * TICK_NSEC
;
2540 start
= mm
->numa_scan_offset
;
2541 pages
= sysctl_numa_balancing_scan_size
;
2542 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2543 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2548 if (!down_read_trylock(&mm
->mmap_sem
))
2550 vma
= find_vma(mm
, start
);
2552 reset_ptenuma_scan(p
);
2556 for (; vma
; vma
= vma
->vm_next
) {
2557 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2558 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2563 * Shared library pages mapped by multiple processes are not
2564 * migrated as it is expected they are cache replicated. Avoid
2565 * hinting faults in read-only file-backed mappings or the vdso
2566 * as migrating the pages will be of marginal benefit.
2569 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2573 * Skip inaccessible VMAs to avoid any confusion between
2574 * PROT_NONE and NUMA hinting ptes
2576 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
2580 start
= max(start
, vma
->vm_start
);
2581 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2582 end
= min(end
, vma
->vm_end
);
2583 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2586 * Try to scan sysctl_numa_balancing_size worth of
2587 * hpages that have at least one present PTE that
2588 * is not already pte-numa. If the VMA contains
2589 * areas that are unused or already full of prot_numa
2590 * PTEs, scan up to virtpages, to skip through those
2594 pages
-= (end
- start
) >> PAGE_SHIFT
;
2595 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2598 if (pages
<= 0 || virtpages
<= 0)
2602 } while (end
!= vma
->vm_end
);
2607 * It is possible to reach the end of the VMA list but the last few
2608 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2609 * would find the !migratable VMA on the next scan but not reset the
2610 * scanner to the start so check it now.
2613 mm
->numa_scan_offset
= start
;
2615 reset_ptenuma_scan(p
);
2616 up_read(&mm
->mmap_sem
);
2619 * Make sure tasks use at least 32x as much time to run other code
2620 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2621 * Usually update_task_scan_period slows down scanning enough; on an
2622 * overloaded system we need to limit overhead on a per task basis.
2624 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2625 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2626 p
->node_stamp
+= 32 * diff
;
2630 void init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
)
2633 struct mm_struct
*mm
= p
->mm
;
2636 mm_users
= atomic_read(&mm
->mm_users
);
2637 if (mm_users
== 1) {
2638 mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2639 mm
->numa_scan_seq
= 0;
2643 p
->numa_scan_seq
= mm
? mm
->numa_scan_seq
: 0;
2644 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2645 /* Protect against double add, see task_tick_numa and task_numa_work */
2646 p
->numa_work
.next
= &p
->numa_work
;
2647 p
->numa_faults
= NULL
;
2648 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2649 p
->last_task_numa_placement
= 0;
2650 p
->last_sum_exec_runtime
= 0;
2652 init_task_work(&p
->numa_work
, task_numa_work
);
2654 /* New address space, reset the preferred nid */
2655 if (!(clone_flags
& CLONE_VM
)) {
2656 p
->numa_preferred_nid
= NUMA_NO_NODE
;
2661 * New thread, keep existing numa_preferred_nid which should be copied
2662 * already by arch_dup_task_struct but stagger when scans start.
2667 delay
= min_t(unsigned int, task_scan_max(current
),
2668 current
->numa_scan_period
* mm_users
* NSEC_PER_MSEC
);
2669 delay
+= 2 * TICK_NSEC
;
2670 p
->node_stamp
= delay
;
2675 * Drive the periodic memory faults..
2677 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2679 struct callback_head
*work
= &curr
->numa_work
;
2683 * We don't care about NUMA placement if we don't have memory.
2685 if (!curr
->mm
|| (curr
->flags
& PF_EXITING
) || work
->next
!= work
)
2689 * Using runtime rather than walltime has the dual advantage that
2690 * we (mostly) drive the selection from busy threads and that the
2691 * task needs to have done some actual work before we bother with
2694 now
= curr
->se
.sum_exec_runtime
;
2695 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2697 if (now
> curr
->node_stamp
+ period
) {
2698 if (!curr
->node_stamp
)
2699 curr
->numa_scan_period
= task_scan_start(curr
);
2700 curr
->node_stamp
+= period
;
2702 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
))
2703 task_work_add(curr
, work
, true);
2707 static void update_scan_period(struct task_struct
*p
, int new_cpu
)
2709 int src_nid
= cpu_to_node(task_cpu(p
));
2710 int dst_nid
= cpu_to_node(new_cpu
);
2712 if (!static_branch_likely(&sched_numa_balancing
))
2715 if (!p
->mm
|| !p
->numa_faults
|| (p
->flags
& PF_EXITING
))
2718 if (src_nid
== dst_nid
)
2722 * Allow resets if faults have been trapped before one scan
2723 * has completed. This is most likely due to a new task that
2724 * is pulled cross-node due to wakeups or load balancing.
2726 if (p
->numa_scan_seq
) {
2728 * Avoid scan adjustments if moving to the preferred
2729 * node or if the task was not previously running on
2730 * the preferred node.
2732 if (dst_nid
== p
->numa_preferred_nid
||
2733 (p
->numa_preferred_nid
!= NUMA_NO_NODE
&&
2734 src_nid
!= p
->numa_preferred_nid
))
2738 p
->numa_scan_period
= task_scan_start(p
);
2742 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2746 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2750 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2754 static inline void update_scan_period(struct task_struct
*p
, int new_cpu
)
2758 #endif /* CONFIG_NUMA_BALANCING */
2761 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2763 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2765 if (entity_is_task(se
)) {
2766 struct rq
*rq
= rq_of(cfs_rq
);
2768 account_numa_enqueue(rq
, task_of(se
));
2769 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2772 cfs_rq
->nr_running
++;
2776 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2778 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
2780 if (entity_is_task(se
)) {
2781 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
2782 list_del_init(&se
->group_node
);
2785 cfs_rq
->nr_running
--;
2789 * Signed add and clamp on underflow.
2791 * Explicitly do a load-store to ensure the intermediate value never hits
2792 * memory. This allows lockless observations without ever seeing the negative
2795 #define add_positive(_ptr, _val) do { \
2796 typeof(_ptr) ptr = (_ptr); \
2797 typeof(_val) val = (_val); \
2798 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2802 if (val < 0 && res > var) \
2805 WRITE_ONCE(*ptr, res); \
2809 * Unsigned subtract and clamp on underflow.
2811 * Explicitly do a load-store to ensure the intermediate value never hits
2812 * memory. This allows lockless observations without ever seeing the negative
2815 #define sub_positive(_ptr, _val) do { \
2816 typeof(_ptr) ptr = (_ptr); \
2817 typeof(*ptr) val = (_val); \
2818 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2822 WRITE_ONCE(*ptr, res); \
2826 * Remove and clamp on negative, from a local variable.
2828 * A variant of sub_positive(), which does not use explicit load-store
2829 * and is thus optimized for local variable updates.
2831 #define lsub_positive(_ptr, _val) do { \
2832 typeof(_ptr) ptr = (_ptr); \
2833 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2838 enqueue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2840 cfs_rq
->runnable_weight
+= se
->runnable_weight
;
2842 cfs_rq
->avg
.runnable_load_avg
+= se
->avg
.runnable_load_avg
;
2843 cfs_rq
->avg
.runnable_load_sum
+= se_runnable(se
) * se
->avg
.runnable_load_sum
;
2847 dequeue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2849 cfs_rq
->runnable_weight
-= se
->runnable_weight
;
2851 sub_positive(&cfs_rq
->avg
.runnable_load_avg
, se
->avg
.runnable_load_avg
);
2852 sub_positive(&cfs_rq
->avg
.runnable_load_sum
,
2853 se_runnable(se
) * se
->avg
.runnable_load_sum
);
2857 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2859 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
2860 cfs_rq
->avg
.load_sum
+= se_weight(se
) * se
->avg
.load_sum
;
2864 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2866 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
2867 sub_positive(&cfs_rq
->avg
.load_sum
, se_weight(se
) * se
->avg
.load_sum
);
2871 enqueue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2873 dequeue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2875 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2877 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2880 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
2881 unsigned long weight
, unsigned long runnable
)
2884 /* commit outstanding execution time */
2885 if (cfs_rq
->curr
== se
)
2886 update_curr(cfs_rq
);
2887 account_entity_dequeue(cfs_rq
, se
);
2888 dequeue_runnable_load_avg(cfs_rq
, se
);
2890 dequeue_load_avg(cfs_rq
, se
);
2892 se
->runnable_weight
= runnable
;
2893 update_load_set(&se
->load
, weight
);
2897 u32 divider
= LOAD_AVG_MAX
- 1024 + se
->avg
.period_contrib
;
2899 se
->avg
.load_avg
= div_u64(se_weight(se
) * se
->avg
.load_sum
, divider
);
2900 se
->avg
.runnable_load_avg
=
2901 div_u64(se_runnable(se
) * se
->avg
.runnable_load_sum
, divider
);
2905 enqueue_load_avg(cfs_rq
, se
);
2907 account_entity_enqueue(cfs_rq
, se
);
2908 enqueue_runnable_load_avg(cfs_rq
, se
);
2912 void reweight_task(struct task_struct
*p
, int prio
)
2914 struct sched_entity
*se
= &p
->se
;
2915 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2916 struct load_weight
*load
= &se
->load
;
2917 unsigned long weight
= scale_load(sched_prio_to_weight
[prio
]);
2919 reweight_entity(cfs_rq
, se
, weight
, weight
);
2920 load
->inv_weight
= sched_prio_to_wmult
[prio
];
2923 #ifdef CONFIG_FAIR_GROUP_SCHED
2926 * All this does is approximate the hierarchical proportion which includes that
2927 * global sum we all love to hate.
2929 * That is, the weight of a group entity, is the proportional share of the
2930 * group weight based on the group runqueue weights. That is:
2932 * tg->weight * grq->load.weight
2933 * ge->load.weight = ----------------------------- (1)
2934 * \Sum grq->load.weight
2936 * Now, because computing that sum is prohibitively expensive to compute (been
2937 * there, done that) we approximate it with this average stuff. The average
2938 * moves slower and therefore the approximation is cheaper and more stable.
2940 * So instead of the above, we substitute:
2942 * grq->load.weight -> grq->avg.load_avg (2)
2944 * which yields the following:
2946 * tg->weight * grq->avg.load_avg
2947 * ge->load.weight = ------------------------------ (3)
2950 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2952 * That is shares_avg, and it is right (given the approximation (2)).
2954 * The problem with it is that because the average is slow -- it was designed
2955 * to be exactly that of course -- this leads to transients in boundary
2956 * conditions. In specific, the case where the group was idle and we start the
2957 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2958 * yielding bad latency etc..
2960 * Now, in that special case (1) reduces to:
2962 * tg->weight * grq->load.weight
2963 * ge->load.weight = ----------------------------- = tg->weight (4)
2966 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2968 * So what we do is modify our approximation (3) to approach (4) in the (near)
2973 * tg->weight * grq->load.weight
2974 * --------------------------------------------------- (5)
2975 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2977 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2978 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2981 * tg->weight * grq->load.weight
2982 * ge->load.weight = ----------------------------- (6)
2987 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2988 * max(grq->load.weight, grq->avg.load_avg)
2990 * And that is shares_weight and is icky. In the (near) UP case it approaches
2991 * (4) while in the normal case it approaches (3). It consistently
2992 * overestimates the ge->load.weight and therefore:
2994 * \Sum ge->load.weight >= tg->weight
2998 static long calc_group_shares(struct cfs_rq
*cfs_rq
)
3000 long tg_weight
, tg_shares
, load
, shares
;
3001 struct task_group
*tg
= cfs_rq
->tg
;
3003 tg_shares
= READ_ONCE(tg
->shares
);
3005 load
= max(scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->avg
.load_avg
);
3007 tg_weight
= atomic_long_read(&tg
->load_avg
);
3009 /* Ensure tg_weight >= load */
3010 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
3013 shares
= (tg_shares
* load
);
3015 shares
/= tg_weight
;
3018 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3019 * of a group with small tg->shares value. It is a floor value which is
3020 * assigned as a minimum load.weight to the sched_entity representing
3021 * the group on a CPU.
3023 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3024 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3025 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3026 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3029 return clamp_t(long, shares
, MIN_SHARES
, tg_shares
);
3033 * This calculates the effective runnable weight for a group entity based on
3034 * the group entity weight calculated above.
3036 * Because of the above approximation (2), our group entity weight is
3037 * an load_avg based ratio (3). This means that it includes blocked load and
3038 * does not represent the runnable weight.
3040 * Approximate the group entity's runnable weight per ratio from the group
3043 * grq->avg.runnable_load_avg
3044 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3047 * However, analogous to above, since the avg numbers are slow, this leads to
3048 * transients in the from-idle case. Instead we use:
3050 * ge->runnable_weight = ge->load.weight *
3052 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3053 * ----------------------------------------------------- (8)
3054 * max(grq->avg.load_avg, grq->load.weight)
3056 * Where these max() serve both to use the 'instant' values to fix the slow
3057 * from-idle and avoid the /0 on to-idle, similar to (6).
3059 static long calc_group_runnable(struct cfs_rq
*cfs_rq
, long shares
)
3061 long runnable
, load_avg
;
3063 load_avg
= max(cfs_rq
->avg
.load_avg
,
3064 scale_load_down(cfs_rq
->load
.weight
));
3066 runnable
= max(cfs_rq
->avg
.runnable_load_avg
,
3067 scale_load_down(cfs_rq
->runnable_weight
));
3071 runnable
/= load_avg
;
3073 return clamp_t(long, runnable
, MIN_SHARES
, shares
);
3075 #endif /* CONFIG_SMP */
3077 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
3080 * Recomputes the group entity based on the current state of its group
3083 static void update_cfs_group(struct sched_entity
*se
)
3085 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3086 long shares
, runnable
;
3091 if (throttled_hierarchy(gcfs_rq
))
3095 runnable
= shares
= READ_ONCE(gcfs_rq
->tg
->shares
);
3097 if (likely(se
->load
.weight
== shares
))
3100 shares
= calc_group_shares(gcfs_rq
);
3101 runnable
= calc_group_runnable(gcfs_rq
, shares
);
3104 reweight_entity(cfs_rq_of(se
), se
, shares
, runnable
);
3107 #else /* CONFIG_FAIR_GROUP_SCHED */
3108 static inline void update_cfs_group(struct sched_entity
*se
)
3111 #endif /* CONFIG_FAIR_GROUP_SCHED */
3113 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
, int flags
)
3115 struct rq
*rq
= rq_of(cfs_rq
);
3117 if (&rq
->cfs
== cfs_rq
) {
3119 * There are a few boundary cases this might miss but it should
3120 * get called often enough that that should (hopefully) not be
3123 * It will not get called when we go idle, because the idle
3124 * thread is a different class (!fair), nor will the utilization
3125 * number include things like RT tasks.
3127 * As is, the util number is not freq-invariant (we'd have to
3128 * implement arch_scale_freq_capacity() for that).
3132 cpufreq_update_util(rq
, flags
);
3137 #ifdef CONFIG_FAIR_GROUP_SCHED
3139 * update_tg_load_avg - update the tg's load avg
3140 * @cfs_rq: the cfs_rq whose avg changed
3141 * @force: update regardless of how small the difference
3143 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3144 * However, because tg->load_avg is a global value there are performance
3147 * In order to avoid having to look at the other cfs_rq's, we use a
3148 * differential update where we store the last value we propagated. This in
3149 * turn allows skipping updates if the differential is 'small'.
3151 * Updating tg's load_avg is necessary before update_cfs_share().
3153 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
3155 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
3158 * No need to update load_avg for root_task_group as it is not used.
3160 if (cfs_rq
->tg
== &root_task_group
)
3163 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
3164 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
3165 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
3170 * Called within set_task_rq() right before setting a task's CPU. The
3171 * caller only guarantees p->pi_lock is held; no other assumptions,
3172 * including the state of rq->lock, should be made.
3174 void set_task_rq_fair(struct sched_entity
*se
,
3175 struct cfs_rq
*prev
, struct cfs_rq
*next
)
3177 u64 p_last_update_time
;
3178 u64 n_last_update_time
;
3180 if (!sched_feat(ATTACH_AGE_LOAD
))
3184 * We are supposed to update the task to "current" time, then its up to
3185 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3186 * getting what current time is, so simply throw away the out-of-date
3187 * time. This will result in the wakee task is less decayed, but giving
3188 * the wakee more load sounds not bad.
3190 if (!(se
->avg
.last_update_time
&& prev
))
3193 #ifndef CONFIG_64BIT
3195 u64 p_last_update_time_copy
;
3196 u64 n_last_update_time_copy
;
3199 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
3200 n_last_update_time_copy
= next
->load_last_update_time_copy
;
3204 p_last_update_time
= prev
->avg
.last_update_time
;
3205 n_last_update_time
= next
->avg
.last_update_time
;
3207 } while (p_last_update_time
!= p_last_update_time_copy
||
3208 n_last_update_time
!= n_last_update_time_copy
);
3211 p_last_update_time
= prev
->avg
.last_update_time
;
3212 n_last_update_time
= next
->avg
.last_update_time
;
3214 __update_load_avg_blocked_se(p_last_update_time
, se
);
3215 se
->avg
.last_update_time
= n_last_update_time
;
3220 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3221 * propagate its contribution. The key to this propagation is the invariant
3222 * that for each group:
3224 * ge->avg == grq->avg (1)
3226 * _IFF_ we look at the pure running and runnable sums. Because they
3227 * represent the very same entity, just at different points in the hierarchy.
3229 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3230 * sum over (but still wrong, because the group entity and group rq do not have
3231 * their PELT windows aligned).
3233 * However, update_tg_cfs_runnable() is more complex. So we have:
3235 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3237 * And since, like util, the runnable part should be directly transferable,
3238 * the following would _appear_ to be the straight forward approach:
3240 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3242 * And per (1) we have:
3244 * ge->avg.runnable_avg == grq->avg.runnable_avg
3248 * ge->load.weight * grq->avg.load_avg
3249 * ge->avg.load_avg = ----------------------------------- (4)
3252 * Except that is wrong!
3254 * Because while for entities historical weight is not important and we
3255 * really only care about our future and therefore can consider a pure
3256 * runnable sum, runqueues can NOT do this.
3258 * We specifically want runqueues to have a load_avg that includes
3259 * historical weights. Those represent the blocked load, the load we expect
3260 * to (shortly) return to us. This only works by keeping the weights as
3261 * integral part of the sum. We therefore cannot decompose as per (3).
3263 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3264 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3265 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3266 * runnable section of these tasks overlap (or not). If they were to perfectly
3267 * align the rq as a whole would be runnable 2/3 of the time. If however we
3268 * always have at least 1 runnable task, the rq as a whole is always runnable.
3270 * So we'll have to approximate.. :/
3272 * Given the constraint:
3274 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3276 * We can construct a rule that adds runnable to a rq by assuming minimal
3279 * On removal, we'll assume each task is equally runnable; which yields:
3281 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3283 * XXX: only do this for the part of runnable > running ?
3288 update_tg_cfs_util(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3290 long delta
= gcfs_rq
->avg
.util_avg
- se
->avg
.util_avg
;
3292 /* Nothing to update */
3297 * The relation between sum and avg is:
3299 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3301 * however, the PELT windows are not aligned between grq and gse.
3304 /* Set new sched_entity's utilization */
3305 se
->avg
.util_avg
= gcfs_rq
->avg
.util_avg
;
3306 se
->avg
.util_sum
= se
->avg
.util_avg
* LOAD_AVG_MAX
;
3308 /* Update parent cfs_rq utilization */
3309 add_positive(&cfs_rq
->avg
.util_avg
, delta
);
3310 cfs_rq
->avg
.util_sum
= cfs_rq
->avg
.util_avg
* LOAD_AVG_MAX
;
3314 update_tg_cfs_runnable(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3316 long delta_avg
, running_sum
, runnable_sum
= gcfs_rq
->prop_runnable_sum
;
3317 unsigned long runnable_load_avg
, load_avg
;
3318 u64 runnable_load_sum
, load_sum
= 0;
3324 gcfs_rq
->prop_runnable_sum
= 0;
3326 if (runnable_sum
>= 0) {
3328 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3329 * the CPU is saturated running == runnable.
3331 runnable_sum
+= se
->avg
.load_sum
;
3332 runnable_sum
= min(runnable_sum
, (long)LOAD_AVG_MAX
);
3335 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3336 * assuming all tasks are equally runnable.
3338 if (scale_load_down(gcfs_rq
->load
.weight
)) {
3339 load_sum
= div_s64(gcfs_rq
->avg
.load_sum
,
3340 scale_load_down(gcfs_rq
->load
.weight
));
3343 /* But make sure to not inflate se's runnable */
3344 runnable_sum
= min(se
->avg
.load_sum
, load_sum
);
3348 * runnable_sum can't be lower than running_sum
3349 * Rescale running sum to be in the same range as runnable sum
3350 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3351 * runnable_sum is in [0 : LOAD_AVG_MAX]
3353 running_sum
= se
->avg
.util_sum
>> SCHED_CAPACITY_SHIFT
;
3354 runnable_sum
= max(runnable_sum
, running_sum
);
3356 load_sum
= (s64
)se_weight(se
) * runnable_sum
;
3357 load_avg
= div_s64(load_sum
, LOAD_AVG_MAX
);
3359 delta_sum
= load_sum
- (s64
)se_weight(se
) * se
->avg
.load_sum
;
3360 delta_avg
= load_avg
- se
->avg
.load_avg
;
3362 se
->avg
.load_sum
= runnable_sum
;
3363 se
->avg
.load_avg
= load_avg
;
3364 add_positive(&cfs_rq
->avg
.load_avg
, delta_avg
);
3365 add_positive(&cfs_rq
->avg
.load_sum
, delta_sum
);
3367 runnable_load_sum
= (s64
)se_runnable(se
) * runnable_sum
;
3368 runnable_load_avg
= div_s64(runnable_load_sum
, LOAD_AVG_MAX
);
3371 delta_sum
= runnable_load_sum
-
3372 se_weight(se
) * se
->avg
.runnable_load_sum
;
3373 delta_avg
= runnable_load_avg
- se
->avg
.runnable_load_avg
;
3374 add_positive(&cfs_rq
->avg
.runnable_load_avg
, delta_avg
);
3375 add_positive(&cfs_rq
->avg
.runnable_load_sum
, delta_sum
);
3378 se
->avg
.runnable_load_sum
= runnable_sum
;
3379 se
->avg
.runnable_load_avg
= runnable_load_avg
;
3382 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
)
3384 cfs_rq
->propagate
= 1;
3385 cfs_rq
->prop_runnable_sum
+= runnable_sum
;
3388 /* Update task and its cfs_rq load average */
3389 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3391 struct cfs_rq
*cfs_rq
, *gcfs_rq
;
3393 if (entity_is_task(se
))
3396 gcfs_rq
= group_cfs_rq(se
);
3397 if (!gcfs_rq
->propagate
)
3400 gcfs_rq
->propagate
= 0;
3402 cfs_rq
= cfs_rq_of(se
);
3404 add_tg_cfs_propagate(cfs_rq
, gcfs_rq
->prop_runnable_sum
);
3406 update_tg_cfs_util(cfs_rq
, se
, gcfs_rq
);
3407 update_tg_cfs_runnable(cfs_rq
, se
, gcfs_rq
);
3409 trace_pelt_cfs_tp(cfs_rq
);
3410 trace_pelt_se_tp(se
);
3416 * Check if we need to update the load and the utilization of a blocked
3419 static inline bool skip_blocked_update(struct sched_entity
*se
)
3421 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3424 * If sched_entity still have not zero load or utilization, we have to
3427 if (se
->avg
.load_avg
|| se
->avg
.util_avg
)
3431 * If there is a pending propagation, we have to update the load and
3432 * the utilization of the sched_entity:
3434 if (gcfs_rq
->propagate
)
3438 * Otherwise, the load and the utilization of the sched_entity is
3439 * already zero and there is no pending propagation, so it will be a
3440 * waste of time to try to decay it:
3445 #else /* CONFIG_FAIR_GROUP_SCHED */
3447 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
3449 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3454 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
) {}
3456 #endif /* CONFIG_FAIR_GROUP_SCHED */
3459 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3460 * @now: current time, as per cfs_rq_clock_pelt()
3461 * @cfs_rq: cfs_rq to update
3463 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3464 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3465 * post_init_entity_util_avg().
3467 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3469 * Returns true if the load decayed or we removed load.
3471 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3472 * call update_tg_load_avg() when this function returns true.
3475 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
3477 unsigned long removed_load
= 0, removed_util
= 0, removed_runnable_sum
= 0;
3478 struct sched_avg
*sa
= &cfs_rq
->avg
;
3481 if (cfs_rq
->removed
.nr
) {
3483 u32 divider
= LOAD_AVG_MAX
- 1024 + sa
->period_contrib
;
3485 raw_spin_lock(&cfs_rq
->removed
.lock
);
3486 swap(cfs_rq
->removed
.util_avg
, removed_util
);
3487 swap(cfs_rq
->removed
.load_avg
, removed_load
);
3488 swap(cfs_rq
->removed
.runnable_sum
, removed_runnable_sum
);
3489 cfs_rq
->removed
.nr
= 0;
3490 raw_spin_unlock(&cfs_rq
->removed
.lock
);
3493 sub_positive(&sa
->load_avg
, r
);
3494 sub_positive(&sa
->load_sum
, r
* divider
);
3497 sub_positive(&sa
->util_avg
, r
);
3498 sub_positive(&sa
->util_sum
, r
* divider
);
3500 add_tg_cfs_propagate(cfs_rq
, -(long)removed_runnable_sum
);
3505 decayed
|= __update_load_avg_cfs_rq(now
, cfs_rq
);
3507 #ifndef CONFIG_64BIT
3509 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3516 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3517 * @cfs_rq: cfs_rq to attach to
3518 * @se: sched_entity to attach
3519 * @flags: migration hints
3521 * Must call update_cfs_rq_load_avg() before this, since we rely on
3522 * cfs_rq->avg.last_update_time being current.
