drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / kernel / trace / ring_buffer.c
blob61f0e92ace999815aeac87703525b90f14abe407
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h> /* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
29 #include <asm/local.h>
31 static void update_pages_handler(struct work_struct *work);
34 * The ring buffer header is special. We must manually up keep it.
36 int ring_buffer_print_entry_header(struct trace_seq *s)
38 trace_seq_puts(s, "# compressed entry header\n");
39 trace_seq_puts(s, "\ttype_len : 5 bits\n");
40 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
41 trace_seq_puts(s, "\tarray : 32 bits\n");
42 trace_seq_putc(s, '\n');
43 trace_seq_printf(s, "\tpadding : type == %d\n",
44 RINGBUF_TYPE_PADDING);
45 trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 RINGBUF_TYPE_TIME_EXTEND);
47 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 RINGBUF_TYPE_TIME_STAMP);
49 trace_seq_printf(s, "\tdata max type_len == %d\n",
50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
52 return !trace_seq_has_overflowed(s);
56 * The ring buffer is made up of a list of pages. A separate list of pages is
57 * allocated for each CPU. A writer may only write to a buffer that is
58 * associated with the CPU it is currently executing on. A reader may read
59 * from any per cpu buffer.
61 * The reader is special. For each per cpu buffer, the reader has its own
62 * reader page. When a reader has read the entire reader page, this reader
63 * page is swapped with another page in the ring buffer.
65 * Now, as long as the writer is off the reader page, the reader can do what
66 * ever it wants with that page. The writer will never write to that page
67 * again (as long as it is out of the ring buffer).
69 * Here's some silly ASCII art.
71 * +------+
72 * |reader| RING BUFFER
73 * |page |
74 * +------+ +---+ +---+ +---+
75 * | |-->| |-->| |
76 * +---+ +---+ +---+
77 * ^ |
78 * | |
79 * +---------------+
82 * +------+
83 * |reader| RING BUFFER
84 * |page |------------------v
85 * +------+ +---+ +---+ +---+
86 * | |-->| |-->| |
87 * +---+ +---+ +---+
88 * ^ |
89 * | |
90 * +---------------+
93 * +------+
94 * |reader| RING BUFFER
95 * |page |------------------v
96 * +------+ +---+ +---+ +---+
97 * ^ | |-->| |-->| |
98 * | +---+ +---+ +---+
99 * | |
100 * | |
101 * +------------------------------+
104 * +------+
105 * |buffer| RING BUFFER
106 * |page |------------------v
107 * +------+ +---+ +---+ +---+
108 * ^ | | | |-->| |
109 * | New +---+ +---+ +---+
110 * | Reader------^ |
111 * | page |
112 * +------------------------------+
115 * After we make this swap, the reader can hand this page off to the splice
116 * code and be done with it. It can even allocate a new page if it needs to
117 * and swap that into the ring buffer.
119 * We will be using cmpxchg soon to make all this lockless.
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF (1 << 20)
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT 4U
130 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
132 #define RB_ALIGN_DATA __aligned(RB_ALIGNMENT)
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
137 enum {
138 RB_LEN_TIME_EXTEND = 8,
139 RB_LEN_TIME_STAMP = 8,
142 #define skip_time_extend(event) \
143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
145 #define extended_time(event) \
146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
148 static inline int rb_null_event(struct ring_buffer_event *event)
150 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
153 static void rb_event_set_padding(struct ring_buffer_event *event)
155 /* padding has a NULL time_delta */
156 event->type_len = RINGBUF_TYPE_PADDING;
157 event->time_delta = 0;
160 static unsigned
161 rb_event_data_length(struct ring_buffer_event *event)
163 unsigned length;
165 if (event->type_len)
166 length = event->type_len * RB_ALIGNMENT;
167 else
168 length = event->array[0];
169 return length + RB_EVNT_HDR_SIZE;
173 * Return the length of the given event. Will return
174 * the length of the time extend if the event is a
175 * time extend.
177 static inline unsigned
178 rb_event_length(struct ring_buffer_event *event)
180 switch (event->type_len) {
181 case RINGBUF_TYPE_PADDING:
182 if (rb_null_event(event))
183 /* undefined */
184 return -1;
185 return event->array[0] + RB_EVNT_HDR_SIZE;
187 case RINGBUF_TYPE_TIME_EXTEND:
188 return RB_LEN_TIME_EXTEND;
190 case RINGBUF_TYPE_TIME_STAMP:
191 return RB_LEN_TIME_STAMP;
193 case RINGBUF_TYPE_DATA:
194 return rb_event_data_length(event);
195 default:
196 BUG();
198 /* not hit */
199 return 0;
203 * Return total length of time extend and data,
204 * or just the event length for all other events.
206 static inline unsigned
207 rb_event_ts_length(struct ring_buffer_event *event)
209 unsigned len = 0;
211 if (extended_time(event)) {
212 /* time extends include the data event after it */
213 len = RB_LEN_TIME_EXTEND;
214 event = skip_time_extend(event);
216 return len + rb_event_length(event);
220 * ring_buffer_event_length - return the length of the event
221 * @event: the event to get the length of
223 * Returns the size of the data load of a data event.
224 * If the event is something other than a data event, it
225 * returns the size of the event itself. With the exception
226 * of a TIME EXTEND, where it still returns the size of the
227 * data load of the data event after it.
229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 unsigned length;
233 if (extended_time(event))
234 event = skip_time_extend(event);
236 length = rb_event_length(event);
237 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238 return length;
239 length -= RB_EVNT_HDR_SIZE;
240 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241 length -= sizeof(event->array[0]);
242 return length;
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 /* inline for ring buffer fast paths */
247 static __always_inline void *
248 rb_event_data(struct ring_buffer_event *event)
250 if (extended_time(event))
251 event = skip_time_extend(event);
252 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253 /* If length is in len field, then array[0] has the data */
254 if (event->type_len)
255 return (void *)&event->array[0];
256 /* Otherwise length is in array[0] and array[1] has the data */
257 return (void *)&event->array[1];
261 * ring_buffer_event_data - return the data of the event
262 * @event: the event to get the data from
264 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 return rb_event_data(event);
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 #define for_each_buffer_cpu(buffer, cpu) \
271 for_each_cpu(cpu, buffer->cpumask)
273 #define TS_SHIFT 27
274 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
275 #define TS_DELTA_TEST (~TS_MASK)
278 * ring_buffer_event_time_stamp - return the event's extended timestamp
279 * @event: the event to get the timestamp of
281 * Returns the extended timestamp associated with a data event.
282 * An extended time_stamp is a 64-bit timestamp represented
283 * internally in a special way that makes the best use of space
284 * contained within a ring buffer event. This function decodes
285 * it and maps it to a straight u64 value.
287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
289 u64 ts;
291 ts = event->array[0];
292 ts <<= TS_SHIFT;
293 ts += event->time_delta;
295 return ts;
298 /* Flag when events were overwritten */
299 #define RB_MISSED_EVENTS (1 << 31)
300 /* Missed count stored at end */
301 #define RB_MISSED_STORED (1 << 30)
303 struct buffer_data_page {
304 u64 time_stamp; /* page time stamp */
305 local_t commit; /* write committed index */
306 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
310 * Note, the buffer_page list must be first. The buffer pages
311 * are allocated in cache lines, which means that each buffer
312 * page will be at the beginning of a cache line, and thus
313 * the least significant bits will be zero. We use this to
314 * add flags in the list struct pointers, to make the ring buffer
315 * lockless.
317 struct buffer_page {
318 struct list_head list; /* list of buffer pages */
319 local_t write; /* index for next write */
320 unsigned read; /* index for next read */
321 local_t entries; /* entries on this page */
322 unsigned long real_end; /* real end of data */
323 struct buffer_data_page *page; /* Actual data page */
327 * The buffer page counters, write and entries, must be reset
328 * atomically when crossing page boundaries. To synchronize this
329 * update, two counters are inserted into the number. One is
330 * the actual counter for the write position or count on the page.
332 * The other is a counter of updaters. Before an update happens
333 * the update partition of the counter is incremented. This will
334 * allow the updater to update the counter atomically.
336 * The counter is 20 bits, and the state data is 12.
338 #define RB_WRITE_MASK 0xfffff
339 #define RB_WRITE_INTCNT (1 << 20)
341 static void rb_init_page(struct buffer_data_page *bpage)
343 local_set(&bpage->commit, 0);
347 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
348 * this issue out.
350 static void free_buffer_page(struct buffer_page *bpage)
352 free_page((unsigned long)bpage->page);
353 kfree(bpage);
357 * We need to fit the time_stamp delta into 27 bits.
359 static inline int test_time_stamp(u64 delta)
361 if (delta & TS_DELTA_TEST)
362 return 1;
363 return 0;
366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
371 int ring_buffer_print_page_header(struct trace_seq *s)
373 struct buffer_data_page field;
375 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376 "offset:0;\tsize:%u;\tsigned:%u;\n",
377 (unsigned int)sizeof(field.time_stamp),
378 (unsigned int)is_signed_type(u64));
380 trace_seq_printf(s, "\tfield: local_t commit;\t"
381 "offset:%u;\tsize:%u;\tsigned:%u;\n",
382 (unsigned int)offsetof(typeof(field), commit),
383 (unsigned int)sizeof(field.commit),
384 (unsigned int)is_signed_type(long));
386 trace_seq_printf(s, "\tfield: int overwrite;\t"
387 "offset:%u;\tsize:%u;\tsigned:%u;\n",
388 (unsigned int)offsetof(typeof(field), commit),
390 (unsigned int)is_signed_type(long));
392 trace_seq_printf(s, "\tfield: char data;\t"
393 "offset:%u;\tsize:%u;\tsigned:%u;\n",
394 (unsigned int)offsetof(typeof(field), data),
395 (unsigned int)BUF_PAGE_SIZE,
396 (unsigned int)is_signed_type(char));
398 return !trace_seq_has_overflowed(s);
401 struct rb_irq_work {
402 struct irq_work work;
403 wait_queue_head_t waiters;
404 wait_queue_head_t full_waiters;
405 bool waiters_pending;
406 bool full_waiters_pending;
407 bool wakeup_full;
411 * Structure to hold event state and handle nested events.
413 struct rb_event_info {
414 u64 ts;
415 u64 delta;
416 unsigned long length;
417 struct buffer_page *tail_page;
418 int add_timestamp;
422 * Used for which event context the event is in.
423 * NMI = 0
424 * IRQ = 1
425 * SOFTIRQ = 2
426 * NORMAL = 3
428 * See trace_recursive_lock() comment below for more details.
430 enum {
431 RB_CTX_NMI,
432 RB_CTX_IRQ,
433 RB_CTX_SOFTIRQ,
434 RB_CTX_NORMAL,
435 RB_CTX_MAX
439 * head_page == tail_page && head == tail then buffer is empty.
441 struct ring_buffer_per_cpu {
442 int cpu;
443 atomic_t record_disabled;
444 struct trace_buffer *buffer;
445 raw_spinlock_t reader_lock; /* serialize readers */
446 arch_spinlock_t lock;
447 struct lock_class_key lock_key;
448 struct buffer_data_page *free_page;
449 unsigned long nr_pages;
450 unsigned int current_context;
451 struct list_head *pages;
452 struct buffer_page *head_page; /* read from head */
453 struct buffer_page *tail_page; /* write to tail */
454 struct buffer_page *commit_page; /* committed pages */
455 struct buffer_page *reader_page;
456 unsigned long lost_events;
457 unsigned long last_overrun;
458 unsigned long nest;
459 local_t entries_bytes;
460 local_t entries;
461 local_t overrun;
462 local_t commit_overrun;
463 local_t dropped_events;
464 local_t committing;
465 local_t commits;
466 local_t pages_touched;
467 local_t pages_read;
468 long last_pages_touch;
469 size_t shortest_full;
470 unsigned long read;
471 unsigned long read_bytes;
472 u64 write_stamp;
473 u64 read_stamp;
474 /* ring buffer pages to update, > 0 to add, < 0 to remove */
475 long nr_pages_to_update;
476 struct list_head new_pages; /* new pages to add */
477 struct work_struct update_pages_work;
478 struct completion update_done;
480 struct rb_irq_work irq_work;
483 struct trace_buffer {
484 unsigned flags;
485 int cpus;
486 atomic_t record_disabled;
487 atomic_t resize_disabled;
488 cpumask_var_t cpumask;
490 struct lock_class_key *reader_lock_key;
492 struct mutex mutex;
494 struct ring_buffer_per_cpu **buffers;
496 struct hlist_node node;
497 u64 (*clock)(void);
499 struct rb_irq_work irq_work;
500 bool time_stamp_abs;
503 struct ring_buffer_iter {
504 struct ring_buffer_per_cpu *cpu_buffer;
505 unsigned long head;
506 struct buffer_page *head_page;
507 struct buffer_page *cache_reader_page;
508 unsigned long cache_read;
509 u64 read_stamp;
513 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
514 * @buffer: The ring_buffer to get the number of pages from
515 * @cpu: The cpu of the ring_buffer to get the number of pages from
517 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
519 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
521 return buffer->buffers[cpu]->nr_pages;
525 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
526 * @buffer: The ring_buffer to get the number of pages from
527 * @cpu: The cpu of the ring_buffer to get the number of pages from
529 * Returns the number of pages that have content in the ring buffer.
531 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
533 size_t read;
534 size_t cnt;
536 read = local_read(&buffer->buffers[cpu]->pages_read);
537 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
538 /* The reader can read an empty page, but not more than that */
539 if (cnt < read) {
540 WARN_ON_ONCE(read > cnt + 1);
541 return 0;
544 return cnt - read;
548 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
550 * Schedules a delayed work to wake up any task that is blocked on the
551 * ring buffer waiters queue.
553 static void rb_wake_up_waiters(struct irq_work *work)
555 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
557 wake_up_all(&rbwork->waiters);
558 if (rbwork->wakeup_full) {
559 rbwork->wakeup_full = false;
560 wake_up_all(&rbwork->full_waiters);
565 * ring_buffer_wait - wait for input to the ring buffer
566 * @buffer: buffer to wait on
567 * @cpu: the cpu buffer to wait on
568 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
570 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
571 * as data is added to any of the @buffer's cpu buffers. Otherwise
572 * it will wait for data to be added to a specific cpu buffer.
574 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
576 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
577 DEFINE_WAIT(wait);
578 struct rb_irq_work *work;
579 int ret = 0;
582 * Depending on what the caller is waiting for, either any
583 * data in any cpu buffer, or a specific buffer, put the
584 * caller on the appropriate wait queue.
586 if (cpu == RING_BUFFER_ALL_CPUS) {
587 work = &buffer->irq_work;
588 /* Full only makes sense on per cpu reads */
589 full = 0;
590 } else {
591 if (!cpumask_test_cpu(cpu, buffer->cpumask))
592 return -ENODEV;
593 cpu_buffer = buffer->buffers[cpu];
594 work = &cpu_buffer->irq_work;
598 while (true) {
599 if (full)
600 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
601 else
602 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
605 * The events can happen in critical sections where
606 * checking a work queue can cause deadlocks.
607 * After adding a task to the queue, this flag is set
608 * only to notify events to try to wake up the queue
609 * using irq_work.
611 * We don't clear it even if the buffer is no longer
612 * empty. The flag only causes the next event to run
613 * irq_work to do the work queue wake up. The worse
614 * that can happen if we race with !trace_empty() is that
615 * an event will cause an irq_work to try to wake up
616 * an empty queue.
618 * There's no reason to protect this flag either, as
619 * the work queue and irq_work logic will do the necessary
620 * synchronization for the wake ups. The only thing
621 * that is necessary is that the wake up happens after
622 * a task has been queued. It's OK for spurious wake ups.
624 if (full)
625 work->full_waiters_pending = true;
626 else
627 work->waiters_pending = true;
629 if (signal_pending(current)) {
630 ret = -EINTR;
631 break;
634 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
635 break;
637 if (cpu != RING_BUFFER_ALL_CPUS &&
638 !ring_buffer_empty_cpu(buffer, cpu)) {
639 unsigned long flags;
640 bool pagebusy;
641 size_t nr_pages;
642 size_t dirty;
644 if (!full)
645 break;
647 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
648 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
649 nr_pages = cpu_buffer->nr_pages;
650 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
651 if (!cpu_buffer->shortest_full ||
652 cpu_buffer->shortest_full < full)
653 cpu_buffer->shortest_full = full;
654 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
655 if (!pagebusy &&
656 (!nr_pages || (dirty * 100) > full * nr_pages))
657 break;
660 schedule();
663 if (full)
664 finish_wait(&work->full_waiters, &wait);
665 else
666 finish_wait(&work->waiters, &wait);
668 return ret;
672 * ring_buffer_poll_wait - poll on buffer input
673 * @buffer: buffer to wait on
674 * @cpu: the cpu buffer to wait on
675 * @filp: the file descriptor
676 * @poll_table: The poll descriptor
678 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
679 * as data is added to any of the @buffer's cpu buffers. Otherwise
680 * it will wait for data to be added to a specific cpu buffer.
