2 /* trees.c -- output deflated data using Huffman coding
3 * Copyright (C) 1995-1996 Jean-loup Gailly
4 * For conditions of distribution and use, see copyright notice in zlib.h
10 * The "deflation" process uses several Huffman trees. The more
11 * common source values are represented by shorter bit sequences.
13 * Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values). The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
25 * Data Compression: Methods and Theory, pp. 49-50.
26 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
30 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
33 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
35 /* #include "deflate.h" */
37 #include <linux/zutil.h>
38 #include <linux/bitrev.h>
45 /* ===========================================================================
50 /* Bit length codes must not exceed MAX_BL_BITS bits */
53 /* end of block literal code */
56 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
59 /* repeat a zero length 3-10 times (3 bits of repeat count) */
61 #define REPZ_11_138 18
62 /* repeat a zero length 11-138 times (7 bits of repeat count) */
64 static const int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */
65 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
67 static const int extra_dbits
[D_CODES
] /* extra bits for each distance code */
68 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
70 static const int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */
71 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
73 static const uch bl_order
[BL_CODES
]
74 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
75 /* The lengths of the bit length codes are sent in order of decreasing
76 * probability, to avoid transmitting the lengths for unused bit length codes.
79 /* ===========================================================================
80 * Local data. These are initialized only once.
83 static ct_data static_ltree
[L_CODES
+2];
84 /* The static literal tree. Since the bit lengths are imposed, there is no
85 * need for the L_CODES extra codes used during heap construction. However
86 * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
90 static ct_data static_dtree
[D_CODES
];
91 /* The static distance tree. (Actually a trivial tree since all codes use
95 static uch dist_code
[512];
96 /* distance codes. The first 256 values correspond to the distances
97 * 3 .. 258, the last 256 values correspond to the top 8 bits of
98 * the 15 bit distances.
101 static uch length_code
[MAX_MATCH
-MIN_MATCH
+1];
102 /* length code for each normalized match length (0 == MIN_MATCH) */
104 static int base_length
[LENGTH_CODES
];
105 /* First normalized length for each code (0 = MIN_MATCH) */
107 static int base_dist
[D_CODES
];
108 /* First normalized distance for each code (0 = distance of 1) */
110 struct static_tree_desc_s
{
111 const ct_data
*static_tree
; /* static tree or NULL */
112 const int *extra_bits
; /* extra bits for each code or NULL */
113 int extra_base
; /* base index for extra_bits */
114 int elems
; /* max number of elements in the tree */
115 int max_length
; /* max bit length for the codes */
118 static static_tree_desc static_l_desc
=
119 {static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
};
121 static static_tree_desc static_d_desc
=
122 {static_dtree
, extra_dbits
, 0, D_CODES
, MAX_BITS
};
124 static static_tree_desc static_bl_desc
=
125 {(const ct_data
*)0, extra_blbits
, 0, BL_CODES
, MAX_BL_BITS
};
127 /* ===========================================================================
128 * Local (static) routines in this file.
131 static void tr_static_init (void);
132 static void init_block (deflate_state
*s
);
133 static void pqdownheap (deflate_state
*s
, ct_data
*tree
, int k
);
134 static void gen_bitlen (deflate_state
*s
, tree_desc
*desc
);
135 static void gen_codes (ct_data
*tree
, int max_code
, ush
*bl_count
);
136 static void build_tree (deflate_state
*s
, tree_desc
*desc
);
137 static void scan_tree (deflate_state
*s
, ct_data
*tree
, int max_code
);
138 static void send_tree (deflate_state
*s
, ct_data
*tree
, int max_code
);
139 static int build_bl_tree (deflate_state
*s
);
140 static void send_all_trees (deflate_state
*s
, int lcodes
, int dcodes
,
142 static void compress_block (deflate_state
*s
, ct_data
*ltree
,
144 static void set_data_type (deflate_state
*s
);
145 static void bi_flush (deflate_state
*s
);
146 static void copy_block (deflate_state
*s
, char *buf
, unsigned len
,
150 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
151 /* Send a code of the given tree. c and tree must not have side effects */
153 #else /* DEBUG_ZLIB */
154 # define send_code(s, c, tree) \
155 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
156 send_bits(s, tree[c].Code, tree[c].Len); }
159 #define d_code(dist) \
160 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
161 /* Mapping from a distance to a distance code. dist is the distance - 1 and
162 * must not have side effects. dist_code[256] and dist_code[257] are never
166 /* ===========================================================================
167 * Initialize the various 'constant' tables. In a multi-threaded environment,
168 * this function may be called by two threads concurrently, but this is
169 * harmless since both invocations do exactly the same thing.
