1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2017-2019 Linaro Ltd <ard.biesheuvel@linaro.org>
6 #include <crypto/aes.h>
7 #include <linux/crypto.h>
8 #include <linux/module.h>
9 #include <asm/unaligned.h>
12 * Emit the sbox as volatile const to prevent the compiler from doing
13 * constant folding on sbox references involving fixed indexes.
15 static volatile const u8 __cacheline_aligned aes_sbox
[] = {
16 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
17 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
18 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
19 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
20 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
21 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
22 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
23 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
24 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
25 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
26 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
27 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
28 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
29 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
30 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
31 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
32 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
33 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
34 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
35 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
36 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
37 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
38 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
39 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
40 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
41 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
42 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
43 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
44 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
45 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
46 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
47 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
50 static volatile const u8 __cacheline_aligned aes_inv_sbox
[] = {
51 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
52 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
53 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
54 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
55 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
56 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
57 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
58 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
59 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
60 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
61 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
62 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
63 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
64 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
65 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
66 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
67 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
68 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
69 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
70 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
71 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
72 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
73 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
74 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
75 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
76 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
77 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
78 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
79 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
80 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
81 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
82 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d,
85 extern const u8 crypto_aes_sbox
[256] __alias(aes_sbox
);
86 extern const u8 crypto_aes_inv_sbox
[256] __alias(aes_inv_sbox
);
88 EXPORT_SYMBOL(crypto_aes_sbox
);
89 EXPORT_SYMBOL(crypto_aes_inv_sbox
);
91 static u32
mul_by_x(u32 w
)
93 u32 x
= w
& 0x7f7f7f7f;
94 u32 y
= w
& 0x80808080;
96 /* multiply by polynomial 'x' (0b10) in GF(2^8) */
97 return (x
<< 1) ^ (y
>> 7) * 0x1b;
100 static u32
mul_by_x2(u32 w
)
102 u32 x
= w
& 0x3f3f3f3f;
103 u32 y
= w
& 0x80808080;
104 u32 z
= w
& 0x40404040;
106 /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */
107 return (x
<< 2) ^ (y
>> 7) * 0x36 ^ (z
>> 6) * 0x1b;
110 static u32
mix_columns(u32 x
)
113 * Perform the following matrix multiplication in GF(2^8)
115 * | 0x2 0x3 0x1 0x1 | | x[0] |
116 * | 0x1 0x2 0x3 0x1 | | x[1] |
117 * | 0x1 0x1 0x2 0x3 | x | x[2] |
118 * | 0x3 0x1 0x1 0x2 | | x[3] |
120 u32 y
= mul_by_x(x
) ^ ror32(x
, 16);
122 return y
^ ror32(x
^ y
, 8);
125 static u32
inv_mix_columns(u32 x
)
128 * Perform the following matrix multiplication in GF(2^8)
130 * | 0xe 0xb 0xd 0x9 | | x[0] |
131 * | 0x9 0xe 0xb 0xd | | x[1] |
132 * | 0xd 0x9 0xe 0xb | x | x[2] |
133 * | 0xb 0xd 0x9 0xe | | x[3] |
135 * which can conveniently be reduced to
137 * | 0x2 0x3 0x1 0x1 | | 0x5 0x0 0x4 0x0 | | x[0] |
138 * | 0x1 0x2 0x3 0x1 | | 0x0 0x5 0x0 0x4 | | x[1] |
139 * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] |
140 * | 0x3 0x1 0x1 0x2 | | 0x0 0x4 0x0 0x5 | | x[3] |
142 u32 y
= mul_by_x2(x
);
144 return mix_columns(x
^ y
^ ror32(y
, 16));
147 static __always_inline u32
subshift(u32 in
[], int pos
)
149 return (aes_sbox
[in
[pos
] & 0xff]) ^
150 (aes_sbox
[(in
[(pos
+ 1) % 4] >> 8) & 0xff] << 8) ^
151 (aes_sbox
[(in
[(pos
+ 2) % 4] >> 16) & 0xff] << 16) ^
152 (aes_sbox
[(in
[(pos
+ 3) % 4] >> 24) & 0xff] << 24);
155 static __always_inline u32
inv_subshift(u32 in
[], int pos
)
157 return (aes_inv_sbox
[in
[pos
] & 0xff]) ^
158 (aes_inv_sbox
[(in
[(pos
+ 3) % 4] >> 8) & 0xff] << 8) ^
159 (aes_inv_sbox
[(in
[(pos
+ 2) % 4] >> 16) & 0xff] << 16) ^
160 (aes_inv_sbox
[(in
[(pos
+ 1) % 4] >> 24) & 0xff] << 24);
163 static u32
subw(u32 in
)
165 return (aes_sbox
[in
& 0xff]) ^
166 (aes_sbox
[(in
>> 8) & 0xff] << 8) ^
167 (aes_sbox
[(in
>> 16) & 0xff] << 16) ^
168 (aes_sbox
[(in
>> 24) & 0xff] << 24);
172 * aes_expandkey - Expands the AES key as described in FIPS-197
173 * @ctx: The location where the computed key will be stored.