682 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
683 * zero otherwise.
685 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
686 struct file *filp, poll_table *poll_table)
688 struct ring_buffer_per_cpu *cpu_buffer;
689 struct rb_irq_work *work;
691 if (cpu == RING_BUFFER_ALL_CPUS)
692 work = &buffer->irq_work;
693 else {
694 if (!cpumask_test_cpu(cpu, buffer->cpumask))
695 return -EINVAL;
697 cpu_buffer = buffer->buffers[cpu];
698 work = &cpu_buffer->irq_work;
701 poll_wait(filp, &work->waiters, poll_table);
702 work->waiters_pending = true;
704 * There's a tight race between setting the waiters_pending and
705 * checking if the ring buffer is empty. Once the waiters_pending bit
706 * is set, the next event will wake the task up, but we can get stuck
707 * if there's only a single event in.
709 * FIXME: Ideally, we need a memory barrier on the writer side as well,
710 * but adding a memory barrier to all events will cause too much of a
711 * performance hit in the fast path. We only need a memory barrier when
712 * the buffer goes from empty to having content. But as this race is
713 * extremely small, and it's not a problem if another event comes in, we
714 * will fix it later.
716 smp_mb();
718 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
719 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
720 return EPOLLIN | EPOLLRDNORM;
721 return 0;
724 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
725 #define RB_WARN_ON(b, cond) \
726 ({ \
727 int _____ret = unlikely(cond); \
728 if (_____ret) { \
729 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
730 struct ring_buffer_per_cpu *__b = \
731 (void *)b; \
732 atomic_inc(&__b->buffer->record_disabled); \
733 } else \
734 atomic_inc(&b->record_disabled); \
735 WARN_ON(1); \
737 _____ret; \
740 /* Up this if you want to test the TIME_EXTENTS and normalization */
741 #define DEBUG_SHIFT 0
743 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
745 /* shift to debug/test normalization and TIME_EXTENTS */
746 return buffer->clock() << DEBUG_SHIFT;
749 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
751 u64 time;
753 preempt_disable_notrace();
754 time = rb_time_stamp(buffer);
755 preempt_enable_notrace();
757 return time;
759 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
761 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
762 int cpu, u64 *ts)
764 /* Just stupid testing the normalize function and deltas */
765 *ts >>= DEBUG_SHIFT;
767 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
770 * Making the ring buffer lockless makes things tricky.
771 * Although writes only happen on the CPU that they are on,
772 * and they only need to worry about interrupts. Reads can
773 * happen on any CPU.
775 * The reader page is always off the ring buffer, but when the
776 * reader finishes with a page, it needs to swap its page with
777 * a new one from the buffer. The reader needs to take from
778 * the head (writes go to the tail). But if a writer is in overwrite
779 * mode and wraps, it must push the head page forward.
781 * Here lies the problem.
783 * The reader must be careful to replace only the head page, and
784 * not another one. As described at the top of the file in the
785 * ASCII art, the reader sets its old page to point to the next
786 * page after head. It then sets the page after head to point to
787 * the old reader page. But if the writer moves the head page
788 * during this operation, the reader could end up with the tail.
790 * We use cmpxchg to help prevent this race. We also do something
791 * special with the page before head. We set the LSB to 1.
793 * When the writer must push the page forward, it will clear the
794 * bit that points to the head page, move the head, and then set
795 * the bit that points to the new head page.
797 * We also don't want an interrupt coming in and moving the head
798 * page on another writer. Thus we use the second LSB to catch
799 * that too. Thus:
801 * head->list->prev->next bit 1 bit 0
802 * ------- -------
803 * Normal page 0 0
804 * Points to head page 0 1
805 * New head page 1 0
807 * Note we can not trust the prev pointer of the head page, because:
809 * +----+ +-----+ +-----+
810 * | |------>| T |---X--->| N |
811 * | |<------| | | |
812 * +----+ +-----+ +-----+
813 * ^ ^ |
814 * | +-----+ | |
815 * +----------| R |----------+ |
816 * | |<-----------+
817 * +-----+
819 * Key: ---X--> HEAD flag set in pointer
820 * T Tail page
821 * R Reader page
822 * N Next page
824 * (see __rb_reserve_next() to see where this happens)
826 * What the above shows is that the reader just swapped out
827 * the reader page with a page in the buffer, but before it
828 * could make the new header point back to the new page added
829 * it was preempted by a writer. The writer moved forward onto
830 * the new page added by the reader and is about to move forward
831 * again.
833 * You can see, it is legitimate for the previous pointer of
834 * the head (or any page) not to point back to itself. But only
835 * temporarily.
838 #define RB_PAGE_NORMAL 0UL
839 #define RB_PAGE_HEAD 1UL
840 #define RB_PAGE_UPDATE 2UL
843 #define RB_FLAG_MASK 3UL
845 /* PAGE_MOVED is not part of the mask */
846 #define RB_PAGE_MOVED 4UL
849 * rb_list_head - remove any bit
851 static struct list_head *rb_list_head(struct list_head *list)
853 unsigned long val = (unsigned long)list;
855 return (struct list_head *)(val & ~RB_FLAG_MASK);
859 * rb_is_head_page - test if the given page is the head page
861 * Because the reader may move the head_page pointer, we can
862 * not trust what the head page is (it may be pointing to
863 * the reader page). But if the next page is a header page,
864 * its flags will be non zero.
866 static inline int
867 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
868 struct buffer_page *page, struct list_head *list)
870 unsigned long val;
872 val = (unsigned long)list->next;
874 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
875 return RB_PAGE_MOVED;
877 return val & RB_FLAG_MASK;
881 * rb_is_reader_page
883 * The unique thing about the reader page, is that, if the
884 * writer is ever on it, the previous pointer never points
885 * back to the reader page.
887 static bool rb_is_reader_page(struct buffer_page *page)
889 struct list_head *list = page->list.prev;
891 return rb_list_head(list->next) != &page->list;
895 * rb_set_list_to_head - set a list_head to be pointing to head.
897 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
898 struct list_head *list)
900 unsigned long *ptr;
902 ptr = (unsigned long *)&list->next;
903 *ptr |= RB_PAGE_HEAD;
904 *ptr &= ~RB_PAGE_UPDATE;
908 * rb_head_page_activate - sets up head page
910 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
912 struct buffer_page *head;
914 head = cpu_buffer->head_page;
915 if (!head)
916 return;
919 * Set the previous list pointer to have the HEAD flag.
921 rb_set_list_to_head(cpu_buffer, head->list.prev);
924 static void rb_list_head_clear(struct list_head *list)
926 unsigned long *ptr = (unsigned long *)&list->next;
928 *ptr &= ~RB_FLAG_MASK;
932 * rb_head_page_deactivate - clears head page ptr (for free list)
934 static void
935 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
937 struct list_head *hd;
939 /* Go through the whole list and clear any pointers found. */
940 rb_list_head_clear(cpu_buffer->pages);
942 list_for_each(hd, cpu_buffer->pages)
943 rb_list_head_clear(hd);
946 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
947 struct buffer_page *head,
948 struct buffer_page *prev,
949 int old_flag, int new_flag)
951 struct list_head *list;
952 unsigned long val = (unsigned long)&head->list;
953 unsigned long ret;
955 list = &prev->list;
957 val &= ~RB_FLAG_MASK;
959 ret = cmpxchg((unsigned long *)&list->next,
960 val | old_flag, val | new_flag);
962 /* check if the reader took the page */
963 if ((ret & ~RB_FLAG_MASK) != val)
964 return RB_PAGE_MOVED;
966 return ret & RB_FLAG_MASK;
969 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
970 struct buffer_page *head,
971 struct buffer_page *prev,
972 int old_flag)
974 return rb_head_page_set(cpu_buffer, head, prev,
975 old_flag, RB_PAGE_UPDATE);
978 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
979 struct buffer_page *head,
980 struct buffer_page *prev,
981 int old_flag)
983 return rb_head_page_set(cpu_buffer, head, prev,
984 old_flag, RB_PAGE_HEAD);
987 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
988 struct buffer_page *head,
989 struct buffer_page *prev,
990 int old_flag)
992 return rb_head_page_set(cpu_buffer, head, prev,
993 old_flag, RB_PAGE_NORMAL);
996 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
997 struct buffer_page **bpage)
999 struct list_head *p = rb_list_head((*bpage)->list.next);
1001 *bpage = list_entry(p, struct buffer_page, list);
1004 static struct buffer_page *
1005 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1007 struct buffer_page *head;
1008 struct buffer_page *page;
1009 struct list_head *list;
1010 int i;
1012 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1013 return NULL;
1015 /* sanity check */
1016 list = cpu_buffer->pages;
1017 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1018 return NULL;
1020 page = head = cpu_buffer->head_page;
1022 * It is possible that the writer moves the header behind
1023 * where we started, and we miss in one loop.
1024 * A second loop should grab the header, but we'll do
1025 * three loops just because I'm paranoid.
1027 for (i = 0; i < 3; i++) {
1028 do {
1029 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1030 cpu_buffer->head_page = page;
1031 return page;
1033 rb_inc_page(cpu_buffer, &page);
1034 } while (page != head);
1037 RB_WARN_ON(cpu_buffer, 1);
1039 return NULL;
1042 static int rb_head_page_replace(struct buffer_page *old,
1043 struct buffer_page *new)
1045 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1046 unsigned long val;
1047 unsigned long ret;
1049 val = *ptr & ~RB_FLAG_MASK;
1050 val |= RB_PAGE_HEAD;
1052 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1054 return ret == val;
1058 * rb_tail_page_update - move the tail page forward
1060 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1061 struct buffer_page *tail_page,
1062 struct buffer_page *next_page)
1064 unsigned long old_entries;
1065 unsigned long old_write;
1068 * The tail page now needs to be moved forward.
1070 * We need to reset the tail page, but without messing
1071 * with possible erasing of data brought in by interrupts
1072 * that have moved the tail page and are currently on it.
1074 * We add a counter to the write field to denote this.
1076 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1077 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1079 local_inc(&cpu_buffer->pages_touched);
1081 * Just make sure we have seen our old_write and synchronize
1082 * with any interrupts that come in.
1084 barrier();
1087 * If the tail page is still the same as what we think
1088 * it is, then it is up to us to update the tail
1089 * pointer.
1091 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1092 /* Zero the write counter */
1093 unsigned long val = old_write & ~RB_WRITE_MASK;
1094 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1097 * This will only succeed if an interrupt did
1098 * not come in and change it. In which case, we
1099 * do not want to modify it.
1101 * We add (void) to let the compiler know that we do not care
1102 * about the return value of these functions. We use the
1103 * cmpxchg to only update if an interrupt did not already
1104 * do it for us. If the cmpxchg fails, we don't care.
1106 (void)local_cmpxchg(&next_page->write, old_write, val);
1107 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1110 * No need to worry about races with clearing out the commit.
1111 * it only can increment when a commit takes place. But that
1112 * only happens in the outer most nested commit.
1114 local_set(&next_page->page->commit, 0);
1116 /* Again, either we update tail_page or an interrupt does */
1117 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1121 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1122 struct buffer_page *bpage)
1124 unsigned long val = (unsigned long)bpage;
1126 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1127 return 1;
1129 return 0;
1133 * rb_check_list - make sure a pointer to a list has the last bits zero
1135 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1136 struct list_head *list)
1138 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1139 return 1;
1140 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1141 return 1;
1142 return 0;
1146 * rb_check_pages - integrity check of buffer pages
1147 * @cpu_buffer: CPU buffer with pages to test
1149 * As a safety measure we check to make sure the data pages have not
1150 * been corrupted.
1152 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1154 struct list_head *head = cpu_buffer->pages;
1155 struct buffer_page *bpage, *tmp;
1157 /* Reset the head page if it exists */
1158 if (cpu_buffer->head_page)
1159 rb_set_head_page(cpu_buffer);
1161 rb_head_page_deactivate(cpu_buffer);
1163 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1164 return -1;
1165 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1166 return -1;
1168 if (rb_check_list(cpu_buffer, head))
1169 return -1;
1171 list_for_each_entry_safe(bpage, tmp, head, list) {
1172 if (RB_WARN_ON(cpu_buffer,
1173 bpage->list.next->prev != &bpage->list))
1174 return -1;
1175 if (RB_WARN_ON(cpu_buffer,
1176 bpage->list.prev->next != &bpage->list))
1177 return -1;
1178 if (rb_check_list(cpu_buffer, &bpage->list))
1179 return -1;
1182 rb_head_page_activate(cpu_buffer);
1184 return 0;
1187 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1189 struct buffer_page *bpage, *tmp;
1190 bool user_thread = current->mm != NULL;
1191 gfp_t mflags;
1192 long i;
1195 * Check if the available memory is there first.
1196 * Note, si_mem_available() only gives us a rough estimate of available
1197 * memory. It may not be accurate. But we don't care, we just want
1198 * to prevent doing any allocation when it is obvious that it is
1199 * not going to succeed.
1201 i = si_mem_available();
1202 if (i < nr_pages)
1203 return -ENOMEM;
1206 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1207 * gracefully without invoking oom-killer and the system is not
1208 * destabilized.
1210 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1213 * If a user thread allocates too much, and si_mem_available()
1214 * reports there's enough memory, even though there is not.
1215 * Make sure the OOM killer kills this thread. This can happen
1216 * even with RETRY_MAYFAIL because another task may be doing
1217 * an allocation after this task has taken all memory.
1218 * This is the task the OOM killer needs to take out during this
1219 * loop, even if it was triggered by an allocation somewhere else.
1221 if (user_thread)
1222 set_current_oom_origin();
1223 for (i = 0; i < nr_pages; i++) {
1224 struct page *page;
1226 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1227 mflags, cpu_to_node(cpu));
1228 if (!bpage)
1229 goto free_pages;
1231 list_add(&bpage->list, pages);
1233 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1234 if (!page)
1235 goto free_pages;
1236 bpage->page = page_address(page);
1237 rb_init_page(bpage->page);
1239 if (user_thread && fatal_signal_pending(current))
1240 goto free_pages;
1242 if (user_thread)
1243 clear_current_oom_origin();
1245 return 0;
1247 free_pages:
1248 list_for_each_entry_safe(bpage, tmp, pages, list) {
1249 list_del_init(&bpage->list);
1250 free_buffer_page(bpage);
1252 if (user_thread)
1253 clear_current_oom_origin();
1255 return -ENOMEM;
1258 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1259 unsigned long nr_pages)
1261 LIST_HEAD(pages);
1263 WARN_ON(!nr_pages);
1265 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1266 return -ENOMEM;
1269 * The ring buffer page list is a circular list that does not
1270 * start and end with a list head. All page list items point to
1271 * other pages.
1273 cpu_buffer->pages = pages.next;
1274 list_del(&pages);
1276 cpu_buffer->nr_pages = nr_pages;
1278 rb_check_pages(cpu_buffer);
1280 return 0;
1283 static struct ring_buffer_per_cpu *
1284 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1286 struct ring_buffer_per_cpu *cpu_buffer;
1287 struct buffer_page *bpage;
1288 struct page *page;
1289 int ret;
1291 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1292 GFP_KERNEL, cpu_to_node(cpu));
1293 if (!cpu_buffer)
1294 return NULL;
1296 cpu_buffer->cpu = cpu;
1297 cpu_buffer->buffer = buffer;
1298 raw_spin_lock_init(&cpu_buffer->reader_lock);
1299 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1300 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1301 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1302 init_completion(&cpu_buffer->update_done);
1303 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1304 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1305 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1307 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1308 GFP_KERNEL, cpu_to_node(cpu));
1309 if (!bpage)
1310 goto fail_free_buffer;
1312 rb_check_bpage(cpu_buffer, bpage);
1314 cpu_buffer->reader_page = bpage;
1315 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1316 if (!page)
1317 goto fail_free_reader;
1318 bpage->page = page_address(page);
1319 rb_init_page(bpage->page);
1321 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1322 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1324 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1325 if (ret < 0)
1326 goto fail_free_reader;
1328 cpu_buffer->head_page
1329 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1330 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1332 rb_head_page_activate(cpu_buffer);
1334 return cpu_buffer;
1336 fail_free_reader:
1337 free_buffer_page(cpu_buffer->reader_page);
1339 fail_free_buffer:
1340 kfree(cpu_buffer);
1341 return NULL;
1344 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1346 struct list_head *head = cpu_buffer->pages;
1347 struct buffer_page *bpage, *tmp;
1349 free_buffer_page(cpu_buffer->reader_page);
1351 rb_head_page_deactivate(cpu_buffer);
1353 if (head) {
1354 list_for_each_entry_safe(bpage, tmp, head, list) {
1355 list_del_init(&bpage->list);
1356 free_buffer_page(bpage);
1358 bpage = list_entry(head, struct buffer_page, list);
1359 free_buffer_page(bpage);
1362 kfree(cpu_buffer);
1366 * __ring_buffer_alloc - allocate a new ring_buffer
1367 * @size: the size in bytes per cpu that is needed.
1368 * @flags: attributes to set for the ring buffer.
1369 * @key: ring buffer reader_lock_key.
