2 * Pressure stall information for CPU, memory and IO
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
7 * Polling support by Suren Baghdasaryan <surenb@google.com>
8 * Copyright (c) 2018 Google, Inc.
10 * When CPU, memory and IO are contended, tasks experience delays that
11 * reduce throughput and introduce latencies into the workload. Memory
12 * and IO contention, in addition, can cause a full loss of forward
13 * progress in which the CPU goes idle.
15 * This code aggregates individual task delays into resource pressure
16 * metrics that indicate problems with both workload health and
17 * resource utilization.
21 * The time in which a task can execute on a CPU is our baseline for
22 * productivity. Pressure expresses the amount of time in which this
23 * potential cannot be realized due to resource contention.
25 * This concept of productivity has two components: the workload and
26 * the CPU. To measure the impact of pressure on both, we define two
27 * contention states for a resource: SOME and FULL.
29 * In the SOME state of a given resource, one or more tasks are
30 * delayed on that resource. This affects the workload's ability to
31 * perform work, but the CPU may still be executing other tasks.
33 * In the FULL state of a given resource, all non-idle tasks are
34 * delayed on that resource such that nobody is advancing and the CPU
35 * goes idle. This leaves both workload and CPU unproductive.
37 * (Naturally, the FULL state doesn't exist for the CPU resource.)
39 * SOME = nr_delayed_tasks != 0
40 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
42 * The percentage of wallclock time spent in those compound stall
43 * states gives pressure numbers between 0 and 100 for each resource,
44 * where the SOME percentage indicates workload slowdowns and the FULL
45 * percentage indicates reduced CPU utilization:
47 * %SOME = time(SOME) / period
48 * %FULL = time(FULL) / period
52 * The more tasks and available CPUs there are, the more work can be
53 * performed concurrently. This means that the potential that can go
54 * unrealized due to resource contention *also* scales with non-idle
57 * Consider a scenario where 257 number crunching tasks are trying to
58 * run concurrently on 256 CPUs. If we simply aggregated the task
59 * states, we would have to conclude a CPU SOME pressure number of
60 * 100%, since *somebody* is waiting on a runqueue at all
61 * times. However, that is clearly not the amount of contention the
62 * workload is experiencing: only one out of 256 possible exceution
63 * threads will be contended at any given time, or about 0.4%.
65 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
66 * given time *one* of the tasks is delayed due to a lack of memory.
67 * Again, looking purely at the task state would yield a memory FULL
68 * pressure number of 0%, since *somebody* is always making forward
69 * progress. But again this wouldn't capture the amount of execution
70 * potential lost, which is 1 out of 4 CPUs, or 25%.
72 * To calculate wasted potential (pressure) with multiple processors,
73 * we have to base our calculation on the number of non-idle tasks in
74 * conjunction with the number of available CPUs, which is the number
75 * of potential execution threads. SOME becomes then the proportion of
76 * delayed tasks to possibe threads, and FULL is the share of possible
77 * threads that are unproductive due to delays:
79 * threads = min(nr_nonidle_tasks, nr_cpus)
80 * SOME = min(nr_delayed_tasks / threads, 1)
81 * FULL = (threads - min(nr_running_tasks, threads)) / threads
83 * For the 257 number crunchers on 256 CPUs, this yields:
85 * threads = min(257, 256)
86 * SOME = min(1 / 256, 1) = 0.4%
87 * FULL = (256 - min(257, 256)) / 256 = 0%
89 * For the 1 out of 4 memory-delayed tasks, this yields:
92 * SOME = min(1 / 4, 1) = 25%
93 * FULL = (4 - min(3, 4)) / 4 = 25%
95 * [ Substitute nr_cpus with 1, and you can see that it's a natural
96 * extension of the single-CPU model. ]
100 * To assess the precise time spent in each such state, we would have
101 * to freeze the system on task changes and start/stop the state
102 * clocks accordingly. Obviously that doesn't scale in practice.
104 * Because the scheduler aims to distribute the compute load evenly
105 * among the available CPUs, we can track task state locally to each
106 * CPU and, at much lower frequency, extrapolate the global state for
107 * the cumulative stall times and the running averages.
109 * For each runqueue, we track:
111 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
112 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
113 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
115 * and then periodically aggregate:
117 * tNONIDLE = sum(tNONIDLE[i])
119 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
120 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
122 * %SOME = tSOME / period
123 * %FULL = tFULL / period
125 * This gives us an approximation of pressure that is practical
126 * cost-wise, yet way more sensitive and accurate than periodic
127 * sampling of the aggregate task states would be.