3524 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3526 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3529 * When we attach the @se to the @cfs_rq, we must align the decay
3530 * window because without that, really weird and wonderful things can
3535 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3536 se
->avg
.period_contrib
= cfs_rq
->avg
.period_contrib
;
3539 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3540 * period_contrib. This isn't strictly correct, but since we're
3541 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3544 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3546 se
->avg
.load_sum
= divider
;
3547 if (se_weight(se
)) {
3549 div_u64(se
->avg
.load_avg
* se
->avg
.load_sum
, se_weight(se
));
3552 se
->avg
.runnable_load_sum
= se
->avg
.load_sum
;
3554 enqueue_load_avg(cfs_rq
, se
);
3555 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3556 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3558 add_tg_cfs_propagate(cfs_rq
, se
->avg
.load_sum
);
3560 cfs_rq_util_change(cfs_rq
, 0);
3562 trace_pelt_cfs_tp(cfs_rq
);
3566 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3567 * @cfs_rq: cfs_rq to detach from
3568 * @se: sched_entity to detach
3570 * Must call update_cfs_rq_load_avg() before this, since we rely on
3571 * cfs_rq->avg.last_update_time being current.
3573 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3575 dequeue_load_avg(cfs_rq
, se
);
3576 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3577 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3579 add_tg_cfs_propagate(cfs_rq
, -se
->avg
.load_sum
);
3581 cfs_rq_util_change(cfs_rq
, 0);
3583 trace_pelt_cfs_tp(cfs_rq
);
3587 * Optional action to be done while updating the load average
3589 #define UPDATE_TG 0x1
3590 #define SKIP_AGE_LOAD 0x2
3591 #define DO_ATTACH 0x4
3593 /* Update task and its cfs_rq load average */
3594 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3596 u64 now
= cfs_rq_clock_pelt(cfs_rq
);
3600 * Track task load average for carrying it to new CPU after migrated, and
3601 * track group sched_entity load average for task_h_load calc in migration
3603 if (se
->avg
.last_update_time
&& !(flags
& SKIP_AGE_LOAD
))
3604 __update_load_avg_se(now
, cfs_rq
, se
);
3606 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
);
3607 decayed
|= propagate_entity_load_avg(se
);
3609 if (!se
->avg
.last_update_time
&& (flags
& DO_ATTACH
)) {
3612 * DO_ATTACH means we're here from enqueue_entity().
3613 * !last_update_time means we've passed through
3614 * migrate_task_rq_fair() indicating we migrated.
3616 * IOW we're enqueueing a task on a new CPU.
3618 attach_entity_load_avg(cfs_rq
, se
);
3619 update_tg_load_avg(cfs_rq
, 0);
3621 } else if (decayed
) {
3622 cfs_rq_util_change(cfs_rq
, 0);
3624 if (flags
& UPDATE_TG
)
3625 update_tg_load_avg(cfs_rq
, 0);
3629 #ifndef CONFIG_64BIT
3630 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3632 u64 last_update_time_copy
;
3633 u64 last_update_time
;
3636 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3638 last_update_time
= cfs_rq
->avg
.last_update_time
;
3639 } while (last_update_time
!= last_update_time_copy
);
3641 return last_update_time
;
3644 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3646 return cfs_rq
->avg
.last_update_time
;
3651 * Synchronize entity load avg of dequeued entity without locking
3654 static void sync_entity_load_avg(struct sched_entity
*se
)
3656 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3657 u64 last_update_time
;
3659 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3660 __update_load_avg_blocked_se(last_update_time
, se
);
3664 * Task first catches up with cfs_rq, and then subtract
3665 * itself from the cfs_rq (task must be off the queue now).
3667 static void remove_entity_load_avg(struct sched_entity
*se
)
3669 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3670 unsigned long flags
;
3673 * tasks cannot exit without having gone through wake_up_new_task() ->
3674 * post_init_entity_util_avg() which will have added things to the
3675 * cfs_rq, so we can remove unconditionally.
3678 sync_entity_load_avg(se
);
3680 raw_spin_lock_irqsave(&cfs_rq
->removed
.lock
, flags
);
3681 ++cfs_rq
->removed
.nr
;
3682 cfs_rq
->removed
.util_avg
+= se
->avg
.util_avg
;
3683 cfs_rq
->removed
.load_avg
+= se
->avg
.load_avg
;
3684 cfs_rq
->removed
.runnable_sum
+= se
->avg
.load_sum
; /* == runnable_sum */
3685 raw_spin_unlock_irqrestore(&cfs_rq
->removed
.lock
, flags
);
3688 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq
*cfs_rq
)
3690 return cfs_rq
->avg
.runnable_load_avg
;
3693 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3695 return cfs_rq
->avg
.load_avg
;
3698 static inline unsigned long task_util(struct task_struct
*p
)
3700 return READ_ONCE(p
->se
.avg
.util_avg
);
3703 static inline unsigned long _task_util_est(struct task_struct
*p
)
3705 struct util_est ue
= READ_ONCE(p
->se
.avg
.util_est
);
3707 return (max(ue
.ewma
, ue
.enqueued
) | UTIL_AVG_UNCHANGED
);
3710 static inline unsigned long task_util_est(struct task_struct
*p
)
3712 return max(task_util(p
), _task_util_est(p
));
3715 #ifdef CONFIG_UCLAMP_TASK
3716 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3718 return clamp(task_util_est(p
),
3719 uclamp_eff_value(p
, UCLAMP_MIN
),
3720 uclamp_eff_value(p
, UCLAMP_MAX
));
3723 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3725 return task_util_est(p
);
3729 static inline void util_est_enqueue(struct cfs_rq
*cfs_rq
,
3730 struct task_struct
*p
)
3732 unsigned int enqueued
;
3734 if (!sched_feat(UTIL_EST
))
3737 /* Update root cfs_rq's estimated utilization */
3738 enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3739 enqueued
+= _task_util_est(p
);
3740 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, enqueued
);
3744 * Check if a (signed) value is within a specified (unsigned) margin,
3745 * based on the observation that:
3747 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3749 * NOTE: this only works when value + maring < INT_MAX.
3751 static inline bool within_margin(int value
, int margin
)
3753 return ((unsigned int)(value
+ margin
- 1) < (2 * margin
- 1));
3757 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
, bool task_sleep
)
3759 long last_ewma_diff
;
3763 if (!sched_feat(UTIL_EST
))
3766 /* Update root cfs_rq's estimated utilization */
3767 ue
.enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3768 ue
.enqueued
-= min_t(unsigned int, ue
.enqueued
, _task_util_est(p
));
3769 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, ue
.enqueued
);
3772 * Skip update of task's estimated utilization when the task has not
3773 * yet completed an activation, e.g. being migrated.
3779 * If the PELT values haven't changed since enqueue time,
3780 * skip the util_est update.
3782 ue
= p
->se
.avg
.util_est
;
3783 if (ue
.enqueued
& UTIL_AVG_UNCHANGED
)
3787 * Reset EWMA on utilization increases, the moving average is used only
3788 * to smooth utilization decreases.
3790 ue
.enqueued
= (task_util(p
) | UTIL_AVG_UNCHANGED
);
3791 if (sched_feat(UTIL_EST_FASTUP
)) {
3792 if (ue
.ewma
< ue
.enqueued
) {
3793 ue
.ewma
= ue
.enqueued
;
3799 * Skip update of task's estimated utilization when its EWMA is
3800 * already ~1% close to its last activation value.
3802 last_ewma_diff
= ue
.enqueued
- ue
.ewma
;
3803 if (within_margin(last_ewma_diff
, (SCHED_CAPACITY_SCALE
/ 100)))
3807 * To avoid overestimation of actual task utilization, skip updates if
3808 * we cannot grant there is idle time in this CPU.
3810 cpu
= cpu_of(rq_of(cfs_rq
));
3811 if (task_util(p
) > capacity_orig_of(cpu
))
3815 * Update Task's estimated utilization
3817 * When *p completes an activation we can consolidate another sample
3818 * of the task size. This is done by storing the current PELT value
3819 * as ue.enqueued and by using this value to update the Exponential
3820 * Weighted Moving Average (EWMA):
3822 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3823 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3824 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3825 * = w * ( last_ewma_diff ) + ewma(t-1)
3826 * = w * (last_ewma_diff + ewma(t-1) / w)
3828 * Where 'w' is the weight of new samples, which is configured to be
3829 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3831 ue
.ewma
<<= UTIL_EST_WEIGHT_SHIFT
;
3832 ue
.ewma
+= last_ewma_diff
;
3833 ue
.ewma
>>= UTIL_EST_WEIGHT_SHIFT
;
3835 WRITE_ONCE(p
->se
.avg
.util_est
, ue
);
3838 static inline int task_fits_capacity(struct task_struct
*p
, long capacity
)
3840 return fits_capacity(uclamp_task_util(p
), capacity
);
3843 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
)
3845 if (!static_branch_unlikely(&sched_asym_cpucapacity
))
3849 rq
->misfit_task_load
= 0;
3853 if (task_fits_capacity(p
, capacity_of(cpu_of(rq
)))) {
3854 rq
->misfit_task_load
= 0;
3858 rq
->misfit_task_load
= task_h_load(p
);
3861 #else /* CONFIG_SMP */
3863 #define UPDATE_TG 0x0
3864 #define SKIP_AGE_LOAD 0x0
3865 #define DO_ATTACH 0x0
3867 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int not_used1
)
3869 cfs_rq_util_change(cfs_rq
, 0);
3872 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
3875 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3877 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3879 static inline int idle_balance(struct rq
*rq
, struct rq_flags
*rf
)
3885 util_est_enqueue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
) {}
3888 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
,
3890 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
) {}
3892 #endif /* CONFIG_SMP */
3894 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3896 #ifdef CONFIG_SCHED_DEBUG
3897 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
3902 if (d
> 3*sysctl_sched_latency
)
3903 schedstat_inc(cfs_rq
->nr_spread_over
);
3908 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
3910 u64 vruntime
= cfs_rq
->min_vruntime
;
3913 * The 'current' period is already promised to the current tasks,
3914 * however the extra weight of the new task will slow them down a
3915 * little, place the new task so that it fits in the slot that
3916 * stays open at the end.
3918 if (initial
&& sched_feat(START_DEBIT
))
3919 vruntime
+= sched_vslice(cfs_rq
, se
);
3921 /* sleeps up to a single latency don't count. */
3923 unsigned long thresh
= sysctl_sched_latency
;
3926 * Halve their sleep time's effect, to allow
3927 * for a gentler effect of sleepers:
3929 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
3935 /* ensure we never gain time by being placed backwards. */
3936 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
3939 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
3941 static inline void check_schedstat_required(void)
3943 #ifdef CONFIG_SCHEDSTATS
3944 if (schedstat_enabled())
3947 /* Force schedstat enabled if a dependent tracepoint is active */
3948 if (trace_sched_stat_wait_enabled() ||
3949 trace_sched_stat_sleep_enabled() ||
3950 trace_sched_stat_iowait_enabled() ||
3951 trace_sched_stat_blocked_enabled() ||
3952 trace_sched_stat_runtime_enabled()) {
3953 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3954 "stat_blocked and stat_runtime require the "
3955 "kernel parameter schedstats=enable or "
3956 "kernel.sched_schedstats=1\n");
3967 * update_min_vruntime()
3968 * vruntime -= min_vruntime
3972 * update_min_vruntime()
3973 * vruntime += min_vruntime
3975 * this way the vruntime transition between RQs is done when both
3976 * min_vruntime are up-to-date.
3980 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3981 * vruntime -= min_vruntime
3985 * update_min_vruntime()
3986 * vruntime += min_vruntime
3988 * this way we don't have the most up-to-date min_vruntime on the originating
3989 * CPU and an up-to-date min_vruntime on the destination CPU.
3993 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3995 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
3996 bool curr
= cfs_rq
->curr
== se
;
3999 * If we're the current task, we must renormalise before calling
4003 se
->vruntime
+= cfs_rq
->min_vruntime
;
4005 update_curr(cfs_rq
);
4008 * Otherwise, renormalise after, such that we're placed at the current
4009 * moment in time, instead of some random moment in the past. Being
4010 * placed in the past could significantly boost this task to the
4011 * fairness detriment of existing tasks.
4013 if (renorm
&& !curr
)
4014 se
->vruntime
+= cfs_rq
->min_vruntime
;
4017 * When enqueuing a sched_entity, we must:
4018 * - Update loads to have both entity and cfs_rq synced with now.
4019 * - Add its load to cfs_rq->runnable_avg
4020 * - For group_entity, update its weight to reflect the new share of
4022 * - Add its new weight to cfs_rq->load.weight
4024 update_load_avg(cfs_rq
, se
, UPDATE_TG
| DO_ATTACH
);
4025 update_cfs_group(se
);
4026 enqueue_runnable_load_avg(cfs_rq
, se
);
4027 account_entity_enqueue(cfs_rq
, se
);
4029 if (flags
& ENQUEUE_WAKEUP
)
4030 place_entity(cfs_rq
, se
, 0);
4032 check_schedstat_required();
4033 update_stats_enqueue(cfs_rq
, se
, flags
);
4034 check_spread(cfs_rq
, se
);
4036 __enqueue_entity(cfs_rq
, se
);
4039 if (cfs_rq
->nr_running
== 1) {
4040 list_add_leaf_cfs_rq(cfs_rq
);
4041 check_enqueue_throttle(cfs_rq
);
4045 static void __clear_buddies_last(struct sched_entity
*se
)
4047 for_each_sched_entity(se
) {
4048 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4049 if (cfs_rq
->last
!= se
)
4052 cfs_rq
->last
= NULL
;
4056 static void __clear_buddies_next(struct sched_entity
*se
)
4058 for_each_sched_entity(se
) {
4059 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4060 if (cfs_rq
->next
!= se
)
4063 cfs_rq
->next
= NULL
;
4067 static void __clear_buddies_skip(struct sched_entity
*se
)
4069 for_each_sched_entity(se
) {
4070 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4071 if (cfs_rq
->skip
!= se
)
4074 cfs_rq
->skip
= NULL
;
4078 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4080 if (cfs_rq
->last
== se
)
4081 __clear_buddies_last(se
);
4083 if (cfs_rq
->next
== se
)
4084 __clear_buddies_next(se
);
4086 if (cfs_rq
->skip
== se
)
4087 __clear_buddies_skip(se
);
4090 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4093 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4096 * Update run-time statistics of the 'current'.
4098 update_curr(cfs_rq
);
4101 * When dequeuing a sched_entity, we must:
4102 * - Update loads to have both entity and cfs_rq synced with now.
4103 * - Subtract its load from the cfs_rq->runnable_avg.
4104 * - Subtract its previous weight from cfs_rq->load.weight.
4105 * - For group entity, update its weight to reflect the new share
4106 * of its group cfs_rq.
4108 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4109 dequeue_runnable_load_avg(cfs_rq
, se
);
4111 update_stats_dequeue(cfs_rq
, se
, flags
);
4113 clear_buddies(cfs_rq
, se
);
4115 if (se
!= cfs_rq
->curr
)
4116 __dequeue_entity(cfs_rq
, se
);
4118 account_entity_dequeue(cfs_rq
, se
);
4121 * Normalize after update_curr(); which will also have moved
4122 * min_vruntime if @se is the one holding it back. But before doing
4123 * update_min_vruntime() again, which will discount @se's position and
4124 * can move min_vruntime forward still more.
4126 if (!(flags
& DEQUEUE_SLEEP
))
4127 se
->vruntime
-= cfs_rq
->min_vruntime
;
4129 /* return excess runtime on last dequeue */
4130 return_cfs_rq_runtime(cfs_rq
);
4132 update_cfs_group(se
);
4135 * Now advance min_vruntime if @se was the entity holding it back,
4136 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4137 * put back on, and if we advance min_vruntime, we'll be placed back
4138 * further than we started -- ie. we'll be penalized.
4140 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) != DEQUEUE_SAVE
)
4141 update_min_vruntime(cfs_rq
);
4145 * Preempt the current task with a newly woken task if needed:
4148 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4150 unsigned long ideal_runtime
, delta_exec
;
4151 struct sched_entity
*se
;
4154 ideal_runtime
= sched_slice(cfs_rq
, curr
);
4155 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
4156 if (delta_exec
> ideal_runtime
) {
4157 resched_curr(rq_of(cfs_rq
));
4159 * The current task ran long enough, ensure it doesn't get
4160 * re-elected due to buddy favours.
4162 clear_buddies(cfs_rq
, curr
);
4167 * Ensure that a task that missed wakeup preemption by a
4168 * narrow margin doesn't have to wait for a full slice.
4169 * This also mitigates buddy induced latencies under load.
4171 if (delta_exec
< sysctl_sched_min_granularity
)
4174 se
= __pick_first_entity(cfs_rq
);
4175 delta
= curr
->vruntime
- se
->vruntime
;
4180 if (delta
> ideal_runtime
)
4181 resched_curr(rq_of(cfs_rq
));
4185 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4187 /* 'current' is not kept within the tree. */
4190 * Any task has to be enqueued before it get to execute on
4191 * a CPU. So account for the time it spent waiting on the
4194 update_stats_wait_end(cfs_rq
, se
);
4195 __dequeue_entity(cfs_rq
, se
);
4196 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4199 update_stats_curr_start(cfs_rq
, se
);
4203 * Track our maximum slice length, if the CPU's load is at
4204 * least twice that of our own weight (i.e. dont track it
4205 * when there are only lesser-weight tasks around):
4207 if (schedstat_enabled() &&
4208 rq_of(cfs_rq
)->cfs
.load
.weight
>= 2*se
->load
.weight
) {
4209 schedstat_set(se
->statistics
.slice_max
,
4210 max((u64
)schedstat_val(se
->statistics
.slice_max
),
4211 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
4214 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
4218 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
4221 * Pick the next process, keeping these things in mind, in this order:
4222 * 1) keep things fair between processes/task groups
4223 * 2) pick the "next" process, since someone really wants that to run
4224 * 3) pick the "last" process, for cache locality
4225 * 4) do not run the "skip" process, if something else is available
4227 static struct sched_entity
*
4228 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4230 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
4231 struct sched_entity
*se
;
4234 * If curr is set we have to see if its left of the leftmost entity
4235 * still in the tree, provided there was anything in the tree at all.
4237 if (!left
|| (curr
&& entity_before(curr
, left
)))
4240 se
= left
; /* ideally we run the leftmost entity */
4243 * Avoid running the skip buddy, if running something else can
4244 * be done without getting too unfair.
4246 if (cfs_rq
->skip
== se
) {
4247 struct sched_entity
*second
;
4250 second
= __pick_first_entity(cfs_rq
);
4252 second
= __pick_next_entity(se
);
4253 if (!second
|| (curr
&& entity_before(curr
, second
)))
4257 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
4262 * Prefer last buddy, try to return the CPU to a preempted task.
4264 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
4268 * Someone really wants this to run. If it's not unfair, run it.
4270 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
4273 clear_buddies(cfs_rq
, se
);
4278 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4280 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
4283 * If still on the runqueue then deactivate_task()
4284 * was not called and update_curr() has to be done:
4287 update_curr(cfs_rq
);
4289 /* throttle cfs_rqs exceeding runtime */
4290 check_cfs_rq_runtime(cfs_rq
);
4292 check_spread(cfs_rq
, prev
);
4295 update_stats_wait_start(cfs_rq
, prev
);
4296 /* Put 'current' back into the tree. */
4297 __enqueue_entity(cfs_rq
, prev
);
4298 /* in !on_rq case, update occurred at dequeue */
4299 update_load_avg(cfs_rq
, prev
, 0);
4301 cfs_rq
->curr
= NULL
;
4305 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
4308 * Update run-time statistics of the 'current'.
4310 update_curr(cfs_rq
);
4313 * Ensure that runnable average is periodically updated.
4315 update_load_avg(cfs_rq
, curr
, UPDATE_TG
);
4316 update_cfs_group(curr
);
4318 #ifdef CONFIG_SCHED_HRTICK
4320 * queued ticks are scheduled to match the slice, so don't bother
4321 * validating it and just reschedule.
4324 resched_curr(rq_of(cfs_rq
));
4328 * don't let the period tick interfere with the hrtick preemption
4330 if (!sched_feat(DOUBLE_TICK
) &&
4331 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
4335 if (cfs_rq
->nr_running
> 1)
4336 check_preempt_tick(cfs_rq
, curr
);
4340 /**************************************************
4341 * CFS bandwidth control machinery
4344 #ifdef CONFIG_CFS_BANDWIDTH
4346 #ifdef CONFIG_JUMP_LABEL
4347 static struct static_key __cfs_bandwidth_used
;
4349 static inline bool cfs_bandwidth_used(void)
4351 return static_key_false(&__cfs_bandwidth_used
);
4354 void cfs_bandwidth_usage_inc(void)
4356 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used
);
4359 void cfs_bandwidth_usage_dec(void)
4361 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used
);
4363 #else /* CONFIG_JUMP_LABEL */
4364 static bool cfs_bandwidth_used(void)
4369 void cfs_bandwidth_usage_inc(void) {}
4370 void cfs_bandwidth_usage_dec(void) {}
4371 #endif /* CONFIG_JUMP_LABEL */
4374 * default period for cfs group bandwidth.
4375 * default: 0.1s, units: nanoseconds
4377 static inline u64
default_cfs_period(void)
4379 return 100000000ULL;
4382 static inline u64
sched_cfs_bandwidth_slice(void)
4384 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
4388 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4389 * directly instead of rq->clock to avoid adding additional synchronization
4392 * requires cfs_b->lock
4394 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
4396 if (cfs_b
->quota
!= RUNTIME_INF
)
4397 cfs_b
->runtime
= cfs_b
->quota
;
4400 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4402 return &tg
->cfs_bandwidth
;
4405 /* returns 0 on failure to allocate runtime */
4406 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4408 struct task_group
*tg
= cfs_rq
->tg
;
4409 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
4410 u64 amount
= 0, min_amount
;
4412 /* note: this is a positive sum as runtime_remaining <= 0 */
4413 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
4415 raw_spin_lock(&cfs_b
->lock
);
4416 if (cfs_b
->quota
== RUNTIME_INF
)
4417 amount
= min_amount
;
4419 start_cfs_bandwidth(cfs_b
);
4421 if (cfs_b
->runtime
> 0) {
4422 amount
= min(cfs_b
->runtime
, min_amount
);
4423 cfs_b
->runtime
-= amount
;
4427 raw_spin_unlock(&cfs_b
->lock
);
4429 cfs_rq
->runtime_remaining
+= amount
;
4431 return cfs_rq
->runtime_remaining
> 0;
4434 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4436 /* dock delta_exec before expiring quota (as it could span periods) */
4437 cfs_rq
->runtime_remaining
-= delta_exec
;
4439 if (likely(cfs_rq
->runtime_remaining
> 0))
4442 if (cfs_rq
->throttled
)
4445 * if we're unable to extend our runtime we resched so that the active
4446 * hierarchy can be throttled
4448 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
4449 resched_curr(rq_of(cfs_rq
));
4452 static __always_inline
4453 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4455 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
4458 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
4461 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4463 return cfs_bandwidth_used() && cfs_rq
->throttled
;
4466 /* check whether cfs_rq, or any parent, is throttled */
4467 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4469 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
4473 * Ensure that neither of the group entities corresponding to src_cpu or
4474 * dest_cpu are members of a throttled hierarchy when performing group
4475 * load-balance operations.
4477 static inline int throttled_lb_pair(struct task_group
*tg
,
4478 int src_cpu
, int dest_cpu
)
4480 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
4482 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
4483 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
4485 return throttled_hierarchy(src_cfs_rq
) ||
4486 throttled_hierarchy(dest_cfs_rq
);
4489 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
4491 struct rq
*rq
= data
;
4492 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4494 cfs_rq
->throttle_count
--;
4495 if (!cfs_rq
->throttle_count
) {
4496 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
4497 cfs_rq
->throttled_clock_task
;
4499 /* Add cfs_rq with already running entity in the list */
4500 if (cfs_rq
->nr_running
>= 1)
4501 list_add_leaf_cfs_rq(cfs_rq
);
4507 static int tg_throttle_down(struct task_group
*tg
, void *data
)
4509 struct rq
*rq
= data
;
4510 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4512 /* group is entering throttled state, stop time */
4513 if (!cfs_rq
->throttle_count
) {
4514 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
4515 list_del_leaf_cfs_rq(cfs_rq
);
4517 cfs_rq
->throttle_count
++;
4522 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
4524 struct rq
*rq
= rq_of(cfs_rq
);
4525 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4526 struct sched_entity
*se
;
4527 long task_delta
, idle_task_delta
, dequeue
= 1;
4530 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
4532 /* freeze hierarchy runnable averages while throttled */
4534 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
4537 task_delta
= cfs_rq
->h_nr_running
;
4538 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4539 for_each_sched_entity(se
) {
4540 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
4541 /* throttled entity or throttle-on-deactivate */
4546 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
4547 qcfs_rq
->h_nr_running
-= task_delta
;
4548 qcfs_rq
->idle_h_nr_running
-= idle_task_delta
;
4550 if (qcfs_rq
->load
.weight
)
4555 sub_nr_running(rq
, task_delta
);
4557 cfs_rq
->throttled
= 1;
4558 cfs_rq
->throttled_clock
= rq_clock(rq
);
4559 raw_spin_lock(&cfs_b
->lock
);
4560 empty
= list_empty(&cfs_b
->throttled_cfs_rq
);
4563 * Add to the _head_ of the list, so that an already-started
4564 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4565 * not running add to the tail so that later runqueues don't get starved.
4567 if (cfs_b
->distribute_running
)
4568 list_add_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4570 list_add_tail_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4573 * If we're the first throttled task, make sure the bandwidth
4577 start_cfs_bandwidth(cfs_b
);
4579 raw_spin_unlock(&cfs_b
->lock
);
4582 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
4584 struct rq
*rq
= rq_of(cfs_rq
);
4585 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4586 struct sched_entity
*se
;
4588 long task_delta
, idle_task_delta
;
4590 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4592 cfs_rq
->throttled
= 0;
4594 update_rq_clock(rq
);
4596 raw_spin_lock(&cfs_b
->lock
);
4597 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4598 list_del_rcu(&cfs_rq
->throttled_list
);
4599 raw_spin_unlock(&cfs_b
->lock
);
4601 /* update hierarchical throttle state */
4602 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4604 if (!cfs_rq
->load
.weight
)
4607 task_delta
= cfs_rq
->h_nr_running
;
4608 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4609 for_each_sched_entity(se
) {
4613 cfs_rq
= cfs_rq_of(se
);
4615 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4616 cfs_rq
->h_nr_running
+= task_delta
;
4617 cfs_rq
->idle_h_nr_running
+= idle_task_delta
;
4619 if (cfs_rq_throttled(cfs_rq
))
4623 assert_list_leaf_cfs_rq(rq
);
4626 add_nr_running(rq
, task_delta
);
4628 /* Determine whether we need to wake up potentially idle CPU: */
4629 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4633 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
, u64 remaining
)
4635 struct cfs_rq
*cfs_rq
;
4637 u64 starting_runtime
= remaining
;
4640 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4642 struct rq
*rq
= rq_of(cfs_rq
);
4645 rq_lock_irqsave(rq
, &rf
);
4646 if (!cfs_rq_throttled(cfs_rq
))
4649 /* By the above check, this should never be true */
4650 SCHED_WARN_ON(cfs_rq
->runtime_remaining
> 0);
4652 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4653 if (runtime
> remaining
)
4654 runtime
= remaining
;
4655 remaining
-= runtime
;
4657 cfs_rq
->runtime_remaining
+= runtime
;
4659 /* we check whether we're throttled above */
4660 if (cfs_rq
->runtime_remaining
> 0)
4661 unthrottle_cfs_rq(cfs_rq
);
4664 rq_unlock_irqrestore(rq
, &rf
);
4671 return starting_runtime
- remaining
;
4675 * Responsible for refilling a task_group's bandwidth and unthrottling its
4676 * cfs_rqs as appropriate. If there has been no activity within the last
4677 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4678 * used to track this state.