1371 * Currently the only flag that is available is the RB_FL_OVERWRITE
1372 * flag. This flag means that the buffer will overwrite old data
1373 * when the buffer wraps. If this flag is not set, the buffer will
1374 * drop data when the tail hits the head.
1376 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1377 struct lock_class_key *key)
1379 struct trace_buffer *buffer;
1380 long nr_pages;
1381 int bsize;
1382 int cpu;
1383 int ret;
1385 /* keep it in its own cache line */
1386 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1387 GFP_KERNEL);
1388 if (!buffer)
1389 return NULL;
1391 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1392 goto fail_free_buffer;
1394 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1395 buffer->flags = flags;
1396 buffer->clock = trace_clock_local;
1397 buffer->reader_lock_key = key;
1399 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1400 init_waitqueue_head(&buffer->irq_work.waiters);
1402 /* need at least two pages */
1403 if (nr_pages < 2)
1404 nr_pages = 2;
1406 buffer->cpus = nr_cpu_ids;
1408 bsize = sizeof(void *) * nr_cpu_ids;
1409 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1410 GFP_KERNEL);
1411 if (!buffer->buffers)
1412 goto fail_free_cpumask;
1414 cpu = raw_smp_processor_id();
1415 cpumask_set_cpu(cpu, buffer->cpumask);
1416 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1417 if (!buffer->buffers[cpu])
1418 goto fail_free_buffers;
1420 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1421 if (ret < 0)
1422 goto fail_free_buffers;
1424 mutex_init(&buffer->mutex);
1426 return buffer;
1428 fail_free_buffers:
1429 for_each_buffer_cpu(buffer, cpu) {
1430 if (buffer->buffers[cpu])
1431 rb_free_cpu_buffer(buffer->buffers[cpu]);
1433 kfree(buffer->buffers);
1435 fail_free_cpumask:
1436 free_cpumask_var(buffer->cpumask);
1438 fail_free_buffer:
1439 kfree(buffer);
1440 return NULL;
1442 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1445 * ring_buffer_free - free a ring buffer.
1446 * @buffer: the buffer to free.
1448 void
1449 ring_buffer_free(struct trace_buffer *buffer)
1451 int cpu;
1453 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1455 for_each_buffer_cpu(buffer, cpu)
1456 rb_free_cpu_buffer(buffer->buffers[cpu]);
1458 kfree(buffer->buffers);
1459 free_cpumask_var(buffer->cpumask);
1461 kfree(buffer);
1463 EXPORT_SYMBOL_GPL(ring_buffer_free);
1465 void ring_buffer_set_clock(struct trace_buffer *buffer,
1466 u64 (*clock)(void))
1468 buffer->clock = clock;
1471 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1473 buffer->time_stamp_abs = abs;
1476 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1478 return buffer->time_stamp_abs;
1481 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1483 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1485 return local_read(&bpage->entries) & RB_WRITE_MASK;
1488 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1490 return local_read(&bpage->write) & RB_WRITE_MASK;
1493 static int
1494 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1496 struct list_head *tail_page, *to_remove, *next_page;
1497 struct buffer_page *to_remove_page, *tmp_iter_page;
1498 struct buffer_page *last_page, *first_page;
1499 unsigned long nr_removed;
1500 unsigned long head_bit;
1501 int page_entries;
1503 head_bit = 0;
1505 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1506 atomic_inc(&cpu_buffer->record_disabled);
1508 * We don't race with the readers since we have acquired the reader
1509 * lock. We also don't race with writers after disabling recording.
1510 * This makes it easy to figure out the first and the last page to be
1511 * removed from the list. We unlink all the pages in between including
1512 * the first and last pages. This is done in a busy loop so that we
1513 * lose the least number of traces.
1514 * The pages are freed after we restart recording and unlock readers.
1516 tail_page = &cpu_buffer->tail_page->list;
1519 * tail page might be on reader page, we remove the next page
1520 * from the ring buffer
1522 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1523 tail_page = rb_list_head(tail_page->next);
1524 to_remove = tail_page;
1526 /* start of pages to remove */
1527 first_page = list_entry(rb_list_head(to_remove->next),
1528 struct buffer_page, list);
1530 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1531 to_remove = rb_list_head(to_remove)->next;
1532 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1535 next_page = rb_list_head(to_remove)->next;
1538 * Now we remove all pages between tail_page and next_page.
1539 * Make sure that we have head_bit value preserved for the
1540 * next page
1542 tail_page->next = (struct list_head *)((unsigned long)next_page |
1543 head_bit);
1544 next_page = rb_list_head(next_page);
1545 next_page->prev = tail_page;
1547 /* make sure pages points to a valid page in the ring buffer */
1548 cpu_buffer->pages = next_page;
1550 /* update head page */
1551 if (head_bit)
1552 cpu_buffer->head_page = list_entry(next_page,
1553 struct buffer_page, list);
1556 * change read pointer to make sure any read iterators reset
1557 * themselves
1559 cpu_buffer->read = 0;
1561 /* pages are removed, resume tracing and then free the pages */
1562 atomic_dec(&cpu_buffer->record_disabled);
1563 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1565 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1567 /* last buffer page to remove */
1568 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1569 list);
1570 tmp_iter_page = first_page;
1572 do {
1573 cond_resched();
1575 to_remove_page = tmp_iter_page;
1576 rb_inc_page(cpu_buffer, &tmp_iter_page);
1578 /* update the counters */
1579 page_entries = rb_page_entries(to_remove_page);
1580 if (page_entries) {
1582 * If something was added to this page, it was full
1583 * since it is not the tail page. So we deduct the
1584 * bytes consumed in ring buffer from here.
1585 * Increment overrun to account for the lost events.
1587 local_add(page_entries, &cpu_buffer->overrun);
1588 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1592 * We have already removed references to this list item, just
1593 * free up the buffer_page and its page
1595 free_buffer_page(to_remove_page);
1596 nr_removed--;
1598 } while (to_remove_page != last_page);
1600 RB_WARN_ON(cpu_buffer, nr_removed);
1602 return nr_removed == 0;
1605 static int
1606 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1608 struct list_head *pages = &cpu_buffer->new_pages;
1609 int retries, success;
1611 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1613 * We are holding the reader lock, so the reader page won't be swapped
1614 * in the ring buffer. Now we are racing with the writer trying to
1615 * move head page and the tail page.
1616 * We are going to adapt the reader page update process where:
1617 * 1. We first splice the start and end of list of new pages between
1618 * the head page and its previous page.
1619 * 2. We cmpxchg the prev_page->next to point from head page to the
1620 * start of new pages list.
1621 * 3. Finally, we update the head->prev to the end of new list.
1623 * We will try this process 10 times, to make sure that we don't keep
1624 * spinning.
1626 retries = 10;
1627 success = 0;
1628 while (retries--) {
1629 struct list_head *head_page, *prev_page, *r;
1630 struct list_head *last_page, *first_page;
1631 struct list_head *head_page_with_bit;
1633 head_page = &rb_set_head_page(cpu_buffer)->list;
1634 if (!head_page)
1635 break;
1636 prev_page = head_page->prev;
1638 first_page = pages->next;
1639 last_page = pages->prev;
1641 head_page_with_bit = (struct list_head *)
1642 ((unsigned long)head_page | RB_PAGE_HEAD);
1644 last_page->next = head_page_with_bit;
1645 first_page->prev = prev_page;
1647 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1649 if (r == head_page_with_bit) {
1651 * yay, we replaced the page pointer to our new list,
1652 * now, we just have to update to head page's prev
1653 * pointer to point to end of list
1655 head_page->prev = last_page;
1656 success = 1;
1657 break;
1661 if (success)
1662 INIT_LIST_HEAD(pages);
1664 * If we weren't successful in adding in new pages, warn and stop
1665 * tracing
1667 RB_WARN_ON(cpu_buffer, !success);
1668 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1670 /* free pages if they weren't inserted */
1671 if (!success) {
1672 struct buffer_page *bpage, *tmp;
1673 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1674 list) {
1675 list_del_init(&bpage->list);
1676 free_buffer_page(bpage);
1679 return success;
1682 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1684 int success;
1686 if (cpu_buffer->nr_pages_to_update > 0)
1687 success = rb_insert_pages(cpu_buffer);
1688 else
1689 success = rb_remove_pages(cpu_buffer,
1690 -cpu_buffer->nr_pages_to_update);
1692 if (success)
1693 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1696 static void update_pages_handler(struct work_struct *work)
1698 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1699 struct ring_buffer_per_cpu, update_pages_work);
1700 rb_update_pages(cpu_buffer);
1701 complete(&cpu_buffer->update_done);
1705 * ring_buffer_resize - resize the ring buffer
1706 * @buffer: the buffer to resize.
1707 * @size: the new size.
1708 * @cpu_id: the cpu buffer to resize
1710 * Minimum size is 2 * BUF_PAGE_SIZE.
1712 * Returns 0 on success and < 0 on failure.
1714 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1715 int cpu_id)
1717 struct ring_buffer_per_cpu *cpu_buffer;
1718 unsigned long nr_pages;
1719 int cpu, err = 0;
1722 * Always succeed at resizing a non-existent buffer:
1724 if (!buffer)
1725 return size;
1727 /* Make sure the requested buffer exists */
1728 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1729 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1730 return size;
1732 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1734 /* we need a minimum of two pages */
1735 if (nr_pages < 2)
1736 nr_pages = 2;
1738 size = nr_pages * BUF_PAGE_SIZE;
1741 * Don't succeed if resizing is disabled, as a reader might be
1742 * manipulating the ring buffer and is expecting a sane state while
1743 * this is true.
1745 if (atomic_read(&buffer->resize_disabled))
1746 return -EBUSY;
1748 /* prevent another thread from changing buffer sizes */
1749 mutex_lock(&buffer->mutex);
1751 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1752 /* calculate the pages to update */
1753 for_each_buffer_cpu(buffer, cpu) {
1754 cpu_buffer = buffer->buffers[cpu];
1756 cpu_buffer->nr_pages_to_update = nr_pages -
1757 cpu_buffer->nr_pages;
1759 * nothing more to do for removing pages or no update
1761 if (cpu_buffer->nr_pages_to_update <= 0)
1762 continue;
1764 * to add pages, make sure all new pages can be
1765 * allocated without receiving ENOMEM
1767 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1768 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1769 &cpu_buffer->new_pages, cpu)) {
1770 /* not enough memory for new pages */
1771 err = -ENOMEM;
1772 goto out_err;
1776 get_online_cpus();
1778 * Fire off all the required work handlers
1779 * We can't schedule on offline CPUs, but it's not necessary
1780 * since we can change their buffer sizes without any race.
1782 for_each_buffer_cpu(buffer, cpu) {
1783 cpu_buffer = buffer->buffers[cpu];
1784 if (!cpu_buffer->nr_pages_to_update)
1785 continue;
1787 /* Can't run something on an offline CPU. */
1788 if (!cpu_online(cpu)) {
1789 rb_update_pages(cpu_buffer);
1790 cpu_buffer->nr_pages_to_update = 0;
1791 } else {
1792 schedule_work_on(cpu,
1793 &cpu_buffer->update_pages_work);
1797 /* wait for all the updates to complete */
1798 for_each_buffer_cpu(buffer, cpu) {
1799 cpu_buffer = buffer->buffers[cpu];
1800 if (!cpu_buffer->nr_pages_to_update)
1801 continue;
1803 if (cpu_online(cpu))
1804 wait_for_completion(&cpu_buffer->update_done);
1805 cpu_buffer->nr_pages_to_update = 0;
1808 put_online_cpus();
1809 } else {
1810 /* Make sure this CPU has been initialized */
1811 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1812 goto out;
1814 cpu_buffer = buffer->buffers[cpu_id];
1816 if (nr_pages == cpu_buffer->nr_pages)
1817 goto out;
1819 cpu_buffer->nr_pages_to_update = nr_pages -
1820 cpu_buffer->nr_pages;
1822 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1823 if (cpu_buffer->nr_pages_to_update > 0 &&
1824 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1825 &cpu_buffer->new_pages, cpu_id)) {
1826 err = -ENOMEM;
1827 goto out_err;
1830 get_online_cpus();
1832 /* Can't run something on an offline CPU. */
1833 if (!cpu_online(cpu_id))
1834 rb_update_pages(cpu_buffer);
1835 else {
1836 schedule_work_on(cpu_id,
1837 &cpu_buffer->update_pages_work);
1838 wait_for_completion(&cpu_buffer->update_done);
1841 cpu_buffer->nr_pages_to_update = 0;
1842 put_online_cpus();
1845 out:
1847 * The ring buffer resize can happen with the ring buffer
1848 * enabled, so that the update disturbs the tracing as little
1849 * as possible. But if the buffer is disabled, we do not need
1850 * to worry about that, and we can take the time to verify
1851 * that the buffer is not corrupt.
1853 if (atomic_read(&buffer->record_disabled)) {
1854 atomic_inc(&buffer->record_disabled);
1856 * Even though the buffer was disabled, we must make sure
1857 * that it is truly disabled before calling rb_check_pages.
1858 * There could have been a race between checking
1859 * record_disable and incrementing it.
1861 synchronize_rcu();
1862 for_each_buffer_cpu(buffer, cpu) {
1863 cpu_buffer = buffer->buffers[cpu];
1864 rb_check_pages(cpu_buffer);
1866 atomic_dec(&buffer->record_disabled);
1869 mutex_unlock(&buffer->mutex);
1870 return size;
1872 out_err:
1873 for_each_buffer_cpu(buffer, cpu) {
1874 struct buffer_page *bpage, *tmp;
1876 cpu_buffer = buffer->buffers[cpu];
1877 cpu_buffer->nr_pages_to_update = 0;
1879 if (list_empty(&cpu_buffer->new_pages))
1880 continue;
1882 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1883 list) {
1884 list_del_init(&bpage->list);
1885 free_buffer_page(bpage);
1888 mutex_unlock(&buffer->mutex);
1889 return err;
1891 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1893 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
1895 mutex_lock(&buffer->mutex);
1896 if (val)
1897 buffer->flags |= RB_FL_OVERWRITE;
1898 else
1899 buffer->flags &= ~RB_FL_OVERWRITE;
1900 mutex_unlock(&buffer->mutex);
1902 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1904 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1906 return bpage->page->data + index;
1909 static __always_inline struct ring_buffer_event *
1910 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1912 return __rb_page_index(cpu_buffer->reader_page,
1913 cpu_buffer->reader_page->read);
1916 static __always_inline struct ring_buffer_event *
1917 rb_iter_head_event(struct ring_buffer_iter *iter)
1919 return __rb_page_index(iter->head_page, iter->head);
1922 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1924 return local_read(&bpage->page->commit);
1927 /* Size is determined by what has been committed */
1928 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1930 return rb_page_commit(bpage);
1933 static __always_inline unsigned
1934 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1936 return rb_page_commit(cpu_buffer->commit_page);
1939 static __always_inline unsigned
1940 rb_event_index(struct ring_buffer_event *event)
1942 unsigned long addr = (unsigned long)event;
1944 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1947 static void rb_inc_iter(struct ring_buffer_iter *iter)
1949 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1952 * The iterator could be on the reader page (it starts there).
1953 * But the head could have moved, since the reader was
1954 * found. Check for this case and assign the iterator
1955 * to the head page instead of next.
1957 if (iter->head_page == cpu_buffer->reader_page)
1958 iter->head_page = rb_set_head_page(cpu_buffer);
1959 else
1960 rb_inc_page(cpu_buffer, &iter->head_page);
1962 iter->read_stamp = iter->head_page->page->time_stamp;
1963 iter->head = 0;
1967 * rb_handle_head_page - writer hit the head page
1969 * Returns: +1 to retry page
1970 * 0 to continue
1971 * -1 on error
1973 static int
1974 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1975 struct buffer_page *tail_page,
1976 struct buffer_page *next_page)
1978 struct buffer_page *new_head;
1979 int entries;
1980 int type;
1981 int ret;
1983 entries = rb_page_entries(next_page);
1986 * The hard part is here. We need to move the head
1987 * forward, and protect against both readers on
1988 * other CPUs and writers coming in via interrupts.
1990 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1991 RB_PAGE_HEAD);
1994 * type can be one of four:
1995 * NORMAL - an interrupt already moved it for us
1996 * HEAD - we are the first to get here.
1997 * UPDATE - we are the interrupt interrupting
1998 * a current move.
1999 * MOVED - a reader on another CPU moved the next
2000 * pointer to its reader page. Give up
2001 * and try again.
2004 switch (type) {
2005 case RB_PAGE_HEAD:
2007 * We changed the head to UPDATE, thus
2008 * it is our responsibility to update
2009 * the counters.
2011 local_add(entries, &cpu_buffer->overrun);
2012 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2015 * The entries will be zeroed out when we move the
2016 * tail page.
2019 /* still more to do */
2020 break;
2022 case RB_PAGE_UPDATE:
2024 * This is an interrupt that interrupt the
2025 * previous update. Still more to do.
2027 break;
2028 case RB_PAGE_NORMAL:
2030 * An interrupt came in before the update
2031 * and processed this for us.