130 #include "../workqueue_internal.h"
131 #include <linux/sched/loadavg.h>
132 #include <linux/seq_file.h>
133 #include <linux/proc_fs.h>
134 #include <linux/seqlock.h>
135 #include <linux/uaccess.h>
136 #include <linux/cgroup.h>
137 #include <linux/module.h>
138 #include <linux/sched.h>
139 #include <linux/ctype.h>
140 #include <linux/file.h>
141 #include <linux/poll.h>
142 #include <linux/psi.h>
145 static int psi_bug __read_mostly
;
147 DEFINE_STATIC_KEY_FALSE(psi_disabled
);
149 #ifdef CONFIG_PSI_DEFAULT_DISABLED
150 static bool psi_enable
;
152 static bool psi_enable
= true;
154 static int __init
setup_psi(char *str
)
156 return kstrtobool(str
, &psi_enable
) == 0;
158 __setup("psi=", setup_psi
);
160 /* Running averages - we need to be higher-res than loadavg */
161 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
162 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
163 #define EXP_60s 1981 /* 1/exp(2s/60s) */
164 #define EXP_300s 2034 /* 1/exp(2s/300s) */
166 /* PSI trigger definitions */
167 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */
168 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
169 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
171 /* Sampling frequency in nanoseconds */
172 static u64 psi_period __read_mostly
;
174 /* System-level pressure and stall tracking */
175 static DEFINE_PER_CPU(struct psi_group_cpu
, system_group_pcpu
);
176 struct psi_group psi_system
= {
177 .pcpu
= &system_group_pcpu
,
180 static void psi_avgs_work(struct work_struct
*work
);
182 static void group_init(struct psi_group
*group
)
186 for_each_possible_cpu(cpu
)
187 seqcount_init(&per_cpu_ptr(group
->pcpu
, cpu
)->seq
);
188 group
->avg_last_update
= sched_clock();
189 group
->avg_next_update
= group
->avg_last_update
+ psi_period
;
190 INIT_DELAYED_WORK(&group
->avgs_work
, psi_avgs_work
);
191 mutex_init(&group
->avgs_lock
);
192 /* Init trigger-related members */
193 atomic_set(&group
->poll_scheduled
, 0);
194 mutex_init(&group
->trigger_lock
);
195 INIT_LIST_HEAD(&group
->triggers
);
196 memset(group
->nr_triggers
, 0, sizeof(group
->nr_triggers
));
197 group
->poll_states
= 0;
198 group
->poll_min_period
= U32_MAX
;
199 memset(group
->polling_total
, 0, sizeof(group
->polling_total
));
200 group
->polling_next_update
= ULLONG_MAX
;
201 group
->polling_until
= 0;
202 rcu_assign_pointer(group
->poll_kworker
, NULL
);
205 void __init
psi_init(void)
208 static_branch_enable(&psi_disabled
);
212 psi_period
= jiffies_to_nsecs(PSI_FREQ
);
213 group_init(&psi_system
);
216 static bool test_state(unsigned int *tasks
, enum psi_states state
)
220 return tasks
[NR_IOWAIT
];
222 return tasks
[NR_IOWAIT
] && !tasks
[NR_RUNNING
];
224 return tasks
[NR_MEMSTALL
];
226 return tasks
[NR_MEMSTALL
] && !tasks
[NR_RUNNING
];
228 return tasks
[NR_RUNNING
] > 1;
230 return tasks
[NR_IOWAIT
] || tasks
[NR_MEMSTALL
] ||
237 static void get_recent_times(struct psi_group
*group
, int cpu
,
238 enum psi_aggregators aggregator
, u32
*times
,
239 u32
*pchanged_states
)
241 struct psi_group_cpu
*groupc
= per_cpu_ptr(group
->pcpu
, cpu
);
242 u64 now
, state_start
;
247 *pchanged_states
= 0;
249 /* Snapshot a coherent view of the CPU state */
251 seq
= read_seqcount_begin(&groupc
->seq
);
252 now
= cpu_clock(cpu
);
253 memcpy(times
, groupc
->times
, sizeof(groupc
->times
));
254 state_mask
= groupc
->state_mask
;
255 state_start
= groupc
->state_start
;
256 } while (read_seqcount_retry(&groupc
->seq
, seq
));
258 /* Calculate state time deltas against the previous snapshot */
259 for (s
= 0; s
< NR_PSI_STATES
; s
++) {
262 * In addition to already concluded states, we also
263 * incorporate currently active states on the CPU,
264 * since states may last for many sampling periods.
266 * This way we keep our delta sampling buckets small
267 * (u32) and our reported pressure close to what's
268 * actually happening.
270 if (state_mask
& (1 << s
))
271 times
[s
] += now
- state_start
;
273 delta
= times
[s
] - groupc
->times_prev
[aggregator
][s
];
274 groupc
->times_prev
[aggregator
][s
] = times
[s
];
278 *pchanged_states
|= (1 << s
);
282 static void calc_avgs(unsigned long avg
[3], int missed_periods
,
283 u64 time
, u64 period
)
287 /* Fill in zeroes for periods of no activity */
288 if (missed_periods
) {
289 avg
[0] = calc_load_n(avg
[0], EXP_10s
, 0, missed_periods
);
290 avg
[1] = calc_load_n(avg
[1], EXP_60s
, 0, missed_periods
);
291 avg
[2] = calc_load_n(avg
[2], EXP_300s
, 0, missed_periods
);
294 /* Sample the most recent active period */
295 pct
= div_u64(time
* 100, period
);
297 avg
[0] = calc_load(avg
[0], EXP_10s
, pct
);
298 avg
[1] = calc_load(avg
[1], EXP_60s
, pct
);
299 avg
[2] = calc_load(avg
[2], EXP_300s
, pct
);
302 static void collect_percpu_times(struct psi_group
*group
,
303 enum psi_aggregators aggregator
,
304 u32
*pchanged_states
)
306 u64 deltas
[NR_PSI_STATES
- 1] = { 0, };
307 unsigned long nonidle_total
= 0;
308 u32 changed_states
= 0;
313 * Collect the per-cpu time buckets and average them into a
314 * single time sample that is normalized to wallclock time.