4680 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
, unsigned long flags
)
4685 /* no need to continue the timer with no bandwidth constraint */
4686 if (cfs_b
->quota
== RUNTIME_INF
)
4687 goto out_deactivate
;
4689 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4690 cfs_b
->nr_periods
+= overrun
;
4693 * idle depends on !throttled (for the case of a large deficit), and if
4694 * we're going inactive then everything else can be deferred
4696 if (cfs_b
->idle
&& !throttled
)
4697 goto out_deactivate
;
4699 __refill_cfs_bandwidth_runtime(cfs_b
);
4702 /* mark as potentially idle for the upcoming period */
4707 /* account preceding periods in which throttling occurred */
4708 cfs_b
->nr_throttled
+= overrun
;
4711 * This check is repeated as we are holding onto the new bandwidth while
4712 * we unthrottle. This can potentially race with an unthrottled group
4713 * trying to acquire new bandwidth from the global pool. This can result
4714 * in us over-using our runtime if it is all used during this loop, but
4715 * only by limited amounts in that extreme case.
4717 while (throttled
&& cfs_b
->runtime
> 0 && !cfs_b
->distribute_running
) {
4718 runtime
= cfs_b
->runtime
;
4719 cfs_b
->distribute_running
= 1;
4720 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4721 /* we can't nest cfs_b->lock while distributing bandwidth */
4722 runtime
= distribute_cfs_runtime(cfs_b
, runtime
);
4723 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
4725 cfs_b
->distribute_running
= 0;
4726 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4728 lsub_positive(&cfs_b
->runtime
, runtime
);
4732 * While we are ensured activity in the period following an
4733 * unthrottle, this also covers the case in which the new bandwidth is
4734 * insufficient to cover the existing bandwidth deficit. (Forcing the
4735 * timer to remain active while there are any throttled entities.)
4745 /* a cfs_rq won't donate quota below this amount */
4746 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
4747 /* minimum remaining period time to redistribute slack quota */
4748 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
4749 /* how long we wait to gather additional slack before distributing */
4750 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
4753 * Are we near the end of the current quota period?
4755 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4756 * hrtimer base being cleared by hrtimer_start. In the case of
4757 * migrate_hrtimers, base is never cleared, so we are fine.
4759 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
4761 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
4764 /* if the call-back is running a quota refresh is already occurring */
4765 if (hrtimer_callback_running(refresh_timer
))
4768 /* is a quota refresh about to occur? */
4769 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
4770 if (remaining
< min_expire
)
4776 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
4778 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
4780 /* if there's a quota refresh soon don't bother with slack */
4781 if (runtime_refresh_within(cfs_b
, min_left
))
4784 /* don't push forwards an existing deferred unthrottle */
4785 if (cfs_b
->slack_started
)
4787 cfs_b
->slack_started
= true;
4789 hrtimer_start(&cfs_b
->slack_timer
,
4790 ns_to_ktime(cfs_bandwidth_slack_period
),
4794 /* we know any runtime found here is valid as update_curr() precedes return */
4795 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4797 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4798 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
4800 if (slack_runtime
<= 0)
4803 raw_spin_lock(&cfs_b
->lock
);
4804 if (cfs_b
->quota
!= RUNTIME_INF
) {
4805 cfs_b
->runtime
+= slack_runtime
;
4807 /* we are under rq->lock, defer unthrottling using a timer */
4808 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
4809 !list_empty(&cfs_b
->throttled_cfs_rq
))
4810 start_cfs_slack_bandwidth(cfs_b
);
4812 raw_spin_unlock(&cfs_b
->lock
);
4814 /* even if it's not valid for return we don't want to try again */
4815 cfs_rq
->runtime_remaining
-= slack_runtime
;
4818 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4820 if (!cfs_bandwidth_used())
4823 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
4826 __return_cfs_rq_runtime(cfs_rq
);
4830 * This is done with a timer (instead of inline with bandwidth return) since
4831 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4833 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
4835 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
4836 unsigned long flags
;
4838 /* confirm we're still not at a refresh boundary */
4839 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
4840 cfs_b
->slack_started
= false;
4841 if (cfs_b
->distribute_running
) {
4842 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4846 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
4847 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4851 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
4852 runtime
= cfs_b
->runtime
;
4855 cfs_b
->distribute_running
= 1;
4857 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4862 runtime
= distribute_cfs_runtime(cfs_b
, runtime
);
4864 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
4865 lsub_positive(&cfs_b
->runtime
, runtime
);
4866 cfs_b
->distribute_running
= 0;
4867 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4871 * When a group wakes up we want to make sure that its quota is not already
4872 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4873 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4875 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
4877 if (!cfs_bandwidth_used())
4880 /* an active group must be handled by the update_curr()->put() path */
4881 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
4884 /* ensure the group is not already throttled */
4885 if (cfs_rq_throttled(cfs_rq
))
4888 /* update runtime allocation */
4889 account_cfs_rq_runtime(cfs_rq
, 0);
4890 if (cfs_rq
->runtime_remaining
<= 0)
4891 throttle_cfs_rq(cfs_rq
);
4894 static void sync_throttle(struct task_group
*tg
, int cpu
)
4896 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
4898 if (!cfs_bandwidth_used())
4904 cfs_rq
= tg
->cfs_rq
[cpu
];
4905 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
4907 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
4908 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
4911 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4912 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4914 if (!cfs_bandwidth_used())
4917 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
4921 * it's possible for a throttled entity to be forced into a running
4922 * state (e.g. set_curr_task), in this case we're finished.
4924 if (cfs_rq_throttled(cfs_rq
))
4927 throttle_cfs_rq(cfs_rq
);
4931 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
4933 struct cfs_bandwidth
*cfs_b
=
4934 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
4936 do_sched_cfs_slack_timer(cfs_b
);
4938 return HRTIMER_NORESTART
;
4941 extern const u64 max_cfs_quota_period
;
4943 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
4945 struct cfs_bandwidth
*cfs_b
=
4946 container_of(timer
, struct cfs_bandwidth
, period_timer
);
4947 unsigned long flags
;
4952 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
4954 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
4959 u64
new, old
= ktime_to_ns(cfs_b
->period
);
4962 * Grow period by a factor of 2 to avoid losing precision.
4963 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4967 if (new < max_cfs_quota_period
) {
4968 cfs_b
->period
= ns_to_ktime(new);
4971 pr_warn_ratelimited(
4972 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4974 div_u64(new, NSEC_PER_USEC
),
4975 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
4977 pr_warn_ratelimited(
4978 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4980 div_u64(old
, NSEC_PER_USEC
),
4981 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
4984 /* reset count so we don't come right back in here */
4988 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
, flags
);
4991 cfs_b
->period_active
= 0;
4992 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4994 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
4997 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4999 raw_spin_lock_init(&cfs_b
->lock
);
5001 cfs_b
->quota
= RUNTIME_INF
;
5002 cfs_b
->period
= ns_to_ktime(default_cfs_period());
5004 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
5005 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
5006 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
5007 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5008 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
5009 cfs_b
->distribute_running
= 0;
5010 cfs_b
->slack_started
= false;
5013 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5015 cfs_rq
->runtime_enabled
= 0;
5016 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
5019 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5021 lockdep_assert_held(&cfs_b
->lock
);
5023 if (cfs_b
->period_active
)
5026 cfs_b
->period_active
= 1;
5027 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
5028 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
5031 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5033 /* init_cfs_bandwidth() was not called */
5034 if (!cfs_b
->throttled_cfs_rq
.next
)
5037 hrtimer_cancel(&cfs_b
->period_timer
);
5038 hrtimer_cancel(&cfs_b
->slack_timer
);
5042 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5044 * The race is harmless, since modifying bandwidth settings of unhooked group
5045 * bits doesn't do much.
5048 /* cpu online calback */
5049 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
5051 struct task_group
*tg
;
5053 lockdep_assert_held(&rq
->lock
);
5056 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5057 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
5058 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5060 raw_spin_lock(&cfs_b
->lock
);
5061 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
5062 raw_spin_unlock(&cfs_b
->lock
);
5067 /* cpu offline callback */
5068 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
5070 struct task_group
*tg
;
5072 lockdep_assert_held(&rq
->lock
);
5075 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5076 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5078 if (!cfs_rq
->runtime_enabled
)
5082 * clock_task is not advancing so we just need to make sure
5083 * there's some valid quota amount
5085 cfs_rq
->runtime_remaining
= 1;
5087 * Offline rq is schedulable till CPU is completely disabled
5088 * in take_cpu_down(), so we prevent new cfs throttling here.
5090 cfs_rq
->runtime_enabled
= 0;
5092 if (cfs_rq_throttled(cfs_rq
))
5093 unthrottle_cfs_rq(cfs_rq
);
5098 #else /* CONFIG_CFS_BANDWIDTH */
5100 static inline bool cfs_bandwidth_used(void)
5105 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
5106 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
5107 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
5108 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
5109 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5111 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
5116 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
5121 static inline int throttled_lb_pair(struct task_group
*tg
,
5122 int src_cpu
, int dest_cpu
)
5127 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5129 #ifdef CONFIG_FAIR_GROUP_SCHED
5130 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5133 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
5137 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5138 static inline void update_runtime_enabled(struct rq
*rq
) {}
5139 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
5141 #endif /* CONFIG_CFS_BANDWIDTH */
5143 /**************************************************
5144 * CFS operations on tasks:
5147 #ifdef CONFIG_SCHED_HRTICK
5148 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5150 struct sched_entity
*se
= &p
->se
;
5151 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5153 SCHED_WARN_ON(task_rq(p
) != rq
);
5155 if (rq
->cfs
.h_nr_running
> 1) {
5156 u64 slice
= sched_slice(cfs_rq
, se
);
5157 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
5158 s64 delta
= slice
- ran
;
5165 hrtick_start(rq
, delta
);
5170 * called from enqueue/dequeue and updates the hrtick when the
5171 * current task is from our class and nr_running is low enough
5174 static void hrtick_update(struct rq
*rq
)
5176 struct task_struct
*curr
= rq
->curr
;
5178 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
5181 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
5182 hrtick_start_fair(rq
, curr
);
5184 #else /* !CONFIG_SCHED_HRTICK */
5186 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5190 static inline void hrtick_update(struct rq
*rq
)
5196 static inline unsigned long cpu_util(int cpu
);
5198 static inline bool cpu_overutilized(int cpu
)
5200 return !fits_capacity(cpu_util(cpu
), capacity_of(cpu
));
5203 static inline void update_overutilized_status(struct rq
*rq
)
5205 if (!READ_ONCE(rq
->rd
->overutilized
) && cpu_overutilized(rq
->cpu
)) {
5206 WRITE_ONCE(rq
->rd
->overutilized
, SG_OVERUTILIZED
);
5207 trace_sched_overutilized_tp(rq
->rd
, SG_OVERUTILIZED
);
5211 static inline void update_overutilized_status(struct rq
*rq
) { }
5214 /* Runqueue only has SCHED_IDLE tasks enqueued */
5215 static int sched_idle_rq(struct rq
*rq
)
5217 return unlikely(rq
->nr_running
== rq
->cfs
.idle_h_nr_running
&&
5222 static int sched_idle_cpu(int cpu
)
5224 return sched_idle_rq(cpu_rq(cpu
));
5229 * The enqueue_task method is called before nr_running is
5230 * increased. Here we update the fair scheduling stats and
5231 * then put the task into the rbtree:
5234 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5236 struct cfs_rq
*cfs_rq
;
5237 struct sched_entity
*se
= &p
->se
;
5238 int idle_h_nr_running
= task_has_idle_policy(p
);
5241 * The code below (indirectly) updates schedutil which looks at
5242 * the cfs_rq utilization to select a frequency.
5243 * Let's add the task's estimated utilization to the cfs_rq's
5244 * estimated utilization, before we update schedutil.
5246 util_est_enqueue(&rq
->cfs
, p
);
5249 * If in_iowait is set, the code below may not trigger any cpufreq
5250 * utilization updates, so do it here explicitly with the IOWAIT flag
5254 cpufreq_update_util(rq
, SCHED_CPUFREQ_IOWAIT
);
5256 for_each_sched_entity(se
) {
5259 cfs_rq
= cfs_rq_of(se
);
5260 enqueue_entity(cfs_rq
, se
, flags
);
5263 * end evaluation on encountering a throttled cfs_rq
5265 * note: in the case of encountering a throttled cfs_rq we will
5266 * post the final h_nr_running increment below.
5268 if (cfs_rq_throttled(cfs_rq
))
5270 cfs_rq
->h_nr_running
++;
5271 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5273 flags
= ENQUEUE_WAKEUP
;
5276 for_each_sched_entity(se
) {
5277 cfs_rq
= cfs_rq_of(se
);
5278 cfs_rq
->h_nr_running
++;
5279 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5281 if (cfs_rq_throttled(cfs_rq
))
5284 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5285 update_cfs_group(se
);
5289 add_nr_running(rq
, 1);
5291 * Since new tasks are assigned an initial util_avg equal to
5292 * half of the spare capacity of their CPU, tiny tasks have the
5293 * ability to cross the overutilized threshold, which will
5294 * result in the load balancer ruining all the task placement
5295 * done by EAS. As a way to mitigate that effect, do not account
5296 * for the first enqueue operation of new tasks during the
5297 * overutilized flag detection.
5299 * A better way of solving this problem would be to wait for
5300 * the PELT signals of tasks to converge before taking them
5301 * into account, but that is not straightforward to implement,
5302 * and the following generally works well enough in practice.
5304 if (flags
& ENQUEUE_WAKEUP
)
5305 update_overutilized_status(rq
);
5309 if (cfs_bandwidth_used()) {
5311 * When bandwidth control is enabled; the cfs_rq_throttled()
5312 * breaks in the above iteration can result in incomplete
5313 * leaf list maintenance, resulting in triggering the assertion
5316 for_each_sched_entity(se
) {
5317 cfs_rq
= cfs_rq_of(se
);
5319 if (list_add_leaf_cfs_rq(cfs_rq
))
5324 assert_list_leaf_cfs_rq(rq
);
5329 static void set_next_buddy(struct sched_entity
*se
);
5332 * The dequeue_task method is called before nr_running is
5333 * decreased. We remove the task from the rbtree and
5334 * update the fair scheduling stats:
5336 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5338 struct cfs_rq
*cfs_rq
;
5339 struct sched_entity
*se
= &p
->se
;
5340 int task_sleep
= flags
& DEQUEUE_SLEEP
;
5341 int idle_h_nr_running
= task_has_idle_policy(p
);
5342 bool was_sched_idle
= sched_idle_rq(rq
);
5344 for_each_sched_entity(se
) {
5345 cfs_rq
= cfs_rq_of(se
);
5346 dequeue_entity(cfs_rq
, se
, flags
);
5349 * end evaluation on encountering a throttled cfs_rq
5351 * note: in the case of encountering a throttled cfs_rq we will
5352 * post the final h_nr_running decrement below.
5354 if (cfs_rq_throttled(cfs_rq
))
5356 cfs_rq
->h_nr_running
--;
5357 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5359 /* Don't dequeue parent if it has other entities besides us */
5360 if (cfs_rq
->load
.weight
) {
5361 /* Avoid re-evaluating load for this entity: */
5362 se
= parent_entity(se
);
5364 * Bias pick_next to pick a task from this cfs_rq, as
5365 * p is sleeping when it is within its sched_slice.
5367 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
5371 flags
|= DEQUEUE_SLEEP
;
5374 for_each_sched_entity(se
) {
5375 cfs_rq
= cfs_rq_of(se
);
5376 cfs_rq
->h_nr_running
--;
5377 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5379 if (cfs_rq_throttled(cfs_rq
))
5382 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5383 update_cfs_group(se
);
5387 sub_nr_running(rq
, 1);
5389 /* balance early to pull high priority tasks */
5390 if (unlikely(!was_sched_idle
&& sched_idle_rq(rq
)))
5391 rq
->next_balance
= jiffies
;
5393 util_est_dequeue(&rq
->cfs
, p
, task_sleep
);
5399 /* Working cpumask for: load_balance, load_balance_newidle. */
5400 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5401 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5403 #ifdef CONFIG_NO_HZ_COMMON
5406 cpumask_var_t idle_cpus_mask
;
5408 int has_blocked
; /* Idle CPUS has blocked load */
5409 unsigned long next_balance
; /* in jiffy units */
5410 unsigned long next_blocked
; /* Next update of blocked load in jiffies */
5411 } nohz ____cacheline_aligned
;
5413 #endif /* CONFIG_NO_HZ_COMMON */
5415 static unsigned long cpu_load(struct rq
*rq
)
5417 return cfs_rq_load_avg(&rq
->cfs
);
5421 * cpu_load_without - compute CPU load without any contributions from *p
5422 * @cpu: the CPU which load is requested
5423 * @p: the task which load should be discounted
5425 * The load of a CPU is defined by the load of tasks currently enqueued on that
5426 * CPU as well as tasks which are currently sleeping after an execution on that
5429 * This method returns the load of the specified CPU by discounting the load of
5430 * the specified task, whenever the task is currently contributing to the CPU
5433 static unsigned long cpu_load_without(struct rq
*rq
, struct task_struct
*p
)
5435 struct cfs_rq
*cfs_rq
;
5438 /* Task has no contribution or is new */
5439 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
5440 return cpu_load(rq
);
5443 load
= READ_ONCE(cfs_rq
->avg
.load_avg
);
5445 /* Discount task's util from CPU's util */
5446 lsub_positive(&load
, task_h_load(p
));
5451 static unsigned long capacity_of(int cpu
)
5453 return cpu_rq(cpu
)->cpu_capacity
;
5456 static void record_wakee(struct task_struct
*p
)
5459 * Only decay a single time; tasks that have less then 1 wakeup per
5460 * jiffy will not have built up many flips.
5462 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5463 current
->wakee_flips
>>= 1;
5464 current
->wakee_flip_decay_ts
= jiffies
;
5467 if (current
->last_wakee
!= p
) {
5468 current
->last_wakee
= p
;
5469 current
->wakee_flips
++;
5474 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5476 * A waker of many should wake a different task than the one last awakened
5477 * at a frequency roughly N times higher than one of its wakees.
5479 * In order to determine whether we should let the load spread vs consolidating
5480 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5481 * partner, and a factor of lls_size higher frequency in the other.
5483 * With both conditions met, we can be relatively sure that the relationship is
5484 * non-monogamous, with partner count exceeding socket size.
5486 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5487 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5490 static int wake_wide(struct task_struct
*p
)
5492 unsigned int master
= current
->wakee_flips
;
5493 unsigned int slave
= p
->wakee_flips
;
5494 int factor
= this_cpu_read(sd_llc_size
);
5497 swap(master
, slave
);
5498 if (slave
< factor
|| master
< slave
* factor
)
5504 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5505 * soonest. For the purpose of speed we only consider the waking and previous
5508 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5509 * cache-affine and is (or will be) idle.
5511 * wake_affine_weight() - considers the weight to reflect the average
5512 * scheduling latency of the CPUs. This seems to work
5513 * for the overloaded case.
5516 wake_affine_idle(int this_cpu
, int prev_cpu
, int sync
)
5519 * If this_cpu is idle, it implies the wakeup is from interrupt
5520 * context. Only allow the move if cache is shared. Otherwise an
5521 * interrupt intensive workload could force all tasks onto one
5522 * node depending on the IO topology or IRQ affinity settings.
5524 * If the prev_cpu is idle and cache affine then avoid a migration.
5525 * There is no guarantee that the cache hot data from an interrupt
5526 * is more important than cache hot data on the prev_cpu and from
5527 * a cpufreq perspective, it's better to have higher utilisation
5530 if (available_idle_cpu(this_cpu
) && cpus_share_cache(this_cpu
, prev_cpu
))
5531 return available_idle_cpu(prev_cpu
) ? prev_cpu
: this_cpu
;
5533 if (sync
&& cpu_rq(this_cpu
)->nr_running
== 1)
5536 return nr_cpumask_bits
;
5540 wake_affine_weight(struct sched_domain
*sd
, struct task_struct
*p
,
5541 int this_cpu
, int prev_cpu
, int sync
)
5543 s64 this_eff_load
, prev_eff_load
;
5544 unsigned long task_load
;
5546 this_eff_load
= cpu_load(cpu_rq(this_cpu
));
5549 unsigned long current_load
= task_h_load(current
);
5551 if (current_load
> this_eff_load
)
5554 this_eff_load
-= current_load
;
5557 task_load
= task_h_load(p
);
5559 this_eff_load
+= task_load
;
5560 if (sched_feat(WA_BIAS
))
5561 this_eff_load
*= 100;
5562 this_eff_load
*= capacity_of(prev_cpu
);
5564 prev_eff_load
= cpu_load(cpu_rq(prev_cpu
));
5565 prev_eff_load
-= task_load
;
5566 if (sched_feat(WA_BIAS
))
5567 prev_eff_load
*= 100 + (sd
->imbalance_pct
- 100) / 2;
5568 prev_eff_load
*= capacity_of(this_cpu
);
5571 * If sync, adjust the weight of prev_eff_load such that if
5572 * prev_eff == this_eff that select_idle_sibling() will consider
5573 * stacking the wakee on top of the waker if no other CPU is
5579 return this_eff_load
< prev_eff_load
? this_cpu
: nr_cpumask_bits
;
5582 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5583 int this_cpu
, int prev_cpu
, int sync
)
5585 int target
= nr_cpumask_bits
;
5587 if (sched_feat(WA_IDLE
))
5588 target
= wake_affine_idle(this_cpu
, prev_cpu
, sync
);
5590 if (sched_feat(WA_WEIGHT
) && target
== nr_cpumask_bits
)
5591 target
= wake_affine_weight(sd
, p
, this_cpu
, prev_cpu
, sync
);
5593 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5594 if (target
== nr_cpumask_bits
)
5597 schedstat_inc(sd
->ttwu_move_affine
);
5598 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5602 static struct sched_group
*
5603 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
5604 int this_cpu
, int sd_flag
);
5607 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5610 find_idlest_group_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5612 unsigned long load
, min_load
= ULONG_MAX
;
5613 unsigned int min_exit_latency
= UINT_MAX
;
5614 u64 latest_idle_timestamp
= 0;
5615 int least_loaded_cpu
= this_cpu
;
5616 int shallowest_idle_cpu
= -1;
5619 /* Check if we have any choice: */
5620 if (group
->group_weight
== 1)
5621 return cpumask_first(sched_group_span(group
));
5623 /* Traverse only the allowed CPUs */
5624 for_each_cpu_and(i
, sched_group_span(group
), p
->cpus_ptr
) {
5625 if (sched_idle_cpu(i
))
5628 if (available_idle_cpu(i
)) {
5629 struct rq
*rq
= cpu_rq(i
);
5630 struct cpuidle_state
*idle
= idle_get_state(rq
);
5631 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5633 * We give priority to a CPU whose idle state
5634 * has the smallest exit latency irrespective
5635 * of any idle timestamp.
5637 min_exit_latency
= idle
->exit_latency
;
5638 latest_idle_timestamp
= rq
->idle_stamp
;
5639 shallowest_idle_cpu
= i
;
5640 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5641 rq
->idle_stamp
> latest_idle_timestamp
) {
5643 * If equal or no active idle state, then
5644 * the most recently idled CPU might have
5647 latest_idle_timestamp
= rq
->idle_stamp
;
5648 shallowest_idle_cpu
= i
;
5650 } else if (shallowest_idle_cpu
== -1) {
5651 load
= cpu_load(cpu_rq(i
));
5652 if (load
< min_load
) {
5654 least_loaded_cpu
= i
;
5659 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5662 static inline int find_idlest_cpu(struct sched_domain
*sd
, struct task_struct
*p
,
5663 int cpu
, int prev_cpu
, int sd_flag
)
5667 if (!cpumask_intersects(sched_domain_span(sd
), p
->cpus_ptr
))
5671 * We need task's util for cpu_util_without, sync it up to
5672 * prev_cpu's last_update_time.
5674 if (!(sd_flag
& SD_BALANCE_FORK
))
5675 sync_entity_load_avg(&p
->se
);
5678 struct sched_group
*group
;
5679 struct sched_domain
*tmp
;
5682 if (!(sd
->flags
& sd_flag
)) {
5687 group
= find_idlest_group(sd
, p
, cpu
, sd_flag
);
5693 new_cpu
= find_idlest_group_cpu(group
, p
, cpu
);
5694 if (new_cpu
== cpu
) {
5695 /* Now try balancing at a lower domain level of 'cpu': */
5700 /* Now try balancing at a lower domain level of 'new_cpu': */
5702 weight
= sd
->span_weight
;
5704 for_each_domain(cpu
, tmp
) {
5705 if (weight
<= tmp
->span_weight
)
5707 if (tmp
->flags
& sd_flag
)
5715 #ifdef CONFIG_SCHED_SMT
5716 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
5717 EXPORT_SYMBOL_GPL(sched_smt_present
);
5719 static inline void set_idle_cores(int cpu
, int val
)
5721 struct sched_domain_shared
*sds
;
5723 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5725 WRITE_ONCE(sds
->has_idle_cores
, val
);
5728 static inline bool test_idle_cores(int cpu
, bool def
)
5730 struct sched_domain_shared
*sds
;
5732 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5734 return READ_ONCE(sds
->has_idle_cores
);
5740 * Scans the local SMT mask to see if the entire core is idle, and records this
5741 * information in sd_llc_shared->has_idle_cores.