2032 * Nothing left to do.
2034 return 1;
2035 case RB_PAGE_MOVED:
2037 * The reader is on another CPU and just did
2038 * a swap with our next_page.
2039 * Try again.
2041 return 1;
2042 default:
2043 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2044 return -1;
2048 * Now that we are here, the old head pointer is
2049 * set to UPDATE. This will keep the reader from
2050 * swapping the head page with the reader page.
2051 * The reader (on another CPU) will spin till
2052 * we are finished.
2054 * We just need to protect against interrupts
2055 * doing the job. We will set the next pointer
2056 * to HEAD. After that, we set the old pointer
2057 * to NORMAL, but only if it was HEAD before.
2058 * otherwise we are an interrupt, and only
2059 * want the outer most commit to reset it.
2061 new_head = next_page;
2062 rb_inc_page(cpu_buffer, &new_head);
2064 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2065 RB_PAGE_NORMAL);
2068 * Valid returns are:
2069 * HEAD - an interrupt came in and already set it.
2070 * NORMAL - One of two things:
2071 * 1) We really set it.
2072 * 2) A bunch of interrupts came in and moved
2073 * the page forward again.
2075 switch (ret) {
2076 case RB_PAGE_HEAD:
2077 case RB_PAGE_NORMAL:
2078 /* OK */
2079 break;
2080 default:
2081 RB_WARN_ON(cpu_buffer, 1);
2082 return -1;
2086 * It is possible that an interrupt came in,
2087 * set the head up, then more interrupts came in
2088 * and moved it again. When we get back here,
2089 * the page would have been set to NORMAL but we
2090 * just set it back to HEAD.
2092 * How do you detect this? Well, if that happened
2093 * the tail page would have moved.
2095 if (ret == RB_PAGE_NORMAL) {
2096 struct buffer_page *buffer_tail_page;
2098 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2100 * If the tail had moved passed next, then we need
2101 * to reset the pointer.
2103 if (buffer_tail_page != tail_page &&
2104 buffer_tail_page != next_page)
2105 rb_head_page_set_normal(cpu_buffer, new_head,
2106 next_page,
2107 RB_PAGE_HEAD);
2111 * If this was the outer most commit (the one that
2112 * changed the original pointer from HEAD to UPDATE),
2113 * then it is up to us to reset it to NORMAL.
2115 if (type == RB_PAGE_HEAD) {
2116 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2117 tail_page,
2118 RB_PAGE_UPDATE);
2119 if (RB_WARN_ON(cpu_buffer,
2120 ret != RB_PAGE_UPDATE))
2121 return -1;
2124 return 0;
2127 static inline void
2128 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2129 unsigned long tail, struct rb_event_info *info)
2131 struct buffer_page *tail_page = info->tail_page;
2132 struct ring_buffer_event *event;
2133 unsigned long length = info->length;
2136 * Only the event that crossed the page boundary
2137 * must fill the old tail_page with padding.
2139 if (tail >= BUF_PAGE_SIZE) {
2141 * If the page was filled, then we still need
2142 * to update the real_end. Reset it to zero
2143 * and the reader will ignore it.
2145 if (tail == BUF_PAGE_SIZE)
2146 tail_page->real_end = 0;
2148 local_sub(length, &tail_page->write);
2149 return;
2152 event = __rb_page_index(tail_page, tail);
2154 /* account for padding bytes */
2155 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2158 * Save the original length to the meta data.
2159 * This will be used by the reader to add lost event
2160 * counter.
2162 tail_page->real_end = tail;
2165 * If this event is bigger than the minimum size, then
2166 * we need to be careful that we don't subtract the
2167 * write counter enough to allow another writer to slip
2168 * in on this page.
2169 * We put in a discarded commit instead, to make sure
2170 * that this space is not used again.
2172 * If we are less than the minimum size, we don't need to
2173 * worry about it.
2175 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2176 /* No room for any events */
2178 /* Mark the rest of the page with padding */
2179 rb_event_set_padding(event);
2181 /* Set the write back to the previous setting */
2182 local_sub(length, &tail_page->write);
2183 return;
2186 /* Put in a discarded event */
2187 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2188 event->type_len = RINGBUF_TYPE_PADDING;
2189 /* time delta must be non zero */
2190 event->time_delta = 1;
2192 /* Set write to end of buffer */
2193 length = (tail + length) - BUF_PAGE_SIZE;
2194 local_sub(length, &tail_page->write);
2197 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2200 * This is the slow path, force gcc not to inline it.
2202 static noinline struct ring_buffer_event *
2203 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2204 unsigned long tail, struct rb_event_info *info)
2206 struct buffer_page *tail_page = info->tail_page;
2207 struct buffer_page *commit_page = cpu_buffer->commit_page;
2208 struct trace_buffer *buffer = cpu_buffer->buffer;
2209 struct buffer_page *next_page;
2210 int ret;
2212 next_page = tail_page;
2214 rb_inc_page(cpu_buffer, &next_page);
2217 * If for some reason, we had an interrupt storm that made
2218 * it all the way around the buffer, bail, and warn
2219 * about it.
2221 if (unlikely(next_page == commit_page)) {
2222 local_inc(&cpu_buffer->commit_overrun);
2223 goto out_reset;
2227 * This is where the fun begins!
2229 * We are fighting against races between a reader that
2230 * could be on another CPU trying to swap its reader
2231 * page with the buffer head.
2233 * We are also fighting against interrupts coming in and
2234 * moving the head or tail on us as well.
2236 * If the next page is the head page then we have filled
2237 * the buffer, unless the commit page is still on the
2238 * reader page.
2240 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2243 * If the commit is not on the reader page, then
2244 * move the header page.
2246 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2248 * If we are not in overwrite mode,
2249 * this is easy, just stop here.
2251 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2252 local_inc(&cpu_buffer->dropped_events);
2253 goto out_reset;
2256 ret = rb_handle_head_page(cpu_buffer,
2257 tail_page,
2258 next_page);
2259 if (ret < 0)
2260 goto out_reset;
2261 if (ret)
2262 goto out_again;
2263 } else {
2265 * We need to be careful here too. The
2266 * commit page could still be on the reader
2267 * page. We could have a small buffer, and
2268 * have filled up the buffer with events
2269 * from interrupts and such, and wrapped.
2271 * Note, if the tail page is also the on the
2272 * reader_page, we let it move out.
2274 if (unlikely((cpu_buffer->commit_page !=
2275 cpu_buffer->tail_page) &&
2276 (cpu_buffer->commit_page ==
2277 cpu_buffer->reader_page))) {
2278 local_inc(&cpu_buffer->commit_overrun);
2279 goto out_reset;
2284 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2286 out_again:
2288 rb_reset_tail(cpu_buffer, tail, info);
2290 /* Commit what we have for now. */
2291 rb_end_commit(cpu_buffer);
2292 /* rb_end_commit() decs committing */
2293 local_inc(&cpu_buffer->committing);
2295 /* fail and let the caller try again */
2296 return ERR_PTR(-EAGAIN);
2298 out_reset:
2299 /* reset write */
2300 rb_reset_tail(cpu_buffer, tail, info);
2302 return NULL;
2305 /* Slow path, do not inline */
2306 static noinline struct ring_buffer_event *
2307 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2309 if (abs)
2310 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2311 else
2312 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2314 /* Not the first event on the page, or not delta? */
2315 if (abs || rb_event_index(event)) {
2316 event->time_delta = delta & TS_MASK;
2317 event->array[0] = delta >> TS_SHIFT;
2318 } else {
2319 /* nope, just zero it */
2320 event->time_delta = 0;
2321 event->array[0] = 0;
2324 return skip_time_extend(event);
2327 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2328 struct ring_buffer_event *event);
2331 * rb_update_event - update event type and data
2332 * @cpu_buffer: The per cpu buffer of the @event
2333 * @event: the event to update
2334 * @info: The info to update the @event with (contains length and delta)
2336 * Update the type and data fields of the @event. The length
2337 * is the actual size that is written to the ring buffer,
2338 * and with this, we can determine what to place into the
2339 * data field.
2341 static void
2342 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2343 struct ring_buffer_event *event,
2344 struct rb_event_info *info)
2346 unsigned length = info->length;
2347 u64 delta = info->delta;
2349 /* Only a commit updates the timestamp */
2350 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2351 delta = 0;
2354 * If we need to add a timestamp, then we
2355 * add it to the start of the reserved space.
2357 if (unlikely(info->add_timestamp)) {
2358 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2360 event = rb_add_time_stamp(event, info->delta, abs);
2361 length -= RB_LEN_TIME_EXTEND;
2362 delta = 0;
2365 event->time_delta = delta;
2366 length -= RB_EVNT_HDR_SIZE;
2367 if (length > RB_MAX_SMALL_DATA) {
2368 event->type_len = 0;
2369 event->array[0] = length;
2370 } else
2371 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2374 static unsigned rb_calculate_event_length(unsigned length)
2376 struct ring_buffer_event event; /* Used only for sizeof array */
2378 /* zero length can cause confusions */
2379 if (!length)
2380 length++;
2382 if (length > RB_MAX_SMALL_DATA)
2383 length += sizeof(event.array[0]);
2385 length += RB_EVNT_HDR_SIZE;
2386 length = ALIGN(length, RB_ALIGNMENT);
2389 * In case the time delta is larger than the 27 bits for it
2390 * in the header, we need to add a timestamp. If another
2391 * event comes in when trying to discard this one to increase
2392 * the length, then the timestamp will be added in the allocated
2393 * space of this event. If length is bigger than the size needed
2394 * for the TIME_EXTEND, then padding has to be used. The events
2395 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2396 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2397 * As length is a multiple of 4, we only need to worry if it
2398 * is 12 (RB_LEN_TIME_EXTEND + 4).
2400 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2401 length += RB_ALIGNMENT;
2403 return length;
2406 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2407 static inline bool sched_clock_stable(void)
2409 return true;
2411 #endif
2413 static inline int
2414 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2415 struct ring_buffer_event *event)
2417 unsigned long new_index, old_index;
2418 struct buffer_page *bpage;
2419 unsigned long index;
2420 unsigned long addr;
2422 new_index = rb_event_index(event);
2423 old_index = new_index + rb_event_ts_length(event);
2424 addr = (unsigned long)event;
2425 addr &= PAGE_MASK;
2427 bpage = READ_ONCE(cpu_buffer->tail_page);
2429 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2430 unsigned long write_mask =
2431 local_read(&bpage->write) & ~RB_WRITE_MASK;
2432 unsigned long event_length = rb_event_length(event);
2434 * This is on the tail page. It is possible that
2435 * a write could come in and move the tail page
2436 * and write to the next page. That is fine
2437 * because we just shorten what is on this page.
2439 old_index += write_mask;
2440 new_index += write_mask;
2441 index = local_cmpxchg(&bpage->write, old_index, new_index);
2442 if (index == old_index) {
2443 /* update counters */
2444 local_sub(event_length, &cpu_buffer->entries_bytes);
2445 return 1;
2449 /* could not discard */
2450 return 0;
2453 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2455 local_inc(&cpu_buffer->committing);
2456 local_inc(&cpu_buffer->commits);
2459 static __always_inline void
2460 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2462 unsigned long max_count;
2465 * We only race with interrupts and NMIs on this CPU.
2466 * If we own the commit event, then we can commit
2467 * all others that interrupted us, since the interruptions
2468 * are in stack format (they finish before they come
2469 * back to us). This allows us to do a simple loop to
2470 * assign the commit to the tail.
2472 again:
2473 max_count = cpu_buffer->nr_pages * 100;
2475 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2476 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2477 return;
2478 if (RB_WARN_ON(cpu_buffer,
2479 rb_is_reader_page(cpu_buffer->tail_page)))
2480 return;
2481 local_set(&cpu_buffer->commit_page->page->commit,
2482 rb_page_write(cpu_buffer->commit_page));
2483 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2484 /* Only update the write stamp if the page has an event */
2485 if (rb_page_write(cpu_buffer->commit_page))
2486 cpu_buffer->write_stamp =
2487 cpu_buffer->commit_page->page->time_stamp;
2488 /* add barrier to keep gcc from optimizing too much */
2489 barrier();
2491 while (rb_commit_index(cpu_buffer) !=
2492 rb_page_write(cpu_buffer->commit_page)) {
2494 local_set(&cpu_buffer->commit_page->page->commit,
2495 rb_page_write(cpu_buffer->commit_page));
2496 RB_WARN_ON(cpu_buffer,
2497 local_read(&cpu_buffer->commit_page->page->commit) &
2498 ~RB_WRITE_MASK);
2499 barrier();
2502 /* again, keep gcc from optimizing */
2503 barrier();
2506 * If an interrupt came in just after the first while loop
2507 * and pushed the tail page forward, we will be left with
2508 * a dangling commit that will never go forward.
2510 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2511 goto again;
2514 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2516 unsigned long commits;
2518 if (RB_WARN_ON(cpu_buffer,
2519 !local_read(&cpu_buffer->committing)))
2520 return;
2522 again:
2523 commits = local_read(&cpu_buffer->commits);
2524 /* synchronize with interrupts */
2525 barrier();
2526 if (local_read(&cpu_buffer->committing) == 1)
2527 rb_set_commit_to_write(cpu_buffer);
2529 local_dec(&cpu_buffer->committing);
2531 /* synchronize with interrupts */
2532 barrier();
2535 * Need to account for interrupts coming in between the
2536 * updating of the commit page and the clearing of the
2537 * committing counter.
2539 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2540 !local_read(&cpu_buffer->committing)) {
2541 local_inc(&cpu_buffer->committing);
2542 goto again;
2546 static inline void rb_event_discard(struct ring_buffer_event *event)
2548 if (extended_time(event))
2549 event = skip_time_extend(event);
2551 /* array[0] holds the actual length for the discarded event */
2552 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2553 event->type_len = RINGBUF_TYPE_PADDING;
2554 /* time delta must be non zero */
2555 if (!event->time_delta)
2556 event->time_delta = 1;
2559 static __always_inline bool
2560 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561 struct ring_buffer_event *event)
2563 unsigned long addr = (unsigned long)event;
2564 unsigned long index;
2566 index = rb_event_index(event);
2567 addr &= PAGE_MASK;
2569 return cpu_buffer->commit_page->page == (void *)addr &&
2570 rb_commit_index(cpu_buffer) == index;
2573 static __always_inline void
2574 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2575 struct ring_buffer_event *event)
2577 u64 delta;
2580 * The event first in the commit queue updates the
2581 * time stamp.
2583 if (rb_event_is_commit(cpu_buffer, event)) {
2585 * A commit event that is first on a page
2586 * updates the write timestamp with the page stamp
2588 if (!rb_event_index(event))
2589 cpu_buffer->write_stamp =
2590 cpu_buffer->commit_page->page->time_stamp;
2591 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2592 delta = ring_buffer_event_time_stamp(event);
2593 cpu_buffer->write_stamp += delta;
2594 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2595 delta = ring_buffer_event_time_stamp(event);
2596 cpu_buffer->write_stamp = delta;
2597 } else
2598 cpu_buffer->write_stamp += event->time_delta;
2602 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2603 struct ring_buffer_event *event)
2605 local_inc(&cpu_buffer->entries);
2606 rb_update_write_stamp(cpu_buffer, event);
2607 rb_end_commit(cpu_buffer);
2610 static __always_inline void
2611 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2613 size_t nr_pages;
2614 size_t dirty;
2615 size_t full;
2617 if (buffer->irq_work.waiters_pending) {
2618 buffer->irq_work.waiters_pending = false;
2619 /* irq_work_queue() supplies it's own memory barriers */
2620 irq_work_queue(&buffer->irq_work.work);
2623 if (cpu_buffer->irq_work.waiters_pending) {
2624 cpu_buffer->irq_work.waiters_pending = false;
2625 /* irq_work_queue() supplies it's own memory barriers */
2626 irq_work_queue(&cpu_buffer->irq_work.work);
2629 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2630 return;
2632 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2633 return;
2635 if (!cpu_buffer->irq_work.full_waiters_pending)
2636 return;
2638 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2640 full = cpu_buffer->shortest_full;
2641 nr_pages = cpu_buffer->nr_pages;
2642 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2643 if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2644 return;
2646 cpu_buffer->irq_work.wakeup_full = true;
2647 cpu_buffer->irq_work.full_waiters_pending = false;
2648 /* irq_work_queue() supplies it's own memory barriers */
2649 irq_work_queue(&cpu_buffer->irq_work.work);
2653 * The lock and unlock are done within a preempt disable section.
2654 * The current_context per_cpu variable can only be modified
2655 * by the current task between lock and unlock. But it can
2656 * be modified more than once via an interrupt. To pass this
2657 * information from the lock to the unlock without having to
2658 * access the 'in_interrupt()' functions again (which do show
2659 * a bit of overhead in something as critical as function tracing,
2660 * we use a bitmask trick.
2662 * bit 0 = NMI context
2663 * bit 1 = IRQ context
2664 * bit 2 = SoftIRQ context
2665 * bit 3 = normal context.