316 * For averaging, each CPU is weighted by its non-idle time in
317 * the sampling period. This eliminates artifacts from uneven
318 * loading, or even entirely idle CPUs.
320 for_each_possible_cpu(cpu
) {
321 u32 times
[NR_PSI_STATES
];
323 u32 cpu_changed_states
;
325 get_recent_times(group
, cpu
, aggregator
, times
,
326 &cpu_changed_states
);
327 changed_states
|= cpu_changed_states
;
329 nonidle
= nsecs_to_jiffies(times
[PSI_NONIDLE
]);
330 nonidle_total
+= nonidle
;
332 for (s
= 0; s
< PSI_NONIDLE
; s
++)
333 deltas
[s
] += (u64
)times
[s
] * nonidle
;
337 * Integrate the sample into the running statistics that are
338 * reported to userspace: the cumulative stall times and the
341 * Pressure percentages are sampled at PSI_FREQ. We might be
342 * called more often when the user polls more frequently than
343 * that; we might be called less often when there is no task
344 * activity, thus no data, and clock ticks are sporadic. The
345 * below handles both.
349 for (s
= 0; s
< NR_PSI_STATES
- 1; s
++)
350 group
->total
[aggregator
][s
] +=
351 div_u64(deltas
[s
], max(nonidle_total
, 1UL));
354 *pchanged_states
= changed_states
;
357 static u64
update_averages(struct psi_group
*group
, u64 now
)
359 unsigned long missed_periods
= 0;
365 expires
= group
->avg_next_update
;
366 if (now
- expires
>= psi_period
)
367 missed_periods
= div_u64(now
- expires
, psi_period
);
370 * The periodic clock tick can get delayed for various
371 * reasons, especially on loaded systems. To avoid clock
372 * drift, we schedule the clock in fixed psi_period intervals.
373 * But the deltas we sample out of the per-cpu buckets above
374 * are based on the actual time elapsing between clock ticks.
376 avg_next_update
= expires
+ ((1 + missed_periods
) * psi_period
);
377 period
= now
- (group
->avg_last_update
+ (missed_periods
* psi_period
));
378 group
->avg_last_update
= now
;
380 for (s
= 0; s
< NR_PSI_STATES
- 1; s
++) {
383 sample
= group
->total
[PSI_AVGS
][s
] - group
->avg_total
[s
];
385 * Due to the lockless sampling of the time buckets,
386 * recorded time deltas can slip into the next period,
387 * which under full pressure can result in samples in
388 * excess of the period length.
390 * We don't want to report non-sensical pressures in
391 * excess of 100%, nor do we want to drop such events
392 * on the floor. Instead we punt any overage into the
393 * future until pressure subsides. By doing this we
394 * don't underreport the occurring pressure curve, we
395 * just report it delayed by one period length.
397 * The error isn't cumulative. As soon as another
398 * delta slips from a period P to P+1, by definition
399 * it frees up its time T in P.
403 group
->avg_total
[s
] += sample
;
404 calc_avgs(group
->avg
[s
], missed_periods
, sample
, period
);
407 return avg_next_update
;
410 static void psi_avgs_work(struct work_struct
*work
)
412 struct delayed_work
*dwork
;
413 struct psi_group
*group
;
418 dwork
= to_delayed_work(work
);
419 group
= container_of(dwork
, struct psi_group
, avgs_work
);
421 mutex_lock(&group
->avgs_lock
);
425 collect_percpu_times(group
, PSI_AVGS
, &changed_states
);
426 nonidle
= changed_states
& (1 << PSI_NONIDLE
);
428 * If there is task activity, periodically fold the per-cpu
429 * times and feed samples into the running averages. If things
430 * are idle and there is no data to process, stop the clock.
431 * Once restarted, we'll catch up the running averages in one
432 * go - see calc_avgs() and missed_periods.
434 if (now
>= group
->avg_next_update
)
435 group
->avg_next_update
= update_averages(group
, now
);
438 schedule_delayed_work(dwork
, nsecs_to_jiffies(
439 group
->avg_next_update
- now
) + 1);
442 mutex_unlock(&group
->avgs_lock
);
445 /* Trigger tracking window manupulations */
446 static void window_reset(struct psi_window
*win
, u64 now
, u64 value
,
449 win
->start_time
= now
;
450 win
->start_value
= value
;
451 win
->prev_growth
= prev_growth
;
455 * PSI growth tracking window update and growth calculation routine.
457 * This approximates a sliding tracking window by interpolating
458 * partially elapsed windows using historical growth data from the
459 * previous intervals. This minimizes memory requirements (by not storing
460 * all the intermediate values in the previous window) and simplifies
461 * the calculations. It works well because PSI signal changes only in
462 * positive direction and over relatively small window sizes the growth
463 * is close to linear.