171 static void tr_static_init(void)
173 static int static_init_done
;
174 int n
; /* iterates over tree elements */
175 int bits
; /* bit counter */
176 int length
; /* length value */
177 int code
; /* code value */
178 int dist
; /* distance index */
179 ush bl_count
[MAX_BITS
+1];
180 /* number of codes at each bit length for an optimal tree */
182 if (static_init_done
) return;
184 /* Initialize the mapping length (0..255) -> length code (0..28) */
186 for (code
= 0; code
< LENGTH_CODES
-1; code
++) {
187 base_length
[code
] = length
;
188 for (n
= 0; n
< (1<<extra_lbits
[code
]); n
++) {
189 length_code
[length
++] = (uch
)code
;
192 Assert (length
== 256, "tr_static_init: length != 256");
193 /* Note that the length 255 (match length 258) can be represented
194 * in two different ways: code 284 + 5 bits or code 285, so we
195 * overwrite length_code[255] to use the best encoding:
197 length_code
[length
-1] = (uch
)code
;
199 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
201 for (code
= 0 ; code
< 16; code
++) {
202 base_dist
[code
] = dist
;
203 for (n
= 0; n
< (1<<extra_dbits
[code
]); n
++) {
204 dist_code
[dist
++] = (uch
)code
;
207 Assert (dist
== 256, "tr_static_init: dist != 256");
208 dist
>>= 7; /* from now on, all distances are divided by 128 */
209 for ( ; code
< D_CODES
; code
++) {
210 base_dist
[code
] = dist
<< 7;
211 for (n
= 0; n
< (1<<(extra_dbits
[code
]-7)); n
++) {
212 dist_code
[256 + dist
++] = (uch
)code
;
215 Assert (dist
== 256, "tr_static_init: 256+dist != 512");
217 /* Construct the codes of the static literal tree */
218 for (bits
= 0; bits
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0;
220 while (n
<= 143) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
221 while (n
<= 255) static_ltree
[n
++].Len
= 9, bl_count
[9]++;
222 while (n
<= 279) static_ltree
[n
++].Len
= 7, bl_count
[7]++;
223 while (n
<= 287) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
224 /* Codes 286 and 287 do not exist, but we must include them in the
225 * tree construction to get a canonical Huffman tree (longest code
228 gen_codes((ct_data
*)static_ltree
, L_CODES
+1, bl_count
);
230 /* The static distance tree is trivial: */
231 for (n
= 0; n
< D_CODES
; n
++) {
232 static_dtree
[n
].Len
= 5;
233 static_dtree
[n
].Code
= bitrev32((u32
)n
) >> (32 - 5);
235 static_init_done
= 1;
238 /* ===========================================================================
239 * Initialize the tree data structures for a new zlib stream.
247 s
->compressed_len
= 0L;
249 s
->l_desc
.dyn_tree
= s
->dyn_ltree
;
250 s
->l_desc
.stat_desc
= &static_l_desc
;
252 s
->d_desc
.dyn_tree
= s
->dyn_dtree
;
253 s
->d_desc
.stat_desc
= &static_d_desc
;
255 s
->bl_desc
.dyn_tree
= s
->bl_tree
;
256 s
->bl_desc
.stat_desc
= &static_bl_desc
;
260 s
->last_eob_len
= 8; /* enough lookahead for inflate */
265 /* Initialize the first block of the first file: */
269 /* ===========================================================================
270 * Initialize a new block.
272 static void init_block(
276 int n
; /* iterates over tree elements */
278 /* Initialize the trees. */
279 for (n
= 0; n
< L_CODES
; n
++) s
->dyn_ltree
[n
].Freq
= 0;
280 for (n
= 0; n
< D_CODES
; n
++) s
->dyn_dtree
[n
].Freq
= 0;
281 for (n
= 0; n
< BL_CODES
; n
++) s
->bl_tree
[n
].Freq
= 0;
283 s
->dyn_ltree
[END_BLOCK
].Freq
= 1;
284 s
->opt_len
= s
->static_len
= 0L;
285 s
->last_lit
= s
->matches
= 0;
289 /* Index within the heap array of least frequent node in the Huffman tree */
292 /* ===========================================================================
293 * Remove the smallest element from the heap and recreate the heap with
294 * one less element. Updates heap and heap_len.