5743 * Since SMT siblings share all cache levels, inspecting this limited remote
5744 * state should be fairly cheap.
5746 void __update_idle_core(struct rq
*rq
)
5748 int core
= cpu_of(rq
);
5752 if (test_idle_cores(core
, true))
5755 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5759 if (!available_idle_cpu(cpu
))
5763 set_idle_cores(core
, 1);
5769 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5770 * there are no idle cores left in the system; tracked through
5771 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5773 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5775 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
5778 if (!static_branch_likely(&sched_smt_present
))
5781 if (!test_idle_cores(target
, false))
5784 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
5786 for_each_cpu_wrap(core
, cpus
, target
) {
5789 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5790 __cpumask_clear_cpu(cpu
, cpus
);
5791 if (!available_idle_cpu(cpu
))
5800 * Failed to find an idle core; stop looking for one.
5802 set_idle_cores(target
, 0);
5808 * Scan the local SMT mask for idle CPUs.
5810 static int select_idle_smt(struct task_struct
*p
, int target
)
5814 if (!static_branch_likely(&sched_smt_present
))
5817 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
5818 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
5820 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
5827 #else /* CONFIG_SCHED_SMT */
5829 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5834 static inline int select_idle_smt(struct task_struct
*p
, int target
)
5839 #endif /* CONFIG_SCHED_SMT */
5842 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5843 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5844 * average idle time for this rq (as found in rq->avg_idle).
5846 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5848 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
5849 struct sched_domain
*this_sd
;
5850 u64 avg_cost
, avg_idle
;
5853 int this = smp_processor_id();
5854 int cpu
, nr
= INT_MAX
;
5856 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
5861 * Due to large variance we need a large fuzz factor; hackbench in
5862 * particularly is sensitive here.
5864 avg_idle
= this_rq()->avg_idle
/ 512;
5865 avg_cost
= this_sd
->avg_scan_cost
+ 1;
5867 if (sched_feat(SIS_AVG_CPU
) && avg_idle
< avg_cost
)
5870 if (sched_feat(SIS_PROP
)) {
5871 u64 span_avg
= sd
->span_weight
* avg_idle
;
5872 if (span_avg
> 4*avg_cost
)
5873 nr
= div_u64(span_avg
, avg_cost
);
5878 time
= cpu_clock(this);
5880 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
5882 for_each_cpu_wrap(cpu
, cpus
, target
) {
5885 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
5889 time
= cpu_clock(this) - time
;
5890 cost
= this_sd
->avg_scan_cost
;
5891 delta
= (s64
)(time
- cost
) / 8;
5892 this_sd
->avg_scan_cost
+= delta
;
5898 * Try and locate an idle core/thread in the LLC cache domain.
5900 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
5902 struct sched_domain
*sd
;
5903 int i
, recent_used_cpu
;
5905 if (available_idle_cpu(target
) || sched_idle_cpu(target
))
5909 * If the previous CPU is cache affine and idle, don't be stupid:
5911 if (prev
!= target
&& cpus_share_cache(prev
, target
) &&
5912 (available_idle_cpu(prev
) || sched_idle_cpu(prev
)))
5915 /* Check a recently used CPU as a potential idle candidate: */
5916 recent_used_cpu
= p
->recent_used_cpu
;
5917 if (recent_used_cpu
!= prev
&&
5918 recent_used_cpu
!= target
&&
5919 cpus_share_cache(recent_used_cpu
, target
) &&
5920 (available_idle_cpu(recent_used_cpu
) || sched_idle_cpu(recent_used_cpu
)) &&
5921 cpumask_test_cpu(p
->recent_used_cpu
, p
->cpus_ptr
)) {
5923 * Replace recent_used_cpu with prev as it is a potential
5924 * candidate for the next wake:
5926 p
->recent_used_cpu
= prev
;
5927 return recent_used_cpu
;
5930 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
5934 i
= select_idle_core(p
, sd
, target
);
5935 if ((unsigned)i
< nr_cpumask_bits
)
5938 i
= select_idle_cpu(p
, sd
, target
);
5939 if ((unsigned)i
< nr_cpumask_bits
)
5942 i
= select_idle_smt(p
, target
);
5943 if ((unsigned)i
< nr_cpumask_bits
)
5950 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
5951 * @cpu: the CPU to get the utilization of
5953 * The unit of the return value must be the one of capacity so we can compare
5954 * the utilization with the capacity of the CPU that is available for CFS task
5955 * (ie cpu_capacity).
5957 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5958 * recent utilization of currently non-runnable tasks on a CPU. It represents
5959 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5960 * capacity_orig is the cpu_capacity available at the highest frequency
5961 * (arch_scale_freq_capacity()).
5962 * The utilization of a CPU converges towards a sum equal to or less than the
5963 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5964 * the running time on this CPU scaled by capacity_curr.
5966 * The estimated utilization of a CPU is defined to be the maximum between its
5967 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
5968 * currently RUNNABLE on that CPU.
5969 * This allows to properly represent the expected utilization of a CPU which
5970 * has just got a big task running since a long sleep period. At the same time
5971 * however it preserves the benefits of the "blocked utilization" in
5972 * describing the potential for other tasks waking up on the same CPU.
5974 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5975 * higher than capacity_orig because of unfortunate rounding in
5976 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5977 * the average stabilizes with the new running time. We need to check that the
5978 * utilization stays within the range of [0..capacity_orig] and cap it if
5979 * necessary. Without utilization capping, a group could be seen as overloaded
5980 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5981 * available capacity. We allow utilization to overshoot capacity_curr (but not
5982 * capacity_orig) as it useful for predicting the capacity required after task
5983 * migrations (scheduler-driven DVFS).
5985 * Return: the (estimated) utilization for the specified CPU
5987 static inline unsigned long cpu_util(int cpu
)
5989 struct cfs_rq
*cfs_rq
;
5992 cfs_rq
= &cpu_rq(cpu
)->cfs
;
5993 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
5995 if (sched_feat(UTIL_EST
))
5996 util
= max(util
, READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
));
5998 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6002 * cpu_util_without: compute cpu utilization without any contributions from *p
6003 * @cpu: the CPU which utilization is requested
6004 * @p: the task which utilization should be discounted
6006 * The utilization of a CPU is defined by the utilization of tasks currently
6007 * enqueued on that CPU as well as tasks which are currently sleeping after an
6008 * execution on that CPU.
6010 * This method returns the utilization of the specified CPU by discounting the
6011 * utilization of the specified task, whenever the task is currently
6012 * contributing to the CPU utilization.
6014 static unsigned long cpu_util_without(int cpu
, struct task_struct
*p
)
6016 struct cfs_rq
*cfs_rq
;
6019 /* Task has no contribution or is new */
6020 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
6021 return cpu_util(cpu
);
6023 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6024 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6026 /* Discount task's util from CPU's util */
6027 lsub_positive(&util
, task_util(p
));
6032 * a) if *p is the only task sleeping on this CPU, then:
6033 * cpu_util (== task_util) > util_est (== 0)
6034 * and thus we return:
6035 * cpu_util_without = (cpu_util - task_util) = 0
6037 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6039 * cpu_util >= task_util
6040 * cpu_util > util_est (== 0)
6041 * and thus we discount *p's blocked utilization to return:
6042 * cpu_util_without = (cpu_util - task_util) >= 0
6044 * c) if other tasks are RUNNABLE on that CPU and
6045 * util_est > cpu_util
6046 * then we use util_est since it returns a more restrictive
6047 * estimation of the spare capacity on that CPU, by just
6048 * considering the expected utilization of tasks already
6049 * runnable on that CPU.
6051 * Cases a) and b) are covered by the above code, while case c) is
6052 * covered by the following code when estimated utilization is
6055 if (sched_feat(UTIL_EST
)) {
6056 unsigned int estimated
=
6057 READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6060 * Despite the following checks we still have a small window
6061 * for a possible race, when an execl's select_task_rq_fair()
6062 * races with LB's detach_task():
6065 * p->on_rq = TASK_ON_RQ_MIGRATING;
6066 * ---------------------------------- A
6067 * deactivate_task() \
6068 * dequeue_task() + RaceTime
6069 * util_est_dequeue() /
6070 * ---------------------------------- B
6072 * The additional check on "current == p" it's required to
6073 * properly fix the execl regression and it helps in further
6074 * reducing the chances for the above race.
6076 if (unlikely(task_on_rq_queued(p
) || current
== p
))
6077 lsub_positive(&estimated
, _task_util_est(p
));
6079 util
= max(util
, estimated
);
6083 * Utilization (estimated) can exceed the CPU capacity, thus let's
6084 * clamp to the maximum CPU capacity to ensure consistency with
6085 * the cpu_util call.
6087 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6091 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6092 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6094 * In that case WAKE_AFFINE doesn't make sense and we'll let
6095 * BALANCE_WAKE sort things out.
6097 static int wake_cap(struct task_struct
*p
, int cpu
, int prev_cpu
)
6099 long min_cap
, max_cap
;
6101 if (!static_branch_unlikely(&sched_asym_cpucapacity
))
6104 min_cap
= min(capacity_orig_of(prev_cpu
), capacity_orig_of(cpu
));
6105 max_cap
= cpu_rq(cpu
)->rd
->max_cpu_capacity
;
6107 /* Minimum capacity is close to max, no need to abort wake_affine */
6108 if (max_cap
- min_cap
< max_cap
>> 3)
6111 /* Bring task utilization in sync with prev_cpu */
6112 sync_entity_load_avg(&p
->se
);
6114 return !task_fits_capacity(p
, min_cap
);
6118 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6121 static unsigned long cpu_util_next(int cpu
, struct task_struct
*p
, int dst_cpu
)
6123 struct cfs_rq
*cfs_rq
= &cpu_rq(cpu
)->cfs
;
6124 unsigned long util_est
, util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6127 * If @p migrates from @cpu to another, remove its contribution. Or,
6128 * if @p migrates from another CPU to @cpu, add its contribution. In
6129 * the other cases, @cpu is not impacted by the migration, so the
6130 * util_avg should already be correct.
6132 if (task_cpu(p
) == cpu
&& dst_cpu
!= cpu
)
6133 sub_positive(&util
, task_util(p
));
6134 else if (task_cpu(p
) != cpu
&& dst_cpu
== cpu
)
6135 util
+= task_util(p
);
6137 if (sched_feat(UTIL_EST
)) {
6138 util_est
= READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6141 * During wake-up, the task isn't enqueued yet and doesn't
6142 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6143 * so just add it (if needed) to "simulate" what will be
6144 * cpu_util() after the task has been enqueued.
6147 util_est
+= _task_util_est(p
);
6149 util
= max(util
, util_est
);
6152 return min(util
, capacity_orig_of(cpu
));
6156 * compute_energy(): Estimates the energy that @pd would consume if @p was
6157 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6158 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6159 * to compute what would be the energy if we decided to actually migrate that
6163 compute_energy(struct task_struct
*p
, int dst_cpu
, struct perf_domain
*pd
)
6165 struct cpumask
*pd_mask
= perf_domain_span(pd
);
6166 unsigned long cpu_cap
= arch_scale_cpu_capacity(cpumask_first(pd_mask
));
6167 unsigned long max_util
= 0, sum_util
= 0;
6171 * The capacity state of CPUs of the current rd can be driven by CPUs
6172 * of another rd if they belong to the same pd. So, account for the
6173 * utilization of these CPUs too by masking pd with cpu_online_mask
6174 * instead of the rd span.
6176 * If an entire pd is outside of the current rd, it will not appear in
6177 * its pd list and will not be accounted by compute_energy().
6179 for_each_cpu_and(cpu
, pd_mask
, cpu_online_mask
) {
6180 unsigned long cpu_util
, util_cfs
= cpu_util_next(cpu
, p
, dst_cpu
);
6181 struct task_struct
*tsk
= cpu
== dst_cpu
? p
: NULL
;
6184 * Busy time computation: utilization clamping is not
6185 * required since the ratio (sum_util / cpu_capacity)
6186 * is already enough to scale the EM reported power
6187 * consumption at the (eventually clamped) cpu_capacity.
6189 sum_util
+= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6193 * Performance domain frequency: utilization clamping
6194 * must be considered since it affects the selection
6195 * of the performance domain frequency.
6196 * NOTE: in case RT tasks are running, by default the
6197 * FREQUENCY_UTIL's utilization can be max OPP.
6199 cpu_util
= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6200 FREQUENCY_UTIL
, tsk
);
6201 max_util
= max(max_util
, cpu_util
);
6204 return em_pd_energy(pd
->em_pd
, max_util
, sum_util
);
6208 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6209 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6210 * spare capacity in each performance domain and uses it as a potential
6211 * candidate to execute the task. Then, it uses the Energy Model to figure
6212 * out which of the CPU candidates is the most energy-efficient.
6214 * The rationale for this heuristic is as follows. In a performance domain,
6215 * all the most energy efficient CPU candidates (according to the Energy
6216 * Model) are those for which we'll request a low frequency. When there are
6217 * several CPUs for which the frequency request will be the same, we don't
6218 * have enough data to break the tie between them, because the Energy Model
6219 * only includes active power costs. With this model, if we assume that
6220 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6221 * the maximum spare capacity in a performance domain is guaranteed to be among
6222 * the best candidates of the performance domain.
6224 * In practice, it could be preferable from an energy standpoint to pack
6225 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6226 * but that could also hurt our chances to go cluster idle, and we have no
6227 * ways to tell with the current Energy Model if this is actually a good
6228 * idea or not. So, find_energy_efficient_cpu() basically favors
6229 * cluster-packing, and spreading inside a cluster. That should at least be
6230 * a good thing for latency, and this is consistent with the idea that most
6231 * of the energy savings of EAS come from the asymmetry of the system, and
6232 * not so much from breaking the tie between identical CPUs. That's also the
6233 * reason why EAS is enabled in the topology code only for systems where
6234 * SD_ASYM_CPUCAPACITY is set.
6236 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6237 * they don't have any useful utilization data yet and it's not possible to
6238 * forecast their impact on energy consumption. Consequently, they will be
6239 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6240 * to be energy-inefficient in some use-cases. The alternative would be to
6241 * bias new tasks towards specific types of CPUs first, or to try to infer
6242 * their util_avg from the parent task, but those heuristics could hurt
6243 * other use-cases too. So, until someone finds a better way to solve this,
6244 * let's keep things simple by re-using the existing slow path.
6246 static int find_energy_efficient_cpu(struct task_struct
*p
, int prev_cpu
)
6248 unsigned long prev_delta
= ULONG_MAX
, best_delta
= ULONG_MAX
;
6249 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
6250 unsigned long cpu_cap
, util
, base_energy
= 0;
6251 int cpu
, best_energy_cpu
= prev_cpu
;
6252 struct sched_domain
*sd
;
6253 struct perf_domain
*pd
;
6256 pd
= rcu_dereference(rd
->pd
);
6257 if (!pd
|| READ_ONCE(rd
->overutilized
))
6261 * Energy-aware wake-up happens on the lowest sched_domain starting
6262 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6264 sd
= rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity
));
6265 while (sd
&& !cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
6270 sync_entity_load_avg(&p
->se
);
6271 if (!task_util_est(p
))
6274 for (; pd
; pd
= pd
->next
) {
6275 unsigned long cur_delta
, spare_cap
, max_spare_cap
= 0;
6276 unsigned long base_energy_pd
;
6277 int max_spare_cap_cpu
= -1;
6279 /* Compute the 'base' energy of the pd, without @p */
6280 base_energy_pd
= compute_energy(p
, -1, pd
);
6281 base_energy
+= base_energy_pd
;
6283 for_each_cpu_and(cpu
, perf_domain_span(pd
), sched_domain_span(sd
)) {
6284 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
6287 util
= cpu_util_next(cpu
, p
, cpu
);
6288 cpu_cap
= capacity_of(cpu
);
6289 spare_cap
= cpu_cap
- util
;
6292 * Skip CPUs that cannot satisfy the capacity request.
6293 * IOW, placing the task there would make the CPU
6294 * overutilized. Take uclamp into account to see how
6295 * much capacity we can get out of the CPU; this is
6296 * aligned with schedutil_cpu_util().
6298 util
= uclamp_rq_util_with(cpu_rq(cpu
), util
, p
);
6299 if (!fits_capacity(util
, cpu_cap
))
6302 /* Always use prev_cpu as a candidate. */
6303 if (cpu
== prev_cpu
) {
6304 prev_delta
= compute_energy(p
, prev_cpu
, pd
);
6305 prev_delta
-= base_energy_pd
;
6306 best_delta
= min(best_delta
, prev_delta
);
6310 * Find the CPU with the maximum spare capacity in
6311 * the performance domain
6313 if (spare_cap
> max_spare_cap
) {
6314 max_spare_cap
= spare_cap
;
6315 max_spare_cap_cpu
= cpu
;
6319 /* Evaluate the energy impact of using this CPU. */
6320 if (max_spare_cap_cpu
>= 0 && max_spare_cap_cpu
!= prev_cpu
) {
6321 cur_delta
= compute_energy(p
, max_spare_cap_cpu
, pd
);
6322 cur_delta
-= base_energy_pd
;
6323 if (cur_delta
< best_delta
) {
6324 best_delta
= cur_delta
;
6325 best_energy_cpu
= max_spare_cap_cpu
;
6333 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6334 * least 6% of the energy used by prev_cpu.
6336 if (prev_delta
== ULONG_MAX
)
6337 return best_energy_cpu
;
6339 if ((prev_delta
- best_delta
) > ((prev_delta
+ base_energy
) >> 4))
6340 return best_energy_cpu
;
6351 * select_task_rq_fair: Select target runqueue for the waking task in domains
6352 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6353 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6355 * Balances load by selecting the idlest CPU in the idlest group, or under
6356 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6358 * Returns the target CPU number.
6360 * preempt must be disabled.
6363 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
6365 struct sched_domain
*tmp
, *sd
= NULL
;
6366 int cpu
= smp_processor_id();
6367 int new_cpu
= prev_cpu
;
6368 int want_affine
= 0;
6369 int sync
= (wake_flags
& WF_SYNC
) && !(current
->flags
& PF_EXITING
);
6371 if (sd_flag
& SD_BALANCE_WAKE
) {
6374 if (sched_energy_enabled()) {
6375 new_cpu
= find_energy_efficient_cpu(p
, prev_cpu
);
6381 want_affine
= !wake_wide(p
) && !wake_cap(p
, cpu
, prev_cpu
) &&
6382 cpumask_test_cpu(cpu
, p
->cpus_ptr
);
6386 for_each_domain(cpu
, tmp
) {
6387 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
6391 * If both 'cpu' and 'prev_cpu' are part of this domain,
6392 * cpu is a valid SD_WAKE_AFFINE target.
6394 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
6395 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
6396 if (cpu
!= prev_cpu
)
6397 new_cpu
= wake_affine(tmp
, p
, cpu
, prev_cpu
, sync
);
6399 sd
= NULL
; /* Prefer wake_affine over balance flags */
6403 if (tmp
->flags
& sd_flag
)
6405 else if (!want_affine
)
6411 new_cpu
= find_idlest_cpu(sd
, p
, cpu
, prev_cpu
, sd_flag
);
6412 } else if (sd_flag
& SD_BALANCE_WAKE
) { /* XXX always ? */
6415 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
6418 current
->recent_used_cpu
= cpu
;
6425 static void detach_entity_cfs_rq(struct sched_entity
*se
);
6428 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6429 * cfs_rq_of(p) references at time of call are still valid and identify the
6430 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6432 static void migrate_task_rq_fair(struct task_struct
*p
, int new_cpu
)
6435 * As blocked tasks retain absolute vruntime the migration needs to
6436 * deal with this by subtracting the old and adding the new
6437 * min_vruntime -- the latter is done by enqueue_entity() when placing
6438 * the task on the new runqueue.
6440 if (p
->state
== TASK_WAKING
) {
6441 struct sched_entity
*se
= &p
->se
;
6442 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6445 #ifndef CONFIG_64BIT
6446 u64 min_vruntime_copy
;
6449 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
6451 min_vruntime
= cfs_rq
->min_vruntime
;
6452 } while (min_vruntime
!= min_vruntime_copy
);
6454 min_vruntime
= cfs_rq
->min_vruntime
;
6457 se
->vruntime
-= min_vruntime
;
6460 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
) {
6462 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6463 * rq->lock and can modify state directly.
6465 lockdep_assert_held(&task_rq(p
)->lock
);
6466 detach_entity_cfs_rq(&p
->se
);
6470 * We are supposed to update the task to "current" time, then
6471 * its up to date and ready to go to new CPU/cfs_rq. But we
6472 * have difficulty in getting what current time is, so simply
6473 * throw away the out-of-date time. This will result in the
6474 * wakee task is less decayed, but giving the wakee more load
6477 remove_entity_load_avg(&p
->se
);
6480 /* Tell new CPU we are migrated */
6481 p
->se
.avg
.last_update_time
= 0;
6483 /* We have migrated, no longer consider this task hot */
6484 p
->se
.exec_start
= 0;
6486 update_scan_period(p
, new_cpu
);
6489 static void task_dead_fair(struct task_struct
*p
)
6491 remove_entity_load_avg(&p
->se
);
6495 balance_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6500 return newidle_balance(rq
, rf
) != 0;
6502 #endif /* CONFIG_SMP */
6504 static unsigned long wakeup_gran(struct sched_entity
*se
)
6506 unsigned long gran
= sysctl_sched_wakeup_granularity
;
6509 * Since its curr running now, convert the gran from real-time
6510 * to virtual-time in his units.
6512 * By using 'se' instead of 'curr' we penalize light tasks, so
6513 * they get preempted easier. That is, if 'se' < 'curr' then
6514 * the resulting gran will be larger, therefore penalizing the
6515 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6516 * be smaller, again penalizing the lighter task.
6518 * This is especially important for buddies when the leftmost
6519 * task is higher priority than the buddy.
6521 return calc_delta_fair(gran
, se
);
6525 * Should 'se' preempt 'curr'.
6539 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
6541 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
6546 gran
= wakeup_gran(se
);
6553 static void set_last_buddy(struct sched_entity
*se
)
6555 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6558 for_each_sched_entity(se
) {
6559 if (SCHED_WARN_ON(!se
->on_rq
))
6561 cfs_rq_of(se
)->last
= se
;
6565 static void set_next_buddy(struct sched_entity
*se
)
6567 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6570 for_each_sched_entity(se
) {
6571 if (SCHED_WARN_ON(!se
->on_rq
))
6573 cfs_rq_of(se
)->next
= se
;
6577 static void set_skip_buddy(struct sched_entity
*se
)
6579 for_each_sched_entity(se
)
6580 cfs_rq_of(se
)->skip
= se
;
6584 * Preempt the current task with a newly woken task if needed:
6586 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
6588 struct task_struct
*curr
= rq
->curr
;
6589 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
6590 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6591 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
6592 int next_buddy_marked
= 0;
6594 if (unlikely(se
== pse
))
6598 * This is possible from callers such as attach_tasks(), in which we
6599 * unconditionally check_prempt_curr() after an enqueue (which may have
6600 * lead to a throttle). This both saves work and prevents false
6601 * next-buddy nomination below.
6603 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
6606 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
6607 set_next_buddy(pse
);
6608 next_buddy_marked
= 1;
6612 * We can come here with TIF_NEED_RESCHED already set from new task
6615 * Note: this also catches the edge-case of curr being in a throttled
6616 * group (e.g. via set_curr_task), since update_curr() (in the
6617 * enqueue of curr) will have resulted in resched being set. This
6618 * prevents us from potentially nominating it as a false LAST_BUDDY
6621 if (test_tsk_need_resched(curr
))
6624 /* Idle tasks are by definition preempted by non-idle tasks. */
6625 if (unlikely(task_has_idle_policy(curr
)) &&
6626 likely(!task_has_idle_policy(p
)))
6630 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6631 * is driven by the tick):
6633 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
6636 find_matching_se(&se
, &pse
);
6637 update_curr(cfs_rq_of(se
));
6639 if (wakeup_preempt_entity(se
, pse
) == 1) {
6641 * Bias pick_next to pick the sched entity that is
6642 * triggering this preemption.
6644 if (!next_buddy_marked
)
6645 set_next_buddy(pse
);
6654 * Only set the backward buddy when the current task is still
6655 * on the rq. This can happen when a wakeup gets interleaved
6656 * with schedule on the ->pre_schedule() or idle_balance()
6657 * point, either of which can * drop the rq lock.
6659 * Also, during early boot the idle thread is in the fair class,
6660 * for obvious reasons its a bad idea to schedule back to it.
6662 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
6665 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
6669 struct task_struct
*
6670 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6672 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6673 struct sched_entity
*se
;
6674 struct task_struct
*p
;
6678 if (!sched_fair_runnable(rq
))
6681 #ifdef CONFIG_FAIR_GROUP_SCHED
6682 if (!prev
|| prev
->sched_class
!= &fair_sched_class
)
6686 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6687 * likely that a next task is from the same cgroup as the current.
6689 * Therefore attempt to avoid putting and setting the entire cgroup
6690 * hierarchy, only change the part that actually changes.
6694 struct sched_entity
*curr
= cfs_rq
->curr
;
6697 * Since we got here without doing put_prev_entity() we also
6698 * have to consider cfs_rq->curr. If it is still a runnable
6699 * entity, update_curr() will update its vruntime, otherwise
6700 * forget we've ever seen it.
6704 update_curr(cfs_rq
);
6709 * This call to check_cfs_rq_runtime() will do the
6710 * throttle and dequeue its entity in the parent(s).
6711 * Therefore the nr_running test will indeed
6714 if (unlikely(check_cfs_rq_runtime(cfs_rq
))) {
6717 if (!cfs_rq
->nr_running
)
6724 se
= pick_next_entity(cfs_rq
, curr
);
6725 cfs_rq
= group_cfs_rq(se
);
6731 * Since we haven't yet done put_prev_entity and if the selected task
6732 * is a different task than we started out with, try and touch the
6733 * least amount of cfs_rqs.