465 static u64
window_update(struct psi_window
*win
, u64 now
, u64 value
)
470 elapsed
= now
- win
->start_time
;
471 growth
= value
- win
->start_value
;
473 * After each tracking window passes win->start_value and
474 * win->start_time get reset and win->prev_growth stores
475 * the average per-window growth of the previous window.
476 * win->prev_growth is then used to interpolate additional
477 * growth from the previous window assuming it was linear.
479 if (elapsed
> win
->size
)
480 window_reset(win
, now
, value
, growth
);
484 remaining
= win
->size
- elapsed
;
485 growth
+= div64_u64(win
->prev_growth
* remaining
, win
->size
);
491 static void init_triggers(struct psi_group
*group
, u64 now
)
493 struct psi_trigger
*t
;
495 list_for_each_entry(t
, &group
->triggers
, node
)
496 window_reset(&t
->win
, now
,
497 group
->total
[PSI_POLL
][t
->state
], 0);
498 memcpy(group
->polling_total
, group
->total
[PSI_POLL
],
499 sizeof(group
->polling_total
));
500 group
->polling_next_update
= now
+ group
->poll_min_period
;
503 static u64
update_triggers(struct psi_group
*group
, u64 now
)
505 struct psi_trigger
*t
;
506 bool new_stall
= false;
507 u64
*total
= group
->total
[PSI_POLL
];
510 * On subsequent updates, calculate growth deltas and let
511 * watchers know when their specified thresholds are exceeded.
513 list_for_each_entry(t
, &group
->triggers
, node
) {
516 /* Check for stall activity */
517 if (group
->polling_total
[t
->state
] == total
[t
->state
])
521 * Multiple triggers might be looking at the same state,
522 * remember to update group->polling_total[] once we've
523 * been through all of them. Also remember to extend the
524 * polling time if we see new stall activity.
528 /* Calculate growth since last update */
529 growth
= window_update(&t
->win
, now
, total
[t
->state
]);
530 if (growth
< t
->threshold
)
533 /* Limit event signaling to once per window */
534 if (now
< t
->last_event_time
+ t
->win
.size
)
537 /* Generate an event */
538 if (cmpxchg(&t
->event
, 0, 1) == 0)
539 wake_up_interruptible(&t
->event_wait
);
540 t
->last_event_time
= now
;
544 memcpy(group
->polling_total
, total
,
545 sizeof(group
->polling_total
));
547 return now
+ group
->poll_min_period
;
551 * Schedule polling if it's not already scheduled. It's safe to call even from
552 * hotpath because even though kthread_queue_delayed_work takes worker->lock
553 * spinlock that spinlock is never contended due to poll_scheduled atomic
554 * preventing such competition.
556 static void psi_schedule_poll_work(struct psi_group
*group
, unsigned long delay
)
558 struct kthread_worker
*kworker
;
560 /* Do not reschedule if already scheduled */
561 if (atomic_cmpxchg(&group
->poll_scheduled
, 0, 1) != 0)
566 kworker
= rcu_dereference(group
->poll_kworker
);
568 * kworker might be NULL in case psi_trigger_destroy races with
569 * psi_task_change (hotpath) which can't use locks
572 kthread_queue_delayed_work(kworker
, &group
->poll_work
, delay
);
574 atomic_set(&group
->poll_scheduled
, 0);
579 static void psi_poll_work(struct kthread_work
*work
)
581 struct kthread_delayed_work
*dwork
;
582 struct psi_group
*group
;
586 dwork
= container_of(work
, struct kthread_delayed_work
, work
);
587 group
= container_of(dwork
, struct psi_group
, poll_work
);
589 atomic_set(&group
->poll_scheduled
, 0);
591 mutex_lock(&group
->trigger_lock
);
595 collect_percpu_times(group
, PSI_POLL
, &changed_states
);
597 if (changed_states
& group
->poll_states
) {
598 /* Initialize trigger windows when entering polling mode */
599 if (now
> group
->polling_until
)
600 init_triggers(group
, now
);
603 * Keep the monitor active for at least the duration of the
604 * minimum tracking window as long as monitor states are
607 group
->polling_until
= now
+
608 group
->poll_min_period
* UPDATES_PER_WINDOW
;
611 if (now
> group
->polling_until
) {
612 group
->polling_next_update
= ULLONG_MAX
;
616 if (now
>= group
->polling_next_update
)
617 group
->polling_next_update
= update_triggers(group
, now
);
619 psi_schedule_poll_work(group
,
620 nsecs_to_jiffies(group
->polling_next_update
- now
) + 1);
623 mutex_unlock(&group
->trigger_lock
);
626 static void record_times(struct psi_group_cpu
*groupc
, int cpu
,
632 now
= cpu_clock(cpu
);
633 delta
= now
- groupc
->state_start
;
634 groupc
->state_start
= now
;
636 if (groupc
->state_mask
& (1 << PSI_IO_SOME
)) {
637 groupc
->times
[PSI_IO_SOME
] += delta
;
638 if (groupc
->state_mask
& (1 << PSI_IO_FULL
))
639 groupc
->times
[PSI_IO_FULL
] += delta
;
642 if (groupc
->state_mask
& (1 << PSI_MEM_SOME
)) {
643 groupc
->times
[PSI_MEM_SOME
] += delta
;
644 if (groupc
->state_mask
& (1 << PSI_MEM_FULL
))
645 groupc
->times
[PSI_MEM_FULL
] += delta
;
646 else if (memstall_tick
) {
649 * Since we care about lost potential, a
650 * memstall is FULL when there are no other
651 * working tasks, but also when the CPU is
652 * actively reclaiming and nothing productive
653 * could run even if it were runnable.