174 * @in_key: The supplied key.
175 * @key_len: The length of the supplied key.
177 * Returns 0 on success. The function fails only if an invalid key size (or
178 * pointer) is supplied.
179 * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes
180 * key schedule plus a 16 bytes key which is used before the first round).
181 * The decryption key is prepared for the "Equivalent Inverse Cipher" as
182 * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is
183 * for the initial combination, the second slot for the first round and so on.
185 int aes_expandkey(struct crypto_aes_ctx
*ctx
, const u8
*in_key
,
186 unsigned int key_len
)
188 u32 kwords
= key_len
/ sizeof(u32
);
192 err
= aes_check_keylen(key_len
);
196 ctx
->key_length
= key_len
;
198 for (i
= 0; i
< kwords
; i
++)
199 ctx
->key_enc
[i
] = get_unaligned_le32(in_key
+ i
* sizeof(u32
));
201 for (i
= 0, rc
= 1; i
< 10; i
++, rc
= mul_by_x(rc
)) {
202 u32
*rki
= ctx
->key_enc
+ (i
* kwords
);
203 u32
*rko
= rki
+ kwords
;
205 rko
[0] = ror32(subw(rki
[kwords
- 1]), 8) ^ rc
^ rki
[0];
206 rko
[1] = rko
[0] ^ rki
[1];
207 rko
[2] = rko
[1] ^ rki
[2];
208 rko
[3] = rko
[2] ^ rki
[3];
210 if (key_len
== AES_KEYSIZE_192
) {
213 rko
[4] = rko
[3] ^ rki
[4];
214 rko
[5] = rko
[4] ^ rki
[5];
215 } else if (key_len
== AES_KEYSIZE_256
) {
218 rko
[4] = subw(rko
[3]) ^ rki
[4];
219 rko
[5] = rko
[4] ^ rki
[5];
220 rko
[6] = rko
[5] ^ rki
[6];
221 rko
[7] = rko
[6] ^ rki
[7];
226 * Generate the decryption keys for the Equivalent Inverse Cipher.
227 * This involves reversing the order of the round keys, and applying
228 * the Inverse Mix Columns transformation to all but the first and
231 ctx
->key_dec
[0] = ctx
->key_enc
[key_len
+ 24];
232 ctx
->key_dec
[1] = ctx
->key_enc
[key_len
+ 25];
233 ctx
->key_dec
[2] = ctx
->key_enc
[key_len
+ 26];
234 ctx
->key_dec
[3] = ctx
->key_enc
[key_len
+ 27];
236 for (i
= 4, j
= key_len
+ 20; j
> 0; i
+= 4, j
-= 4) {
237 ctx
->key_dec
[i
] = inv_mix_columns(ctx
->key_enc
[j
]);
238 ctx
->key_dec
[i
+ 1] = inv_mix_columns(ctx
->key_enc
[j
+ 1]);
239 ctx
->key_dec
[i
+ 2] = inv_mix_columns(ctx
->key_enc
[j
+ 2]);
240 ctx
->key_dec
[i
+ 3] = inv_mix_columns(ctx
->key_enc
[j
+ 3]);
243 ctx
->key_dec
[i
] = ctx
->key_enc
[0];
244 ctx
->key_dec
[i
+ 1] = ctx
->key_enc
[1];
245 ctx
->key_dec
[i
+ 2] = ctx
->key_enc
[2];
246 ctx
->key_dec
[i
+ 3] = ctx
->key_enc
[3];
250 EXPORT_SYMBOL(aes_expandkey
);
253 * aes_encrypt - Encrypt a single AES block
254 * @ctx: Context struct containing the key schedule
255 * @out: Buffer to store the ciphertext
256 * @in: Buffer containing the plaintext
258 void aes_encrypt(const struct crypto_aes_ctx
*ctx
, u8
*out
, const u8
*in
)
260 const u32
*rkp
= ctx
->key_enc
+ 4;
261 int rounds
= 6 + ctx
->key_length
/ 4;
265 st0
[0] = ctx
->key_enc
[0] ^ get_unaligned_le32(in
);
266 st0
[1] = ctx
->key_enc
[1] ^ get_unaligned_le32(in
+ 4);
267 st0
[2] = ctx
->key_enc
[2] ^ get_unaligned_le32(in
+ 8);
268 st0
[3] = ctx
->key_enc
[3] ^ get_unaligned_le32(in
+ 12);
271 * Force the compiler to emit data independent Sbox references,
272 * by xoring the input with Sbox values that are known to add up
273 * to zero. This pulls the entire Sbox into the D-cache before any
274 * data dependent lookups are done.