296 #define pqremove(s, tree, top) \
298 top = s->heap[SMALLEST]; \
299 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
300 pqdownheap(s, tree, SMALLEST); \
303 /* ===========================================================================
304 * Compares to subtrees, using the tree depth as tie breaker when
305 * the subtrees have equal frequency. This minimizes the worst case length.
307 #define smaller(tree, n, m, depth) \
308 (tree[n].Freq < tree[m].Freq || \
309 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
311 /* ===========================================================================
312 * Restore the heap property by moving down the tree starting at node k,
313 * exchanging a node with the smallest of its two sons if necessary, stopping
314 * when the heap property is re-established (each father smaller than its
317 static void pqdownheap(
319 ct_data
*tree
, /* the tree to restore */
320 int k
/* node to move down */
324 int j
= k
<< 1; /* left son of k */
325 while (j
<= s
->heap_len
) {
326 /* Set j to the smallest of the two sons: */
327 if (j
< s
->heap_len
&&
328 smaller(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) {
331 /* Exit if v is smaller than both sons */
332 if (smaller(tree
, v
, s
->heap
[j
], s
->depth
)) break;
334 /* Exchange v with the smallest son */
335 s
->heap
[k
] = s
->heap
[j
]; k
= j
;
337 /* And continue down the tree, setting j to the left son of k */
343 /* ===========================================================================
344 * Compute the optimal bit lengths for a tree and update the total bit length
345 * for the current block.
346 * IN assertion: the fields freq and dad are set, heap[heap_max] and
347 * above are the tree nodes sorted by increasing frequency.
348 * OUT assertions: the field len is set to the optimal bit length, the
349 * array bl_count contains the frequencies for each bit length.
350 * The length opt_len is updated; static_len is also updated if stree is
353 static void gen_bitlen(
355 tree_desc
*desc
/* the tree descriptor */
358 ct_data
*tree
= desc
->dyn_tree
;
359 int max_code
= desc
->max_code
;
360 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
361 const int *extra
= desc
->stat_desc
->extra_bits
;
362 int base
= desc
->stat_desc
->extra_base
;
363 int max_length
= desc
->stat_desc
->max_length
;
364 int h
; /* heap index */
365 int n
, m
; /* iterate over the tree elements */
366 int bits
; /* bit length */
367 int xbits
; /* extra bits */
368 ush f
; /* frequency */
369 int overflow
= 0; /* number of elements with bit length too large */
371 for (bits
= 0; bits
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0;
373 /* In a first pass, compute the optimal bit lengths (which may
374 * overflow in the case of the bit length tree).
376 tree
[s
->heap
[s
->heap_max
]].Len
= 0; /* root of the heap */
378 for (h
= s
->heap_max
+1; h
< HEAP_SIZE
; h
++) {
380 bits
= tree
[tree
[n
].Dad
].Len
+ 1;
381 if (bits
> max_length
) bits
= max_length
, overflow
++;
382 tree
[n
].Len
= (ush
)bits
;
383 /* We overwrite tree[n].Dad which is no longer needed */
385 if (n
> max_code
) continue; /* not a leaf node */
389 if (n
>= base
) xbits
= extra
[n
-base
];
391 s
->opt_len
+= (ulg
)f
* (bits
+ xbits
);
392 if (stree
) s
->static_len
+= (ulg
)f
* (stree
[n
].Len
+ xbits
);
394 if (overflow
== 0) return;
396 Trace((stderr
,"\nbit length overflow\n"));
397 /* This happens for example on obj2 and pic of the Calgary corpus */
399 /* Find the first bit length which could increase: */
402 while (s
->bl_count
[bits
] == 0) bits
--;
403 s
->bl_count
[bits
]--; /* move one leaf down the tree */
404 s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */
405 s
->bl_count
[max_length
]--;
406 /* The brother of the overflow item also moves one step up,
407 * but this does not affect bl_count[max_length]
410 } while (overflow
> 0);
412 /* Now recompute all bit lengths, scanning in increasing frequency.
413 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
414 * lengths instead of fixing only the wrong ones. This idea is taken
415 * from 'ar' written by Haruhiko Okumura.)