655 * When the timer tick sees a reclaiming CPU,
656 * regardless of runnable tasks, sample a FULL
657 * tick (or less if it hasn't been a full tick
658 * since the last state change).
660 sample
= min(delta
, (u32
)jiffies_to_nsecs(1));
661 groupc
->times
[PSI_MEM_FULL
] += sample
;
665 if (groupc
->state_mask
& (1 << PSI_CPU_SOME
))
666 groupc
->times
[PSI_CPU_SOME
] += delta
;
668 if (groupc
->state_mask
& (1 << PSI_NONIDLE
))
669 groupc
->times
[PSI_NONIDLE
] += delta
;
672 static u32
psi_group_change(struct psi_group
*group
, int cpu
,
673 unsigned int clear
, unsigned int set
)
675 struct psi_group_cpu
*groupc
;
680 groupc
= per_cpu_ptr(group
->pcpu
, cpu
);
683 * First we assess the aggregate resource states this CPU's
684 * tasks have been in since the last change, and account any
685 * SOME and FULL time these may have resulted in.
687 * Then we update the task counts according to the state
688 * change requested through the @clear and @set bits.
690 write_seqcount_begin(&groupc
->seq
);
692 record_times(groupc
, cpu
, false);
694 for (t
= 0, m
= clear
; m
; m
&= ~(1 << t
), t
++) {
697 if (groupc
->tasks
[t
] == 0 && !psi_bug
) {
698 printk_deferred(KERN_ERR
"psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
699 cpu
, t
, groupc
->tasks
[0],
700 groupc
->tasks
[1], groupc
->tasks
[2],
707 for (t
= 0; set
; set
&= ~(1 << t
), t
++)
711 /* Calculate state mask representing active states */
712 for (s
= 0; s
< NR_PSI_STATES
; s
++) {
713 if (test_state(groupc
->tasks
, s
))
714 state_mask
|= (1 << s
);
716 groupc
->state_mask
= state_mask
;
718 write_seqcount_end(&groupc
->seq
);
723 static struct psi_group
*iterate_groups(struct task_struct
*task
, void **iter
)
725 #ifdef CONFIG_CGROUPS
726 struct cgroup
*cgroup
= NULL
;
729 cgroup
= task
->cgroups
->dfl_cgrp
;
730 else if (*iter
== &psi_system
)
733 cgroup
= cgroup_parent(*iter
);
735 if (cgroup
&& cgroup_parent(cgroup
)) {
737 return cgroup_psi(cgroup
);
747 void psi_task_change(struct task_struct
*task
, int clear
, int set
)
749 int cpu
= task_cpu(task
);
750 struct psi_group
*group
;
751 bool wake_clock
= true;
757 if (((task
->psi_flags
& set
) ||
758 (task
->psi_flags
& clear
) != clear
) &&
760 printk_deferred(KERN_ERR
"psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
761 task
->pid
, task
->comm
, cpu
,
762 task
->psi_flags
, clear
, set
);
766 task
->psi_flags
&= ~clear
;
767 task
->psi_flags
|= set
;
770 * Periodic aggregation shuts off if there is a period of no
771 * task changes, so we wake it back up if necessary. However,
772 * don't do this if the task change is the aggregation worker
773 * itself going to sleep, or we'll ping-pong forever.
775 if (unlikely((clear
& TSK_RUNNING
) &&
776 (task
->flags
& PF_WQ_WORKER
) &&
777 wq_worker_last_func(task
) == psi_avgs_work
))
780 while ((group
= iterate_groups(task
, &iter
))) {
781 u32 state_mask
= psi_group_change(group
, cpu
, clear
, set
);
783 if (state_mask
& group
->poll_states
)
784 psi_schedule_poll_work(group
, 1);
786 if (wake_clock
&& !delayed_work_pending(&group
->avgs_work
))
787 schedule_delayed_work(&group
->avgs_work
, PSI_FREQ
);
791 void psi_memstall_tick(struct task_struct
*task
, int cpu
)
793 struct psi_group
*group
;
796 while ((group
= iterate_groups(task
, &iter
))) {
797 struct psi_group_cpu
*groupc
;
799 groupc
= per_cpu_ptr(group
->pcpu
, cpu
);
800 write_seqcount_begin(&groupc
->seq
);
801 record_times(groupc
, cpu
, true);
802 write_seqcount_end(&groupc
->seq
);
807 * psi_memstall_enter - mark the beginning of a memory stall section
808 * @flags: flags to handle nested sections
810 * Marks the calling task as being stalled due to a lack of memory,
811 * such as waiting for a refault or performing reclaim.