6736 struct sched_entity
*pse
= &prev
->se
;
6738 while (!(cfs_rq
= is_same_group(se
, pse
))) {
6739 int se_depth
= se
->depth
;
6740 int pse_depth
= pse
->depth
;
6742 if (se_depth
<= pse_depth
) {
6743 put_prev_entity(cfs_rq_of(pse
), pse
);
6744 pse
= parent_entity(pse
);
6746 if (se_depth
>= pse_depth
) {
6747 set_next_entity(cfs_rq_of(se
), se
);
6748 se
= parent_entity(se
);
6752 put_prev_entity(cfs_rq
, pse
);
6753 set_next_entity(cfs_rq
, se
);
6760 put_prev_task(rq
, prev
);
6763 se
= pick_next_entity(cfs_rq
, NULL
);
6764 set_next_entity(cfs_rq
, se
);
6765 cfs_rq
= group_cfs_rq(se
);
6770 done
: __maybe_unused
;
6773 * Move the next running task to the front of
6774 * the list, so our cfs_tasks list becomes MRU
6777 list_move(&p
->se
.group_node
, &rq
->cfs_tasks
);
6780 if (hrtick_enabled(rq
))
6781 hrtick_start_fair(rq
, p
);
6783 update_misfit_status(p
, rq
);
6791 new_tasks
= newidle_balance(rq
, rf
);
6794 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
6795 * possible for any higher priority task to appear. In that case we
6796 * must re-start the pick_next_entity() loop.
6805 * rq is about to be idle, check if we need to update the
6806 * lost_idle_time of clock_pelt
6808 update_idle_rq_clock_pelt(rq
);
6813 static struct task_struct
*__pick_next_task_fair(struct rq
*rq
)
6815 return pick_next_task_fair(rq
, NULL
, NULL
);
6819 * Account for a descheduled task:
6821 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
6823 struct sched_entity
*se
= &prev
->se
;
6824 struct cfs_rq
*cfs_rq
;
6826 for_each_sched_entity(se
) {
6827 cfs_rq
= cfs_rq_of(se
);
6828 put_prev_entity(cfs_rq
, se
);
6833 * sched_yield() is very simple
6835 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6837 static void yield_task_fair(struct rq
*rq
)
6839 struct task_struct
*curr
= rq
->curr
;
6840 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6841 struct sched_entity
*se
= &curr
->se
;
6844 * Are we the only task in the tree?
6846 if (unlikely(rq
->nr_running
== 1))
6849 clear_buddies(cfs_rq
, se
);
6851 if (curr
->policy
!= SCHED_BATCH
) {
6852 update_rq_clock(rq
);
6854 * Update run-time statistics of the 'current'.
6856 update_curr(cfs_rq
);
6858 * Tell update_rq_clock() that we've just updated,
6859 * so we don't do microscopic update in schedule()
6860 * and double the fastpath cost.
6862 rq_clock_skip_update(rq
);
6868 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
6870 struct sched_entity
*se
= &p
->se
;
6872 /* throttled hierarchies are not runnable */
6873 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
6876 /* Tell the scheduler that we'd really like pse to run next. */
6879 yield_task_fair(rq
);
6885 /**************************************************
6886 * Fair scheduling class load-balancing methods.
6890 * The purpose of load-balancing is to achieve the same basic fairness the
6891 * per-CPU scheduler provides, namely provide a proportional amount of compute
6892 * time to each task. This is expressed in the following equation:
6894 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6896 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6897 * W_i,0 is defined as:
6899 * W_i,0 = \Sum_j w_i,j (2)
6901 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6902 * is derived from the nice value as per sched_prio_to_weight[].
6904 * The weight average is an exponential decay average of the instantaneous
6907 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6909 * C_i is the compute capacity of CPU i, typically it is the
6910 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6911 * can also include other factors [XXX].
6913 * To achieve this balance we define a measure of imbalance which follows
6914 * directly from (1):
6916 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6918 * We them move tasks around to minimize the imbalance. In the continuous
6919 * function space it is obvious this converges, in the discrete case we get
6920 * a few fun cases generally called infeasible weight scenarios.
6923 * - infeasible weights;
6924 * - local vs global optima in the discrete case. ]
6929 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6930 * for all i,j solution, we create a tree of CPUs that follows the hardware
6931 * topology where each level pairs two lower groups (or better). This results
6932 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6933 * tree to only the first of the previous level and we decrease the frequency
6934 * of load-balance at each level inv. proportional to the number of CPUs in
6940 * \Sum { --- * --- * 2^i } = O(n) (5)
6942 * `- size of each group
6943 * | | `- number of CPUs doing load-balance
6945 * `- sum over all levels
6947 * Coupled with a limit on how many tasks we can migrate every balance pass,
6948 * this makes (5) the runtime complexity of the balancer.
6950 * An important property here is that each CPU is still (indirectly) connected
6951 * to every other CPU in at most O(log n) steps:
6953 * The adjacency matrix of the resulting graph is given by:
6956 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6959 * And you'll find that:
6961 * A^(log_2 n)_i,j != 0 for all i,j (7)
6963 * Showing there's indeed a path between every CPU in at most O(log n) steps.
6964 * The task movement gives a factor of O(m), giving a convergence complexity
6967 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6972 * In order to avoid CPUs going idle while there's still work to do, new idle
6973 * balancing is more aggressive and has the newly idle CPU iterate up the domain
6974 * tree itself instead of relying on other CPUs to bring it work.
6976 * This adds some complexity to both (5) and (8) but it reduces the total idle
6984 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6987 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6992 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6994 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6996 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6999 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7000 * rewrite all of this once again.]
7003 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
7005 enum fbq_type
{ regular
, remote
, all
};
7008 * 'group_type' describes the group of CPUs at the moment of load balancing.
7010 * The enum is ordered by pulling priority, with the group with lowest priority
7011 * first so the group_type can simply be compared when selecting the busiest
7012 * group. See update_sd_pick_busiest().
7015 /* The group has spare capacity that can be used to run more tasks. */
7016 group_has_spare
= 0,
7018 * The group is fully used and the tasks don't compete for more CPU
7019 * cycles. Nevertheless, some tasks might wait before running.
7023 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7024 * and must be migrated to a more powerful CPU.
7028 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7029 * and the task should be migrated to it instead of running on the
7034 * The tasks' affinity constraints previously prevented the scheduler
7035 * from balancing the load across the system.
7039 * The CPU is overloaded and can't provide expected CPU cycles to all
7045 enum migration_type
{
7052 #define LBF_ALL_PINNED 0x01
7053 #define LBF_NEED_BREAK 0x02
7054 #define LBF_DST_PINNED 0x04
7055 #define LBF_SOME_PINNED 0x08
7056 #define LBF_NOHZ_STATS 0x10
7057 #define LBF_NOHZ_AGAIN 0x20
7060 struct sched_domain
*sd
;
7068 struct cpumask
*dst_grpmask
;
7070 enum cpu_idle_type idle
;
7072 /* The set of CPUs under consideration for load-balancing */
7073 struct cpumask
*cpus
;
7078 unsigned int loop_break
;
7079 unsigned int loop_max
;
7081 enum fbq_type fbq_type
;
7082 enum migration_type migration_type
;
7083 struct list_head tasks
;
7087 * Is this task likely cache-hot:
7089 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
7093 lockdep_assert_held(&env
->src_rq
->lock
);
7095 if (p
->sched_class
!= &fair_sched_class
)
7098 if (unlikely(task_has_idle_policy(p
)))
7102 * Buddy candidates are cache hot:
7104 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
7105 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
7106 &p
->se
== cfs_rq_of(&p
->se
)->last
))
7109 if (sysctl_sched_migration_cost
== -1)
7111 if (sysctl_sched_migration_cost
== 0)
7114 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
7116 return delta
< (s64
)sysctl_sched_migration_cost
;
7119 #ifdef CONFIG_NUMA_BALANCING
7121 * Returns 1, if task migration degrades locality
7122 * Returns 0, if task migration improves locality i.e migration preferred.
7123 * Returns -1, if task migration is not affected by locality.
7125 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
7127 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
7128 unsigned long src_weight
, dst_weight
;
7129 int src_nid
, dst_nid
, dist
;
7131 if (!static_branch_likely(&sched_numa_balancing
))
7134 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
7137 src_nid
= cpu_to_node(env
->src_cpu
);
7138 dst_nid
= cpu_to_node(env
->dst_cpu
);
7140 if (src_nid
== dst_nid
)
7143 /* Migrating away from the preferred node is always bad. */
7144 if (src_nid
== p
->numa_preferred_nid
) {
7145 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
7151 /* Encourage migration to the preferred node. */
7152 if (dst_nid
== p
->numa_preferred_nid
)
7155 /* Leaving a core idle is often worse than degrading locality. */
7156 if (env
->idle
== CPU_IDLE
)
7159 dist
= node_distance(src_nid
, dst_nid
);
7161 src_weight
= group_weight(p
, src_nid
, dist
);
7162 dst_weight
= group_weight(p
, dst_nid
, dist
);
7164 src_weight
= task_weight(p
, src_nid
, dist
);
7165 dst_weight
= task_weight(p
, dst_nid
, dist
);
7168 return dst_weight
< src_weight
;
7172 static inline int migrate_degrades_locality(struct task_struct
*p
,
7180 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7183 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
7187 lockdep_assert_held(&env
->src_rq
->lock
);
7190 * We do not migrate tasks that are:
7191 * 1) throttled_lb_pair, or
7192 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7193 * 3) running (obviously), or
7194 * 4) are cache-hot on their current CPU.
7196 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
7199 if (!cpumask_test_cpu(env
->dst_cpu
, p
->cpus_ptr
)) {
7202 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
7204 env
->flags
|= LBF_SOME_PINNED
;
7207 * Remember if this task can be migrated to any other CPU in
7208 * our sched_group. We may want to revisit it if we couldn't
7209 * meet load balance goals by pulling other tasks on src_cpu.
7211 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7212 * already computed one in current iteration.
7214 if (env
->idle
== CPU_NEWLY_IDLE
|| (env
->flags
& LBF_DST_PINNED
))
7217 /* Prevent to re-select dst_cpu via env's CPUs: */
7218 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
7219 if (cpumask_test_cpu(cpu
, p
->cpus_ptr
)) {
7220 env
->flags
|= LBF_DST_PINNED
;
7221 env
->new_dst_cpu
= cpu
;
7229 /* Record that we found atleast one task that could run on dst_cpu */
7230 env
->flags
&= ~LBF_ALL_PINNED
;
7232 if (task_running(env
->src_rq
, p
)) {
7233 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
7238 * Aggressive migration if:
7239 * 1) destination numa is preferred
7240 * 2) task is cache cold, or
7241 * 3) too many balance attempts have failed.
7243 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
7244 if (tsk_cache_hot
== -1)
7245 tsk_cache_hot
= task_hot(p
, env
);
7247 if (tsk_cache_hot
<= 0 ||
7248 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
7249 if (tsk_cache_hot
== 1) {
7250 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
7251 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
7256 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
7261 * detach_task() -- detach the task for the migration specified in env
7263 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
7265 lockdep_assert_held(&env
->src_rq
->lock
);
7267 deactivate_task(env
->src_rq
, p
, DEQUEUE_NOCLOCK
);
7268 set_task_cpu(p
, env
->dst_cpu
);
7272 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7273 * part of active balancing operations within "domain".
7275 * Returns a task if successful and NULL otherwise.
7277 static struct task_struct
*detach_one_task(struct lb_env
*env
)
7279 struct task_struct
*p
;
7281 lockdep_assert_held(&env
->src_rq
->lock
);
7283 list_for_each_entry_reverse(p
,
7284 &env
->src_rq
->cfs_tasks
, se
.group_node
) {
7285 if (!can_migrate_task(p
, env
))
7288 detach_task(p
, env
);
7291 * Right now, this is only the second place where
7292 * lb_gained[env->idle] is updated (other is detach_tasks)
7293 * so we can safely collect stats here rather than
7294 * inside detach_tasks().
7296 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
7302 static const unsigned int sched_nr_migrate_break
= 32;
7305 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7306 * busiest_rq, as part of a balancing operation within domain "sd".
7308 * Returns number of detached tasks if successful and 0 otherwise.
7310 static int detach_tasks(struct lb_env
*env
)
7312 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
7313 unsigned long util
, load
;
7314 struct task_struct
*p
;
7317 lockdep_assert_held(&env
->src_rq
->lock
);
7319 if (env
->imbalance
<= 0)
7322 while (!list_empty(tasks
)) {
7324 * We don't want to steal all, otherwise we may be treated likewise,
7325 * which could at worst lead to a livelock crash.
7327 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
7330 p
= list_last_entry(tasks
, struct task_struct
, se
.group_node
);
7333 /* We've more or less seen every task there is, call it quits */
7334 if (env
->loop
> env
->loop_max
)
7337 /* take a breather every nr_migrate tasks */
7338 if (env
->loop
> env
->loop_break
) {
7339 env
->loop_break
+= sched_nr_migrate_break
;
7340 env
->flags
|= LBF_NEED_BREAK
;
7344 if (!can_migrate_task(p
, env
))
7347 switch (env
->migration_type
) {
7349 load
= task_h_load(p
);
7351 if (sched_feat(LB_MIN
) &&
7352 load
< 16 && !env
->sd
->nr_balance_failed
)
7356 * Make sure that we don't migrate too much load.
7357 * Nevertheless, let relax the constraint if
7358 * scheduler fails to find a good waiting task to
7361 if (load
/2 > env
->imbalance
&&
7362 env
->sd
->nr_balance_failed
<= env
->sd
->cache_nice_tries
)
7365 env
->imbalance
-= load
;
7369 util
= task_util_est(p
);
7371 if (util
> env
->imbalance
)
7374 env
->imbalance
-= util
;
7381 case migrate_misfit
:
7382 /* This is not a misfit task */
7383 if (task_fits_capacity(p
, capacity_of(env
->src_cpu
)))
7390 detach_task(p
, env
);
7391 list_add(&p
->se
.group_node
, &env
->tasks
);
7395 #ifdef CONFIG_PREEMPTION
7397 * NEWIDLE balancing is a source of latency, so preemptible
7398 * kernels will stop after the first task is detached to minimize
7399 * the critical section.
7401 if (env
->idle
== CPU_NEWLY_IDLE
)
7406 * We only want to steal up to the prescribed amount of
7409 if (env
->imbalance
<= 0)
7414 list_move(&p
->se
.group_node
, tasks
);
7418 * Right now, this is one of only two places we collect this stat
7419 * so we can safely collect detach_one_task() stats here rather
7420 * than inside detach_one_task().
7422 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
7428 * attach_task() -- attach the task detached by detach_task() to its new rq.
7430 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
7432 lockdep_assert_held(&rq
->lock
);
7434 BUG_ON(task_rq(p
) != rq
);
7435 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
7436 check_preempt_curr(rq
, p
, 0);
7440 * attach_one_task() -- attaches the task returned from detach_one_task() to
7443 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
7448 update_rq_clock(rq
);
7454 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7457 static void attach_tasks(struct lb_env
*env
)
7459 struct list_head
*tasks
= &env
->tasks
;
7460 struct task_struct
*p
;
7463 rq_lock(env
->dst_rq
, &rf
);
7464 update_rq_clock(env
->dst_rq
);
7466 while (!list_empty(tasks
)) {
7467 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
7468 list_del_init(&p
->se
.group_node
);
7470 attach_task(env
->dst_rq
, p
);
7473 rq_unlock(env
->dst_rq
, &rf
);
7476 #ifdef CONFIG_NO_HZ_COMMON
7477 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
)
7479 if (cfs_rq
->avg
.load_avg
)
7482 if (cfs_rq
->avg
.util_avg
)
7488 static inline bool others_have_blocked(struct rq
*rq
)
7490 if (READ_ONCE(rq
->avg_rt
.util_avg
))
7493 if (READ_ONCE(rq
->avg_dl
.util_avg
))
7496 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7497 if (READ_ONCE(rq
->avg_irq
.util_avg
))
7504 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
)
7506 rq
->last_blocked_load_update_tick
= jiffies
;
7509 rq
->has_blocked_load
= 0;
7512 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
) { return false; }
7513 static inline bool others_have_blocked(struct rq
*rq
) { return false; }
7514 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
) {}
7517 static bool __update_blocked_others(struct rq
*rq
, bool *done
)
7519 const struct sched_class
*curr_class
;
7520 u64 now
= rq_clock_pelt(rq
);
7524 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7525 * DL and IRQ signals have been updated before updating CFS.
7527 curr_class
= rq
->curr
->sched_class
;
7529 decayed
= update_rt_rq_load_avg(now
, rq
, curr_class
== &rt_sched_class
) |
7530 update_dl_rq_load_avg(now
, rq
, curr_class
== &dl_sched_class
) |
7531 update_irq_load_avg(rq
, 0);
7533 if (others_have_blocked(rq
))
7539 #ifdef CONFIG_FAIR_GROUP_SCHED
7541 static inline bool cfs_rq_is_decayed(struct cfs_rq
*cfs_rq
)
7543 if (cfs_rq
->load
.weight
)
7546 if (cfs_rq
->avg
.load_sum
)
7549 if (cfs_rq
->avg
.util_sum
)
7552 if (cfs_rq
->avg
.runnable_load_sum
)
7558 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
7560 struct cfs_rq
*cfs_rq
, *pos
;
7561 bool decayed
= false;
7562 int cpu
= cpu_of(rq
);
7565 * Iterates the task_group tree in a bottom up fashion, see
7566 * list_add_leaf_cfs_rq() for details.
7568 for_each_leaf_cfs_rq_safe(rq
, cfs_rq
, pos
) {
7569 struct sched_entity
*se
;
7571 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
)) {
7572 update_tg_load_avg(cfs_rq
, 0);
7574 if (cfs_rq
== &rq
->cfs
)
7578 /* Propagate pending load changes to the parent, if any: */
7579 se
= cfs_rq
->tg
->se
[cpu
];
7580 if (se
&& !skip_blocked_update(se
))
7581 update_load_avg(cfs_rq_of(se
), se
, 0);
7584 * There can be a lot of idle CPU cgroups. Don't let fully
7585 * decayed cfs_rqs linger on the list.
7587 if (cfs_rq_is_decayed(cfs_rq
))
7588 list_del_leaf_cfs_rq(cfs_rq
);
7590 /* Don't need periodic decay once load/util_avg are null */
7591 if (cfs_rq_has_blocked(cfs_rq
))
7599 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7600 * This needs to be done in a top-down fashion because the load of a child
7601 * group is a fraction of its parents load.
7603 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
7605 struct rq
*rq
= rq_of(cfs_rq
);
7606 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
7607 unsigned long now
= jiffies
;
7610 if (cfs_rq
->last_h_load_update
== now
)
7613 WRITE_ONCE(cfs_rq
->h_load_next
, NULL
);
7614 for_each_sched_entity(se
) {
7615 cfs_rq
= cfs_rq_of(se
);
7616 WRITE_ONCE(cfs_rq
->h_load_next
, se
);
7617 if (cfs_rq
->last_h_load_update
== now
)
7622 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
7623 cfs_rq
->last_h_load_update
= now
;
7626 while ((se
= READ_ONCE(cfs_rq
->h_load_next
)) != NULL
) {
7627 load
= cfs_rq
->h_load
;
7628 load
= div64_ul(load
* se
->avg
.load_avg
,
7629 cfs_rq_load_avg(cfs_rq
) + 1);
7630 cfs_rq
= group_cfs_rq(se
);
7631 cfs_rq
->h_load
= load
;
7632 cfs_rq
->last_h_load_update
= now
;
7636 static unsigned long task_h_load(struct task_struct
*p
)
7638 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
7640 update_cfs_rq_h_load(cfs_rq
);
7641 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
7642 cfs_rq_load_avg(cfs_rq
) + 1);
7645 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
7647 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
7650 decayed
= update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
);
7651 if (cfs_rq_has_blocked(cfs_rq
))
7657 static unsigned long task_h_load(struct task_struct
*p
)
7659 return p
->se
.avg
.load_avg
;
7663 static void update_blocked_averages(int cpu
)
7665 bool decayed
= false, done
= true;
7666 struct rq
*rq
= cpu_rq(cpu
);
7669 rq_lock_irqsave(rq
, &rf
);
7670 update_rq_clock(rq
);
7672 decayed
|= __update_blocked_others(rq
, &done
);
7673 decayed
|= __update_blocked_fair(rq
, &done
);
7675 update_blocked_load_status(rq
, !done
);
7677 cpufreq_update_util(rq
, 0);
7678 rq_unlock_irqrestore(rq
, &rf
);
7681 /********** Helpers for find_busiest_group ************************/
7684 * sg_lb_stats - stats of a sched_group required for load_balancing
7686 struct sg_lb_stats
{
7687 unsigned long avg_load
; /*Avg load across the CPUs of the group */
7688 unsigned long group_load
; /* Total load over the CPUs of the group */
7689 unsigned long group_capacity
;
7690 unsigned long group_util
; /* Total utilization of the group */
7691 unsigned int sum_nr_running
; /* Nr of tasks running in the group */
7692 unsigned int sum_h_nr_running
; /* Nr of CFS tasks running in the group */
7693 unsigned int idle_cpus
;
7694 unsigned int group_weight
;
7695 enum group_type group_type
;
7696 unsigned int group_asym_packing
; /* Tasks should be moved to preferred CPU */
7697 unsigned long group_misfit_task_load
; /* A CPU has a task too big for its capacity */
7698 #ifdef CONFIG_NUMA_BALANCING
7699 unsigned int nr_numa_running
;
7700 unsigned int nr_preferred_running
;
7705 * sd_lb_stats - Structure to store the statistics of a sched_domain
7706 * during load balancing.
7708 struct sd_lb_stats
{
7709 struct sched_group
*busiest
; /* Busiest group in this sd */
7710 struct sched_group
*local
; /* Local group in this sd */
7711 unsigned long total_load
; /* Total load of all groups in sd */
7712 unsigned long total_capacity
; /* Total capacity of all groups in sd */
7713 unsigned long avg_load
; /* Average load across all groups in sd */
7714 unsigned int prefer_sibling
; /* tasks should go to sibling first */
7716 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
7717 struct sg_lb_stats local_stat
; /* Statistics of the local group */
7720 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
7723 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7724 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7725 * We must however set busiest_stat::group_type and
7726 * busiest_stat::idle_cpus to the worst busiest group because
7727 * update_sd_pick_busiest() reads these before assignment.
7729 *sds
= (struct sd_lb_stats
){
7733 .total_capacity
= 0UL,
7735 .idle_cpus
= UINT_MAX
,
7736 .group_type
= group_has_spare
,
7741 static unsigned long scale_rt_capacity(struct sched_domain
*sd
, int cpu
)
7743 struct rq
*rq
= cpu_rq(cpu
);
7744 unsigned long max
= arch_scale_cpu_capacity(cpu
);
7745 unsigned long used
, free
;
7748 irq
= cpu_util_irq(rq
);
7750 if (unlikely(irq
>= max
))
7753 used
= READ_ONCE(rq
->avg_rt
.util_avg
);
7754 used
+= READ_ONCE(rq
->avg_dl
.util_avg
);
7756 if (unlikely(used
>= max
))
7761 return scale_irq_capacity(free
, irq
, max
);
7764 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
7766 unsigned long capacity
= scale_rt_capacity(sd
, cpu
);
7767 struct sched_group
*sdg
= sd
->groups
;
7769 cpu_rq(cpu
)->cpu_capacity_orig
= arch_scale_cpu_capacity(cpu
);
7774 cpu_rq(cpu
)->cpu_capacity
= capacity
;
7775 sdg
->sgc
->capacity
= capacity
;
7776 sdg
->sgc
->min_capacity
= capacity
;
7777 sdg
->sgc
->max_capacity
= capacity
;
7780 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
7782 struct sched_domain
*child
= sd
->child
;
7783 struct sched_group
*group
, *sdg
= sd
->groups
;
7784 unsigned long capacity
, min_capacity
, max_capacity
;
7785 unsigned long interval
;
7787 interval
= msecs_to_jiffies(sd
->balance_interval
);
7788 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
7789 sdg
->sgc
->next_update
= jiffies
+ interval
;
7792 update_cpu_capacity(sd
, cpu
);
7797 min_capacity
= ULONG_MAX
;
7800 if (child
->flags
& SD_OVERLAP
) {
7802 * SD_OVERLAP domains cannot assume that child groups
7803 * span the current group.
7806 for_each_cpu(cpu
, sched_group_span(sdg
)) {
7807 unsigned long cpu_cap
= capacity_of(cpu
);
7809 capacity
+= cpu_cap
;
7810 min_capacity
= min(cpu_cap
, min_capacity
);
7811 max_capacity
= max(cpu_cap
, max_capacity
);
7815 * !SD_OVERLAP domains can assume that child groups
7816 * span the current group.
7819 group
= child
->groups
;
7821 struct sched_group_capacity
*sgc
= group
->sgc
;
7823 capacity
+= sgc
->capacity
;
7824 min_capacity
= min(sgc
->min_capacity
, min_capacity
);
7825 max_capacity
= max(sgc
->max_capacity
, max_capacity
);
7826 group
= group
->next
;
7827 } while (group
!= child
->groups
);
7830 sdg
->sgc
->capacity
= capacity
;
7831 sdg
->sgc
->min_capacity
= min_capacity
;
7832 sdg
->sgc
->max_capacity
= max_capacity
;
7836 * Check whether the capacity of the rq has been noticeably reduced by side
7837 * activity. The imbalance_pct is used for the threshold.
7838 * Return true is the capacity is reduced
7841 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
7843 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
7844 (rq
->cpu_capacity_orig
* 100));
7848 * Check whether a rq has a misfit task and if it looks like we can actually
7849 * help that task: we can migrate the task to a CPU of higher capacity, or
7850 * the task's current CPU is heavily pressured.
7852 static inline int check_misfit_status(struct rq
*rq
, struct sched_domain
*sd
)
7854 return rq
->misfit_task_load
&&
7855 (rq
->cpu_capacity_orig
< rq
->rd
->max_cpu_capacity
||
7856 check_cpu_capacity(rq
, sd
));
7860 * Group imbalance indicates (and tries to solve) the problem where balancing
7861 * groups is inadequate due to ->cpus_ptr constraints.
7863 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7864 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7867 * { 0 1 2 3 } { 4 5 6 7 }
7870 * If we were to balance group-wise we'd place two tasks in the first group and
7871 * two tasks in the second group. Clearly this is undesired as it will overload
7872 * cpu 3 and leave one of the CPUs in the second group unused.
7874 * The current solution to this issue is detecting the skew in the first group
7875 * by noticing the lower domain failed to reach balance and had difficulty
7876 * moving tasks due to affinity constraints.