417 for (bits
= max_length
; bits
!= 0; bits
--) {
418 n
= s
->bl_count
[bits
];
421 if (m
> max_code
) continue;
422 if (tree
[m
].Len
!= (unsigned) bits
) {
423 Trace((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
));
424 s
->opt_len
+= ((long)bits
- (long)tree
[m
].Len
)
426 tree
[m
].Len
= (ush
)bits
;
433 /* ===========================================================================
434 * Generate the codes for a given tree and bit counts (which need not be
436 * IN assertion: the array bl_count contains the bit length statistics for
437 * the given tree and the field len is set for all tree elements.
438 * OUT assertion: the field code is set for all tree elements of non
441 static void gen_codes(
442 ct_data
*tree
, /* the tree to decorate */
443 int max_code
, /* largest code with non zero frequency */
444 ush
*bl_count
/* number of codes at each bit length */
447 ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */
448 ush code
= 0; /* running code value */
449 int bits
; /* bit index */
450 int n
; /* code index */
452 /* The distribution counts are first used to generate the code values
453 * without bit reversal.
455 for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
456 next_code
[bits
] = code
= (code
+ bl_count
[bits
-1]) << 1;
458 /* Check that the bit counts in bl_count are consistent. The last code
461 Assert (code
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1,
462 "inconsistent bit counts");
463 Tracev((stderr
,"\ngen_codes: max_code %d ", max_code
));
465 for (n
= 0; n
<= max_code
; n
++) {
466 int len
= tree
[n
].Len
;
467 if (len
== 0) continue;
468 /* Now reverse the bits */
469 tree
[n
].Code
= bitrev32((u32
)(next_code
[len
]++)) >> (32 - len
);
471 Tracecv(tree
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ",
472 n
, (isgraph(n
) ? n
: ' '), len
, tree
[n
].Code
, next_code
[len
]-1));
476 /* ===========================================================================
477 * Construct one Huffman tree and assigns the code bit strings and lengths.
478 * Update the total bit length for the current block.
479 * IN assertion: the field freq is set for all tree elements.
480 * OUT assertions: the fields len and code are set to the optimal bit length
481 * and corresponding code. The length opt_len is updated; static_len is
482 * also updated if stree is not null. The field max_code is set.
484 static void build_tree(
486 tree_desc
*desc
/* the tree descriptor */
489 ct_data
*tree
= desc
->dyn_tree
;
490 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
491 int elems
= desc
->stat_desc
->elems
;
492 int n
, m
; /* iterate over heap elements */
493 int max_code
= -1; /* largest code with non zero frequency */
494 int node
; /* new node being created */
496 /* Construct the initial heap, with least frequent element in
497 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
498 * heap[0] is not used.
500 s
->heap_len
= 0, s
->heap_max
= HEAP_SIZE
;
502 for (n
= 0; n
< elems
; n
++) {
503 if (tree
[n
].Freq
!= 0) {
504 s
->heap
[++(s
->heap_len
)] = max_code
= n
;
511 /* The pkzip format requires that at least one distance code exists,
512 * and that at least one bit should be sent even if there is only one
513 * possible code. So to avoid special checks later on we force at least
514 * two codes of non zero frequency.
516 while (s
->heap_len
< 2) {
517 node
= s
->heap
[++(s
->heap_len
)] = (max_code
< 2 ? ++max_code
: 0);
520 s
->opt_len
--; if (stree
) s
->static_len
-= stree
[node
].Len
;
521 /* node is 0 or 1 so it does not have extra bits */
523 desc
->max_code
= max_code
;
525 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
526 * establish sub-heaps of increasing lengths:
528 for (n
= s
->heap_len
/2; n
>= 1; n
--) pqdownheap(s
, tree
, n
);
530 /* Construct the Huffman tree by repeatedly combining the least two
533 node
= elems
; /* next internal node of the tree */
535 pqremove(s
, tree
, n
); /* n = node of least frequency */
536 m
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */
538 s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */
539 s
->heap
[--(s
->heap_max
)] = m
;
541 /* Create a new node father of n and m */
542 tree
[node
].Freq
= tree
[n
].Freq
+ tree
[m
].Freq
;
543 s
->depth
[node
] = (uch
) (max(s
->depth
[n
], s
->depth
[m
]) + 1);
544 tree
[n
].Dad
= tree
[m
].Dad
= (ush
)node
;
546 if (tree
== s
->bl_tree
) {
547 fprintf(stderr
,"\nnode %d(%d), sons %d(%d) %d(%d)",
548 node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
);
551 /* and insert the new node in the heap */
552 s
->heap
[SMALLEST
] = node
++;
553 pqdownheap(s
, tree
, SMALLEST
);
555 } while (s
->heap_len
>= 2);
557 s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
];
559 /* At this point, the fields freq and dad are set. We can now
560 * generate the bit lengths.