276 st0
[0] ^= aes_sbox
[ 0] ^ aes_sbox
[ 64] ^ aes_sbox
[134] ^ aes_sbox
[195];
277 st0
[1] ^= aes_sbox
[16] ^ aes_sbox
[ 82] ^ aes_sbox
[158] ^ aes_sbox
[221];
278 st0
[2] ^= aes_sbox
[32] ^ aes_sbox
[ 96] ^ aes_sbox
[160] ^ aes_sbox
[234];
279 st0
[3] ^= aes_sbox
[48] ^ aes_sbox
[112] ^ aes_sbox
[186] ^ aes_sbox
[241];
281 for (round
= 0;; round
+= 2, rkp
+= 8) {
282 st1
[0] = mix_columns(subshift(st0
, 0)) ^ rkp
[0];
283 st1
[1] = mix_columns(subshift(st0
, 1)) ^ rkp
[1];
284 st1
[2] = mix_columns(subshift(st0
, 2)) ^ rkp
[2];
285 st1
[3] = mix_columns(subshift(st0
, 3)) ^ rkp
[3];
287 if (round
== rounds
- 2)
290 st0
[0] = mix_columns(subshift(st1
, 0)) ^ rkp
[4];
291 st0
[1] = mix_columns(subshift(st1
, 1)) ^ rkp
[5];
292 st0
[2] = mix_columns(subshift(st1
, 2)) ^ rkp
[6];
293 st0
[3] = mix_columns(subshift(st1
, 3)) ^ rkp
[7];
296 put_unaligned_le32(subshift(st1
, 0) ^ rkp
[4], out
);
297 put_unaligned_le32(subshift(st1
, 1) ^ rkp
[5], out
+ 4);
298 put_unaligned_le32(subshift(st1
, 2) ^ rkp
[6], out
+ 8);
299 put_unaligned_le32(subshift(st1
, 3) ^ rkp
[7], out
+ 12);
301 EXPORT_SYMBOL(aes_encrypt
);
304 * aes_decrypt - Decrypt a single AES block
305 * @ctx: Context struct containing the key schedule
306 * @out: Buffer to store the plaintext
307 * @in: Buffer containing the ciphertext
309 void aes_decrypt(const struct crypto_aes_ctx
*ctx
, u8
*out
, const u8
*in
)
311 const u32
*rkp
= ctx
->key_dec
+ 4;
312 int rounds
= 6 + ctx
->key_length
/ 4;
316 st0
[0] = ctx
->key_dec
[0] ^ get_unaligned_le32(in
);
317 st0
[1] = ctx
->key_dec
[1] ^ get_unaligned_le32(in
+ 4);
318 st0
[2] = ctx
->key_dec
[2] ^ get_unaligned_le32(in
+ 8);
319 st0
[3] = ctx
->key_dec
[3] ^ get_unaligned_le32(in
+ 12);
322 * Force the compiler to emit data independent Sbox references,
323 * by xoring the input with Sbox values that are known to add up
324 * to zero. This pulls the entire Sbox into the D-cache before any
325 * data dependent lookups are done.
327 st0
[0] ^= aes_inv_sbox
[ 0] ^ aes_inv_sbox
[ 64] ^ aes_inv_sbox
[129] ^ aes_inv_sbox
[200];
328 st0
[1] ^= aes_inv_sbox
[16] ^ aes_inv_sbox
[ 83] ^ aes_inv_sbox
[150] ^ aes_inv_sbox
[212];
329 st0
[2] ^= aes_inv_sbox
[32] ^ aes_inv_sbox
[ 96] ^ aes_inv_sbox
[160] ^ aes_inv_sbox
[236];
330 st0
[3] ^= aes_inv_sbox
[48] ^ aes_inv_sbox
[112] ^ aes_inv_sbox
[187] ^ aes_inv_sbox
[247];
332 for (round
= 0;; round
+= 2, rkp
+= 8) {
333 st1
[0] = inv_mix_columns(inv_subshift(st0
, 0)) ^ rkp
[0];
334 st1
[1] = inv_mix_columns(inv_subshift(st0
, 1)) ^ rkp
[1];
335 st1
[2] = inv_mix_columns(inv_subshift(st0
, 2)) ^ rkp
[2];
336 st1
[3] = inv_mix_columns(inv_subshift(st0
, 3)) ^ rkp
[3];
338 if (round
== rounds
- 2)
341 st0
[0] = inv_mix_columns(inv_subshift(st1
, 0)) ^ rkp
[4];
342 st0
[1] = inv_mix_columns(inv_subshift(st1
, 1)) ^ rkp
[5];
343 st0
[2] = inv_mix_columns(inv_subshift(st1
, 2)) ^ rkp
[6];
344 st0
[3] = inv_mix_columns(inv_subshift(st1
, 3)) ^ rkp
[7];
347 put_unaligned_le32(inv_subshift(st1
, 0) ^ rkp
[4], out
);
348 put_unaligned_le32(inv_subshift(st1
, 1) ^ rkp
[5], out
+ 4);
349 put_unaligned_le32(inv_subshift(st1
, 2) ^ rkp
[6], out
+ 8);
350 put_unaligned_le32(inv_subshift(st1
, 3) ^ rkp
[7], out
+ 12);
352 EXPORT_SYMBOL(aes_decrypt
);
354 MODULE_DESCRIPTION("Generic AES library");
355 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
356 MODULE_LICENSE("GPL v2");