2667 * This works because this is the order of contexts that can
2668 * preempt other contexts. A SoftIRQ never preempts an IRQ
2669 * context.
2671 * When the context is determined, the corresponding bit is
2672 * checked and set (if it was set, then a recursion of that context
2673 * happened).
2675 * On unlock, we need to clear this bit. To do so, just subtract
2676 * 1 from the current_context and AND it to itself.
2678 * (binary)
2679 * 101 - 1 = 100
2680 * 101 & 100 = 100 (clearing bit zero)
2682 * 1010 - 1 = 1001
2683 * 1010 & 1001 = 1000 (clearing bit 1)
2685 * The least significant bit can be cleared this way, and it
2686 * just so happens that it is the same bit corresponding to
2687 * the current context.
2690 static __always_inline int
2691 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2693 unsigned int val = cpu_buffer->current_context;
2694 unsigned long pc = preempt_count();
2695 int bit;
2697 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2698 bit = RB_CTX_NORMAL;
2699 else
2700 bit = pc & NMI_MASK ? RB_CTX_NMI :
2701 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2703 if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2704 return 1;
2706 val |= (1 << (bit + cpu_buffer->nest));
2707 cpu_buffer->current_context = val;
2709 return 0;
2712 static __always_inline void
2713 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2715 cpu_buffer->current_context &=
2716 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2719 /* The recursive locking above uses 4 bits */
2720 #define NESTED_BITS 4
2723 * ring_buffer_nest_start - Allow to trace while nested
2724 * @buffer: The ring buffer to modify
2726 * The ring buffer has a safety mechanism to prevent recursion.
2727 * But there may be a case where a trace needs to be done while
2728 * tracing something else. In this case, calling this function
2729 * will allow this function to nest within a currently active
2730 * ring_buffer_lock_reserve().
2732 * Call this function before calling another ring_buffer_lock_reserve() and
2733 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2735 void ring_buffer_nest_start(struct trace_buffer *buffer)
2737 struct ring_buffer_per_cpu *cpu_buffer;
2738 int cpu;
2740 /* Enabled by ring_buffer_nest_end() */
2741 preempt_disable_notrace();
2742 cpu = raw_smp_processor_id();
2743 cpu_buffer = buffer->buffers[cpu];
2744 /* This is the shift value for the above recursive locking */
2745 cpu_buffer->nest += NESTED_BITS;
2749 * ring_buffer_nest_end - Allow to trace while nested
2750 * @buffer: The ring buffer to modify
2752 * Must be called after ring_buffer_nest_start() and after the
2753 * ring_buffer_unlock_commit().
2755 void ring_buffer_nest_end(struct trace_buffer *buffer)
2757 struct ring_buffer_per_cpu *cpu_buffer;
2758 int cpu;
2760 /* disabled by ring_buffer_nest_start() */
2761 cpu = raw_smp_processor_id();
2762 cpu_buffer = buffer->buffers[cpu];
2763 /* This is the shift value for the above recursive locking */
2764 cpu_buffer->nest -= NESTED_BITS;
2765 preempt_enable_notrace();
2769 * ring_buffer_unlock_commit - commit a reserved
2770 * @buffer: The buffer to commit to
2771 * @event: The event pointer to commit.
2773 * This commits the data to the ring buffer, and releases any locks held.
2775 * Must be paired with ring_buffer_lock_reserve.
2777 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
2778 struct ring_buffer_event *event)
2780 struct ring_buffer_per_cpu *cpu_buffer;
2781 int cpu = raw_smp_processor_id();
2783 cpu_buffer = buffer->buffers[cpu];
2785 rb_commit(cpu_buffer, event);
2787 rb_wakeups(buffer, cpu_buffer);
2789 trace_recursive_unlock(cpu_buffer);
2791 preempt_enable_notrace();
2793 return 0;
2795 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2797 static noinline void
2798 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2799 struct rb_event_info *info)
2801 WARN_ONCE(info->delta > (1ULL << 59),
2802 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2803 (unsigned long long)info->delta,
2804 (unsigned long long)info->ts,
2805 (unsigned long long)cpu_buffer->write_stamp,
2806 sched_clock_stable() ? "" :
2807 "If you just came from a suspend/resume,\n"
2808 "please switch to the trace global clock:\n"
2809 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2810 "or add trace_clock=global to the kernel command line\n");
2811 info->add_timestamp = 1;
2814 static struct ring_buffer_event *
2815 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2816 struct rb_event_info *info)
2818 struct ring_buffer_event *event;
2819 struct buffer_page *tail_page;
2820 unsigned long tail, write;
2823 * If the time delta since the last event is too big to
2824 * hold in the time field of the event, then we append a
2825 * TIME EXTEND event ahead of the data event.
2827 if (unlikely(info->add_timestamp))
2828 info->length += RB_LEN_TIME_EXTEND;
2830 /* Don't let the compiler play games with cpu_buffer->tail_page */
2831 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2832 write = local_add_return(info->length, &tail_page->write);
2834 /* set write to only the index of the write */
2835 write &= RB_WRITE_MASK;
2836 tail = write - info->length;
2839 * If this is the first commit on the page, then it has the same
2840 * timestamp as the page itself.
2842 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2843 info->delta = 0;
2845 /* See if we shot pass the end of this buffer page */
2846 if (unlikely(write > BUF_PAGE_SIZE))
2847 return rb_move_tail(cpu_buffer, tail, info);
2849 /* We reserved something on the buffer */
2851 event = __rb_page_index(tail_page, tail);
2852 rb_update_event(cpu_buffer, event, info);
2854 local_inc(&tail_page->entries);
2857 * If this is the first commit on the page, then update
2858 * its timestamp.
2860 if (!tail)
2861 tail_page->page->time_stamp = info->ts;
2863 /* account for these added bytes */
2864 local_add(info->length, &cpu_buffer->entries_bytes);
2866 return event;
2869 static __always_inline struct ring_buffer_event *
2870 rb_reserve_next_event(struct trace_buffer *buffer,
2871 struct ring_buffer_per_cpu *cpu_buffer,
2872 unsigned long length)
2874 struct ring_buffer_event *event;
2875 struct rb_event_info info;
2876 int nr_loops = 0;
2877 u64 diff;
2879 rb_start_commit(cpu_buffer);
2881 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2883 * Due to the ability to swap a cpu buffer from a buffer
2884 * it is possible it was swapped before we committed.
2885 * (committing stops a swap). We check for it here and
2886 * if it happened, we have to fail the write.
2888 barrier();
2889 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2890 local_dec(&cpu_buffer->committing);
2891 local_dec(&cpu_buffer->commits);
2892 return NULL;
2894 #endif
2896 info.length = rb_calculate_event_length(length);
2897 again:
2898 info.add_timestamp = 0;
2899 info.delta = 0;
2902 * We allow for interrupts to reenter here and do a trace.
2903 * If one does, it will cause this original code to loop
2904 * back here. Even with heavy interrupts happening, this
2905 * should only happen a few times in a row. If this happens
2906 * 1000 times in a row, there must be either an interrupt
2907 * storm or we have something buggy.
2908 * Bail!
2910 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2911 goto out_fail;
2913 info.ts = rb_time_stamp(cpu_buffer->buffer);
2914 diff = info.ts - cpu_buffer->write_stamp;
2916 /* make sure this diff is calculated here */
2917 barrier();
2919 if (ring_buffer_time_stamp_abs(buffer)) {
2920 info.delta = info.ts;
2921 rb_handle_timestamp(cpu_buffer, &info);
2922 } else /* Did the write stamp get updated already? */
2923 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2924 info.delta = diff;
2925 if (unlikely(test_time_stamp(info.delta)))
2926 rb_handle_timestamp(cpu_buffer, &info);
2929 event = __rb_reserve_next(cpu_buffer, &info);
2931 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2932 if (info.add_timestamp)
2933 info.length -= RB_LEN_TIME_EXTEND;
2934 goto again;
2937 if (!event)
2938 goto out_fail;
2940 return event;
2942 out_fail:
2943 rb_end_commit(cpu_buffer);
2944 return NULL;
2948 * ring_buffer_lock_reserve - reserve a part of the buffer
2949 * @buffer: the ring buffer to reserve from
2950 * @length: the length of the data to reserve (excluding event header)
2952 * Returns a reserved event on the ring buffer to copy directly to.
2953 * The user of this interface will need to get the body to write into
2954 * and can use the ring_buffer_event_data() interface.
2956 * The length is the length of the data needed, not the event length
2957 * which also includes the event header.
2959 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2960 * If NULL is returned, then nothing has been allocated or locked.
2962 struct ring_buffer_event *
2963 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
2965 struct ring_buffer_per_cpu *cpu_buffer;
2966 struct ring_buffer_event *event;
2967 int cpu;
2969 /* If we are tracing schedule, we don't want to recurse */
2970 preempt_disable_notrace();
2972 if (unlikely(atomic_read(&buffer->record_disabled)))
2973 goto out;
2975 cpu = raw_smp_processor_id();
2977 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2978 goto out;
2980 cpu_buffer = buffer->buffers[cpu];
2982 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2983 goto out;
2985 if (unlikely(length > BUF_MAX_DATA_SIZE))
2986 goto out;
2988 if (unlikely(trace_recursive_lock(cpu_buffer)))
2989 goto out;
2991 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2992 if (!event)
2993 goto out_unlock;
2995 return event;
2997 out_unlock:
2998 trace_recursive_unlock(cpu_buffer);
2999 out:
3000 preempt_enable_notrace();
3001 return NULL;
3003 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3006 * Decrement the entries to the page that an event is on.
3007 * The event does not even need to exist, only the pointer
3008 * to the page it is on. This may only be called before the commit
3009 * takes place.
3011 static inline void
3012 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3013 struct ring_buffer_event *event)
3015 unsigned long addr = (unsigned long)event;
3016 struct buffer_page *bpage = cpu_buffer->commit_page;
3017 struct buffer_page *start;
3019 addr &= PAGE_MASK;
3021 /* Do the likely case first */
3022 if (likely(bpage->page == (void *)addr)) {
3023 local_dec(&bpage->entries);
3024 return;
3028 * Because the commit page may be on the reader page we
3029 * start with the next page and check the end loop there.
3031 rb_inc_page(cpu_buffer, &bpage);
3032 start = bpage;
3033 do {
3034 if (bpage->page == (void *)addr) {
3035 local_dec(&bpage->entries);
3036 return;
3038 rb_inc_page(cpu_buffer, &bpage);
3039 } while (bpage != start);
3041 /* commit not part of this buffer?? */
3042 RB_WARN_ON(cpu_buffer, 1);
3046 * ring_buffer_commit_discard - discard an event that has not been committed
3047 * @buffer: the ring buffer
3048 * @event: non committed event to discard
3050 * Sometimes an event that is in the ring buffer needs to be ignored.
3051 * This function lets the user discard an event in the ring buffer
3052 * and then that event will not be read later.
3054 * This function only works if it is called before the item has been
3055 * committed. It will try to free the event from the ring buffer
3056 * if another event has not been added behind it.
3058 * If another event has been added behind it, it will set the event
3059 * up as discarded, and perform the commit.
3061 * If this function is called, do not call ring_buffer_unlock_commit on
3062 * the event.
3064 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3065 struct ring_buffer_event *event)
3067 struct ring_buffer_per_cpu *cpu_buffer;
3068 int cpu;
3070 /* The event is discarded regardless */
3071 rb_event_discard(event);
3073 cpu = smp_processor_id();
3074 cpu_buffer = buffer->buffers[cpu];
3077 * This must only be called if the event has not been
3078 * committed yet. Thus we can assume that preemption
3079 * is still disabled.
3081 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3083 rb_decrement_entry(cpu_buffer, event);
3084 if (rb_try_to_discard(cpu_buffer, event))
3085 goto out;
3088 * The commit is still visible by the reader, so we
3089 * must still update the timestamp.
3091 rb_update_write_stamp(cpu_buffer, event);
3092 out:
3093 rb_end_commit(cpu_buffer);
3095 trace_recursive_unlock(cpu_buffer);
3097 preempt_enable_notrace();
3100 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3103 * ring_buffer_write - write data to the buffer without reserving
3104 * @buffer: The ring buffer to write to.
3105 * @length: The length of the data being written (excluding the event header)
3106 * @data: The data to write to the buffer.
3108 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3109 * one function. If you already have the data to write to the buffer, it
3110 * may be easier to simply call this function.
3112 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3113 * and not the length of the event which would hold the header.
3115 int ring_buffer_write(struct trace_buffer *buffer,
3116 unsigned long length,
3117 void *data)
3119 struct ring_buffer_per_cpu *cpu_buffer;
3120 struct ring_buffer_event *event;
3121 void *body;
3122 int ret = -EBUSY;
3123 int cpu;
3125 preempt_disable_notrace();
3127 if (atomic_read(&buffer->record_disabled))
3128 goto out;
3130 cpu = raw_smp_processor_id();
3132 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133 goto out;
3135 cpu_buffer = buffer->buffers[cpu];
3137 if (atomic_read(&cpu_buffer->record_disabled))
3138 goto out;
3140 if (length > BUF_MAX_DATA_SIZE)
3141 goto out;
3143 if (unlikely(trace_recursive_lock(cpu_buffer)))
3144 goto out;
3146 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3147 if (!event)
3148 goto out_unlock;
3150 body = rb_event_data(event);
3152 memcpy(body, data, length);
3154 rb_commit(cpu_buffer, event);
3156 rb_wakeups(buffer, cpu_buffer);
3158 ret = 0;
3160 out_unlock:
3161 trace_recursive_unlock(cpu_buffer);
3163 out:
3164 preempt_enable_notrace();
3166 return ret;
3168 EXPORT_SYMBOL_GPL(ring_buffer_write);
3170 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3172 struct buffer_page *reader = cpu_buffer->reader_page;
3173 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3174 struct buffer_page *commit = cpu_buffer->commit_page;
3176 /* In case of error, head will be NULL */
3177 if (unlikely(!head))
3178 return true;
3180 return reader->read == rb_page_commit(reader) &&
3181 (commit == reader ||
3182 (commit == head &&
3183 head->read == rb_page_commit(commit)));
3187 * ring_buffer_record_disable - stop all writes into the buffer
3188 * @buffer: The ring buffer to stop writes to.
3190 * This prevents all writes to the buffer. Any attempt to write
3191 * to the buffer after this will fail and return NULL.
3193 * The caller should call synchronize_rcu() after this.
3195 void ring_buffer_record_disable(struct trace_buffer *buffer)
3197 atomic_inc(&buffer->record_disabled);
3199 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3202 * ring_buffer_record_enable - enable writes to the buffer
3203 * @buffer: The ring buffer to enable writes
3205 * Note, multiple disables will need the same number of enables
3206 * to truly enable the writing (much like preempt_disable).
3208 void ring_buffer_record_enable(struct trace_buffer *buffer)
3210 atomic_dec(&buffer->record_disabled);
3212 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3215 * ring_buffer_record_off - stop all writes into the buffer
3216 * @buffer: The ring buffer to stop writes to.
3218 * This prevents all writes to the buffer. Any attempt to write
3219 * to the buffer after this will fail and return NULL.
3221 * This is different than ring_buffer_record_disable() as
3222 * it works like an on/off switch, where as the disable() version
3223 * must be paired with a enable().
3225 void ring_buffer_record_off(struct trace_buffer *buffer)
3227 unsigned int rd;
3228 unsigned int new_rd;
3230 do {
3231 rd = atomic_read(&buffer->record_disabled);
3232 new_rd = rd | RB_BUFFER_OFF;
3233 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3235 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3238 * ring_buffer_record_on - restart writes into the buffer
3239 * @buffer: The ring buffer to start writes to.
3241 * This enables all writes to the buffer that was disabled by
3242 * ring_buffer_record_off().
3244 * This is different than ring_buffer_record_enable() as
3245 * it works like an on/off switch, where as the enable() version
3246 * must be paired with a disable().
3248 void ring_buffer_record_on(struct trace_buffer *buffer)
3250 unsigned int rd;
3251 unsigned int new_rd;
3253 do {
3254 rd = atomic_read(&buffer->record_disabled);
3255 new_rd = rd & ~RB_BUFFER_OFF;
3256 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3258 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3261 * ring_buffer_record_is_on - return true if the ring buffer can write
3262 * @buffer: The ring buffer to see if write is enabled
3264 * Returns true if the ring buffer is in a state that it accepts writes.
3266 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3268 return !atomic_read(&buffer->record_disabled);
3272 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3273 * @buffer: The ring buffer to see if write is set enabled
3275 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3276 * Note that this does NOT mean it is in a writable state.
3278 * It may return true when the ring buffer has been disabled by
3279 * ring_buffer_record_disable(), as that is a temporary disabling of
3280 * the ring buffer.
3282 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3284 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3288 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3289 * @buffer: The ring buffer to stop writes to.
3290 * @cpu: The CPU buffer to stop
3292 * This prevents all writes to the buffer. Any attempt to write
3293 * to the buffer after this will fail and return NULL.
3295 * The caller should call synchronize_rcu() after this.