562 gen_bitlen(s
, (tree_desc
*)desc
);
564 /* The field len is now set, we can generate the bit codes */
565 gen_codes ((ct_data
*)tree
, max_code
, s
->bl_count
);
568 /* ===========================================================================
569 * Scan a literal or distance tree to determine the frequencies of the codes
570 * in the bit length tree.
572 static void scan_tree(
574 ct_data
*tree
, /* the tree to be scanned */
575 int max_code
/* and its largest code of non zero frequency */
578 int n
; /* iterates over all tree elements */
579 int prevlen
= -1; /* last emitted length */
580 int curlen
; /* length of current code */
581 int nextlen
= tree
[0].Len
; /* length of next code */
582 int count
= 0; /* repeat count of the current code */
583 int max_count
= 7; /* max repeat count */
584 int min_count
= 4; /* min repeat count */
586 if (nextlen
== 0) max_count
= 138, min_count
= 3;
587 tree
[max_code
+1].Len
= (ush
)0xffff; /* guard */
589 for (n
= 0; n
<= max_code
; n
++) {
590 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
591 if (++count
< max_count
&& curlen
== nextlen
) {
593 } else if (count
< min_count
) {
594 s
->bl_tree
[curlen
].Freq
+= count
;
595 } else if (curlen
!= 0) {
596 if (curlen
!= prevlen
) s
->bl_tree
[curlen
].Freq
++;
597 s
->bl_tree
[REP_3_6
].Freq
++;
598 } else if (count
<= 10) {
599 s
->bl_tree
[REPZ_3_10
].Freq
++;
601 s
->bl_tree
[REPZ_11_138
].Freq
++;
603 count
= 0; prevlen
= curlen
;
605 max_count
= 138, min_count
= 3;
606 } else if (curlen
== nextlen
) {
607 max_count
= 6, min_count
= 3;
609 max_count
= 7, min_count
= 4;
614 /* ===========================================================================
615 * Send a literal or distance tree in compressed form, using the codes in
618 static void send_tree(
620 ct_data
*tree
, /* the tree to be scanned */
621 int max_code
/* and its largest code of non zero frequency */
624 int n
; /* iterates over all tree elements */
625 int prevlen
= -1; /* last emitted length */
626 int curlen
; /* length of current code */
627 int nextlen
= tree
[0].Len
; /* length of next code */
628 int count
= 0; /* repeat count of the current code */
629 int max_count
= 7; /* max repeat count */
630 int min_count
= 4; /* min repeat count */
632 /* tree[max_code+1].Len = -1; */ /* guard already set */
633 if (nextlen
== 0) max_count
= 138, min_count
= 3;
635 for (n
= 0; n
<= max_code
; n
++) {
636 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
637 if (++count
< max_count
&& curlen
== nextlen
) {
639 } else if (count
< min_count
) {
640 do { send_code(s
, curlen
, s
->bl_tree
); } while (--count
!= 0);
642 } else if (curlen
!= 0) {
643 if (curlen
!= prevlen
) {
644 send_code(s
, curlen
, s
->bl_tree
); count
--;
646 Assert(count
>= 3 && count
<= 6, " 3_6?");
647 send_code(s
, REP_3_6
, s
->bl_tree
); send_bits(s
, count
-3, 2);
649 } else if (count
<= 10) {
650 send_code(s
, REPZ_3_10
, s
->bl_tree
); send_bits(s
, count
-3, 3);
653 send_code(s
, REPZ_11_138
, s
->bl_tree
); send_bits(s
, count
-11, 7);
655 count
= 0; prevlen
= curlen
;
657 max_count
= 138, min_count
= 3;
658 } else if (curlen
== nextlen
) {
659 max_count
= 6, min_count
= 3;
661 max_count
= 7, min_count
= 4;
666 /* ===========================================================================
667 * Construct the Huffman tree for the bit lengths and return the index in
668 * bl_order of the last bit length code to send.
670 static int build_bl_tree(
674 int max_blindex
; /* index of last bit length code of non zero freq */
676 /* Determine the bit length frequencies for literal and distance trees */
677 scan_tree(s
, (ct_data
*)s
->dyn_ltree
, s
->l_desc
.max_code
);
678 scan_tree(s
, (ct_data
*)s
->dyn_dtree
, s
->d_desc
.max_code
);
680 /* Build the bit length tree: */
681 build_tree(s
, (tree_desc
*)(&(s
->bl_desc
)));
682 /* opt_len now includes the length of the tree representations, except
683 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
686 /* Determine the number of bit length codes to send. The pkzip format
687 * requires that at least 4 bit length codes be sent. (appnote.txt says
688 * 3 but the actual value used is 4.)
690 for (max_blindex
= BL_CODES
-1; max_blindex
>= 3; max_blindex
--) {
691 if (s
->bl_tree
[bl_order
[max_blindex
]].Len
!= 0) break;
693 /* Update opt_len to include the bit length tree and counts */
694 s
->opt_len
+= 3*(max_blindex
+1) + 5+5+4;
695 Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld",
696 s
->opt_len
, s
->static_len
));
701 /* ===========================================================================
702 * Send the header for a block using dynamic Huffman trees: the counts, the
703 * lengths of the bit length codes, the literal tree and the distance tree.
704 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
706 static void send_all_trees(
708 int lcodes
, /* number of codes for each tree */
709 int dcodes
, /* number of codes for each tree */
710 int blcodes
/* number of codes for each tree */
713 int rank
; /* index in bl_order */
715 Assert (lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
716 Assert (lcodes
<= L_CODES
&& dcodes
<= D_CODES
&& blcodes
<= BL_CODES
,
718 Tracev((stderr
, "\nbl counts: "));
719 send_bits(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */
720 send_bits(s
, dcodes
-1, 5);
721 send_bits(s
, blcodes
-4, 4); /* not -3 as stated in appnote.txt */
722 for (rank
= 0; rank
< blcodes
; rank
++) {
723 Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
]));
724 send_bits(s
, s
->bl_tree
[bl_order
[rank
]].Len
, 3);
726 Tracev((stderr
, "\nbl tree: sent %ld", s
->bits_sent
));
728 send_tree(s
, (ct_data
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */
729 Tracev((stderr
, "\nlit tree: sent %ld", s
->bits_sent
));
731 send_tree(s
, (ct_data
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */
732 Tracev((stderr
, "\ndist tree: sent %ld", s
->bits_sent
));
735 /* ===========================================================================
736 * Send a stored block
738 void zlib_tr_stored_block(
740 char *buf
, /* input block */
741 ulg stored_len
, /* length of input block */
742 int eof
/* true if this is the last block for a file */
745 send_bits(s
, (STORED_BLOCK
<<1)+eof
, 3); /* send block type */
746 s
->compressed_len
= (s
->compressed_len
+ 3 + 7) & (ulg
)~7L;
747 s
->compressed_len
+= (stored_len
+ 4) << 3;
749 copy_block(s
, buf
, (unsigned)stored_len
, 1); /* with header */
752 /* Send just the `stored block' type code without any length bytes or data.
754 void zlib_tr_stored_type_only(
758 send_bits(s
, (STORED_BLOCK
<< 1), 3);
760 s
->compressed_len
= (s
->compressed_len
+ 3) & ~7L;
764 /* ===========================================================================
765 * Send one empty static block to give enough lookahead for inflate.
766 * This takes 10 bits, of which 7 may remain in the bit buffer.
767 * The current inflate code requires 9 bits of lookahead. If the
768 * last two codes for the previous block (real code plus EOB) were coded
769 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
770 * the last real code. In this case we send two empty static blocks instead
771 * of one. (There are no problems if the previous block is stored or fixed.)
772 * To simplify the code, we assume the worst case of last real code encoded
779 send_bits(s
, STATIC_TREES
<<1, 3);
780 send_code(s
, END_BLOCK
, static_ltree
);
781 s
->compressed_len
+= 10L; /* 3 for block type, 7 for EOB */
783 /* Of the 10 bits for the empty block, we have already sent
784 * (10 - bi_valid) bits. The lookahead for the last real code (before
785 * the EOB of the previous block) was thus at least one plus the length
786 * of the EOB plus what we have just sent of the empty static block.
788 if (1 + s
->last_eob_len
+ 10 - s
->bi_valid
< 9) {
789 send_bits(s
, STATIC_TREES
<<1, 3);
790 send_code(s
, END_BLOCK
, static_ltree
);
791 s
->compressed_len
+= 10L;
797 /* ===========================================================================
798 * Determine the best encoding for the current block: dynamic trees, static
799 * trees or store, and output the encoded block to the zip file. This function
800 * returns the total compressed length for the file so far.
802 ulg
zlib_tr_flush_block(
804 char *buf
, /* input block, or NULL if too old */
805 ulg stored_len
, /* length of input block */
806 int eof
/* true if this is the last block for a file */
809 ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
810 int max_blindex
= 0; /* index of last bit length code of non zero freq */
812 /* Build the Huffman trees unless a stored block is forced */
815 /* Check if the file is ascii or binary */
816 if (s
->data_type
== Z_UNKNOWN
) set_data_type(s
);
818 /* Construct the literal and distance trees */
819 build_tree(s
, (tree_desc
*)(&(s
->l_desc
)));
820 Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
,
823 build_tree(s
, (tree_desc
*)(&(s
->d_desc
)));
824 Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
,
826 /* At this point, opt_len and static_len are the total bit lengths of
827 * the compressed block data, excluding the tree representations.
830 /* Build the bit length tree for the above two trees, and get the index
831 * in bl_order of the last bit length code to send.
833 max_blindex
= build_bl_tree(s
);
835 /* Determine the best encoding. Compute first the block length in bytes*/
836 opt_lenb
= (s
->opt_len
+3+7)>>3;
837 static_lenb
= (s
->static_len
+3+7)>>3;
839 Tracev((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
840 opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
,
843 if (static_lenb
<= opt_lenb
) opt_lenb
= static_lenb
;
846 Assert(buf
!= (char*)0, "lost buf");
847 opt_lenb
= static_lenb
= stored_len
+ 5; /* force a stored block */
850 /* If compression failed and this is the first and last block,
851 * and if the .zip file can be seeked (to rewrite the local header),
852 * the whole file is transformed into a stored file:
854 #ifdef STORED_FILE_OK
855 # ifdef FORCE_STORED_FILE
856 if (eof
&& s
->compressed_len
== 0L) { /* force stored file */
858 if (stored_len
<= opt_lenb
&& eof
&& s
->compressed_len
==0L && seekable()) {
860 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
861 if (buf
== (char*)0) error ("block vanished");
863 copy_block(s
, buf
, (unsigned)stored_len
, 0); /* without header */
864 s
->compressed_len
= stored_len
<< 3;
867 #endif /* STORED_FILE_OK */
870 if (buf
!= (char*)0) { /* force stored block */
872 if (stored_len
+4 <= opt_lenb
&& buf
!= (char*)0) {
873 /* 4: two words for the lengths */
875 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
876 * Otherwise we can't have processed more than WSIZE input bytes since
877 * the last block flush, because compression would have been
878 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
879 * transform a block into a stored block.
881 zlib_tr_stored_block(s
, buf
, stored_len
, eof
);
884 } else if (static_lenb
>= 0) { /* force static trees */
886 } else if (static_lenb
== opt_lenb
) {
888 send_bits(s
, (STATIC_TREES
<<1)+eof
, 3);
889 compress_block(s
, (ct_data
*)static_ltree
, (ct_data
*)static_dtree
);
890 s
->compressed_len
+= 3 + s
->static_len
;
892 send_bits(s
, (DYN_TREES
<<1)+eof
, 3);
893 send_all_trees(s
, s
->l_desc
.max_code
+1, s
->d_desc
.max_code
+1,
895 compress_block(s
, (ct_data
*)s
->dyn_ltree
, (ct_data
*)s
->dyn_dtree
);
896 s
->compressed_len
+= 3 + s
->opt_len
;
898 Assert (s
->compressed_len
== s
->bits_sent
, "bad compressed size");
903 s
->compressed_len
+= 7; /* align on byte boundary */
905 Tracev((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3,
906 s
->compressed_len
-7*eof
));
908 return s
->compressed_len
>> 3;
911 /* ===========================================================================
912 * Save the match info and tally the frequency counts. Return true if
913 * the current block must be flushed.
917 unsigned dist
, /* distance of matched string */
918 unsigned lc
/* match length-MIN_MATCH or unmatched char (if dist==0) */
921 s
->d_buf
[s
->last_lit
] = (ush
)dist
;
922 s
->l_buf
[s
->last_lit
++] = (uch
)lc
;
924 /* lc is the unmatched char */
925 s
->dyn_ltree
[lc
].Freq
++;
928 /* Here, lc is the match length - MIN_MATCH */
929 dist
--; /* dist = match distance - 1 */
930 Assert((ush
)dist
< (ush
)MAX_DIST(s
) &&
931 (ush
)lc
<= (ush
)(MAX_MATCH
-MIN_MATCH
) &&
932 (ush
)d_code(dist
) < (ush
)D_CODES
, "zlib_tr_tally: bad match");
934 s
->dyn_ltree
[length_code
[lc
]+LITERALS
+1].Freq
++;
935 s
->dyn_dtree
[d_code(dist
)].Freq
++;
938 /* Try to guess if it is profitable to stop the current block here */
939 if ((s
->last_lit
& 0xfff) == 0 && s
->level
> 2) {
940 /* Compute an upper bound for the compressed length */
941 ulg out_length
= (ulg
)s
->last_lit
*8L;
942 ulg in_length
= (ulg
)((long)s
->strstart
- s
->block_start
);
944 for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
945 out_length
+= (ulg
)s
->dyn_dtree
[dcode
].Freq
*
946 (5L+extra_dbits
[dcode
]);
949 Tracev((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
950 s
->last_lit
, in_length
, out_length
,
951 100L - out_length
*100L/in_length
));
952 if (s
->matches
< s
->last_lit
/2 && out_length
< in_length
/2) return 1;
954 return (s
->last_lit
== s
->lit_bufsize
-1);
955 /* We avoid equality with lit_bufsize because of wraparound at 64K
956 * on 16 bit machines and because stored blocks are restricted to
961 /* ===========================================================================
962 * Send the block data compressed using the given Huffman trees
964 static void compress_block(
966 ct_data
*ltree
, /* literal tree */
967 ct_data
*dtree
/* distance tree */
970 unsigned dist
; /* distance of matched string */
971 int lc
; /* match length or unmatched char (if dist == 0) */
972 unsigned lx
= 0; /* running index in l_buf */
973 unsigned code
; /* the code to send */
974 int extra
; /* number of extra bits to send */
976 if (s
->last_lit
!= 0) do {
980 send_code(s
, lc
, ltree
); /* send a literal byte */
981 Tracecv(isgraph(lc
), (stderr
," '%c' ", lc
));
983 /* Here, lc is the match length - MIN_MATCH */
984 code
= length_code
[lc
];
985 send_code(s
, code
+LITERALS
+1, ltree
); /* send the length code */
986 extra
= extra_lbits
[code
];
988 lc
-= base_length
[code
];
989 send_bits(s
, lc
, extra
); /* send the extra length bits */
991 dist
--; /* dist is now the match distance - 1 */
993 Assert (code
< D_CODES
, "bad d_code");
995 send_code(s
, code
, dtree
); /* send the distance code */
996 extra
= extra_dbits
[code
];
998 dist
-= base_dist
[code
];
999 send_bits(s
, dist
, extra
); /* send the extra distance bits */
1001 } /* literal or match pair ? */
1003 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1004 Assert(s
->pending
< s
->lit_bufsize
+ 2*lx
, "pendingBuf overflow");
1006 } while (lx
< s
->last_lit
);
1008 send_code(s
, END_BLOCK
, ltree
);
1009 s
->last_eob_len
= ltree
[END_BLOCK
].Len
;
1012 /* ===========================================================================
1013 * Set the data type to ASCII or BINARY, using a crude approximation:
1014 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1015 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1016 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1018 static void set_data_type(
1023 unsigned ascii_freq
= 0;
1024 unsigned bin_freq
= 0;
1025 while (n
< 7) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
1026 while (n
< 128) ascii_freq
+= s
->dyn_ltree
[n
++].Freq
;
1027 while (n
< LITERALS
) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
1028 s
->data_type
= (Byte
)(bin_freq
> (ascii_freq
>> 2) ? Z_BINARY
: Z_ASCII
);
1031 /* ===========================================================================
1032 * Copy a stored block, storing first the length and its
1033 * one's complement if requested.
1035 static void copy_block(
1037 char *buf
, /* the input data */
1038 unsigned len
, /* its length */
1039 int header
/* true if block header must be written */
1042 bi_windup(s
); /* align on byte boundary */
1043 s
->last_eob_len
= 8; /* enough lookahead for inflate */
1046 put_short(s
, (ush
)len
);
1047 put_short(s
, (ush
)~len
);
1049 s
->bits_sent
+= 2*16;
1053 s
->bits_sent
+= (ulg
)len
<<3;
1055 /* bundle up the put_byte(s, *buf++) calls */
1056 memcpy(&s
->pending_buf
[s
->pending
], buf
, len
);