813 void psi_memstall_enter(unsigned long *flags
)
818 if (static_branch_likely(&psi_disabled
))
821 *flags
= current
->flags
& PF_MEMSTALL
;
825 * PF_MEMSTALL setting & accounting needs to be atomic wrt
826 * changes to the task's scheduling state, otherwise we can
827 * race with CPU migration.
829 rq
= this_rq_lock_irq(&rf
);
831 current
->flags
|= PF_MEMSTALL
;
832 psi_task_change(current
, 0, TSK_MEMSTALL
);
834 rq_unlock_irq(rq
, &rf
);
838 * psi_memstall_leave - mark the end of an memory stall section
839 * @flags: flags to handle nested memdelay sections
841 * Marks the calling task as no longer stalled due to lack of memory.
843 void psi_memstall_leave(unsigned long *flags
)
848 if (static_branch_likely(&psi_disabled
))
854 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
855 * changes to the task's scheduling state, otherwise we could
856 * race with CPU migration.
858 rq
= this_rq_lock_irq(&rf
);
860 current
->flags
&= ~PF_MEMSTALL
;
861 psi_task_change(current
, TSK_MEMSTALL
, 0);
863 rq_unlock_irq(rq
, &rf
);
866 #ifdef CONFIG_CGROUPS
867 int psi_cgroup_alloc(struct cgroup
*cgroup
)
869 if (static_branch_likely(&psi_disabled
))
872 cgroup
->psi
.pcpu
= alloc_percpu(struct psi_group_cpu
);
873 if (!cgroup
->psi
.pcpu
)
875 group_init(&cgroup
->psi
);
879 void psi_cgroup_free(struct cgroup
*cgroup
)
881 if (static_branch_likely(&psi_disabled
))
884 cancel_delayed_work_sync(&cgroup
->psi
.avgs_work
);
885 free_percpu(cgroup
->psi
.pcpu
);
886 /* All triggers must be removed by now */
887 WARN_ONCE(cgroup
->psi
.poll_states
, "psi: trigger leak\n");
891 * cgroup_move_task - move task to a different cgroup
893 * @to: the target css_set
895 * Move task to a new cgroup and safely migrate its associated stall
896 * state between the different groups.
898 * This function acquires the task's rq lock to lock out concurrent
899 * changes to the task's scheduling state and - in case the task is
900 * running - concurrent changes to its stall state.
902 void cgroup_move_task(struct task_struct
*task
, struct css_set
*to
)
904 unsigned int task_flags
= 0;
908 if (static_branch_likely(&psi_disabled
)) {
910 * Lame to do this here, but the scheduler cannot be locked
911 * from the outside, so we move cgroups from inside sched/.
913 rcu_assign_pointer(task
->cgroups
, to
);
917 rq
= task_rq_lock(task
, &rf
);
919 if (task_on_rq_queued(task
))
920 task_flags
= TSK_RUNNING
;
921 else if (task
->in_iowait
)
922 task_flags
= TSK_IOWAIT
;
924 if (task
->flags
& PF_MEMSTALL
)
925 task_flags
|= TSK_MEMSTALL
;
928 psi_task_change(task
, task_flags
, 0);
930 /* See comment above */
931 rcu_assign_pointer(task
->cgroups
, to
);
934 psi_task_change(task
, 0, task_flags
);
936 task_rq_unlock(rq
, task
, &rf
);
938 #endif /* CONFIG_CGROUPS */
940 int psi_show(struct seq_file
*m
, struct psi_group
*group
, enum psi_res res
)
945 if (static_branch_likely(&psi_disabled
))
948 /* Update averages before reporting them */
949 mutex_lock(&group
->avgs_lock
);
951 collect_percpu_times(group
, PSI_AVGS
, NULL
);
952 if (now
>= group
->avg_next_update
)
953 group
->avg_next_update
= update_averages(group
, now
);
954 mutex_unlock(&group
->avgs_lock
);
956 for (full
= 0; full
< 2 - (res
== PSI_CPU
); full
++) {
957 unsigned long avg
[3];
961 for (w
= 0; w
< 3; w
++)
962 avg
[w
] = group
->avg
[res
* 2 + full
][w
];
963 total
= div_u64(group
->total
[PSI_AVGS
][res
* 2 + full
],
966 seq_printf(m
, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
967 full
? "full" : "some",
968 LOAD_INT(avg
[0]), LOAD_FRAC(avg
[0]),
969 LOAD_INT(avg
[1]), LOAD_FRAC(avg
[1]),
970 LOAD_INT(avg
[2]), LOAD_FRAC(avg
[2]),
977 static int psi_io_show(struct seq_file
*m
, void *v
)
979 return psi_show(m
, &psi_system
, PSI_IO
);
982 static int psi_memory_show(struct seq_file
*m
, void *v
)
984 return psi_show(m
, &psi_system
, PSI_MEM
);
987 static int psi_cpu_show(struct seq_file
*m
, void *v
)
989 return psi_show(m
, &psi_system
, PSI_CPU
);
992 static int psi_io_open(struct inode
*inode
, struct file