3297 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3299 struct ring_buffer_per_cpu *cpu_buffer;
3301 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302 return;
3304 cpu_buffer = buffer->buffers[cpu];
3305 atomic_inc(&cpu_buffer->record_disabled);
3307 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3310 * ring_buffer_record_enable_cpu - enable writes to the buffer
3311 * @buffer: The ring buffer to enable writes
3312 * @cpu: The CPU to enable.
3314 * Note, multiple disables will need the same number of enables
3315 * to truly enable the writing (much like preempt_disable).
3317 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3319 struct ring_buffer_per_cpu *cpu_buffer;
3321 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322 return;
3324 cpu_buffer = buffer->buffers[cpu];
3325 atomic_dec(&cpu_buffer->record_disabled);
3327 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3330 * The total entries in the ring buffer is the running counter
3331 * of entries entered into the ring buffer, minus the sum of
3332 * the entries read from the ring buffer and the number of
3333 * entries that were overwritten.
3335 static inline unsigned long
3336 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3338 return local_read(&cpu_buffer->entries) -
3339 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3343 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3344 * @buffer: The ring buffer
3345 * @cpu: The per CPU buffer to read from.
3347 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3349 unsigned long flags;
3350 struct ring_buffer_per_cpu *cpu_buffer;
3351 struct buffer_page *bpage;
3352 u64 ret = 0;
3354 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3355 return 0;
3357 cpu_buffer = buffer->buffers[cpu];
3358 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3360 * if the tail is on reader_page, oldest time stamp is on the reader
3361 * page
3363 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3364 bpage = cpu_buffer->reader_page;
3365 else
3366 bpage = rb_set_head_page(cpu_buffer);
3367 if (bpage)
3368 ret = bpage->page->time_stamp;
3369 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3371 return ret;
3373 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3376 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3377 * @buffer: The ring buffer
3378 * @cpu: The per CPU buffer to read from.
3380 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3382 struct ring_buffer_per_cpu *cpu_buffer;
3383 unsigned long ret;
3385 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386 return 0;
3388 cpu_buffer = buffer->buffers[cpu];
3389 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3391 return ret;
3393 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3396 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3397 * @buffer: The ring buffer
3398 * @cpu: The per CPU buffer to get the entries from.
3400 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3402 struct ring_buffer_per_cpu *cpu_buffer;
3404 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3405 return 0;
3407 cpu_buffer = buffer->buffers[cpu];
3409 return rb_num_of_entries(cpu_buffer);
3411 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3414 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3415 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3416 * @buffer: The ring buffer
3417 * @cpu: The per CPU buffer to get the number of overruns from
3419 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3421 struct ring_buffer_per_cpu *cpu_buffer;
3422 unsigned long ret;
3424 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425 return 0;
3427 cpu_buffer = buffer->buffers[cpu];
3428 ret = local_read(&cpu_buffer->overrun);
3430 return ret;
3432 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3435 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3436 * commits failing due to the buffer wrapping around while there are uncommitted
3437 * events, such as during an interrupt storm.
3438 * @buffer: The ring buffer
3439 * @cpu: The per CPU buffer to get the number of overruns from
3441 unsigned long
3442 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3444 struct ring_buffer_per_cpu *cpu_buffer;
3445 unsigned long ret;
3447 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448 return 0;
3450 cpu_buffer = buffer->buffers[cpu];
3451 ret = local_read(&cpu_buffer->commit_overrun);
3453 return ret;
3455 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3458 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3459 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3460 * @buffer: The ring buffer
3461 * @cpu: The per CPU buffer to get the number of overruns from
3463 unsigned long
3464 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3466 struct ring_buffer_per_cpu *cpu_buffer;
3467 unsigned long ret;
3469 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3470 return 0;
3472 cpu_buffer = buffer->buffers[cpu];
3473 ret = local_read(&cpu_buffer->dropped_events);
3475 return ret;
3477 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3480 * ring_buffer_read_events_cpu - get the number of events successfully read
3481 * @buffer: The ring buffer
3482 * @cpu: The per CPU buffer to get the number of events read
3484 unsigned long
3485 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3487 struct ring_buffer_per_cpu *cpu_buffer;
3489 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3490 return 0;
3492 cpu_buffer = buffer->buffers[cpu];
3493 return cpu_buffer->read;
3495 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3498 * ring_buffer_entries - get the number of entries in a buffer
3499 * @buffer: The ring buffer
3501 * Returns the total number of entries in the ring buffer
3502 * (all CPU entries)
3504 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3506 struct ring_buffer_per_cpu *cpu_buffer;
3507 unsigned long entries = 0;
3508 int cpu;
3510 /* if you care about this being correct, lock the buffer */
3511 for_each_buffer_cpu(buffer, cpu) {
3512 cpu_buffer = buffer->buffers[cpu];
3513 entries += rb_num_of_entries(cpu_buffer);
3516 return entries;
3518 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3521 * ring_buffer_overruns - get the number of overruns in buffer
3522 * @buffer: The ring buffer
3524 * Returns the total number of overruns in the ring buffer
3525 * (all CPU entries)
3527 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3529 struct ring_buffer_per_cpu *cpu_buffer;
3530 unsigned long overruns = 0;
3531 int cpu;
3533 /* if you care about this being correct, lock the buffer */
3534 for_each_buffer_cpu(buffer, cpu) {
3535 cpu_buffer = buffer->buffers[cpu];
3536 overruns += local_read(&cpu_buffer->overrun);
3539 return overruns;
3541 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3543 static void rb_iter_reset(struct ring_buffer_iter *iter)
3545 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3547 /* Iterator usage is expected to have record disabled */
3548 iter->head_page = cpu_buffer->reader_page;
3549 iter->head = cpu_buffer->reader_page->read;
3551 iter->cache_reader_page = iter->head_page;
3552 iter->cache_read = cpu_buffer->read;
3554 if (iter->head)
3555 iter->read_stamp = cpu_buffer->read_stamp;
3556 else
3557 iter->read_stamp = iter->head_page->page->time_stamp;
3561 * ring_buffer_iter_reset - reset an iterator
3562 * @iter: The iterator to reset
3564 * Resets the iterator, so that it will start from the beginning
3565 * again.
3567 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3569 struct ring_buffer_per_cpu *cpu_buffer;
3570 unsigned long flags;
3572 if (!iter)
3573 return;
3575 cpu_buffer = iter->cpu_buffer;
3577 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3578 rb_iter_reset(iter);
3579 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3581 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3584 * ring_buffer_iter_empty - check if an iterator has no more to read
3585 * @iter: The iterator to check
3587 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3589 struct ring_buffer_per_cpu *cpu_buffer;
3590 struct buffer_page *reader;
3591 struct buffer_page *head_page;
3592 struct buffer_page *commit_page;
3593 unsigned commit;
3595 cpu_buffer = iter->cpu_buffer;
3597 /* Remember, trace recording is off when iterator is in use */
3598 reader = cpu_buffer->reader_page;
3599 head_page = cpu_buffer->head_page;
3600 commit_page = cpu_buffer->commit_page;
3601 commit = rb_page_commit(commit_page);
3603 return ((iter->head_page == commit_page && iter->head == commit) ||
3604 (iter->head_page == reader && commit_page == head_page &&
3605 head_page->read == commit &&
3606 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3608 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3610 static void
3611 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3612 struct ring_buffer_event *event)
3614 u64 delta;
3616 switch (event->type_len) {
3617 case RINGBUF_TYPE_PADDING:
3618 return;
3620 case RINGBUF_TYPE_TIME_EXTEND:
3621 delta = ring_buffer_event_time_stamp(event);
3622 cpu_buffer->read_stamp += delta;
3623 return;
3625 case RINGBUF_TYPE_TIME_STAMP:
3626 delta = ring_buffer_event_time_stamp(event);
3627 cpu_buffer->read_stamp = delta;
3628 return;
3630 case RINGBUF_TYPE_DATA:
3631 cpu_buffer->read_stamp += event->time_delta;
3632 return;
3634 default:
3635 BUG();
3637 return;
3640 static void
3641 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3642 struct ring_buffer_event *event)
3644 u64 delta;
3646 switch (event->type_len) {
3647 case RINGBUF_TYPE_PADDING:
3648 return;
3650 case RINGBUF_TYPE_TIME_EXTEND:
3651 delta = ring_buffer_event_time_stamp(event);
3652 iter->read_stamp += delta;
3653 return;
3655 case RINGBUF_TYPE_TIME_STAMP:
3656 delta = ring_buffer_event_time_stamp(event);
3657 iter->read_stamp = delta;
3658 return;
3660 case RINGBUF_TYPE_DATA:
3661 iter->read_stamp += event->time_delta;
3662 return;
3664 default:
3665 BUG();
3667 return;
3670 static struct buffer_page *
3671 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3673 struct buffer_page *reader = NULL;
3674 unsigned long overwrite;
3675 unsigned long flags;
3676 int nr_loops = 0;
3677 int ret;
3679 local_irq_save(flags);
3680 arch_spin_lock(&cpu_buffer->lock);
3682 again:
3684 * This should normally only loop twice. But because the
3685 * start of the reader inserts an empty page, it causes
3686 * a case where we will loop three times. There should be no
3687 * reason to loop four times (that I know of).
3689 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3690 reader = NULL;
3691 goto out;
3694 reader = cpu_buffer->reader_page;
3696 /* If there's more to read, return this page */
3697 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3698 goto out;
3700 /* Never should we have an index greater than the size */
3701 if (RB_WARN_ON(cpu_buffer,
3702 cpu_buffer->reader_page->read > rb_page_size(reader)))
3703 goto out;
3705 /* check if we caught up to the tail */
3706 reader = NULL;
3707 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3708 goto out;
3710 /* Don't bother swapping if the ring buffer is empty */
3711 if (rb_num_of_entries(cpu_buffer) == 0)
3712 goto out;
3715 * Reset the reader page to size zero.
3717 local_set(&cpu_buffer->reader_page->write, 0);
3718 local_set(&cpu_buffer->reader_page->entries, 0);
3719 local_set(&cpu_buffer->reader_page->page->commit, 0);
3720 cpu_buffer->reader_page->real_end = 0;
3722 spin:
3724 * Splice the empty reader page into the list around the head.
3726 reader = rb_set_head_page(cpu_buffer);
3727 if (!reader)
3728 goto out;
3729 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3730 cpu_buffer->reader_page->list.prev = reader->list.prev;
3733 * cpu_buffer->pages just needs to point to the buffer, it
3734 * has no specific buffer page to point to. Lets move it out
3735 * of our way so we don't accidentally swap it.
3737 cpu_buffer->pages = reader->list.prev;
3739 /* The reader page will be pointing to the new head */
3740 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3743 * We want to make sure we read the overruns after we set up our
3744 * pointers to the next object. The writer side does a
3745 * cmpxchg to cross pages which acts as the mb on the writer
3746 * side. Note, the reader will constantly fail the swap
3747 * while the writer is updating the pointers, so this
3748 * guarantees that the overwrite recorded here is the one we
3749 * want to compare with the last_overrun.
3751 smp_mb();
3752 overwrite = local_read(&(cpu_buffer->overrun));
3755 * Here's the tricky part.
3757 * We need to move the pointer past the header page.
3758 * But we can only do that if a writer is not currently
3759 * moving it. The page before the header page has the
3760 * flag bit '1' set if it is pointing to the page we want.
3761 * but if the writer is in the process of moving it
3762 * than it will be '2' or already moved '0'.
3765 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3768 * If we did not convert it, then we must try again.
3770 if (!ret)
3771 goto spin;
3774 * Yay! We succeeded in replacing the page.
3776 * Now make the new head point back to the reader page.
3778 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3779 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3781 local_inc(&cpu_buffer->pages_read);
3783 /* Finally update the reader page to the new head */
3784 cpu_buffer->reader_page = reader;
3785 cpu_buffer->reader_page->read = 0;
3787 if (overwrite != cpu_buffer->last_overrun) {
3788 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3789 cpu_buffer->last_overrun = overwrite;
3792 goto again;
3794 out:
3795 /* Update the read_stamp on the first event */
3796 if (reader && reader->read == 0)
3797 cpu_buffer->read_stamp = reader->page->time_stamp;
3799 arch_spin_unlock(&cpu_buffer->lock);
3800 local_irq_restore(flags);
3802 return reader;
3805 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3807 struct ring_buffer_event *event;
3808 struct buffer_page *reader;
3809 unsigned length;
3811 reader = rb_get_reader_page(cpu_buffer);
3813 /* This function should not be called when buffer is empty */
3814 if (RB_WARN_ON(cpu_buffer, !reader))
3815 return;
3817 event = rb_reader_event(cpu_buffer);
3819 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3820 cpu_buffer->read++;
3822 rb_update_read_stamp(cpu_buffer, event);
3824 length = rb_event_length(event);
3825 cpu_buffer->reader_page->read += length;
3828 static void rb_advance_iter(struct ring_buffer_iter *iter)
3830 struct ring_buffer_per_cpu *cpu_buffer;
3831 struct ring_buffer_event *event;
3832 unsigned length;
3834 cpu_buffer = iter->cpu_buffer;
3837 * Check if we are at the end of the buffer.
3839 if (iter->head >= rb_page_size(iter->head_page)) {
3840 /* discarded commits can make the page empty */
3841 if (iter->head_page == cpu_buffer->commit_page)
3842 return;
3843 rb_inc_iter(iter);
3844 return;
3847 event = rb_iter_head_event(iter);
3849 length = rb_event_length(event);
3852 * This should not be called to advance the header if we are
3853 * at the tail of the buffer.
3855 if (RB_WARN_ON(cpu_buffer,
3856 (iter->head_page == cpu_buffer->commit_page) &&
3857 (iter->head + length > rb_commit_index(cpu_buffer))))
3858 return;
3860 rb_update_iter_read_stamp(iter, event);
3862 iter->head += length;
3864 /* check for end of page padding */
3865 if ((iter->head >= rb_page_size(iter->head_page)) &&
3866 (iter->head_page != cpu_buffer->commit_page))
3867 rb_inc_iter(iter);
3870 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3872 return cpu_buffer->lost_events;
3875 static struct ring_buffer_event *
3876 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3877 unsigned long *lost_events)
3879 struct ring_buffer_event *event;
3880 struct buffer_page *reader;
3881 int nr_loops = 0;
3883 if (ts)
3884 *ts = 0;
3885 again:
3887 * We repeat when a time extend is encountered.
3888 * Since the time extend is always attached to a data event,
3889 * we should never loop more than once.
3890 * (We never hit the following condition more than twice).
3892 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3893 return NULL;
3895 reader = rb_get_reader_page(cpu_buffer);
3896 if (!reader)
3897 return NULL;
3899 event = rb_reader_event(cpu_buffer);
3901 switch (event->type_len) {
3902 case RINGBUF_TYPE_PADDING:
3903 if (rb_null_event(event))
3904 RB_WARN_ON(cpu_buffer, 1);
3906 * Because the writer could be discarding every
3907 * event it creates (which would probably be bad)
3908 * if we were to go back to "again" then we may never
3909 * catch up, and will trigger the warn on, or lock
3910 * the box. Return the padding, and we will release
3911 * the current locks, and try again.
3913 return event;
3915 case RINGBUF_TYPE_TIME_EXTEND:
3916 /* Internal data, OK to advance */
3917 rb_advance_reader(cpu_buffer);
3918 goto again;
3920 case RINGBUF_TYPE_TIME_STAMP:
3921 if (ts) {
3922 *ts = ring_buffer_event_time_stamp(event);
3923 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3924 cpu_buffer->cpu, ts);
3926 /* Internal data, OK to advance */
3927 rb_advance_reader(cpu_buffer);
3928 goto again;
3930 case RINGBUF_TYPE_DATA:
3931 if (ts && !(*ts)) {
3932 *ts = cpu_buffer->read_stamp + event->time_delta;
3933 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3934 cpu_buffer->cpu, ts);
3936 if (lost_events)
3937 *lost_events = rb_lost_events(cpu_buffer);
3938 return event;
3940 default:
3941 BUG();
3944 return NULL;
3946 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3948 static struct ring_buffer_event *
3949 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3951 struct trace_buffer *buffer;
3952 struct ring_buffer_per_cpu *cpu_buffer;
3953 struct ring_buffer_event *event;
3954 int nr_loops = 0;
3956 if (ts)
3957 *ts = 0;
3959 cpu_buffer = iter->cpu_buffer;
3960 buffer = cpu_buffer->buffer;
3963 * Check if someone performed a consuming read to
3964 * the buffer. A consuming read invalidates the iterator
3965 * and we need to reset the iterator in this case.
3967 if (unlikely(iter->cache_read != cpu_buffer->read ||
3968 iter->cache_reader_page != cpu_buffer->reader_page))
3969 rb_iter_reset(iter);
3971 again:
3972 if (ring_buffer_iter_empty(iter))
3973 return NULL;
3976 * We repeat when a time extend is encountered or we hit
3977 * the end of the page. Since the time extend is always attached
3978 * to a data event, we should never loop more than three times.
3979 * Once for going to next page, once on time extend, and
3980 * finally once to get the event.
3981 * (We never hit the following condition more than thrice).