7878 * When this is so detected; this group becomes a candidate for busiest; see
7879 * update_sd_pick_busiest(). And calculate_imbalance() and
7880 * find_busiest_group() avoid some of the usual balance conditions to allow it
7881 * to create an effective group imbalance.
7883 * This is a somewhat tricky proposition since the next run might not find the
7884 * group imbalance and decide the groups need to be balanced again. A most
7885 * subtle and fragile situation.
7888 static inline int sg_imbalanced(struct sched_group
*group
)
7890 return group
->sgc
->imbalance
;
7894 * group_has_capacity returns true if the group has spare capacity that could
7895 * be used by some tasks.
7896 * We consider that a group has spare capacity if the * number of task is
7897 * smaller than the number of CPUs or if the utilization is lower than the
7898 * available capacity for CFS tasks.
7899 * For the latter, we use a threshold to stabilize the state, to take into
7900 * account the variance of the tasks' load and to return true if the available
7901 * capacity in meaningful for the load balancer.
7902 * As an example, an available capacity of 1% can appear but it doesn't make
7903 * any benefit for the load balance.
7906 group_has_capacity(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
7908 if (sgs
->sum_nr_running
< sgs
->group_weight
)
7911 if ((sgs
->group_capacity
* 100) >
7912 (sgs
->group_util
* imbalance_pct
))
7919 * group_is_overloaded returns true if the group has more tasks than it can
7921 * group_is_overloaded is not equals to !group_has_capacity because a group
7922 * with the exact right number of tasks, has no more spare capacity but is not
7923 * overloaded so both group_has_capacity and group_is_overloaded return
7927 group_is_overloaded(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
7929 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
7932 if ((sgs
->group_capacity
* 100) <
7933 (sgs
->group_util
* imbalance_pct
))
7940 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7941 * per-CPU capacity than sched_group ref.
7944 group_smaller_min_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
7946 return fits_capacity(sg
->sgc
->min_capacity
, ref
->sgc
->min_capacity
);
7950 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7951 * per-CPU capacity_orig than sched_group ref.
7954 group_smaller_max_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
7956 return fits_capacity(sg
->sgc
->max_capacity
, ref
->sgc
->max_capacity
);
7960 group_type
group_classify(unsigned int imbalance_pct
,
7961 struct sched_group
*group
,
7962 struct sg_lb_stats
*sgs
)
7964 if (group_is_overloaded(imbalance_pct
, sgs
))
7965 return group_overloaded
;
7967 if (sg_imbalanced(group
))
7968 return group_imbalanced
;
7970 if (sgs
->group_asym_packing
)
7971 return group_asym_packing
;
7973 if (sgs
->group_misfit_task_load
)
7974 return group_misfit_task
;
7976 if (!group_has_capacity(imbalance_pct
, sgs
))
7977 return group_fully_busy
;
7979 return group_has_spare
;
7982 static bool update_nohz_stats(struct rq
*rq
, bool force
)
7984 #ifdef CONFIG_NO_HZ_COMMON
7985 unsigned int cpu
= rq
->cpu
;
7987 if (!rq
->has_blocked_load
)
7990 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
7993 if (!force
&& !time_after(jiffies
, rq
->last_blocked_load_update_tick
))
7996 update_blocked_averages(cpu
);
7998 return rq
->has_blocked_load
;
8005 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8006 * @env: The load balancing environment.
8007 * @group: sched_group whose statistics are to be updated.
8008 * @sgs: variable to hold the statistics for this group.
8009 * @sg_status: Holds flag indicating the status of the sched_group
8011 static inline void update_sg_lb_stats(struct lb_env
*env
,
8012 struct sched_group
*group
,
8013 struct sg_lb_stats
*sgs
,
8016 int i
, nr_running
, local_group
;
8018 memset(sgs
, 0, sizeof(*sgs
));
8020 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(group
));
8022 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
8023 struct rq
*rq
= cpu_rq(i
);
8025 if ((env
->flags
& LBF_NOHZ_STATS
) && update_nohz_stats(rq
, false))
8026 env
->flags
|= LBF_NOHZ_AGAIN
;
8028 sgs
->group_load
+= cpu_load(rq
);
8029 sgs
->group_util
+= cpu_util(i
);
8030 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
;
8032 nr_running
= rq
->nr_running
;
8033 sgs
->sum_nr_running
+= nr_running
;
8036 *sg_status
|= SG_OVERLOAD
;
8038 if (cpu_overutilized(i
))
8039 *sg_status
|= SG_OVERUTILIZED
;
8041 #ifdef CONFIG_NUMA_BALANCING
8042 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
8043 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
8046 * No need to call idle_cpu() if nr_running is not 0
8048 if (!nr_running
&& idle_cpu(i
)) {
8050 /* Idle cpu can't have misfit task */
8057 /* Check for a misfit task on the cpu */
8058 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8059 sgs
->group_misfit_task_load
< rq
->misfit_task_load
) {
8060 sgs
->group_misfit_task_load
= rq
->misfit_task_load
;
8061 *sg_status
|= SG_OVERLOAD
;
8065 /* Check if dst CPU is idle and preferred to this group */
8066 if (env
->sd
->flags
& SD_ASYM_PACKING
&&
8067 env
->idle
!= CPU_NOT_IDLE
&&
8068 sgs
->sum_h_nr_running
&&
8069 sched_asym_prefer(env
->dst_cpu
, group
->asym_prefer_cpu
)) {
8070 sgs
->group_asym_packing
= 1;
8073 sgs
->group_capacity
= group
->sgc
->capacity
;
8075 sgs
->group_weight
= group
->group_weight
;
8077 sgs
->group_type
= group_classify(env
->sd
->imbalance_pct
, group
, sgs
);
8079 /* Computing avg_load makes sense only when group is overloaded */
8080 if (sgs
->group_type
== group_overloaded
)
8081 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8082 sgs
->group_capacity
;
8086 * update_sd_pick_busiest - return 1 on busiest group
8087 * @env: The load balancing environment.
8088 * @sds: sched_domain statistics
8089 * @sg: sched_group candidate to be checked for being the busiest
8090 * @sgs: sched_group statistics
8092 * Determine if @sg is a busier group than the previously selected
8095 * Return: %true if @sg is a busier group than the previously selected
8096 * busiest group. %false otherwise.
8098 static bool update_sd_pick_busiest(struct lb_env
*env
,
8099 struct sd_lb_stats
*sds
,
8100 struct sched_group
*sg
,
8101 struct sg_lb_stats
*sgs
)
8103 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
8105 /* Make sure that there is at least one task to pull */
8106 if (!sgs
->sum_h_nr_running
)
8110 * Don't try to pull misfit tasks we can't help.
8111 * We can use max_capacity here as reduction in capacity on some
8112 * CPUs in the group should either be possible to resolve
8113 * internally or be covered by avg_load imbalance (eventually).
8115 if (sgs
->group_type
== group_misfit_task
&&
8116 (!group_smaller_max_cpu_capacity(sg
, sds
->local
) ||
8117 sds
->local_stat
.group_type
!= group_has_spare
))
8120 if (sgs
->group_type
> busiest
->group_type
)
8123 if (sgs
->group_type
< busiest
->group_type
)
8127 * The candidate and the current busiest group are the same type of
8128 * group. Let check which one is the busiest according to the type.
8131 switch (sgs
->group_type
) {
8132 case group_overloaded
:
8133 /* Select the overloaded group with highest avg_load. */
8134 if (sgs
->avg_load
<= busiest
->avg_load
)
8138 case group_imbalanced
:
8140 * Select the 1st imbalanced group as we don't have any way to
8141 * choose one more than another.
8145 case group_asym_packing
:
8146 /* Prefer to move from lowest priority CPU's work */
8147 if (sched_asym_prefer(sg
->asym_prefer_cpu
, sds
->busiest
->asym_prefer_cpu
))
8151 case group_misfit_task
:
8153 * If we have more than one misfit sg go with the biggest
8156 if (sgs
->group_misfit_task_load
< busiest
->group_misfit_task_load
)
8160 case group_fully_busy
:
8162 * Select the fully busy group with highest avg_load. In
8163 * theory, there is no need to pull task from such kind of
8164 * group because tasks have all compute capacity that they need
8165 * but we can still improve the overall throughput by reducing
8166 * contention when accessing shared HW resources.
8168 * XXX for now avg_load is not computed and always 0 so we
8169 * select the 1st one.
8171 if (sgs
->avg_load
<= busiest
->avg_load
)
8175 case group_has_spare
:
8177 * Select not overloaded group with lowest number of idle cpus
8178 * and highest number of running tasks. We could also compare
8179 * the spare capacity which is more stable but it can end up
8180 * that the group has less spare capacity but finally more idle
8181 * CPUs which means less opportunity to pull tasks.
8183 if (sgs
->idle_cpus
> busiest
->idle_cpus
)
8185 else if ((sgs
->idle_cpus
== busiest
->idle_cpus
) &&
8186 (sgs
->sum_nr_running
<= busiest
->sum_nr_running
))
8193 * Candidate sg has no more than one task per CPU and has higher
8194 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8195 * throughput. Maximize throughput, power/energy consequences are not
8198 if ((env
->sd
->flags
& SD_ASYM_CPUCAPACITY
) &&
8199 (sgs
->group_type
<= group_fully_busy
) &&
8200 (group_smaller_min_cpu_capacity(sds
->local
, sg
)))
8206 #ifdef CONFIG_NUMA_BALANCING
8207 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8209 if (sgs
->sum_h_nr_running
> sgs
->nr_numa_running
)
8211 if (sgs
->sum_h_nr_running
> sgs
->nr_preferred_running
)
8216 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8218 if (rq
->nr_running
> rq
->nr_numa_running
)
8220 if (rq
->nr_running
> rq
->nr_preferred_running
)
8225 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8230 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8234 #endif /* CONFIG_NUMA_BALANCING */
8240 * task_running_on_cpu - return 1 if @p is running on @cpu.
8243 static unsigned int task_running_on_cpu(int cpu
, struct task_struct
*p
)
8245 /* Task has no contribution or is new */
8246 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
8249 if (task_on_rq_queued(p
))
8256 * idle_cpu_without - would a given CPU be idle without p ?
8257 * @cpu: the processor on which idleness is tested.
8258 * @p: task which should be ignored.
8260 * Return: 1 if the CPU would be idle. 0 otherwise.
8262 static int idle_cpu_without(int cpu
, struct task_struct
*p
)
8264 struct rq
*rq
= cpu_rq(cpu
);
8266 if (rq
->curr
!= rq
->idle
&& rq
->curr
!= p
)
8270 * rq->nr_running can't be used but an updated version without the
8271 * impact of p on cpu must be used instead. The updated nr_running
8272 * be computed and tested before calling idle_cpu_without().
8276 if (!llist_empty(&rq
->wake_list
))
8284 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8285 * @sd: The sched_domain level to look for idlest group.
8286 * @group: sched_group whose statistics are to be updated.
8287 * @sgs: variable to hold the statistics for this group.
8288 * @p: The task for which we look for the idlest group/CPU.
8290 static inline void update_sg_wakeup_stats(struct sched_domain
*sd
,
8291 struct sched_group
*group
,
8292 struct sg_lb_stats
*sgs
,
8293 struct task_struct
*p
)
8297 memset(sgs
, 0, sizeof(*sgs
));
8299 for_each_cpu(i
, sched_group_span(group
)) {
8300 struct rq
*rq
= cpu_rq(i
);
8303 sgs
->group_load
+= cpu_load_without(rq
, p
);
8304 sgs
->group_util
+= cpu_util_without(i
, p
);
8305 local
= task_running_on_cpu(i
, p
);
8306 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
- local
;
8308 nr_running
= rq
->nr_running
- local
;
8309 sgs
->sum_nr_running
+= nr_running
;
8312 * No need to call idle_cpu_without() if nr_running is not 0
8314 if (!nr_running
&& idle_cpu_without(i
, p
))
8319 /* Check if task fits in the group */
8320 if (sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8321 !task_fits_capacity(p
, group
->sgc
->max_capacity
)) {
8322 sgs
->group_misfit_task_load
= 1;
8325 sgs
->group_capacity
= group
->sgc
->capacity
;
8327 sgs
->group_type
= group_classify(sd
->imbalance_pct
, group
, sgs
);
8330 * Computing avg_load makes sense only when group is fully busy or
8333 if (sgs
->group_type
< group_fully_busy
)
8334 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8335 sgs
->group_capacity
;
8338 static bool update_pick_idlest(struct sched_group
*idlest
,
8339 struct sg_lb_stats
*idlest_sgs
,
8340 struct sched_group
*group
,
8341 struct sg_lb_stats
*sgs
)
8343 if (sgs
->group_type
< idlest_sgs
->group_type
)
8346 if (sgs
->group_type
> idlest_sgs
->group_type
)
8350 * The candidate and the current idlest group are the same type of
8351 * group. Let check which one is the idlest according to the type.
8354 switch (sgs
->group_type
) {
8355 case group_overloaded
:
8356 case group_fully_busy
:
8357 /* Select the group with lowest avg_load. */
8358 if (idlest_sgs
->avg_load
<= sgs
->avg_load
)
8362 case group_imbalanced
:
8363 case group_asym_packing
:
8364 /* Those types are not used in the slow wakeup path */
8367 case group_misfit_task
:
8368 /* Select group with the highest max capacity */
8369 if (idlest
->sgc
->max_capacity
>= group
->sgc
->max_capacity
)
8373 case group_has_spare
:
8374 /* Select group with most idle CPUs */
8375 if (idlest_sgs
->idle_cpus
>= sgs
->idle_cpus
)
8384 * find_idlest_group() finds and returns the least busy CPU group within the
8387 * Assumes p is allowed on at least one CPU in sd.
8389 static struct sched_group
*
8390 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
8391 int this_cpu
, int sd_flag
)
8393 struct sched_group
*idlest
= NULL
, *local
= NULL
, *group
= sd
->groups
;
8394 struct sg_lb_stats local_sgs
, tmp_sgs
;
8395 struct sg_lb_stats
*sgs
;
8396 unsigned long imbalance
;
8397 struct sg_lb_stats idlest_sgs
= {
8398 .avg_load
= UINT_MAX
,
8399 .group_type
= group_overloaded
,
8402 imbalance
= scale_load_down(NICE_0_LOAD
) *
8403 (sd
->imbalance_pct
-100) / 100;
8408 /* Skip over this group if it has no CPUs allowed */
8409 if (!cpumask_intersects(sched_group_span(group
),
8413 local_group
= cpumask_test_cpu(this_cpu
,
8414 sched_group_span(group
));
8423 update_sg_wakeup_stats(sd
, group
, sgs
, p
);
8425 if (!local_group
&& update_pick_idlest(idlest
, &idlest_sgs
, group
, sgs
)) {
8430 } while (group
= group
->next
, group
!= sd
->groups
);
8433 /* There is no idlest group to push tasks to */
8437 /* The local group has been skipped because of CPU affinity */
8442 * If the local group is idler than the selected idlest group
8443 * don't try and push the task.
8445 if (local_sgs
.group_type
< idlest_sgs
.group_type
)
8449 * If the local group is busier than the selected idlest group
8450 * try and push the task.
8452 if (local_sgs
.group_type
> idlest_sgs
.group_type
)
8455 switch (local_sgs
.group_type
) {
8456 case group_overloaded
:
8457 case group_fully_busy
:
8459 * When comparing groups across NUMA domains, it's possible for
8460 * the local domain to be very lightly loaded relative to the
8461 * remote domains but "imbalance" skews the comparison making
8462 * remote CPUs look much more favourable. When considering
8463 * cross-domain, add imbalance to the load on the remote node
8464 * and consider staying local.
8467 if ((sd
->flags
& SD_NUMA
) &&
8468 ((idlest_sgs
.avg_load
+ imbalance
) >= local_sgs
.avg_load
))
8472 * If the local group is less loaded than the selected
8473 * idlest group don't try and push any tasks.
8475 if (idlest_sgs
.avg_load
>= (local_sgs
.avg_load
+ imbalance
))
8478 if (100 * local_sgs
.avg_load
<= sd
->imbalance_pct
* idlest_sgs
.avg_load
)
8482 case group_imbalanced
:
8483 case group_asym_packing
:
8484 /* Those type are not used in the slow wakeup path */
8487 case group_misfit_task
:
8488 /* Select group with the highest max capacity */
8489 if (local
->sgc
->max_capacity
>= idlest
->sgc
->max_capacity
)
8493 case group_has_spare
:
8494 if (sd
->flags
& SD_NUMA
) {
8495 #ifdef CONFIG_NUMA_BALANCING
8498 * If there is spare capacity at NUMA, try to select
8499 * the preferred node
8501 if (cpu_to_node(this_cpu
) == p
->numa_preferred_nid
)
8504 idlest_cpu
= cpumask_first(sched_group_span(idlest
));
8505 if (cpu_to_node(idlest_cpu
) == p
->numa_preferred_nid
)
8509 * Otherwise, keep the task on this node to stay close
8510 * its wakeup source and improve locality. If there is
8511 * a real need of migration, periodic load balance will
8514 if (local_sgs
.idle_cpus
)
8519 * Select group with highest number of idle CPUs. We could also
8520 * compare the utilization which is more stable but it can end
8521 * up that the group has less spare capacity but finally more
8522 * idle CPUs which means more opportunity to run task.
8524 if (local_sgs
.idle_cpus
>= idlest_sgs
.idle_cpus
)
8533 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8534 * @env: The load balancing environment.
8535 * @sds: variable to hold the statistics for this sched_domain.
8538 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8540 struct sched_domain
*child
= env
->sd
->child
;
8541 struct sched_group
*sg
= env
->sd
->groups
;
8542 struct sg_lb_stats
*local
= &sds
->local_stat
;
8543 struct sg_lb_stats tmp_sgs
;
8546 #ifdef CONFIG_NO_HZ_COMMON
8547 if (env
->idle
== CPU_NEWLY_IDLE
&& READ_ONCE(nohz
.has_blocked
))
8548 env
->flags
|= LBF_NOHZ_STATS
;
8552 struct sg_lb_stats
*sgs
= &tmp_sgs
;
8555 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(sg
));
8560 if (env
->idle
!= CPU_NEWLY_IDLE
||
8561 time_after_eq(jiffies
, sg
->sgc
->next_update
))
8562 update_group_capacity(env
->sd
, env
->dst_cpu
);
8565 update_sg_lb_stats(env
, sg
, sgs
, &sg_status
);
8571 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
8573 sds
->busiest_stat
= *sgs
;
8577 /* Now, start updating sd_lb_stats */
8578 sds
->total_load
+= sgs
->group_load
;
8579 sds
->total_capacity
+= sgs
->group_capacity
;
8582 } while (sg
!= env
->sd
->groups
);
8584 /* Tag domain that child domain prefers tasks go to siblings first */
8585 sds
->prefer_sibling
= child
&& child
->flags
& SD_PREFER_SIBLING
;
8587 #ifdef CONFIG_NO_HZ_COMMON
8588 if ((env
->flags
& LBF_NOHZ_AGAIN
) &&
8589 cpumask_subset(nohz
.idle_cpus_mask
, sched_domain_span(env
->sd
))) {
8591 WRITE_ONCE(nohz
.next_blocked
,
8592 jiffies
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
8596 if (env
->sd
->flags
& SD_NUMA
)
8597 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
8599 if (!env
->sd
->parent
) {
8600 struct root_domain
*rd
= env
->dst_rq
->rd
;
8602 /* update overload indicator if we are at root domain */
8603 WRITE_ONCE(rd
->overload
, sg_status
& SG_OVERLOAD
);
8605 /* Update over-utilization (tipping point, U >= 0) indicator */
8606 WRITE_ONCE(rd
->overutilized
, sg_status
& SG_OVERUTILIZED
);
8607 trace_sched_overutilized_tp(rd
, sg_status
& SG_OVERUTILIZED
);
8608 } else if (sg_status
& SG_OVERUTILIZED
) {
8609 struct root_domain
*rd
= env
->dst_rq
->rd
;
8611 WRITE_ONCE(rd
->overutilized
, SG_OVERUTILIZED
);
8612 trace_sched_overutilized_tp(rd
, SG_OVERUTILIZED
);
8617 * calculate_imbalance - Calculate the amount of imbalance present within the
8618 * groups of a given sched_domain during load balance.
8619 * @env: load balance environment
8620 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8622 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8624 struct sg_lb_stats
*local
, *busiest
;
8626 local
= &sds
->local_stat
;
8627 busiest
= &sds
->busiest_stat
;
8629 if (busiest
->group_type
== group_misfit_task
) {
8630 /* Set imbalance to allow misfit tasks to be balanced. */
8631 env
->migration_type
= migrate_misfit
;
8636 if (busiest
->group_type
== group_asym_packing
) {
8638 * In case of asym capacity, we will try to migrate all load to
8639 * the preferred CPU.
8641 env
->migration_type
= migrate_task
;
8642 env
->imbalance
= busiest
->sum_h_nr_running
;
8646 if (busiest
->group_type
== group_imbalanced
) {
8648 * In the group_imb case we cannot rely on group-wide averages
8649 * to ensure CPU-load equilibrium, try to move any task to fix
8650 * the imbalance. The next load balance will take care of
8651 * balancing back the system.
8653 env
->migration_type
= migrate_task
;
8659 * Try to use spare capacity of local group without overloading it or
8661 * XXX Spreading tasks across NUMA nodes is not always the best policy
8662 * and special care should be taken for SD_NUMA domain level before
8663 * spreading the tasks. For now, load_balance() fully relies on
8664 * NUMA_BALANCING and fbq_classify_group/rq to override the decision.
8666 if (local
->group_type
== group_has_spare
) {
8667 if (busiest
->group_type
> group_fully_busy
) {
8669 * If busiest is overloaded, try to fill spare
8670 * capacity. This might end up creating spare capacity
8671 * in busiest or busiest still being overloaded but
8672 * there is no simple way to directly compute the
8673 * amount of load to migrate in order to balance the
8676 env
->migration_type
= migrate_util
;
8677 env
->imbalance
= max(local
->group_capacity
, local
->group_util
) -
8681 * In some cases, the group's utilization is max or even
8682 * higher than capacity because of migrations but the
8683 * local CPU is (newly) idle. There is at least one
8684 * waiting task in this overloaded busiest group. Let's
8687 if (env
->idle
!= CPU_NOT_IDLE
&& env
->imbalance
== 0) {
8688 env
->migration_type
= migrate_task
;
8695 if (busiest
->group_weight
== 1 || sds
->prefer_sibling
) {
8696 unsigned int nr_diff
= busiest
->sum_nr_running
;
8698 * When prefer sibling, evenly spread running tasks on
8701 env
->migration_type
= migrate_task
;
8702 lsub_positive(&nr_diff
, local
->sum_nr_running
);
8703 env
->imbalance
= nr_diff
>> 1;
8708 * If there is no overload, we just want to even the number of
8711 env
->migration_type
= migrate_task
;
8712 env
->imbalance
= max_t(long, 0, (local
->idle_cpus
-
8713 busiest
->idle_cpus
) >> 1);
8718 * Local is fully busy but has to take more load to relieve the
8721 if (local
->group_type
< group_overloaded
) {
8723 * Local will become overloaded so the avg_load metrics are
8727 local
->avg_load
= (local
->group_load
* SCHED_CAPACITY_SCALE
) /
8728 local
->group_capacity
;
8730 sds
->avg_load
= (sds
->total_load
* SCHED_CAPACITY_SCALE
) /
8731 sds
->total_capacity
;
8735 * Both group are or will become overloaded and we're trying to get all
8736 * the CPUs to the average_load, so we don't want to push ourselves
8737 * above the average load, nor do we wish to reduce the max loaded CPU
8738 * below the average load. At the same time, we also don't want to
8739 * reduce the group load below the group capacity. Thus we look for
8740 * the minimum possible imbalance.
8742 env
->migration_type
= migrate_load
;
8743 env
->imbalance
= min(
8744 (busiest
->avg_load
- sds
->avg_load
) * busiest
->group_capacity
,
8745 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
8746 ) / SCHED_CAPACITY_SCALE
;
8749 /******* find_busiest_group() helpers end here *********************/
8752 * Decision matrix according to the local and busiest group type:
8754 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
8755 * has_spare nr_idle balanced N/A N/A balanced balanced
8756 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
8757 * misfit_task force N/A N/A N/A force force
8758 * asym_packing force force N/A N/A force force
8759 * imbalanced force force N/A N/A force force
8760 * overloaded force force N/A N/A force avg_load
8762 * N/A : Not Applicable because already filtered while updating
8764 * balanced : The system is balanced for these 2 groups.
8765 * force : Calculate the imbalance as load migration is probably needed.
8766 * avg_load : Only if imbalance is significant enough.
8767 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
8768 * different in groups.
8772 * find_busiest_group - Returns the busiest group within the sched_domain
8773 * if there is an imbalance.
8775 * Also calculates the amount of runnable load which should be moved
8776 * to restore balance.
8778 * @env: The load balancing environment.
8780 * Return: - The busiest group if imbalance exists.
8782 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
8784 struct sg_lb_stats
*local
, *busiest
;
8785 struct sd_lb_stats sds
;
8787 init_sd_lb_stats(&sds
);
8790 * Compute the various statistics relevant for load balancing at
8793 update_sd_lb_stats(env
, &sds
);
8795 if (sched_energy_enabled()) {
8796 struct root_domain
*rd
= env
->dst_rq
->rd
;
8798 if (rcu_dereference(rd
->pd
) && !READ_ONCE(rd
->overutilized
))
8802 local
= &sds
.local_stat
;
8803 busiest
= &sds
.busiest_stat
;
8805 /* There is no busy sibling group to pull tasks from */
8809 /* Misfit tasks should be dealt with regardless of the avg load */
8810 if (busiest
->group_type
== group_misfit_task
)
8813 /* ASYM feature bypasses nice load balance check */
8814 if (busiest
->group_type
== group_asym_packing
)
8818 * If the busiest group is imbalanced the below checks don't
8819 * work because they assume all things are equal, which typically
8820 * isn't true due to cpus_ptr constraints and the like.
8822 if (busiest
->group_type
== group_imbalanced
)
8826 * If the local group is busier than the selected busiest group
8827 * don't try and pull any tasks.
8829 if (local
->group_type
> busiest
->group_type
)
8833 * When groups are overloaded, use the avg_load to ensure fairness
8836 if (local
->group_type
== group_overloaded
) {
8838 * If the local group is more loaded than the selected
8839 * busiest group don't try to pull any tasks.
8841 if (local
->avg_load
>= busiest
->avg_load
)
8844 /* XXX broken for overlapping NUMA groups */
8845 sds
.avg_load
= (sds
.total_load
* SCHED_CAPACITY_SCALE
) /
8849 * Don't pull any tasks if this group is already above the
8850 * domain average load.
8852 if (local
->avg_load
>= sds
.avg_load
)
8856 * If the busiest group is more loaded, use imbalance_pct to be
8859 if (100 * busiest
->avg_load
<=
8860 env
->sd
->imbalance_pct
* local
->avg_load
)
8864 /* Try to move all excess tasks to child's sibling domain */
8865 if (sds
.prefer_sibling
&& local
->group_type
== group_has_spare
&&
8866 busiest
->sum_nr_running
> local
->sum_nr_running
+ 1)
8869 if (busiest
->group_type
!= group_overloaded
) {
8870 if (env
->idle
== CPU_NOT_IDLE
)
8872 * If the busiest group is not overloaded (and as a
8873 * result the local one too) but this CPU is already
8874 * busy, let another idle CPU try to pull task.
8878 if (busiest
->group_weight
> 1 &&
8879 local
->idle_cpus
<= (busiest
->idle_cpus
+ 1))
8881 * If the busiest group is not overloaded
8882 * and there is no imbalance between this and busiest
8883 * group wrt idle CPUs, it is balanced. The imbalance
8884 * becomes significant if the diff is greater than 1
8885 * otherwise we might end up to just move the imbalance
8886 * on another group. Of course this applies only if
8887 * there is more than 1 CPU per group.
8891 if (busiest
->sum_h_nr_running
== 1)
8893 * busiest doesn't have any tasks waiting to run
8899 /* Looks like there is an imbalance. Compute it */
8900 calculate_imbalance(env
, &sds
);
8901 return env
->imbalance
? sds
.busiest
: NULL
;
8909 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8911 static struct rq
*find_busiest_queue(struct lb_env
*env
,
8912 struct sched_group
*group
)
8914 struct rq
*busiest
= NULL
, *rq
;
8915 unsigned long busiest_util
= 0, busiest_load
= 0, busiest_capacity
= 1;
8916 unsigned int busiest_nr
= 0;
8919 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
8920 unsigned long capacity
, load
, util
;
8921 unsigned int nr_running
;
8925 rt
= fbq_classify_rq(rq
);
8928 * We classify groups/runqueues into three groups:
8929 * - regular: there are !numa tasks
8930 * - remote: there are numa tasks that run on the 'wrong' node
8931 * - all: there is no distinction
8933 * In order to avoid migrating ideally placed numa tasks,
8934 * ignore those when there's better options.
8936 * If we ignore the actual busiest queue to migrate another
8937 * task, the next balance pass can still reduce the busiest
8938 * queue by moving tasks around inside the node.
8940 * If we cannot move enough load due to this classification
8941 * the next pass will adjust the group classification and
8942 * allow migration of more tasks.
8944 * Both cases only affect the total convergence complexity.
8946 if (rt
> env
->fbq_type
)
8949 capacity
= capacity_of(i
);
8950 nr_running
= rq
->cfs
.h_nr_running
;
8953 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8954 * eventually lead to active_balancing high->low capacity.
8955 * Higher per-CPU capacity is considered better than balancing
8958 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8959 capacity_of(env
->dst_cpu
) < capacity
&&
8963 switch (env
->migration_type
) {
8966 * When comparing with load imbalance, use cpu_load()
8967 * which is not scaled with the CPU capacity.
8969 load
= cpu_load(rq
);
8971 if (nr_running
== 1 && load
> env
->imbalance
&&
8972 !check_cpu_capacity(rq
, env
->sd
))
8976 * For the load comparisons with the other CPUs,
8977 * consider the cpu_load() scaled with the CPU
8978 * capacity, so that the load can be moved away
8979 * from the CPU that is potentially running at a
8982 * Thus we're looking for max(load_i / capacity_i),
8983 * crosswise multiplication to rid ourselves of the
8984 * division works out to:
8985 * load_i * capacity_j > load_j * capacity_i;
8986 * where j is our previous maximum.
8988 if (load
* busiest_capacity
> busiest_load
* capacity
) {
8989 busiest_load
= load
;
8990 busiest_capacity
= capacity
;
8996 util
= cpu_util(cpu_of(rq
));
8998 if (busiest_util
< util
) {
8999 busiest_util
= util
;
9005 if (busiest_nr
< nr_running
) {
9006 busiest_nr
= nr_running
;
9011 case migrate_misfit
:
9013 * For ASYM_CPUCAPACITY domains with misfit tasks we
9014 * simply seek the "biggest" misfit task.
9016 if (rq
->misfit_task_load
> busiest_load
) {
9017 busiest_load
= rq
->misfit_task_load
;
9030 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9031 * so long as it is large enough.
9033 #define MAX_PINNED_INTERVAL 512
9036 asym_active_balance(struct lb_env
*env
)
9039 * ASYM_PACKING needs to force migrate tasks from busy but
9040 * lower priority CPUs in order to pack all tasks in the
9041 * highest priority CPUs.
9043 return env
->idle
!= CPU_NOT_IDLE
&& (env
->sd
->flags
& SD_ASYM_PACKING
) &&
9044 sched_asym_prefer(env
->dst_cpu
, env
->src_cpu
);
9048 voluntary_active_balance(struct lb_env
*env
)
9050 struct sched_domain
*sd
= env
->sd
;
9052 if (asym_active_balance(env
))
9056 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9057 * It's worth migrating the task if the src_cpu's capacity is reduced
9058 * because of other sched_class or IRQs if more capacity stays
9059 * available on dst_cpu.
9061 if ((env
->idle
!= CPU_NOT_IDLE
) &&
9062 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
9063 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
9064 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
9068 if (env
->migration_type
== migrate_misfit
)
9074 static int need_active_balance(struct lb_env
*env
)
9076 struct sched_domain
*sd
= env
->sd
;
9078 if (voluntary_active_balance(env
))
9081 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
9084 static int active_load_balance_cpu_stop(void *data
);
9086 static int should_we_balance(struct lb_env
*env
)
9088 struct sched_group
*sg
= env
->sd
->groups
;
9089 int cpu
, balance_cpu
= -1;
9092 * Ensure the balancing environment is consistent; can happen
9093 * when the softirq triggers 'during' hotplug.
9095 if (!cpumask_test_cpu(env
->dst_cpu
, env
->cpus
))
9099 * In the newly idle case, we will allow all the CPUs
9100 * to do the newly idle load balance.
9102 if (env
->idle
== CPU_NEWLY_IDLE
)
9105 /* Try to find first idle CPU */
9106 for_each_cpu_and(cpu
, group_balance_mask(sg
), env
->cpus
) {
9114 if (balance_cpu
== -1)
9115 balance_cpu
= group_balance_cpu(sg
);
9118 * First idle CPU or the first CPU(busiest) in this sched group
9119 * is eligible for doing load balancing at this and above domains.
9121 return balance_cpu
== env
->dst_cpu
;
9125 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9126 * tasks if there is an imbalance.
9128 static int load_balance(int this_cpu
, struct rq
*this_rq
,
9129 struct sched_domain
*sd
, enum cpu_idle_type idle
,
9130 int *continue_balancing
)
9132 int ld_moved
, cur_ld_moved
, active_balance
= 0;
9133 struct sched_domain
*sd_parent
= sd
->parent
;
9134 struct sched_group
*group
;
9137 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
9139 struct lb_env env
= {
9141 .dst_cpu
= this_cpu
,
9143 .dst_grpmask
= sched_group_span(sd
->groups
),
9145 .loop_break
= sched_nr_migrate_break
,
9148 .tasks
= LIST_HEAD_INIT(env
.tasks
),
9151 cpumask_and(cpus
, sched_domain_span(sd
), cpu_active_mask
);
9153 schedstat_inc(sd
->lb_count
[idle
]);
9156 if (!should_we_balance(&env
)) {
9157 *continue_balancing
= 0;
9161 group
= find_busiest_group(&env
);
9163 schedstat_inc(sd
->lb_nobusyg
[idle
]);
9167 busiest
= find_busiest_queue(&env
, group
);
9169 schedstat_inc(sd
->lb_nobusyq
[idle
]);
9173 BUG_ON(busiest
== env
.dst_rq
);
9175 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
9177 env
.src_cpu
= busiest
->cpu
;
9178 env
.src_rq
= busiest
;
9181 if (busiest
->nr_running
> 1) {
9183 * Attempt to move tasks. If find_busiest_group has found
9184 * an imbalance but busiest->nr_running <= 1, the group is
9185 * still unbalanced. ld_moved simply stays zero, so it is
9186 * correctly treated as an imbalance.
9188 env
.flags
|= LBF_ALL_PINNED
;
9189 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
9192 rq_lock_irqsave(busiest
, &rf
);
9193 update_rq_clock(busiest
);
9196 * cur_ld_moved - load moved in current iteration
9197 * ld_moved - cumulative load moved across iterations
9199 cur_ld_moved
= detach_tasks(&env
);
9202 * We've detached some tasks from busiest_rq. Every
9203 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9204 * unlock busiest->lock, and we are able to be sure
9205 * that nobody can manipulate the tasks in parallel.
9206 * See task_rq_lock() family for the details.
9209 rq_unlock(busiest
, &rf
);
9213 ld_moved
+= cur_ld_moved
;
9216 local_irq_restore(rf
.flags
);
9218 if (env
.flags
& LBF_NEED_BREAK
) {
9219 env
.flags
&= ~LBF_NEED_BREAK
;
9224 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9225 * us and move them to an alternate dst_cpu in our sched_group
9226 * where they can run. The upper limit on how many times we
9227 * iterate on same src_cpu is dependent on number of CPUs in our
9230 * This changes load balance semantics a bit on who can move
9231 * load to a given_cpu. In addition to the given_cpu itself
9232 * (or a ilb_cpu acting on its behalf where given_cpu is
9233 * nohz-idle), we now have balance_cpu in a position to move
9234 * load to given_cpu. In rare situations, this may cause
9235 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9236 * _independently_ and at _same_ time to move some load to
9237 * given_cpu) causing exceess load to be moved to given_cpu.
9238 * This however should not happen so much in practice and
9239 * moreover subsequent load balance cycles should correct the
9240 * excess load moved.
9242 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
9244 /* Prevent to re-select dst_cpu via env's CPUs */
9245 __cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
9247 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
9248 env
.dst_cpu
= env
.new_dst_cpu
;
9249 env
.flags
&= ~LBF_DST_PINNED
;
9251 env
.loop_break
= sched_nr_migrate_break
;
9254 * Go back to "more_balance" rather than "redo" since we
9255 * need to continue with same src_cpu.
9261 * We failed to reach balance because of affinity.
9264 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9266 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
9267 *group_imbalance
= 1;
9270 /* All tasks on this runqueue were pinned by CPU affinity */
9271 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
9272 __cpumask_clear_cpu(cpu_of(busiest
), cpus
);
9274 * Attempting to continue load balancing at the current
9275 * sched_domain level only makes sense if there are
9276 * active CPUs remaining as possible busiest CPUs to
9277 * pull load from which are not contained within the
9278 * destination group that is receiving any migrated
9281 if (!cpumask_subset(cpus
, env
.dst_grpmask
)) {
9283 env
.loop_break
= sched_nr_migrate_break
;
9286 goto out_all_pinned
;
9291 schedstat_inc(sd
->lb_failed
[idle
]);
9293 * Increment the failure counter only on periodic balance.
9294 * We do not want newidle balance, which can be very
9295 * frequent, pollute the failure counter causing
9296 * excessive cache_hot migrations and active balances.
9298 if (idle
!= CPU_NEWLY_IDLE
)
9299 sd
->nr_balance_failed
++;
9301 if (need_active_balance(&env
)) {
9302 unsigned long flags
;
9304 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
9307 * Don't kick the active_load_balance_cpu_stop,
9308 * if the curr task on busiest CPU can't be
9309 * moved to this_cpu:
9311 if (!cpumask_test_cpu(this_cpu
, busiest
->curr
->cpus_ptr
)) {
9312 raw_spin_unlock_irqrestore(&busiest
->lock
,
9314 env
.flags
|= LBF_ALL_PINNED
;
9315 goto out_one_pinned
;
9319 * ->active_balance synchronizes accesses to
9320 * ->active_balance_work. Once set, it's cleared
9321 * only after active load balance is finished.
9323 if (!busiest
->active_balance
) {
9324 busiest
->active_balance
= 1;
9325 busiest
->push_cpu
= this_cpu
;
9328 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
9330 if (active_balance
) {
9331 stop_one_cpu_nowait(cpu_of(busiest
),
9332 active_load_balance_cpu_stop
, busiest
,
9333 &busiest
->active_balance_work
);
9336 /* We've kicked active balancing, force task migration. */
9337 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
9340 sd
->nr_balance_failed
= 0;
9342 if (likely(!active_balance
) || voluntary_active_balance(&env
)) {
9343 /* We were unbalanced, so reset the balancing interval */
9344 sd
->balance_interval
= sd
->min_interval
;
9347 * If we've begun active balancing, start to back off. This
9348 * case may not be covered by the all_pinned logic if there
9349 * is only 1 task on the busy runqueue (because we don't call
9352 if (sd
->balance_interval
< sd
->max_interval
)
9353 sd
->balance_interval
*= 2;
9360 * We reach balance although we may have faced some affinity
9361 * constraints. Clear the imbalance flag only if other tasks got
9362 * a chance to move and fix the imbalance.
9364 if (sd_parent
&& !(env
.flags
& LBF_ALL_PINNED
)) {
9365 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9367 if (*group_imbalance
)
9368 *group_imbalance
= 0;
9373 * We reach balance because all tasks are pinned at this level so
9374 * we can't migrate them. Let the imbalance flag set so parent level
9375 * can try to migrate them.
9377 schedstat_inc(sd
->lb_balanced
[idle
]);
9379 sd
->nr_balance_failed
= 0;
9385 * newidle_balance() disregards balance intervals, so we could
9386 * repeatedly reach this code, which would lead to balance_interval
9387 * skyrocketting in a short amount of time. Skip the balance_interval
9388 * increase logic to avoid that.
9390 if (env
.idle
== CPU_NEWLY_IDLE
)
9393 /* tune up the balancing interval */
9394 if ((env
.flags
& LBF_ALL_PINNED
&&
9395 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
9396 sd
->balance_interval
< sd
->max_interval
)
9397 sd
->balance_interval
*= 2;
9402 static inline unsigned long
9403 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
9405 unsigned long interval
= sd
->balance_interval
;
9408 interval
*= sd
->busy_factor
;
9410 /* scale ms to jiffies */
9411 interval
= msecs_to_jiffies(interval
);
9412 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
9418 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
9420 unsigned long interval
, next
;
9422 /* used by idle balance, so cpu_busy = 0 */
9423 interval
= get_sd_balance_interval(sd
, 0);
9424 next
= sd
->last_balance
+ interval
;
9426 if (time_after(*next_balance
, next
))
9427 *next_balance
= next
;
9431 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9432 * running tasks off the busiest CPU onto idle CPUs. It requires at
9433 * least 1 task to be running on each physical CPU where possible, and
9434 * avoids physical / logical imbalances.
9436 static int active_load_balance_cpu_stop(void *data
)
9438 struct rq
*busiest_rq
= data
;
9439 int busiest_cpu
= cpu_of(busiest_rq
);
9440 int target_cpu
= busiest_rq
->push_cpu
;
9441 struct rq
*target_rq
= cpu_rq(target_cpu
);
9442 struct sched_domain
*sd
;
9443 struct task_struct
*p
= NULL
;
9446 rq_lock_irq(busiest_rq
, &rf
);
9448 * Between queueing the stop-work and running it is a hole in which
9449 * CPUs can become inactive. We should not move tasks from or to
9452 if (!cpu_active(busiest_cpu
) || !cpu_active(target_cpu
))
9455 /* Make sure the requested CPU hasn't gone down in the meantime: */
9456 if (unlikely(busiest_cpu
!= smp_processor_id() ||
9457 !busiest_rq
->active_balance
))
9460 /* Is there any task to move? */
9461 if (busiest_rq
->nr_running
<= 1)
9465 * This condition is "impossible", if it occurs
9466 * we need to fix it. Originally reported by
9467 * Bjorn Helgaas on a 128-CPU setup.
9469 BUG_ON(busiest_rq
== target_rq
);
9471 /* Search for an sd spanning us and the target CPU. */
9473 for_each_domain(target_cpu
, sd
) {
9474 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
9475 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
9480 struct lb_env env
= {
9482 .dst_cpu
= target_cpu
,
9483 .dst_rq
= target_rq
,
9484 .src_cpu
= busiest_rq
->cpu
,
9485 .src_rq
= busiest_rq
,
9488 * can_migrate_task() doesn't need to compute new_dst_cpu
9489 * for active balancing. Since we have CPU_IDLE, but no
9490 * @dst_grpmask we need to make that test go away with lying
9493 .flags
= LBF_DST_PINNED
,
9496 schedstat_inc(sd
->alb_count
);
9497 update_rq_clock(busiest_rq
);
9499 p
= detach_one_task(&env
);
9501 schedstat_inc(sd
->alb_pushed
);
9502 /* Active balancing done, reset the failure counter. */
9503 sd
->nr_balance_failed
= 0;
9505 schedstat_inc(sd
->alb_failed
);
9510 busiest_rq
->active_balance
= 0;
9511 rq_unlock(busiest_rq
, &rf
);
9514 attach_one_task(target_rq
, p
);
9521 static DEFINE_SPINLOCK(balancing
);
9524 * Scale the max load_balance interval with the number of CPUs in the system.
9525 * This trades load-balance latency on larger machines for less cross talk.
9527 void update_max_interval(void)
9529 max_load_balance_interval
= HZ
*num_online_cpus()/10;
9533 * It checks each scheduling domain to see if it is due to be balanced,
9534 * and initiates a balancing operation if so.
9536 * Balancing parameters are set up in init_sched_domains.
9538 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
9540 int continue_balancing
= 1;
9542 int busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
9543 unsigned long interval
;
9544 struct sched_domain
*sd
;
9545 /* Earliest time when we have to do rebalance again */
9546 unsigned long next_balance
= jiffies
+ 60*HZ
;
9547 int update_next_balance
= 0;
9548 int need_serialize
, need_decay
= 0;
9552 for_each_domain(cpu
, sd
) {
9554 * Decay the newidle max times here because this is a regular
9555 * visit to all the domains. Decay ~1% per second.
9557 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
9558 sd
->max_newidle_lb_cost
=
9559 (sd
->max_newidle_lb_cost
* 253) / 256;
9560 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
9563 max_cost
+= sd
->max_newidle_lb_cost
;
9565 if (!(sd
->flags
& SD_LOAD_BALANCE
))
9569 * Stop the load balance at this level. There is another
9570 * CPU in our sched group which is doing load balancing more
9573 if (!continue_balancing
) {
9579 interval
= get_sd_balance_interval(sd
, busy
);
9581 need_serialize
= sd
->flags
& SD_SERIALIZE
;
9582 if (need_serialize
) {
9583 if (!spin_trylock(&balancing
))
9587 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
9588 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
9590 * The LBF_DST_PINNED logic could have changed
9591 * env->dst_cpu, so we can't know our idle
9592 * state even if we migrated tasks. Update it.
9594 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
9595 busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
9597 sd
->last_balance
= jiffies
;
9598 interval
= get_sd_balance_interval(sd
, busy
);
9601 spin_unlock(&balancing
);
9603 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
9604 next_balance
= sd
->last_balance
+ interval
;
9605 update_next_balance
= 1;
9610 * Ensure the rq-wide value also decays but keep it at a
9611 * reasonable floor to avoid funnies with rq->avg_idle.
9613 rq
->max_idle_balance_cost
=
9614 max((u64
)sysctl_sched_migration_cost
, max_cost
);
9619 * next_balance will be updated only when there is a need.
9620 * When the cpu is attached to null domain for ex, it will not be
9623 if (likely(update_next_balance
)) {
9624 rq
->next_balance
= next_balance
;
9626 #ifdef CONFIG_NO_HZ_COMMON
9628 * If this CPU has been elected to perform the nohz idle
9629 * balance. Other idle CPUs have already rebalanced with
9630 * nohz_idle_balance() and nohz.next_balance has been
9631 * updated accordingly. This CPU is now running the idle load
9632 * balance for itself and we need to update the
9633 * nohz.next_balance accordingly.
9635 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
9636 nohz
.next_balance
= rq
->next_balance
;
9641 static inline int on_null_domain(struct rq
*rq
)
9643 return unlikely(!rcu_dereference_sched(rq
->sd
));
9646 #ifdef CONFIG_NO_HZ_COMMON
9648 * idle load balancing details
9649 * - When one of the busy CPUs notice that there may be an idle rebalancing
9650 * needed, they will kick the idle load balancer, which then does idle
9651 * load balancing for all the idle CPUs.
9652 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9656 static inline int find_new_ilb(void)
9660 for_each_cpu_and(ilb
, nohz
.idle_cpus_mask
,
9661 housekeeping_cpumask(HK_FLAG_MISC
)) {
9670 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9671 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9673 static void kick_ilb(unsigned int flags
)
9677 nohz
.next_balance
++;
9679 ilb_cpu
= find_new_ilb();
9681 if (ilb_cpu
>= nr_cpu_ids
)
9684 flags
= atomic_fetch_or(flags
, nohz_flags(ilb_cpu
));
9685 if (flags
& NOHZ_KICK_MASK
)
9689 * Use smp_send_reschedule() instead of resched_cpu().
9690 * This way we generate a sched IPI on the target CPU which
9691 * is idle. And the softirq performing nohz idle load balance
9692 * will be run before returning from the IPI.
9694 smp_send_reschedule(ilb_cpu
);
9698 * Current decision point for kicking the idle load balancer in the presence
9699 * of idle CPUs in the system.
9701 static void nohz_balancer_kick(struct rq
*rq
)
9703 unsigned long now
= jiffies
;
9704 struct sched_domain_shared
*sds
;
9705 struct sched_domain
*sd
;
9706 int nr_busy
, i
, cpu
= rq
->cpu
;
9707 unsigned int flags
= 0;
9709 if (unlikely(rq
->idle_balance
))
9713 * We may be recently in ticked or tickless idle mode. At the first
9714 * busy tick after returning from idle, we will update the busy stats.
9716 nohz_balance_exit_idle(rq
);
9719 * None are in tickless mode and hence no need for NOHZ idle load
9722 if (likely(!atomic_read(&nohz
.nr_cpus
)))
9725 if (READ_ONCE(nohz
.has_blocked
) &&
9726 time_after(now
, READ_ONCE(nohz
.next_blocked
)))
9727 flags
= NOHZ_STATS_KICK
;
9729 if (time_before(now
, nohz
.next_balance
))
9732 if (rq
->nr_running
>= 2) {
9733 flags
= NOHZ_KICK_MASK
;
9739 sd
= rcu_dereference(rq
->sd
);
9742 * If there's a CFS task and the current CPU has reduced
9743 * capacity; kick the ILB to see if there's a better CPU to run
9746 if (rq
->cfs
.h_nr_running
>= 1 && check_cpu_capacity(rq
, sd
)) {
9747 flags
= NOHZ_KICK_MASK
;
9752 sd
= rcu_dereference(per_cpu(sd_asym_packing
, cpu
));
9755 * When ASYM_PACKING; see if there's a more preferred CPU
9756 * currently idle; in which case, kick the ILB to move tasks
9759 for_each_cpu_and(i
, sched_domain_span(sd
), nohz
.idle_cpus_mask
) {
9760 if (sched_asym_prefer(i
, cpu
)) {
9761 flags
= NOHZ_KICK_MASK
;
9767 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, cpu
));
9770 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9771 * to run the misfit task on.
9773 if (check_misfit_status(rq
, sd
)) {
9774 flags
= NOHZ_KICK_MASK
;
9779 * For asymmetric systems, we do not want to nicely balance
9780 * cache use, instead we want to embrace asymmetry and only
9781 * ensure tasks have enough CPU capacity.
9783 * Skip the LLC logic because it's not relevant in that case.
9788 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
9791 * If there is an imbalance between LLC domains (IOW we could
9792 * increase the overall cache use), we need some less-loaded LLC
9793 * domain to pull some load. Likewise, we may need to spread
9794 * load within the current LLC domain (e.g. packed SMT cores but
9795 * other CPUs are idle). We can't really know from here how busy
9796 * the others are - so just get a nohz balance going if it looks
9797 * like this LLC domain has tasks we could move.
9799 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
9801 flags
= NOHZ_KICK_MASK
;
9812 static void set_cpu_sd_state_busy(int cpu
)
9814 struct sched_domain
*sd
;
9817 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
9819 if (!sd
|| !sd
->nohz_idle
)
9823 atomic_inc(&sd
->shared
->nr_busy_cpus
);
9828 void nohz_balance_exit_idle(struct rq
*rq
)
9830 SCHED_WARN_ON(rq
!= this_rq());
9832 if (likely(!rq
->nohz_tick_stopped
))
9835 rq
->nohz_tick_stopped
= 0;
9836 cpumask_clear_cpu(rq
->cpu
, nohz
.idle_cpus_mask
);
9837 atomic_dec(&nohz
.nr_cpus
);
9839 set_cpu_sd_state_busy(rq
->cpu
);
9842 static void set_cpu_sd_state_idle(int cpu
)
9844 struct sched_domain
*sd
;
9847 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
9849 if (!sd
|| sd
->nohz_idle
)
9853 atomic_dec(&sd
->shared
->nr_busy_cpus
);
9859 * This routine will record that the CPU is going idle with tick stopped.
9860 * This info will be used in performing idle load balancing in the future.
9862 void nohz_balance_enter_idle(int cpu
)
9864 struct rq
*rq
= cpu_rq(cpu
);
9866 SCHED_WARN_ON(cpu
!= smp_processor_id());
9868 /* If this CPU is going down, then nothing needs to be done: */
9869 if (!cpu_active(cpu
))
9872 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9873 if (!housekeeping_cpu(cpu
, HK_FLAG_SCHED
))
9877 * Can be set safely without rq->lock held
9878 * If a clear happens, it will have evaluated last additions because
9879 * rq->lock is held during the check and the clear
9881 rq
->has_blocked_load
= 1;
9884 * The tick is still stopped but load could have been added in the
9885 * meantime. We set the nohz.has_blocked flag to trig a check of the
9886 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9887 * of nohz.has_blocked can only happen after checking the new load
9889 if (rq
->nohz_tick_stopped
)
9892 /* If we're a completely isolated CPU, we don't play: */
9893 if (on_null_domain(rq
))
9896 rq
->nohz_tick_stopped
= 1;
9898 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
9899 atomic_inc(&nohz
.nr_cpus
);
9902 * Ensures that if nohz_idle_balance() fails to observe our
9903 * @idle_cpus_mask store, it must observe the @has_blocked
9906 smp_mb__after_atomic();
9908 set_cpu_sd_state_idle(cpu
);
9912 * Each time a cpu enter idle, we assume that it has blocked load and
9913 * enable the periodic update of the load of idle cpus
9915 WRITE_ONCE(nohz
.has_blocked
, 1);
9919 * Internal function that runs load balance for all idle cpus. The load balance
9920 * can be a simple update of blocked load or a complete load balance with
9921 * tasks movement depending of flags.
9922 * The function returns false if the loop has stopped before running
9923 * through all idle CPUs.
9925 static bool _nohz_idle_balance(struct rq
*this_rq
, unsigned int flags
,
9926 enum cpu_idle_type idle
)
9928 /* Earliest time when we have to do rebalance again */
9929 unsigned long now
= jiffies
;
9930 unsigned long next_balance
= now
+ 60*HZ
;
9931 bool has_blocked_load
= false;
9932 int update_next_balance
= 0;
9933 int this_cpu
= this_rq
->cpu
;
9938 SCHED_WARN_ON((flags
& NOHZ_KICK_MASK
) == NOHZ_BALANCE_KICK
);
9941 * We assume there will be no idle load after this update and clear
9942 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9943 * set the has_blocked flag and trig another update of idle load.
9944 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9945 * setting the flag, we are sure to not clear the state and not
9946 * check the load of an idle cpu.
9948 WRITE_ONCE(nohz
.has_blocked
, 0);
9951 * Ensures that if we miss the CPU, we must see the has_blocked
9952 * store from nohz_balance_enter_idle().
9956 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
9957 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
9961 * If this CPU gets work to do, stop the load balancing
9962 * work being done for other CPUs. Next load
9963 * balancing owner will pick it up.
9965 if (need_resched()) {
9966 has_blocked_load
= true;
9970 rq
= cpu_rq(balance_cpu
);
9972 has_blocked_load
|= update_nohz_stats(rq
, true);
9975 * If time for next balance is due,
9978 if (time_after_eq(jiffies
, rq
->next_balance
)) {
9981 rq_lock_irqsave(rq
, &rf
);
9982 update_rq_clock(rq
);
9983 rq_unlock_irqrestore(rq
, &rf
);
9985 if (flags
& NOHZ_BALANCE_KICK
)
9986 rebalance_domains(rq
, CPU_IDLE
);
9989 if (time_after(next_balance
, rq
->next_balance
)) {
9990 next_balance
= rq
->next_balance
;
9991 update_next_balance
= 1;
9995 /* Newly idle CPU doesn't need an update */
9996 if (idle
!= CPU_NEWLY_IDLE
) {
9997 update_blocked_averages(this_cpu
);
9998 has_blocked_load
|= this_rq
->has_blocked_load
;
10001 if (flags
& NOHZ_BALANCE_KICK
)
10002 rebalance_domains(this_rq
, CPU_IDLE
);
10004 WRITE_ONCE(nohz
.next_blocked
,
10005 now
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
10007 /* The full idle balance loop has been done */
10011 /* There is still blocked load, enable periodic update */
10012 if (has_blocked_load
)
10013 WRITE_ONCE(nohz
.has_blocked
, 1);
10016 * next_balance will be updated only when there is a need.
10017 * When the CPU is attached to null domain for ex, it will not be
10020 if (likely(update_next_balance
))
10021 nohz
.next_balance
= next_balance
;
10027 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10028 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10030 static bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10032 int this_cpu
= this_rq
->cpu
;
10033 unsigned int flags
;
10035 if (!(atomic_read(nohz_flags(this_cpu
)) & NOHZ_KICK_MASK
))
10038 if (idle
!= CPU_IDLE
) {
10039 atomic_andnot(NOHZ_KICK_MASK
, nohz_flags(this_cpu
));
10043 /* could be _relaxed() */
10044 flags
= atomic_fetch_andnot(NOHZ_KICK_MASK
, nohz_flags(this_cpu
));
10045 if (!(flags
& NOHZ_KICK_MASK
))
10048 _nohz_idle_balance(this_rq
, flags
, idle
);
10053 static void nohz_newidle_balance(struct rq
*this_rq
)
10055 int this_cpu
= this_rq
->cpu
;
10058 * This CPU doesn't want to be disturbed by scheduler
10061 if (!housekeeping_cpu(this_cpu
, HK_FLAG_SCHED
))
10064 /* Will wake up very soon. No time for doing anything else*/
10065 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
10068 /* Don't need to update blocked load of idle CPUs*/
10069 if (!READ_ONCE(nohz
.has_blocked
) ||
10070 time_before(jiffies
, READ_ONCE(nohz
.next_blocked
)))
10073 raw_spin_unlock(&this_rq
->lock
);
10075 * This CPU is going to be idle and blocked load of idle CPUs
10076 * need to be updated. Run the ilb locally as it is a good
10077 * candidate for ilb instead of waking up another idle CPU.
10078 * Kick an normal ilb if we failed to do the update.
10080 if (!_nohz_idle_balance(this_rq
, NOHZ_STATS_KICK
, CPU_NEWLY_IDLE
))
10081 kick_ilb(NOHZ_STATS_KICK
);
10082 raw_spin_lock(&this_rq
->lock
);
10085 #else /* !CONFIG_NO_HZ_COMMON */
10086 static inline void nohz_balancer_kick(struct rq
*rq
) { }
10088 static inline bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10093 static inline void nohz_newidle_balance(struct rq
*this_rq
) { }
10094 #endif /* CONFIG_NO_HZ_COMMON */
10097 * idle_balance is called by schedule() if this_cpu is about to become
10098 * idle. Attempts to pull tasks from other CPUs.
10101 * < 0 - we released the lock and there are !fair tasks present
10102 * 0 - failed, no new tasks
10103 * > 0 - success, new (fair) tasks present
10105 int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
)
10107 unsigned long next_balance
= jiffies
+ HZ
;
10108 int this_cpu
= this_rq
->cpu
;
10109 struct sched_domain
*sd
;
10110 int pulled_task
= 0;
10113 update_misfit_status(NULL
, this_rq
);
10115 * We must set idle_stamp _before_ calling idle_balance(), such that we
10116 * measure the duration of idle_balance() as idle time.
10118 this_rq
->idle_stamp
= rq_clock(this_rq
);
10121 * Do not pull tasks towards !active CPUs...
10123 if (!cpu_active(this_cpu
))
10127 * This is OK, because current is on_cpu, which avoids it being picked
10128 * for load-balance and preemption/IRQs are still disabled avoiding
10129 * further scheduler activity on it and we're being very careful to
10130 * re-start the picking loop.
10132 rq_unpin_lock(this_rq
, rf
);
10134 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
10135 !READ_ONCE(this_rq
->rd
->overload
)) {
10138 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
10140 update_next_balance(sd
, &next_balance
);
10143 nohz_newidle_balance(this_rq
);
10148 raw_spin_unlock(&this_rq
->lock
);
10150 update_blocked_averages(this_cpu
);
10152 for_each_domain(this_cpu
, sd
) {
10153 int continue_balancing
= 1;
10154 u64 t0
, domain_cost
;
10156 if (!(sd
->flags
& SD_LOAD_BALANCE
))
10159 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
10160 update_next_balance(sd
, &next_balance
);
10164 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
10165 t0
= sched_clock_cpu(this_cpu
);
10167 pulled_task
= load_balance(this_cpu
, this_rq
,
10168 sd
, CPU_NEWLY_IDLE
,
10169 &continue_balancing
);
10171 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
10172 if (domain_cost
> sd
->max_newidle_lb_cost
)
10173 sd
->max_newidle_lb_cost
= domain_cost
;
10175 curr_cost
+= domain_cost
;
10178 update_next_balance(sd
, &next_balance
);
10181 * Stop searching for tasks to pull if there are
10182 * now runnable tasks on this rq.
10184 if (pulled_task
|| this_rq
->nr_running
> 0)
10189 raw_spin_lock(&this_rq
->lock
);
10191 if (curr_cost
> this_rq
->max_idle_balance_cost
)
10192 this_rq
->max_idle_balance_cost
= curr_cost
;
10196 * While browsing the domains, we released the rq lock, a task could
10197 * have been enqueued in the meantime. Since we're not going idle,
10198 * pretend we pulled a task.
10200 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
10203 /* Move the next balance forward */
10204 if (time_after(this_rq
->next_balance
, next_balance
))
10205 this_rq
->next_balance
= next_balance
;
10207 /* Is there a task of a high priority class? */
10208 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
10212 this_rq
->idle_stamp
= 0;
10214 rq_repin_lock(this_rq
, rf
);
10216 return pulled_task
;
10220 * run_rebalance_domains is triggered when needed from the scheduler tick.
10221 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10223 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
10225 struct rq
*this_rq
= this_rq();
10226 enum cpu_idle_type idle
= this_rq
->idle_balance
?
10227 CPU_IDLE
: CPU_NOT_IDLE
;
10230 * If this CPU has a pending nohz_balance_kick, then do the
10231 * balancing on behalf of the other idle CPUs whose ticks are
10232 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10233 * give the idle CPUs a chance to load balance. Else we may
10234 * load balance only within the local sched_domain hierarchy
10235 * and abort nohz_idle_balance altogether if we pull some load.
10237 if (nohz_idle_balance(this_rq
, idle
))
10240 /* normal load balance */
10241 update_blocked_averages(this_rq
->cpu
);
10242 rebalance_domains(this_rq
, idle
);
10246 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10248 void trigger_load_balance(struct rq
*rq
)
10250 /* Don't need to rebalance while attached to NULL domain */
10251 if (unlikely(on_null_domain(rq
)))
10254 if (time_after_eq(jiffies
, rq
->next_balance
))
10255 raise_softirq(SCHED_SOFTIRQ
);
10257 nohz_balancer_kick(rq
);
10260 static void rq_online_fair(struct rq
*rq
)
10264 update_runtime_enabled(rq
);
10267 static void rq_offline_fair(struct rq
*rq
)
10271 /* Ensure any throttled groups are reachable by pick_next_task */
10272 unthrottle_offline_cfs_rqs(rq
);
10275 #endif /* CONFIG_SMP */
10278 * scheduler tick hitting a task of our scheduling class.
10280 * NOTE: This function can be called remotely by the tick offload that
10281 * goes along full dynticks. Therefore no local assumption can be made
10282 * and everything must be accessed through the @rq and @curr passed in
10285 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
10287 struct cfs_rq
*cfs_rq
;
10288 struct sched_entity
*se
= &curr
->se
;
10290 for_each_sched_entity(se
) {
10291 cfs_rq
= cfs_rq_of(se
);
10292 entity_tick(cfs_rq
, se
, queued
);
10295 if (static_branch_unlikely(&sched_numa_balancing
))
10296 task_tick_numa(rq
, curr
);
10298 update_misfit_status(curr
, rq
);
10299 update_overutilized_status(task_rq(curr
));
10303 * called on fork with the child task as argument from the parent's context
10304 * - child not yet on the tasklist
10305 * - preemption disabled
10307 static void task_fork_fair(struct task_struct
*p
)
10309 struct cfs_rq
*cfs_rq
;
10310 struct sched_entity
*se
= &p
->se
, *curr
;
10311 struct rq
*rq
= this_rq();
10312 struct rq_flags rf
;
10315 update_rq_clock(rq
);
10317 cfs_rq
= task_cfs_rq(current
);
10318 curr
= cfs_rq
->curr
;
10320 update_curr(cfs_rq
);
10321 se
->vruntime
= curr
->vruntime
;
10323 place_entity(cfs_rq
, se
, 1);
10325 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
10327 * Upon rescheduling, sched_class::put_prev_task() will place
10328 * 'current' within the tree based on its new key value.
10330 swap(curr
->vruntime
, se
->vruntime
);
10334 se
->vruntime
-= cfs_rq
->min_vruntime
;
10335 rq_unlock(rq
, &rf
);
10339 * Priority of the task has changed. Check to see if we preempt
10340 * the current task.
10343 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
10345 if (!task_on_rq_queued(p
))
10348 if (rq
->cfs
.nr_running
== 1)
10352 * Reschedule if we are currently running on this runqueue and
10353 * our priority decreased, or if we are not currently running on
10354 * this runqueue and our priority is higher than the current's
10356 if (rq
->curr
== p
) {
10357 if (p
->prio
> oldprio
)
10360 check_preempt_curr(rq
, p
, 0);
10363 static inline bool vruntime_normalized(struct task_struct
*p
)
10365 struct sched_entity
*se
= &p
->se
;
10368 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10369 * the dequeue_entity(.flags=0) will already have normalized the
10376 * When !on_rq, vruntime of the task has usually NOT been normalized.
10377 * But there are some cases where it has already been normalized:
10379 * - A forked child which is waiting for being woken up by
10380 * wake_up_new_task().
10381 * - A task which has been woken up by try_to_wake_up() and
10382 * waiting for actually being woken up by sched_ttwu_pending().
10384 if (!se
->sum_exec_runtime
||
10385 (p
->state
== TASK_WAKING
&& p
->sched_remote_wakeup
))
10391 #ifdef CONFIG_FAIR_GROUP_SCHED
10393 * Propagate the changes of the sched_entity across the tg tree to make it
10394 * visible to the root
10396 static void propagate_entity_cfs_rq(struct sched_entity
*se
)
10398 struct cfs_rq
*cfs_rq
;
10400 /* Start to propagate at parent */
10403 for_each_sched_entity(se
) {
10404 cfs_rq
= cfs_rq_of(se
);
10406 if (cfs_rq_throttled(cfs_rq
))
10409 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
10413 static void propagate_entity_cfs_rq(struct sched_entity
*se
) { }
10416 static void detach_entity_cfs_rq(struct sched_entity
*se
)
10418 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10420 /* Catch up with the cfs_rq and remove our load when we leave */
10421 update_load_avg(cfs_rq
, se
, 0);
10422 detach_entity_load_avg(cfs_rq
, se
);
10423 update_tg_load_avg(cfs_rq
, false);
10424 propagate_entity_cfs_rq(se
);
10427 static void attach_entity_cfs_rq(struct sched_entity
*se
)
10429 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10431 #ifdef CONFIG_FAIR_GROUP_SCHED
10433 * Since the real-depth could have been changed (only FAIR
10434 * class maintain depth value), reset depth properly.
10436 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10439 /* Synchronize entity with its cfs_rq */
10440 update_load_avg(cfs_rq
, se
, sched_feat(ATTACH_AGE_LOAD
) ? 0 : SKIP_AGE_LOAD
);
10441 attach_entity_load_avg(cfs_rq
, se
);
10442 update_tg_load_avg(cfs_rq
, false);
10443 propagate_entity_cfs_rq(se
);
10446 static void detach_task_cfs_rq(struct task_struct
*p
)
10448 struct sched_entity
*se
= &p
->se
;
10449 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10451 if (!vruntime_normalized(p
)) {
10453 * Fix up our vruntime so that the current sleep doesn't
10454 * cause 'unlimited' sleep bonus.
10456 place_entity(cfs_rq
, se
, 0);
10457 se
->vruntime
-= cfs_rq
->min_vruntime
;
10460 detach_entity_cfs_rq(se
);
10463 static void attach_task_cfs_rq(struct task_struct
*p
)
10465 struct sched_entity
*se
= &p
->se
;
10466 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10468 attach_entity_cfs_rq(se
);
10470 if (!vruntime_normalized(p
))
10471 se
->vruntime
+= cfs_rq
->min_vruntime
;
10474 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
10476 detach_task_cfs_rq(p
);
10479 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
10481 attach_task_cfs_rq(p
);
10483 if (task_on_rq_queued(p
)) {
10485 * We were most likely switched from sched_rt, so
10486 * kick off the schedule if running, otherwise just see
10487 * if we can still preempt the current task.
10492 check_preempt_curr(rq
, p
, 0);
10496 /* Account for a task changing its policy or group.
10498 * This routine is mostly called to set cfs_rq->curr field when a task
10499 * migrates between groups/classes.
10501 static void set_next_task_fair(struct rq
*rq
, struct task_struct
*p
, bool first
)
10503 struct sched_entity
*se
= &p
->se
;
10506 if (task_on_rq_queued(p
)) {
10508 * Move the next running task to the front of the list, so our
10509 * cfs_tasks list becomes MRU one.
10511 list_move(&se
->group_node
, &rq
->cfs_tasks
);
10515 for_each_sched_entity(se
) {
10516 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10518 set_next_entity(cfs_rq
, se
);
10519 /* ensure bandwidth has been allocated on our new cfs_rq */
10520 account_cfs_rq_runtime(cfs_rq
, 0);
10524 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
10526 cfs_rq
->tasks_timeline
= RB_ROOT_CACHED
;
10527 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
10528 #ifndef CONFIG_64BIT
10529 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
10532 raw_spin_lock_init(&cfs_rq
->removed
.lock
);
10536 #ifdef CONFIG_FAIR_GROUP_SCHED
10537 static void task_set_group_fair(struct task_struct
*p
)
10539 struct sched_entity
*se
= &p
->se
;
10541 set_task_rq(p
, task_cpu(p
));
10542 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10545 static void task_move_group_fair(struct task_struct
*p
)
10547 detach_task_cfs_rq(p
);
10548 set_task_rq(p
, task_cpu(p
));
10551 /* Tell se's cfs_rq has been changed -- migrated */
10552 p
->se
.avg
.last_update_time
= 0;
10554 attach_task_cfs_rq(p
);
10557 static void task_change_group_fair(struct task_struct
*p
, int type
)
10560 case TASK_SET_GROUP
:
10561 task_set_group_fair(p
);
10564 case TASK_MOVE_GROUP
:
10565 task_move_group_fair(p
);
10570 void free_fair_sched_group(struct task_group
*tg
)
10574 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
10576 for_each_possible_cpu(i
) {
10578 kfree(tg
->cfs_rq
[i
]);
10587 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10589 struct sched_entity
*se
;
10590 struct cfs_rq
*cfs_rq
;
10593 tg
->cfs_rq
= kcalloc(nr_cpu_ids
, sizeof(cfs_rq
), GFP_KERNEL
);
10596 tg
->se
= kcalloc(nr_cpu_ids
, sizeof(se
), GFP_KERNEL
);
10600 tg
->shares
= NICE_0_LOAD
;
10602 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
10604 for_each_possible_cpu(i
) {
10605 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
10606 GFP_KERNEL
, cpu_to_node(i
));
10610 se
= kzalloc_node(sizeof(struct sched_entity
),
10611 GFP_KERNEL
, cpu_to_node(i
));
10615 init_cfs_rq(cfs_rq
);
10616 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
10617 init_entity_runnable_average(se
);
10628 void online_fair_sched_group(struct task_group
*tg
)
10630 struct sched_entity
*se
;
10631 struct rq_flags rf
;
10635 for_each_possible_cpu(i
) {
10638 rq_lock_irq(rq
, &rf
);
10639 update_rq_clock(rq
);
10640 attach_entity_cfs_rq(se
);
10641 sync_throttle(tg
, i
);
10642 rq_unlock_irq(rq
, &rf
);
10646 void unregister_fair_sched_group(struct task_group
*tg
)
10648 unsigned long flags
;
10652 for_each_possible_cpu(cpu
) {
10654 remove_entity_load_avg(tg
->se
[cpu
]);
10657 * Only empty task groups can be destroyed; so we can speculatively
10658 * check on_list without danger of it being re-added.
10660 if (!tg
->cfs_rq
[cpu
]->on_list
)
10665 raw_spin_lock_irqsave(&rq
->lock
, flags
);
10666 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
10667 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
10671 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
10672 struct sched_entity
*se
, int cpu
,
10673 struct sched_entity
*parent
)
10675 struct rq
*rq
= cpu_rq(cpu
);
10679 init_cfs_rq_runtime(cfs_rq
);
10681 tg
->cfs_rq
[cpu
] = cfs_rq
;
10684 /* se could be NULL for root_task_group */
10689 se
->cfs_rq
= &rq
->cfs
;
10692 se
->cfs_rq
= parent
->my_q
;
10693 se
->depth
= parent
->depth
+ 1;
10697 /* guarantee group entities always have weight */
10698 update_load_set(&se
->load
, NICE_0_LOAD
);
10699 se
->parent
= parent
;
10702 static DEFINE_MUTEX(shares_mutex
);
10704 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
10709 * We can't change the weight of the root cgroup.
10714 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
10716 mutex_lock(&shares_mutex
);
10717 if (tg
->shares
== shares
)
10720 tg
->shares
= shares
;
10721 for_each_possible_cpu(i
) {
10722 struct rq
*rq
= cpu_rq(i
);
10723 struct sched_entity
*se
= tg
->se
[i
];
10724 struct rq_flags rf
;
10726 /* Propagate contribution to hierarchy */
10727 rq_lock_irqsave(rq
, &rf
);
10728 update_rq_clock(rq
);
10729 for_each_sched_entity(se
) {
10730 update_load_avg(cfs_rq_of(se
), se
, UPDATE_TG
);
10731 update_cfs_group(se
);
10733 rq_unlock_irqrestore(rq
, &rf
);
10737 mutex_unlock(&shares_mutex
);
10740 #else /* CONFIG_FAIR_GROUP_SCHED */
10742 void free_fair_sched_group(struct task_group
*tg
) { }
10744 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10749 void online_fair_sched_group(struct task_group
*tg
) { }
10751 void unregister_fair_sched_group(struct task_group
*tg
) { }
10753 #endif /* CONFIG_FAIR_GROUP_SCHED */
10756 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
10758 struct sched_entity
*se
= &task
->se
;
10759 unsigned int rr_interval
= 0;
10762 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10765 if (rq
->cfs
.load
.weight
)
10766 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
10768 return rr_interval
;
10772 * All the scheduling class methods:
10774 const struct sched_class fair_sched_class
= {
10775 .next
= &idle_sched_class
,
10776 .enqueue_task
= enqueue_task_fair
,
10777 .dequeue_task
= dequeue_task_fair
,
10778 .yield_task
= yield_task_fair
,
10779 .yield_to_task
= yield_to_task_fair
,
10781 .check_preempt_curr
= check_preempt_wakeup
,
10783 .pick_next_task
= __pick_next_task_fair
,
10784 .put_prev_task
= put_prev_task_fair
,
10785 .set_next_task
= set_next_task_fair
,
10788 .balance
= balance_fair
,
10789 .select_task_rq
= select_task_rq_fair
,
10790 .migrate_task_rq
= migrate_task_rq_fair
,
10792 .rq_online
= rq_online_fair
,
10793 .rq_offline
= rq_offline_fair
,
10795 .task_dead
= task_dead_fair
,
10796 .set_cpus_allowed
= set_cpus_allowed_common
,
10799 .task_tick
= task_tick_fair
,
10800 .task_fork
= task_fork_fair
,
10802 .prio_changed
= prio_changed_fair
,
10803 .switched_from
= switched_from_fair
,
10804 .switched_to
= switched_to_fair
,
10806 .get_rr_interval
= get_rr_interval_fair
,
10808 .update_curr
= update_curr_fair
,
10810 #ifdef CONFIG_FAIR_GROUP_SCHED
10811 .task_change_group
= task_change_group_fair
,
10814 #ifdef CONFIG_UCLAMP_TASK
10815 .uclamp_enabled
= 1,
10819 #ifdef CONFIG_SCHED_DEBUG
10820 void print_cfs_stats(struct seq_file
*m
, int cpu
)
10822 struct cfs_rq
*cfs_rq
, *pos
;
10825 for_each_leaf_cfs_rq_safe(cpu_rq(cpu
), cfs_rq
, pos
)
10826 print_cfs_rq(m
, cpu
, cfs_rq
);
10830 #ifdef CONFIG_NUMA_BALANCING
10831 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
10834 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
10835 struct numa_group
*ng
;
10838 ng
= rcu_dereference(p
->numa_group
);
10839 for_each_online_node(node
) {
10840 if (p
->numa_faults
) {
10841 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
10842 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
10845 gsf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
10846 gpf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
10848 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
10852 #endif /* CONFIG_NUMA_BALANCING */
10853 #endif /* CONFIG_SCHED_DEBUG */
10855 __init
void init_sched_fair_class(void)
10858 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
10860 #ifdef CONFIG_NO_HZ_COMMON
10861 nohz
.next_balance
= jiffies
;
10862 nohz
.next_blocked
= jiffies
;
10863 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
10870 * Helper functions to facilitate extracting info from tracepoints.
10873 const struct sched_avg
*sched_trace_cfs_rq_avg(struct cfs_rq
*cfs_rq
)
10876 return cfs_rq
? &cfs_rq
->avg
: NULL
;
10881 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg
);
10883 char *sched_trace_cfs_rq_path(struct cfs_rq
*cfs_rq
, char *str
, int len
)
10887 strlcpy(str
, "(null)", len
);
10892 cfs_rq_tg_path(cfs_rq
, str
, len
);
10895 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path
);
10897 int sched_trace_cfs_rq_cpu(struct cfs_rq
*cfs_rq
)
10899 return cfs_rq
? cpu_of(rq_of(cfs_rq
)) : -1;
10901 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu
);
10903 const struct sched_avg
*sched_trace_rq_avg_rt(struct rq
*rq
)
10906 return rq
? &rq
->avg_rt
: NULL
;
10911 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt
);
10913 const struct sched_avg
*sched_trace_rq_avg_dl(struct rq
*rq
)
10916 return rq
? &rq
->avg_dl
: NULL
;
10921 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl
);
10923 const struct sched_avg
*sched_trace_rq_avg_irq(struct rq
*rq
)
10925 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10926 return rq
? &rq
->avg_irq
: NULL
;
10931 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq
);
10933 int sched_trace_rq_cpu(struct rq
*rq
)
10935 return rq
? cpu_of(rq
) : -1;
10937 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu
);
10939 const struct cpumask
*sched_trace_rd_span(struct root_domain
*rd
)
10942 return rd
? rd
->span
: NULL
;
10947 EXPORT_SYMBOL_GPL(sched_trace_rd_span
);