*file
)
994 return single_open(file
, psi_io_show
, NULL
);
997 static int psi_memory_open(struct inode
*inode
, struct file
*file
)
999 return single_open(file
, psi_memory_show
, NULL
);
1002 static int psi_cpu_open(struct inode
*inode
, struct file
*file
)
1004 return single_open(file
, psi_cpu_show
, NULL
);
1007 struct psi_trigger
*psi_trigger_create(struct psi_group
*group
,
1008 char *buf
, size_t nbytes
, enum psi_res res
)
1010 struct psi_trigger
*t
;
1011 enum psi_states state
;
1015 if (static_branch_likely(&psi_disabled
))
1016 return ERR_PTR(-EOPNOTSUPP
);
1018 if (sscanf(buf
, "some %u %u", &threshold_us
, &window_us
) == 2)
1019 state
= PSI_IO_SOME
+ res
* 2;
1020 else if (sscanf(buf
, "full %u %u", &threshold_us
, &window_us
) == 2)
1021 state
= PSI_IO_FULL
+ res
* 2;
1023 return ERR_PTR(-EINVAL
);
1025 if (state
>= PSI_NONIDLE
)
1026 return ERR_PTR(-EINVAL
);
1028 if (window_us
< WINDOW_MIN_US
||
1029 window_us
> WINDOW_MAX_US
)
1030 return ERR_PTR(-EINVAL
);
1032 /* Check threshold */
1033 if (threshold_us
== 0 || threshold_us
> window_us
)
1034 return ERR_PTR(-EINVAL
);
1036 t
= kmalloc(sizeof(*t
), GFP_KERNEL
);
1038 return ERR_PTR(-ENOMEM
);
1042 t
->threshold
= threshold_us
* NSEC_PER_USEC
;
1043 t
->win
.size
= window_us
* NSEC_PER_USEC
;
1044 window_reset(&t
->win
, 0, 0, 0);
1047 t
->last_event_time
= 0;
1048 init_waitqueue_head(&t
->event_wait
);
1049 kref_init(&t
->refcount
);
1051 mutex_lock(&group
->trigger_lock
);
1053 if (!rcu_access_pointer(group
->poll_kworker
)) {
1054 struct sched_param param
= {
1055 .sched_priority
= 1,
1057 struct kthread_worker
*kworker
;
1059 kworker
= kthread_create_worker(0, "psimon");
1060 if (IS_ERR(kworker
)) {
1062 mutex_unlock(&group
->trigger_lock
);
1063 return ERR_CAST(kworker
);
1065 sched_setscheduler_nocheck(kworker
->task
, SCHED_FIFO
, ¶m
);
1066 kthread_init_delayed_work(&group
->poll_work
,
1068 rcu_assign_pointer(group
->poll_kworker
, kworker
);
1071 list_add(&t
->node
, &group
->triggers
);
1072 group
->poll_min_period
= min(group
->poll_min_period
,
1073 div_u64(t
->win
.size
, UPDATES_PER_WINDOW
));
1074 group
->nr_triggers
[t
->state
]++;
1075 group
->poll_states
|= (1 << t
->state
);
1077 mutex_unlock(&group
->trigger_lock
);
1082 static void psi_trigger_destroy(struct kref
*ref
)
1084 struct psi_trigger
*t
= container_of(ref
, struct psi_trigger
, refcount
);
1085 struct psi_group
*group
= t
->group
;
1086 struct kthread_worker
*kworker_to_destroy
= NULL
;
1088 if (static_branch_likely(&psi_disabled
))
1092 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1093 * from under a polling process.
1095 wake_up_interruptible(&t
->event_wait
);
1097 mutex_lock(&group
->trigger_lock
);
1099 if (!list_empty(&t
->node
)) {
1100 struct psi_trigger
*tmp
;
1101 u64 period
= ULLONG_MAX
;
1104 group
->nr_triggers
[t
->state
]--;
1105 if (!group
->nr_triggers
[t
->state
])
1106 group
->poll_states
&= ~(1 << t
->state
);
1107 /* reset min update period for the remaining triggers */
1108 list_for_each_entry(tmp
, &group
->triggers
, node
)
1109 period
= min(period
, div_u64(tmp
->win
.size
,
1110 UPDATES_PER_WINDOW
));
1111 group
->poll_min_period
= period
;
1112 /* Destroy poll_kworker when the last trigger is destroyed */
1113 if (group
->poll_states
== 0) {
1114 group
->polling_until
= 0;
1115 kworker_to_destroy
= rcu_dereference_protected(
1116 group
->poll_kworker
,
1117 lockdep_is_held(&group
->trigger_lock
));
1118 rcu_assign_pointer(group
->poll_kworker
, NULL
);
1122 mutex_unlock(&group
->trigger_lock
);
1125 * Wait for both *trigger_ptr from psi_trigger_replace and
1126 * poll_kworker RCUs to complete their read-side critical sections
1127 * before destroying the trigger and optionally the poll_kworker
1131 * Destroy the kworker after releasing trigger_lock to prevent a
1132 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1134 if (kworker_to_destroy
) {
1136 * After the RCU grace period has expired, the worker
1137 * can no longer be found through group->poll_kworker.
1138 * But it might have been already scheduled before
1139 * that - deschedule it cleanly before destroying it.
1141 kthread_cancel_delayed_work_sync(&group
->poll_work
);
1142 atomic_set(&group
->poll_scheduled
, 0);
1144 kthread_destroy_worker(kworker_to_destroy
);
1149 void psi_trigger_replace(void **trigger_ptr
, struct psi_trigger
*new)
1151 struct psi_trigger
*old
= *trigger_ptr
;
1153 if (static_branch_likely(&psi_disabled
))
1156 rcu_assign_pointer(*trigger_ptr
, new);
1158 kref_put(&old
->refcount
, psi_trigger_destroy
);
1161 __poll_t
psi_trigger_poll(void **trigger_ptr
,
1162 struct file
*file
, poll_table
*wait
)
1164 __poll_t ret
= DEFAULT_POLLMASK
;
1165 struct psi_trigger
*t
;
1167 if (static_branch_likely(&psi_disabled
))
1168 return DEFAULT_POLLMASK
| EPOLLERR
| EPOLLPRI
;
1172 t
= rcu_dereference(*(void __rcu __force
**)trigger_ptr
);
1175 return DEFAULT_POLLMASK
| EPOLLERR
| EPOLLPRI
;
1177 kref_get(&t
->refcount
);
1181 poll_wait(file
, &t
->event_wait
, wait
);
1183 if (cmpxchg(&t
->event
, 1, 0) == 1)
1186 kref_put(&t
->refcount
, psi_trigger_destroy
);
1191 static ssize_t
psi_write(struct file
*file
, const char __user
*user_buf
,
1192 size_t nbytes
, enum psi_res res
)
1196 struct seq_file
*seq
;
1197 struct psi_trigger
*new;
1199 if (static_branch_likely(&psi_disabled
))
1202 buf_size
= min(nbytes
, sizeof(buf
));
1203 if (copy_from_user(buf
, user_buf
, buf_size
))
1206 buf
[buf_size
- 1] = '\0';
1208 new = psi_trigger_create(&psi_system
, buf
, nbytes
, res
);
1210 return PTR_ERR(new);
1212 seq
= file
->private_data
;
1213 /* Take seq->lock to protect seq->private from concurrent writes */
1214 mutex_lock(&seq
->lock
);
1215 psi_trigger_replace(&seq
->private, new);
1216 mutex_unlock(&seq
->lock
);
1221 static ssize_t
psi_io_write(struct file
*file
, const char __user
*user_buf
,
1222 size_t nbytes
, loff_t
*ppos
)
1224 return psi_write(file
, user_buf
, nbytes
, PSI_IO
);
1227 static ssize_t
psi_memory_write(struct file
*file
, const char __user
*user_buf
,
1228 size_t nbytes
, loff_t
*ppos
)
1230 return psi_write(file
, user_buf
, nbytes
, PSI_MEM
);
1233 static ssize_t
psi_cpu_write(struct file
*file
, const char __user
*user_buf
,
1234 size_t nbytes
, loff_t
*ppos
)
1236 return psi_write(file
, user_buf
, nbytes
, PSI_CPU
);
1239 static __poll_t
psi_fop_poll(struct file
*file
, poll_table
*wait
)
1241 struct seq_file
*seq
= file
->private_data
;
1243 return psi_trigger_poll(&seq
->private, file
, wait
);
1246 static int psi_fop_release(struct inode
*inode
, struct file
*file
)
1248 struct seq_file
*seq
= file
->private_data
;
1250 psi_trigger_replace(&seq
->private, NULL
);
1251 return single_release(inode
, file
);
1254 static const struct proc_ops psi_io_proc_ops
= {
1255 .proc_open
= psi_io_open
,
1256 .proc_read
= seq_read
,
1257 .proc_lseek
= seq_lseek
,
1258 .proc_write
= psi_io_write
,
1259 .proc_poll
= psi_fop_poll
,
1260 .proc_release
= psi_fop_release
,
1263 static const struct proc_ops psi_memory_proc_ops
= {
1264 .proc_open
= psi_memory_open
,
1265 .proc_read
= seq_read
,
1266 .proc_lseek
= seq_lseek
,
1267 .proc_write
= psi_memory_write
,
1268 .proc_poll
= psi_fop_poll
,
1269 .proc_release
= psi_fop_release
,
1272 static const struct proc_ops psi_cpu_proc_ops
= {
1273 .proc_open
= psi_cpu_open
,
1274 .proc_read
= seq_read
,
1275 .proc_lseek
= seq_lseek
,
1276 .proc_write
= psi_cpu_write
,
1277 .proc_poll
= psi_fop_poll
,
1278 .proc_release
= psi_fop_release
,
1281 static int __init
psi_proc_init(void)
1284 proc_mkdir("pressure", NULL
);
1285 proc_create("pressure/io", 0, NULL
, &psi_io_proc_ops
);
1286 proc_create("pressure/memory", 0, NULL
, &psi_memory_proc_ops
);
1287 proc_create("pressure/cpu", 0, NULL
, &psi_cpu_proc_ops
);
1291 module_init(psi_proc_init
);