3983 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3984 return NULL;
3986 if (rb_per_cpu_empty(cpu_buffer))
3987 return NULL;
3989 if (iter->head >= rb_page_size(iter->head_page)) {
3990 rb_inc_iter(iter);
3991 goto again;
3994 event = rb_iter_head_event(iter);
3996 switch (event->type_len) {
3997 case RINGBUF_TYPE_PADDING:
3998 if (rb_null_event(event)) {
3999 rb_inc_iter(iter);
4000 goto again;
4002 rb_advance_iter(iter);
4003 return event;
4005 case RINGBUF_TYPE_TIME_EXTEND:
4006 /* Internal data, OK to advance */
4007 rb_advance_iter(iter);
4008 goto again;
4010 case RINGBUF_TYPE_TIME_STAMP:
4011 if (ts) {
4012 *ts = ring_buffer_event_time_stamp(event);
4013 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4014 cpu_buffer->cpu, ts);
4016 /* Internal data, OK to advance */
4017 rb_advance_iter(iter);
4018 goto again;
4020 case RINGBUF_TYPE_DATA:
4021 if (ts && !(*ts)) {
4022 *ts = iter->read_stamp + event->time_delta;
4023 ring_buffer_normalize_time_stamp(buffer,
4024 cpu_buffer->cpu, ts);
4026 return event;
4028 default:
4029 BUG();
4032 return NULL;
4034 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4036 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4038 if (likely(!in_nmi())) {
4039 raw_spin_lock(&cpu_buffer->reader_lock);
4040 return true;
4044 * If an NMI die dumps out the content of the ring buffer
4045 * trylock must be used to prevent a deadlock if the NMI
4046 * preempted a task that holds the ring buffer locks. If
4047 * we get the lock then all is fine, if not, then continue
4048 * to do the read, but this can corrupt the ring buffer,
4049 * so it must be permanently disabled from future writes.
4050 * Reading from NMI is a oneshot deal.
4052 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4053 return true;
4055 /* Continue without locking, but disable the ring buffer */
4056 atomic_inc(&cpu_buffer->record_disabled);
4057 return false;
4060 static inline void
4061 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4063 if (likely(locked))
4064 raw_spin_unlock(&cpu_buffer->reader_lock);
4065 return;
4069 * ring_buffer_peek - peek at the next event to be read
4070 * @buffer: The ring buffer to read
4071 * @cpu: The cpu to peak at
4072 * @ts: The timestamp counter of this event.
4073 * @lost_events: a variable to store if events were lost (may be NULL)
4075 * This will return the event that will be read next, but does
4076 * not consume the data.
4078 struct ring_buffer_event *
4079 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4080 unsigned long *lost_events)
4082 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4083 struct ring_buffer_event *event;
4084 unsigned long flags;
4085 bool dolock;
4087 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4088 return NULL;
4090 again:
4091 local_irq_save(flags);
4092 dolock = rb_reader_lock(cpu_buffer);
4093 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4094 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4095 rb_advance_reader(cpu_buffer);
4096 rb_reader_unlock(cpu_buffer, dolock);
4097 local_irq_restore(flags);
4099 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4100 goto again;
4102 return event;
4106 * ring_buffer_iter_peek - peek at the next event to be read
4107 * @iter: The ring buffer iterator
4108 * @ts: The timestamp counter of this event.
4110 * This will return the event that will be read next, but does
4111 * not increment the iterator.
4113 struct ring_buffer_event *
4114 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4116 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4117 struct ring_buffer_event *event;
4118 unsigned long flags;
4120 again:
4121 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4122 event = rb_iter_peek(iter, ts);
4123 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4125 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4126 goto again;
4128 return event;
4132 * ring_buffer_consume - return an event and consume it
4133 * @buffer: The ring buffer to get the next event from
4134 * @cpu: the cpu to read the buffer from
4135 * @ts: a variable to store the timestamp (may be NULL)
4136 * @lost_events: a variable to store if events were lost (may be NULL)
4138 * Returns the next event in the ring buffer, and that event is consumed.
4139 * Meaning, that sequential reads will keep returning a different event,
4140 * and eventually empty the ring buffer if the producer is slower.
4142 struct ring_buffer_event *
4143 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4144 unsigned long *lost_events)
4146 struct ring_buffer_per_cpu *cpu_buffer;
4147 struct ring_buffer_event *event = NULL;
4148 unsigned long flags;
4149 bool dolock;
4151 again:
4152 /* might be called in atomic */
4153 preempt_disable();
4155 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4156 goto out;
4158 cpu_buffer = buffer->buffers[cpu];
4159 local_irq_save(flags);
4160 dolock = rb_reader_lock(cpu_buffer);
4162 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4163 if (event) {
4164 cpu_buffer->lost_events = 0;
4165 rb_advance_reader(cpu_buffer);
4168 rb_reader_unlock(cpu_buffer, dolock);
4169 local_irq_restore(flags);
4171 out:
4172 preempt_enable();
4174 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4175 goto again;
4177 return event;
4179 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4182 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4183 * @buffer: The ring buffer to read from
4184 * @cpu: The cpu buffer to iterate over
4185 * @flags: gfp flags to use for memory allocation
4187 * This performs the initial preparations necessary to iterate
4188 * through the buffer. Memory is allocated, buffer recording
4189 * is disabled, and the iterator pointer is returned to the caller.
4191 * Disabling buffer recording prevents the reading from being
4192 * corrupted. This is not a consuming read, so a producer is not
4193 * expected.
4195 * After a sequence of ring_buffer_read_prepare calls, the user is
4196 * expected to make at least one call to ring_buffer_read_prepare_sync.
4197 * Afterwards, ring_buffer_read_start is invoked to get things going
4198 * for real.
4200 * This overall must be paired with ring_buffer_read_finish.
4202 struct ring_buffer_iter *
4203 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4205 struct ring_buffer_per_cpu *cpu_buffer;
4206 struct ring_buffer_iter *iter;
4208 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4209 return NULL;
4211 iter = kmalloc(sizeof(*iter), flags);
4212 if (!iter)
4213 return NULL;
4215 cpu_buffer = buffer->buffers[cpu];
4217 iter->cpu_buffer = cpu_buffer;
4219 atomic_inc(&buffer->resize_disabled);
4220 atomic_inc(&cpu_buffer->record_disabled);
4222 return iter;
4224 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4227 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4229 * All previously invoked ring_buffer_read_prepare calls to prepare
4230 * iterators will be synchronized. Afterwards, read_buffer_read_start
4231 * calls on those iterators are allowed.
4233 void
4234 ring_buffer_read_prepare_sync(void)
4236 synchronize_rcu();
4238 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4241 * ring_buffer_read_start - start a non consuming read of the buffer
4242 * @iter: The iterator returned by ring_buffer_read_prepare
4244 * This finalizes the startup of an iteration through the buffer.
4245 * The iterator comes from a call to ring_buffer_read_prepare and
4246 * an intervening ring_buffer_read_prepare_sync must have been
4247 * performed.
4249 * Must be paired with ring_buffer_read_finish.
4251 void
4252 ring_buffer_read_start(struct ring_buffer_iter *iter)
4254 struct ring_buffer_per_cpu *cpu_buffer;
4255 unsigned long flags;
4257 if (!iter)
4258 return;
4260 cpu_buffer = iter->cpu_buffer;
4262 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4263 arch_spin_lock(&cpu_buffer->lock);
4264 rb_iter_reset(iter);
4265 arch_spin_unlock(&cpu_buffer->lock);
4266 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4268 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4271 * ring_buffer_read_finish - finish reading the iterator of the buffer
4272 * @iter: The iterator retrieved by ring_buffer_start
4274 * This re-enables the recording to the buffer, and frees the
4275 * iterator.
4277 void
4278 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4280 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4281 unsigned long flags;
4284 * Ring buffer is disabled from recording, here's a good place
4285 * to check the integrity of the ring buffer.
4286 * Must prevent readers from trying to read, as the check
4287 * clears the HEAD page and readers require it.
4289 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4290 rb_check_pages(cpu_buffer);
4291 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4293 atomic_dec(&cpu_buffer->record_disabled);
4294 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4295 kfree(iter);
4297 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4300 * ring_buffer_read - read the next item in the ring buffer by the iterator
4301 * @iter: The ring buffer iterator
4302 * @ts: The time stamp of the event read.
4304 * This reads the next event in the ring buffer and increments the iterator.
4306 struct ring_buffer_event *
4307 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4309 struct ring_buffer_event *event;
4310 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4311 unsigned long flags;
4313 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4314 again:
4315 event = rb_iter_peek(iter, ts);
4316 if (!event)
4317 goto out;
4319 if (event->type_len == RINGBUF_TYPE_PADDING)
4320 goto again;
4322 rb_advance_iter(iter);
4323 out:
4324 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4326 return event;
4328 EXPORT_SYMBOL_GPL(ring_buffer_read);
4331 * ring_buffer_size - return the size of the ring buffer (in bytes)
4332 * @buffer: The ring buffer.
4333 * @cpu: The CPU to get ring buffer size from.
4335 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4338 * Earlier, this method returned
4339 * BUF_PAGE_SIZE * buffer->nr_pages
4340 * Since the nr_pages field is now removed, we have converted this to
4341 * return the per cpu buffer value.
4343 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4344 return 0;
4346 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4348 EXPORT_SYMBOL_GPL(ring_buffer_size);
4350 static void
4351 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4353 rb_head_page_deactivate(cpu_buffer);
4355 cpu_buffer->head_page
4356 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4357 local_set(&cpu_buffer->head_page->write, 0);
4358 local_set(&cpu_buffer->head_page->entries, 0);
4359 local_set(&cpu_buffer->head_page->page->commit, 0);
4361 cpu_buffer->head_page->read = 0;
4363 cpu_buffer->tail_page = cpu_buffer->head_page;
4364 cpu_buffer->commit_page = cpu_buffer->head_page;
4366 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4367 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4368 local_set(&cpu_buffer->reader_page->write, 0);
4369 local_set(&cpu_buffer->reader_page->entries, 0);
4370 local_set(&cpu_buffer->reader_page->page->commit, 0);
4371 cpu_buffer->reader_page->read = 0;
4373 local_set(&cpu_buffer->entries_bytes, 0);
4374 local_set(&cpu_buffer->overrun, 0);
4375 local_set(&cpu_buffer->commit_overrun, 0);
4376 local_set(&cpu_buffer->dropped_events, 0);
4377 local_set(&cpu_buffer->entries, 0);
4378 local_set(&cpu_buffer->committing, 0);
4379 local_set(&cpu_buffer->commits, 0);
4380 local_set(&cpu_buffer->pages_touched, 0);
4381 local_set(&cpu_buffer->pages_read, 0);
4382 cpu_buffer->last_pages_touch = 0;
4383 cpu_buffer->shortest_full = 0;
4384 cpu_buffer->read = 0;
4385 cpu_buffer->read_bytes = 0;
4387 cpu_buffer->write_stamp = 0;
4388 cpu_buffer->read_stamp = 0;
4390 cpu_buffer->lost_events = 0;
4391 cpu_buffer->last_overrun = 0;
4393 rb_head_page_activate(cpu_buffer);
4397 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4398 * @buffer: The ring buffer to reset a per cpu buffer of
4399 * @cpu: The CPU buffer to be reset
4401 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4403 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4404 unsigned long flags;
4406 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4407 return;
4409 atomic_inc(&buffer->resize_disabled);
4410 atomic_inc(&cpu_buffer->record_disabled);
4412 /* Make sure all commits have finished */
4413 synchronize_rcu();
4415 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4417 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4418 goto out;
4420 arch_spin_lock(&cpu_buffer->lock);
4422 rb_reset_cpu(cpu_buffer);
4424 arch_spin_unlock(&cpu_buffer->lock);
4426 out:
4427 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4429 atomic_dec(&cpu_buffer->record_disabled);
4430 atomic_dec(&buffer->resize_disabled);
4432 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4435 * ring_buffer_reset - reset a ring buffer
4436 * @buffer: The ring buffer to reset all cpu buffers
4438 void ring_buffer_reset(struct trace_buffer *buffer)
4440 int cpu;
4442 for_each_buffer_cpu(buffer, cpu)
4443 ring_buffer_reset_cpu(buffer, cpu);
4445 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4448 * rind_buffer_empty - is the ring buffer empty?
4449 * @buffer: The ring buffer to test
4451 bool ring_buffer_empty(struct trace_buffer *buffer)
4453 struct ring_buffer_per_cpu *cpu_buffer;
4454 unsigned long flags;
4455 bool dolock;
4456 int cpu;
4457 int ret;
4459 /* yes this is racy, but if you don't like the race, lock the buffer */
4460 for_each_buffer_cpu(buffer, cpu) {
4461 cpu_buffer = buffer->buffers[cpu];
4462 local_irq_save(flags);
4463 dolock = rb_reader_lock(cpu_buffer);
4464 ret = rb_per_cpu_empty(cpu_buffer);
4465 rb_reader_unlock(cpu_buffer, dolock);
4466 local_irq_restore(flags);
4468 if (!ret)
4469 return false;
4472 return true;
4474 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4477 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4478 * @buffer: The ring buffer
4479 * @cpu: The CPU buffer to test
4481 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4483 struct ring_buffer_per_cpu *cpu_buffer;
4484 unsigned long flags;
4485 bool dolock;
4486 int ret;
4488 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4489 return true;
4491 cpu_buffer = buffer->buffers[cpu];
4492 local_irq_save(flags);
4493 dolock = rb_reader_lock(cpu_buffer);
4494 ret = rb_per_cpu_empty(cpu_buffer);
4495 rb_reader_unlock(cpu_buffer, dolock);
4496 local_irq_restore(flags);
4498 return ret;
4500 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4502 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4504 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4505 * @buffer_a: One buffer to swap with
4506 * @buffer_b: The other buffer to swap with
4507 * @cpu: the CPU of the buffers to swap
4509 * This function is useful for tracers that want to take a "snapshot"
4510 * of a CPU buffer and has another back up buffer lying around.
4511 * it is expected that the tracer handles the cpu buffer not being
4512 * used at the moment.
4514 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
4515 struct trace_buffer *buffer_b, int cpu)
4517 struct ring_buffer_per_cpu *cpu_buffer_a;
4518 struct ring_buffer_per_cpu *cpu_buffer_b;
4519 int ret = -EINVAL;
4521 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4522 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4523 goto out;
4525 cpu_buffer_a = buffer_a->buffers[cpu];
4526 cpu_buffer_b = buffer_b->buffers[cpu];
4528 /* At least make sure the two buffers are somewhat the same */
4529 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4530 goto out;
4532 ret = -EAGAIN;
4534 if (atomic_read(&buffer_a->record_disabled))
4535 goto out;
4537 if (atomic_read(&buffer_b->record_disabled))
4538 goto out;
4540 if (atomic_read(&cpu_buffer_a->record_disabled))
4541 goto out;
4543 if (atomic_read(&cpu_buffer_b->record_disabled))
4544 goto out;
4547 * We can't do a synchronize_rcu here because this
4548 * function can be called in atomic context.
4549 * Normally this will be called from the same CPU as cpu.
4550 * If not it's up to the caller to protect this.
4552 atomic_inc(&cpu_buffer_a->record_disabled);
4553 atomic_inc(&cpu_buffer_b->record_disabled);
4555 ret = -EBUSY;
4556 if (local_read(&cpu_buffer_a->committing))
4557 goto out_dec;
4558 if (local_read(&cpu_buffer_b->committing))
4559 goto out_dec;
4561 buffer_a->buffers[cpu] = cpu_buffer_b;
4562 buffer_b->buffers[cpu] = cpu_buffer_a;
4564 cpu_buffer_b->buffer = buffer_a;
4565 cpu_buffer_a->buffer = buffer_b;
4567 ret = 0;
4569 out_dec:
4570 atomic_dec(&cpu_buffer_a->record_disabled);
4571 atomic_dec(&cpu_buffer_b->record_disabled);
4572 out:
4573 return ret;
4575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4579 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4580 * @buffer: the buffer to allocate for.
4581 * @cpu: the cpu buffer to allocate.
4583 * This function is used in conjunction with ring_buffer_read_page.
4584 * When reading a full page from the ring buffer, these functions
4585 * can be used to speed up the process. The calling function should
4586 * allocate a few pages first with this function. Then when it
4587 * needs to get pages from the ring buffer, it passes the result
4588 * of this function into ring_buffer_read_page, which will swap
4589 * the page that was allocated, with the read page of the buffer.
4591 * Returns:
4592 * The page allocated, or ERR_PTR
4594 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
4596 struct ring_buffer_per_cpu *cpu_buffer;
4597 struct buffer_data_page *bpage = NULL;
4598 unsigned long flags;
4599 struct page *page;
4601 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4602 return ERR_PTR(-ENODEV);
4604 cpu_buffer = buffer->buffers[cpu];
4605 local_irq_save(flags);
4606 arch_spin_lock(&cpu_buffer->lock);
4608 if (cpu_buffer->free_page) {
4609 bpage = cpu_buffer->free_page;
4610 cpu_buffer->free_page = NULL;
4613 arch_spin_unlock(&cpu_buffer->lock);
4614 local_irq_restore(flags);
4616 if (bpage)
4617 goto out;
4619 page = alloc_pages_node(cpu_to_node(cpu),
4620 GFP_KERNEL | __GFP_NORETRY, 0);
4621 if (!page)
4622 return ERR_PTR(-ENOMEM);
4624 bpage = page_address(page);
4626 out:
4627 rb_init_page(bpage);
4629 return bpage;
4631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4634 * ring_buffer_free_read_page - free an allocated read page
4635 * @buffer: the buffer the page was allocate for
4636 * @cpu: the cpu buffer the page came from
4637 * @data: the page to free
4639 * Free a page allocated from ring_buffer_alloc_read_page.
4641 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
4643 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4644 struct buffer_data_page *bpage = data;
4645 struct page *page = virt_to_page(bpage);
4646 unsigned long flags;
4648 /* If the page is still in use someplace else, we can't reuse it */
4649 if (page_ref_count(page) > 1)
4650 goto out;
4652 local_irq_save(flags);
4653 arch_spin_lock(&cpu_buffer->lock);
4655 if (!cpu_buffer->free_page) {
4656 cpu_buffer->free_page = bpage;
4657 bpage = NULL;
4660 arch_spin_unlock(&cpu_buffer->lock);
4661 local_irq_restore(flags);
4663 out:
4664 free_page((unsigned long)bpage);
4666 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4669 * ring_buffer_read_page - extract a page from the ring buffer
4670 * @buffer: buffer to extract from
4671 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4672 * @len: amount to extract
4673 * @cpu: the cpu of the buffer to extract
4674 * @full: should the extraction only happen when the page is full.
4676 * This function will pull out a page from the ring buffer and consume it.
4677 * @data_page must be the address of the variable that was returned
4678 * from ring_buffer_alloc_read_page. This is because the page might be used
4679 * to swap with a page in the ring buffer.
4681 * for example:
4682 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4683 * if (IS_ERR(rpage))
4684 * return PTR_ERR(rpage);
4685 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4686 * if (ret >= 0)
4687 * process_page(rpage, ret);
4689 * When @full is set, the function will not return true unless
4690 * the writer is off the reader page.
4692 * Note: it is up to the calling functions to handle sleeps and wakeups.
4693 * The ring buffer can be used anywhere in the kernel and can not
4694 * blindly call wake_up. The layer that uses the ring buffer must be
4695 * responsible for that.
4697 * Returns:
4698 * >=0 if data has been transferred, returns the offset of consumed data.
4699 * <0 if no data has been transferred.
4701 int ring_buffer_read_page(struct trace_buffer *buffer,
4702 void **data_page, size_t len, int cpu, int full)
4704 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4705 struct ring_buffer_event *event;
4706 struct buffer_data_page *bpage;
4707 struct buffer_page *reader;
4708 unsigned long missed_events;
4709 unsigned long flags;
4710 unsigned int commit;
4711 unsigned int read;
4712 u64 save_timestamp;
4713 int ret = -1;
4715 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4716 goto out;
4719 * If len is not big enough to hold the page header, then
4720 * we can not copy anything.
4722 if (len <= BUF_PAGE_HDR_SIZE)
4723 goto out;
4725 len -= BUF_PAGE_HDR_SIZE;
4727 if (!data_page)
4728 goto out;
4730 bpage = *data_page;
4731 if (!bpage)
4732 goto out;
4734 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4736 reader = rb_get_reader_page(cpu_buffer);
4737 if (!reader)
4738 goto out_unlock;
4740 event = rb_reader_event(cpu_buffer);
4742 read = reader->read;
4743 commit = rb_page_commit(reader);
4745 /* Check if any events were dropped */
4746 missed_events = cpu_buffer->lost_events;
4749 * If this page has been partially read or
4750 * if len is not big enough to read the rest of the page or
4751 * a writer is still on the page, then
4752 * we must copy the data from the page to the buffer.
4753 * Otherwise, we can simply swap the page with the one passed in.
4755 if (read || (len < (commit - read)) ||
4756 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4757 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4758 unsigned int rpos = read;
4759 unsigned int pos = 0;
4760 unsigned int size;
4762 if (full)
4763 goto out_unlock;
4765 if (len > (commit - read))
4766 len = (commit - read);
4768 /* Always keep the time extend and data together */
4769 size = rb_event_ts_length(event);
4771 if (len < size)
4772 goto out_unlock;
4774 /* save the current timestamp, since the user will need it */
4775 save_timestamp = cpu_buffer->read_stamp;
4777 /* Need to copy one event at a time */
4778 do {
4779 /* We need the size of one event, because
4780 * rb_advance_reader only advances by one event,
4781 * whereas rb_event_ts_length may include the size of
4782 * one or two events.
4783 * We have already ensured there's enough space if this
4784 * is a time extend. */
4785 size = rb_event_length(event);
4786 memcpy(bpage->data + pos, rpage->data + rpos, size);
4788 len -= size;
4790 rb_advance_reader(cpu_buffer);
4791 rpos = reader->read;
4792 pos += size;
4794 if (rpos >= commit)
4795 break;
4797 event = rb_reader_event(cpu_buffer);
4798 /* Always keep the time extend and data together */
4799 size = rb_event_ts_length(event);
4800 } while (len >= size);
4802 /* update bpage */
4803 local_set(&bpage->commit, pos);
4804 bpage->time_stamp = save_timestamp;
4806 /* we copied everything to the beginning */
4807 read = 0;
4808 } else {
4809 /* update the entry counter */
4810 cpu_buffer->read += rb_page_entries(reader);
4811 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4813 /* swap the pages */
4814 rb_init_page(bpage);
4815 bpage = reader->page;
4816 reader->page = *data_page;
4817 local_set(&reader->write, 0);
4818 local_set(&reader->entries, 0);
4819 reader->read = 0;
4820 *data_page = bpage;
4823 * Use the real_end for the data size,
4824 * This gives us a chance to store the lost events
4825 * on the page.
4827 if (reader->real_end)
4828 local_set(&bpage->commit, reader->real_end);
4830 ret = read;
4832 cpu_buffer->lost_events = 0;
4834 commit = local_read(&bpage->commit);
4836 * Set a flag in the commit field if we lost events
4838 if (missed_events) {
4839 /* If there is room at the end of the page to save the
4840 * missed events, then record it there.
4842 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4843 memcpy(&bpage->data[commit], &missed_events,
4844 sizeof(missed_events));
4845 local_add(RB_MISSED_STORED, &bpage->commit);
4846 commit += sizeof(missed_events);
4848 local_add(RB_MISSED_EVENTS, &bpage->commit);
4852 * This page may be off to user land. Zero it out here.
4854 if (commit < BUF_PAGE_SIZE)
4855 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4857 out_unlock:
4858 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4860 out:
4861 return ret;
4863 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4866 * We only allocate new buffers, never free them if the CPU goes down.
4867 * If we were to free the buffer, then the user would lose any trace that was in
4868 * the buffer.
4870 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4872 struct trace_buffer *buffer;
4873 long nr_pages_same;
4874 int cpu_i;
4875 unsigned long nr_pages;
4877 buffer = container_of(node, struct trace_buffer, node);
4878 if (cpumask_test_cpu(cpu, buffer->cpumask))
4879 return 0;
4881 nr_pages = 0;
4882 nr_pages_same = 1;
4883 /* check if all cpu sizes are same */
4884 for_each_buffer_cpu(buffer, cpu_i) {
4885 /* fill in the size from first enabled cpu */
4886 if (nr_pages == 0)
4887 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4888 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4889 nr_pages_same = 0;
4890 break;
4893 /* allocate minimum pages, user can later expand it */
4894 if (!nr_pages_same)
4895 nr_pages = 2;
4896 buffer->buffers[cpu] =
4897 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4898 if (!buffer->buffers[cpu]) {
4899 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4900 cpu);
4901 return -ENOMEM;
4903 smp_wmb();
4904 cpumask_set_cpu(cpu, buffer->cpumask);
4905 return 0;
4908 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4910 * This is a basic integrity check of the ring buffer.
4911 * Late in the boot cycle this test will run when configured in.
4912 * It will kick off a thread per CPU that will go into a loop
4913 * writing to the per cpu ring buffer various sizes of data.
4914 * Some of the data will be large items, some small.
4916 * Another thread is created that goes into a spin, sending out
4917 * IPIs to the other CPUs to also write into the ring buffer.
4918 * this is to test the nesting ability of the buffer.
4920 * Basic stats are recorded and reported. If something in the
4921 * ring buffer should happen that's not expected, a big warning
4922 * is displayed and all ring buffers are disabled.
4924 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4926 struct rb_test_data {
4927 struct trace_buffer *buffer;
4928 unsigned long events;
4929 unsigned long bytes_written;
4930 unsigned long bytes_alloc;
4931 unsigned long bytes_dropped;
4932 unsigned long events_nested;
4933 unsigned long bytes_written_nested;
4934 unsigned long bytes_alloc_nested;
4935 unsigned long bytes_dropped_nested;
4936 int min_size_nested;
4937 int max_size_nested;
4938 int max_size;
4939 int min_size;
4940 int cpu;
4941 int cnt;
4944 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4946 /* 1 meg per cpu */
4947 #define RB_TEST_BUFFER_SIZE 1048576
4949 static char rb_string[] __initdata =
4950 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4951 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4952 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4954 static bool rb_test_started __initdata;
4956 struct rb_item {
4957 int size;
4958 char str[];
4961 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4963 struct ring_buffer_event *event;
4964 struct rb_item *item;
4965 bool started;
4966 int event_len;
4967 int size;
4968 int len;
4969 int cnt;
4971 /* Have nested writes different that what is written */
4972 cnt = data->cnt + (nested ? 27 : 0);
4974 /* Multiply cnt by ~e, to make some unique increment */
4975 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
4977 len = size + sizeof(struct rb_item);
4979 started = rb_test_started;
4980 /* read rb_test_started before checking buffer enabled */
4981 smp_rmb();
4983 event = ring_buffer_lock_reserve(data->buffer, len);
4984 if (!event) {
4985 /* Ignore dropped events before test starts. */
4986 if (started) {
4987 if (nested)
4988 data->bytes_dropped += len;
4989 else
4990 data->bytes_dropped_nested += len;
4992 return len;
4995 event_len = ring_buffer_event_length(event);
4997 if (RB_WARN_ON(data->buffer, event_len < len))
4998 goto out;
5000 item = ring_buffer_event_data(event);
5001 item->size = size;
5002 memcpy(item->str, rb_string, size);
5004 if (nested) {
5005 data->bytes_alloc_nested += event_len;
5006 data->bytes_written_nested += len;
5007 data->events_nested++;
5008 if (!data->min_size_nested || len < data->min_size_nested)
5009 data->min_size_nested = len;
5010 if (len > data->max_size_nested)
5011 data->max_size_nested = len;
5012 } else {
5013 data->bytes_alloc += event_len;
5014 data->bytes_written += len;
5015 data->events++;
5016 if (!data->min_size || len < data->min_size)
5017 data->max_size = len;
5018 if (len > data->max_size)
5019 data->max_size = len;
5022 out:
5023 ring_buffer_unlock_commit(data->buffer, event);
5025 return 0;
5028 static __init int rb_test(void *arg)
5030 struct rb_test_data *data = arg;
5032 while (!kthread_should_stop()) {
5033 rb_write_something(data, false);
5034 data->cnt++;
5036 set_current_state(TASK_INTERRUPTIBLE);
5037 /* Now sleep between a min of 100-300us and a max of 1ms */
5038 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5041 return 0;
5044 static __init void rb_ipi(void *ignore)
5046 struct rb_test_data *data;
5047 int cpu = smp_processor_id();
5049 data = &rb_data[cpu];
5050 rb_write_something(data, true);
5053 static __init int rb_hammer_test(void *arg)
5055 while (!kthread_should_stop()) {
5057 /* Send an IPI to all cpus to write data! */
5058 smp_call_function(rb_ipi, NULL, 1);
5059 /* No sleep, but for non preempt, let others run */
5060 schedule();
5063 return 0;
5066 static __init int test_ringbuffer(void)
5068 struct task_struct *rb_hammer;
5069 struct trace_buffer *buffer;
5070 int cpu;
5071 int ret = 0;
5073 if (security_locked_down(LOCKDOWN_TRACEFS)) {
5074 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5075 return 0;
5078 pr_info("Running ring buffer tests...\n");
5080 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5081 if (WARN_ON(!buffer))
5082 return 0;
5084 /* Disable buffer so that threads can't write to it yet */
5085 ring_buffer_record_off(buffer);
5087 for_each_online_cpu(cpu) {
5088 rb_data[cpu].buffer = buffer;
5089 rb_data[cpu].cpu = cpu;
5090 rb_data[cpu].cnt = cpu;
5091 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5092 "rbtester/%d", cpu);
5093 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5094 pr_cont("FAILED\n");
5095 ret = PTR_ERR(rb_threads[cpu]);
5096 goto out_free;
5099 kthread_bind(rb_threads[cpu], cpu);
5100 wake_up_process(rb_threads[cpu]);
5103 /* Now create the rb hammer! */
5104 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5105 if (WARN_ON(IS_ERR(rb_hammer))) {
5106 pr_cont("FAILED\n");
5107 ret = PTR_ERR(rb_hammer);
5108 goto out_free;
5111 ring_buffer_record_on(buffer);
5113 * Show buffer is enabled before setting rb_test_started.
5114 * Yes there's a small race window where events could be
5115 * dropped and the thread wont catch it. But when a ring
5116 * buffer gets enabled, there will always be some kind of
5117 * delay before other CPUs see it. Thus, we don't care about
5118 * those dropped events. We care about events dropped after
5119 * the threads see that the buffer is active.
5121 smp_wmb();
5122 rb_test_started = true;
5124 set_current_state(TASK_INTERRUPTIBLE);
5125 /* Just run for 10 seconds */;
5126 schedule_timeout(10 * HZ);
5128 kthread_stop(rb_hammer);
5130 out_free:
5131 for_each_online_cpu(cpu) {
5132 if (!rb_threads[cpu])
5133 break;
5134 kthread_stop(rb_threads[cpu]);
5136 if (ret) {
5137 ring_buffer_free(buffer);
5138 return ret;
5141 /* Report! */
5142 pr_info("finished\n");
5143 for_each_online_cpu(cpu) {
5144 struct ring_buffer_event *event;
5145 struct rb_test_data *data = &rb_data[cpu];
5146 struct rb_item *item;
5147 unsigned long total_events;
5148 unsigned long total_dropped;
5149 unsigned long total_written;
5150 unsigned long total_alloc;
5151 unsigned long total_read = 0;
5152 unsigned long total_size = 0;
5153 unsigned long total_len = 0;
5154 unsigned long total_lost = 0;
5155 unsigned long lost;
5156 int big_event_size;
5157 int small_event_size;
5159 ret = -1;
5161 total_events = data->events + data->events_nested;
5162 total_written = data->bytes_written + data->bytes_written_nested;
5163 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5164 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5166 big_event_size = data->max_size + data->max_size_nested;
5167 small_event_size = data->min_size + data->min_size_nested;
5169 pr_info("CPU %d:\n", cpu);
5170 pr_info(" events: %ld\n", total_events);
5171 pr_info(" dropped bytes: %ld\n", total_dropped);
5172 pr_info(" alloced bytes: %ld\n", total_alloc);
5173 pr_info(" written bytes: %ld\n", total_written);
5174 pr_info(" biggest event: %d\n", big_event_size);
5175 pr_info(" smallest event: %d\n", small_event_size);
5177 if (RB_WARN_ON(buffer, total_dropped))
5178 break;
5180 ret = 0;
5182 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5183 total_lost += lost;
5184 item = ring_buffer_event_data(event);
5185 total_len += ring_buffer_event_length(event);
5186 total_size += item->size + sizeof(struct rb_item);
5187 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5188 pr_info("FAILED!\n");
5189 pr_info("buffer had: %.*s\n", item->size, item->str);
5190 pr_info("expected: %.*s\n", item->size, rb_string);
5191 RB_WARN_ON(buffer, 1);
5192 ret = -1;
5193 break;
5195 total_read++;
5197 if (ret)
5198 break;
5200 ret = -1;
5202 pr_info(" read events: %ld\n", total_read);
5203 pr_info(" lost events: %ld\n", total_lost);
5204 pr_info(" total events: %ld\n", total_lost + total_read);
5205 pr_info(" recorded len bytes: %ld\n", total_len);
5206 pr_info(" recorded size bytes: %ld\n", total_size);
5207 if (total_lost)
5208 pr_info(" With dropped events, record len and size may not match\n"
5209 " alloced and written from above\n");
5210 if (!total_lost) {
5211 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5212 total_size != total_written))
5213 break;
5215 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5216 break;
5218 ret = 0;
5220 if (!ret)
5221 pr_info("Ring buffer PASSED!\n");
5223 ring_buffer_free(buffer);
5224 return 0;
5227 late_initcall(test_ringbuffer);
5228 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */