key: Fix resource leak
[linux/fpc-iii.git] / security / commoncap.c
blob12440ee03c31cce4a64c358273f2b19c966a9b6a
1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/personality.h>
34 * If a non-root user executes a setuid-root binary in
35 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
36 * However if fE is also set, then the intent is for only
37 * the file capabilities to be applied, and the setuid-root
38 * bit is left on either to change the uid (plausible) or
39 * to get full privilege on a kernel without file capabilities
40 * support. So in that case we do not raise capabilities.
42 * Warn if that happens, once per boot.
44 static void warn_setuid_and_fcaps_mixed(const char *fname)
46 static int warned;
47 if (!warned) {
48 printk(KERN_INFO "warning: `%s' has both setuid-root and"
49 " effective capabilities. Therefore not raising all"
50 " capabilities.\n", fname);
51 warned = 1;
55 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
57 return 0;
60 int cap_netlink_recv(struct sk_buff *skb, int cap)
62 if (!cap_raised(current_cap(), cap))
63 return -EPERM;
64 return 0;
66 EXPORT_SYMBOL(cap_netlink_recv);
68 /**
69 * cap_capable - Determine whether a task has a particular effective capability
70 * @tsk: The task to query
71 * @cred: The credentials to use
72 * @ns: The user namespace in which we need the capability
73 * @cap: The capability to check for
74 * @audit: Whether to write an audit message or not
76 * Determine whether the nominated task has the specified capability amongst
77 * its effective set, returning 0 if it does, -ve if it does not.
79 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
80 * and has_capability() functions. That is, it has the reverse semantics:
81 * cap_has_capability() returns 0 when a task has a capability, but the
82 * kernel's capable() and has_capability() returns 1 for this case.
84 int cap_capable(struct task_struct *tsk, const struct cred *cred,
85 struct user_namespace *targ_ns, int cap, int audit)
87 for (;;) {
88 /* The creator of the user namespace has all caps. */
89 if (targ_ns != &init_user_ns && targ_ns->creator == cred->user)
90 return 0;
92 /* Do we have the necessary capabilities? */
93 if (targ_ns == cred->user->user_ns)
94 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
96 /* Have we tried all of the parent namespaces? */
97 if (targ_ns == &init_user_ns)
98 return -EPERM;
101 *If you have a capability in a parent user ns, then you have
102 * it over all children user namespaces as well.
104 targ_ns = targ_ns->creator->user_ns;
107 /* We never get here */
111 * cap_settime - Determine whether the current process may set the system clock
112 * @ts: The time to set
113 * @tz: The timezone to set
115 * Determine whether the current process may set the system clock and timezone
116 * information, returning 0 if permission granted, -ve if denied.
118 int cap_settime(const struct timespec *ts, const struct timezone *tz)
120 if (!capable(CAP_SYS_TIME))
121 return -EPERM;
122 return 0;
126 * cap_ptrace_access_check - Determine whether the current process may access
127 * another
128 * @child: The process to be accessed
129 * @mode: The mode of attachment.
131 * If we are in the same or an ancestor user_ns and have all the target
132 * task's capabilities, then ptrace access is allowed.
133 * If we have the ptrace capability to the target user_ns, then ptrace
134 * access is allowed.
135 * Else denied.
137 * Determine whether a process may access another, returning 0 if permission
138 * granted, -ve if denied.
140 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
142 int ret = 0;
143 const struct cred *cred, *child_cred;
145 rcu_read_lock();
146 cred = current_cred();
147 child_cred = __task_cred(child);
148 if (cred->user->user_ns == child_cred->user->user_ns &&
149 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
150 goto out;
151 if (ns_capable(child_cred->user->user_ns, CAP_SYS_PTRACE))
152 goto out;
153 ret = -EPERM;
154 out:
155 rcu_read_unlock();
156 return ret;
160 * cap_ptrace_traceme - Determine whether another process may trace the current
161 * @parent: The task proposed to be the tracer
163 * If parent is in the same or an ancestor user_ns and has all current's
164 * capabilities, then ptrace access is allowed.
165 * If parent has the ptrace capability to current's user_ns, then ptrace
166 * access is allowed.
167 * Else denied.
169 * Determine whether the nominated task is permitted to trace the current
170 * process, returning 0 if permission is granted, -ve if denied.
172 int cap_ptrace_traceme(struct task_struct *parent)
174 int ret = 0;
175 const struct cred *cred, *child_cred;
177 rcu_read_lock();
178 cred = __task_cred(parent);
179 child_cred = current_cred();
180 if (cred->user->user_ns == child_cred->user->user_ns &&
181 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
182 goto out;
183 if (has_ns_capability(parent, child_cred->user->user_ns, CAP_SYS_PTRACE))
184 goto out;
185 ret = -EPERM;
186 out:
187 rcu_read_unlock();
188 return ret;
192 * cap_capget - Retrieve a task's capability sets
193 * @target: The task from which to retrieve the capability sets
194 * @effective: The place to record the effective set
195 * @inheritable: The place to record the inheritable set
196 * @permitted: The place to record the permitted set
198 * This function retrieves the capabilities of the nominated task and returns
199 * them to the caller.
201 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
202 kernel_cap_t *inheritable, kernel_cap_t *permitted)
204 const struct cred *cred;
206 /* Derived from kernel/capability.c:sys_capget. */
207 rcu_read_lock();
208 cred = __task_cred(target);
209 *effective = cred->cap_effective;
210 *inheritable = cred->cap_inheritable;
211 *permitted = cred->cap_permitted;
212 rcu_read_unlock();
213 return 0;
217 * Determine whether the inheritable capabilities are limited to the old
218 * permitted set. Returns 1 if they are limited, 0 if they are not.
220 static inline int cap_inh_is_capped(void)
223 /* they are so limited unless the current task has the CAP_SETPCAP
224 * capability
226 if (cap_capable(current, current_cred(),
227 current_cred()->user->user_ns, CAP_SETPCAP,
228 SECURITY_CAP_AUDIT) == 0)
229 return 0;
230 return 1;
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
245 int cap_capset(struct cred *new,
246 const struct cred *old,
247 const kernel_cap_t *effective,
248 const kernel_cap_t *inheritable,
249 const kernel_cap_t *permitted)
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable,
253 cap_combine(old->cap_inheritable,
254 old->cap_permitted)))
255 /* incapable of using this inheritable set */
256 return -EPERM;
258 if (!cap_issubset(*inheritable,
259 cap_combine(old->cap_inheritable,
260 old->cap_bset)))
261 /* no new pI capabilities outside bounding set */
262 return -EPERM;
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted, old->cap_permitted))
266 return -EPERM;
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective, *permitted))
270 return -EPERM;
272 new->cap_effective = *effective;
273 new->cap_inheritable = *inheritable;
274 new->cap_permitted = *permitted;
275 return 0;
279 * Clear proposed capability sets for execve().
281 static inline void bprm_clear_caps(struct linux_binprm *bprm)
283 cap_clear(bprm->cred->cap_permitted);
284 bprm->cap_effective = false;
288 * cap_inode_need_killpriv - Determine if inode change affects privileges
289 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
291 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
292 * affects the security markings on that inode, and if it is, should
293 * inode_killpriv() be invoked or the change rejected?
295 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
296 * -ve to deny the change.
298 int cap_inode_need_killpriv(struct dentry *dentry)
300 struct inode *inode = dentry->d_inode;
301 int error;
303 if (!inode->i_op->getxattr)
304 return 0;
306 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
307 if (error <= 0)
308 return 0;
309 return 1;
313 * cap_inode_killpriv - Erase the security markings on an inode
314 * @dentry: The inode/dentry to alter
316 * Erase the privilege-enhancing security markings on an inode.
318 * Returns 0 if successful, -ve on error.
320 int cap_inode_killpriv(struct dentry *dentry)
322 struct inode *inode = dentry->d_inode;
324 if (!inode->i_op->removexattr)
325 return 0;
327 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
331 * Calculate the new process capability sets from the capability sets attached
332 * to a file.
334 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
335 struct linux_binprm *bprm,
336 bool *effective,
337 bool *has_cap)
339 struct cred *new = bprm->cred;
340 unsigned i;
341 int ret = 0;
343 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
344 *effective = true;
346 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
347 *has_cap = true;
349 CAP_FOR_EACH_U32(i) {
350 __u32 permitted = caps->permitted.cap[i];
351 __u32 inheritable = caps->inheritable.cap[i];
354 * pP' = (X & fP) | (pI & fI)
356 new->cap_permitted.cap[i] =
357 (new->cap_bset.cap[i] & permitted) |
358 (new->cap_inheritable.cap[i] & inheritable);
360 if (permitted & ~new->cap_permitted.cap[i])
361 /* insufficient to execute correctly */
362 ret = -EPERM;
366 * For legacy apps, with no internal support for recognizing they
367 * do not have enough capabilities, we return an error if they are
368 * missing some "forced" (aka file-permitted) capabilities.
370 return *effective ? ret : 0;
374 * Extract the on-exec-apply capability sets for an executable file.
376 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
378 struct inode *inode = dentry->d_inode;
379 __u32 magic_etc;
380 unsigned tocopy, i;
381 int size;
382 struct vfs_cap_data caps;
384 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
386 if (!inode || !inode->i_op->getxattr)
387 return -ENODATA;
389 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
390 XATTR_CAPS_SZ);
391 if (size == -ENODATA || size == -EOPNOTSUPP)
392 /* no data, that's ok */
393 return -ENODATA;
394 if (size < 0)
395 return size;
397 if (size < sizeof(magic_etc))
398 return -EINVAL;
400 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
402 switch (magic_etc & VFS_CAP_REVISION_MASK) {
403 case VFS_CAP_REVISION_1:
404 if (size != XATTR_CAPS_SZ_1)
405 return -EINVAL;
406 tocopy = VFS_CAP_U32_1;
407 break;
408 case VFS_CAP_REVISION_2:
409 if (size != XATTR_CAPS_SZ_2)
410 return -EINVAL;
411 tocopy = VFS_CAP_U32_2;
412 break;
413 default:
414 return -EINVAL;
417 CAP_FOR_EACH_U32(i) {
418 if (i >= tocopy)
419 break;
420 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
421 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
424 return 0;
428 * Attempt to get the on-exec apply capability sets for an executable file from
429 * its xattrs and, if present, apply them to the proposed credentials being
430 * constructed by execve().
432 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
434 struct dentry *dentry;
435 int rc = 0;
436 struct cpu_vfs_cap_data vcaps;
438 bprm_clear_caps(bprm);
440 if (!file_caps_enabled)
441 return 0;
443 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
444 return 0;
446 dentry = dget(bprm->file->f_dentry);
448 rc = get_vfs_caps_from_disk(dentry, &vcaps);
449 if (rc < 0) {
450 if (rc == -EINVAL)
451 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
452 __func__, rc, bprm->filename);
453 else if (rc == -ENODATA)
454 rc = 0;
455 goto out;
458 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
459 if (rc == -EINVAL)
460 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
461 __func__, rc, bprm->filename);
463 out:
464 dput(dentry);
465 if (rc)
466 bprm_clear_caps(bprm);
468 return rc;
472 * cap_bprm_set_creds - Set up the proposed credentials for execve().
473 * @bprm: The execution parameters, including the proposed creds
475 * Set up the proposed credentials for a new execution context being
476 * constructed by execve(). The proposed creds in @bprm->cred is altered,
477 * which won't take effect immediately. Returns 0 if successful, -ve on error.
479 int cap_bprm_set_creds(struct linux_binprm *bprm)
481 const struct cred *old = current_cred();
482 struct cred *new = bprm->cred;
483 bool effective, has_cap = false;
484 int ret;
486 effective = false;
487 ret = get_file_caps(bprm, &effective, &has_cap);
488 if (ret < 0)
489 return ret;
491 if (!issecure(SECURE_NOROOT)) {
493 * If the legacy file capability is set, then don't set privs
494 * for a setuid root binary run by a non-root user. Do set it
495 * for a root user just to cause least surprise to an admin.
497 if (has_cap && new->uid != 0 && new->euid == 0) {
498 warn_setuid_and_fcaps_mixed(bprm->filename);
499 goto skip;
502 * To support inheritance of root-permissions and suid-root
503 * executables under compatibility mode, we override the
504 * capability sets for the file.
506 * If only the real uid is 0, we do not set the effective bit.
508 if (new->euid == 0 || new->uid == 0) {
509 /* pP' = (cap_bset & ~0) | (pI & ~0) */
510 new->cap_permitted = cap_combine(old->cap_bset,
511 old->cap_inheritable);
513 if (new->euid == 0)
514 effective = true;
516 skip:
518 /* if we have fs caps, clear dangerous personality flags */
519 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
520 bprm->per_clear |= PER_CLEAR_ON_SETID;
523 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
524 * credentials unless they have the appropriate permit
526 if ((new->euid != old->uid ||
527 new->egid != old->gid ||
528 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
529 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
530 /* downgrade; they get no more than they had, and maybe less */
531 if (!capable(CAP_SETUID)) {
532 new->euid = new->uid;
533 new->egid = new->gid;
535 new->cap_permitted = cap_intersect(new->cap_permitted,
536 old->cap_permitted);
539 new->suid = new->fsuid = new->euid;
540 new->sgid = new->fsgid = new->egid;
542 if (effective)
543 new->cap_effective = new->cap_permitted;
544 else
545 cap_clear(new->cap_effective);
546 bprm->cap_effective = effective;
549 * Audit candidate if current->cap_effective is set
551 * We do not bother to audit if 3 things are true:
552 * 1) cap_effective has all caps
553 * 2) we are root
554 * 3) root is supposed to have all caps (SECURE_NOROOT)
555 * Since this is just a normal root execing a process.
557 * Number 1 above might fail if you don't have a full bset, but I think
558 * that is interesting information to audit.
560 if (!cap_isclear(new->cap_effective)) {
561 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
562 new->euid != 0 || new->uid != 0 ||
563 issecure(SECURE_NOROOT)) {
564 ret = audit_log_bprm_fcaps(bprm, new, old);
565 if (ret < 0)
566 return ret;
570 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
571 return 0;
575 * cap_bprm_secureexec - Determine whether a secure execution is required
576 * @bprm: The execution parameters
578 * Determine whether a secure execution is required, return 1 if it is, and 0
579 * if it is not.
581 * The credentials have been committed by this point, and so are no longer
582 * available through @bprm->cred.
584 int cap_bprm_secureexec(struct linux_binprm *bprm)
586 const struct cred *cred = current_cred();
588 if (cred->uid != 0) {
589 if (bprm->cap_effective)
590 return 1;
591 if (!cap_isclear(cred->cap_permitted))
592 return 1;
595 return (cred->euid != cred->uid ||
596 cred->egid != cred->gid);
600 * cap_inode_setxattr - Determine whether an xattr may be altered
601 * @dentry: The inode/dentry being altered
602 * @name: The name of the xattr to be changed
603 * @value: The value that the xattr will be changed to
604 * @size: The size of value
605 * @flags: The replacement flag
607 * Determine whether an xattr may be altered or set on an inode, returning 0 if
608 * permission is granted, -ve if denied.
610 * This is used to make sure security xattrs don't get updated or set by those
611 * who aren't privileged to do so.
613 int cap_inode_setxattr(struct dentry *dentry, const char *name,
614 const void *value, size_t size, int flags)
616 if (!strcmp(name, XATTR_NAME_CAPS)) {
617 if (!capable(CAP_SETFCAP))
618 return -EPERM;
619 return 0;
622 if (!strncmp(name, XATTR_SECURITY_PREFIX,
623 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
624 !capable(CAP_SYS_ADMIN))
625 return -EPERM;
626 return 0;
630 * cap_inode_removexattr - Determine whether an xattr may be removed
631 * @dentry: The inode/dentry being altered
632 * @name: The name of the xattr to be changed
634 * Determine whether an xattr may be removed from an inode, returning 0 if
635 * permission is granted, -ve if denied.
637 * This is used to make sure security xattrs don't get removed by those who
638 * aren't privileged to remove them.
640 int cap_inode_removexattr(struct dentry *dentry, const char *name)
642 if (!strcmp(name, XATTR_NAME_CAPS)) {
643 if (!capable(CAP_SETFCAP))
644 return -EPERM;
645 return 0;
648 if (!strncmp(name, XATTR_SECURITY_PREFIX,
649 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
650 !capable(CAP_SYS_ADMIN))
651 return -EPERM;
652 return 0;
656 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
657 * a process after a call to setuid, setreuid, or setresuid.
659 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
660 * {r,e,s}uid != 0, the permitted and effective capabilities are
661 * cleared.
663 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
664 * capabilities of the process are cleared.
666 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
667 * capabilities are set to the permitted capabilities.
669 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
670 * never happen.
672 * -astor
674 * cevans - New behaviour, Oct '99
675 * A process may, via prctl(), elect to keep its capabilities when it
676 * calls setuid() and switches away from uid==0. Both permitted and
677 * effective sets will be retained.
678 * Without this change, it was impossible for a daemon to drop only some
679 * of its privilege. The call to setuid(!=0) would drop all privileges!
680 * Keeping uid 0 is not an option because uid 0 owns too many vital
681 * files..
682 * Thanks to Olaf Kirch and Peter Benie for spotting this.
684 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
686 if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
687 (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
688 !issecure(SECURE_KEEP_CAPS)) {
689 cap_clear(new->cap_permitted);
690 cap_clear(new->cap_effective);
692 if (old->euid == 0 && new->euid != 0)
693 cap_clear(new->cap_effective);
694 if (old->euid != 0 && new->euid == 0)
695 new->cap_effective = new->cap_permitted;
699 * cap_task_fix_setuid - Fix up the results of setuid() call
700 * @new: The proposed credentials
701 * @old: The current task's current credentials
702 * @flags: Indications of what has changed
704 * Fix up the results of setuid() call before the credential changes are
705 * actually applied, returning 0 to grant the changes, -ve to deny them.
707 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
709 switch (flags) {
710 case LSM_SETID_RE:
711 case LSM_SETID_ID:
712 case LSM_SETID_RES:
713 /* juggle the capabilities to follow [RES]UID changes unless
714 * otherwise suppressed */
715 if (!issecure(SECURE_NO_SETUID_FIXUP))
716 cap_emulate_setxuid(new, old);
717 break;
719 case LSM_SETID_FS:
720 /* juggle the capabilties to follow FSUID changes, unless
721 * otherwise suppressed
723 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
724 * if not, we might be a bit too harsh here.
726 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
727 if (old->fsuid == 0 && new->fsuid != 0)
728 new->cap_effective =
729 cap_drop_fs_set(new->cap_effective);
731 if (old->fsuid != 0 && new->fsuid == 0)
732 new->cap_effective =
733 cap_raise_fs_set(new->cap_effective,
734 new->cap_permitted);
736 break;
738 default:
739 return -EINVAL;
742 return 0;
746 * Rationale: code calling task_setscheduler, task_setioprio, and
747 * task_setnice, assumes that
748 * . if capable(cap_sys_nice), then those actions should be allowed
749 * . if not capable(cap_sys_nice), but acting on your own processes,
750 * then those actions should be allowed
751 * This is insufficient now since you can call code without suid, but
752 * yet with increased caps.
753 * So we check for increased caps on the target process.
755 static int cap_safe_nice(struct task_struct *p)
757 int is_subset;
759 rcu_read_lock();
760 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
761 current_cred()->cap_permitted);
762 rcu_read_unlock();
764 if (!is_subset && !capable(CAP_SYS_NICE))
765 return -EPERM;
766 return 0;
770 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
771 * @p: The task to affect
773 * Detemine if the requested scheduler policy change is permitted for the
774 * specified task, returning 0 if permission is granted, -ve if denied.
776 int cap_task_setscheduler(struct task_struct *p)
778 return cap_safe_nice(p);
782 * cap_task_ioprio - Detemine if I/O priority change is permitted
783 * @p: The task to affect
784 * @ioprio: The I/O priority to set
786 * Detemine if the requested I/O priority change is permitted for the specified
787 * task, returning 0 if permission is granted, -ve if denied.
789 int cap_task_setioprio(struct task_struct *p, int ioprio)
791 return cap_safe_nice(p);
795 * cap_task_ioprio - Detemine if task priority change is permitted
796 * @p: The task to affect
797 * @nice: The nice value to set
799 * Detemine if the requested task priority change is permitted for the
800 * specified task, returning 0 if permission is granted, -ve if denied.
802 int cap_task_setnice(struct task_struct *p, int nice)
804 return cap_safe_nice(p);
808 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
809 * the current task's bounding set. Returns 0 on success, -ve on error.
811 static long cap_prctl_drop(struct cred *new, unsigned long cap)
813 if (!capable(CAP_SETPCAP))
814 return -EPERM;
815 if (!cap_valid(cap))
816 return -EINVAL;
818 cap_lower(new->cap_bset, cap);
819 return 0;
823 * cap_task_prctl - Implement process control functions for this security module
824 * @option: The process control function requested
825 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
827 * Allow process control functions (sys_prctl()) to alter capabilities; may
828 * also deny access to other functions not otherwise implemented here.
830 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
831 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
832 * modules will consider performing the function.
834 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
835 unsigned long arg4, unsigned long arg5)
837 struct cred *new;
838 long error = 0;
840 new = prepare_creds();
841 if (!new)
842 return -ENOMEM;
844 switch (option) {
845 case PR_CAPBSET_READ:
846 error = -EINVAL;
847 if (!cap_valid(arg2))
848 goto error;
849 error = !!cap_raised(new->cap_bset, arg2);
850 goto no_change;
852 case PR_CAPBSET_DROP:
853 error = cap_prctl_drop(new, arg2);
854 if (error < 0)
855 goto error;
856 goto changed;
859 * The next four prctl's remain to assist with transitioning a
860 * system from legacy UID=0 based privilege (when filesystem
861 * capabilities are not in use) to a system using filesystem
862 * capabilities only - as the POSIX.1e draft intended.
864 * Note:
866 * PR_SET_SECUREBITS =
867 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
868 * | issecure_mask(SECURE_NOROOT)
869 * | issecure_mask(SECURE_NOROOT_LOCKED)
870 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
871 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
873 * will ensure that the current process and all of its
874 * children will be locked into a pure
875 * capability-based-privilege environment.
877 case PR_SET_SECUREBITS:
878 error = -EPERM;
879 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
880 & (new->securebits ^ arg2)) /*[1]*/
881 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
882 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
883 || (cap_capable(current, current_cred(),
884 current_cred()->user->user_ns, CAP_SETPCAP,
885 SECURITY_CAP_AUDIT) != 0) /*[4]*/
887 * [1] no changing of bits that are locked
888 * [2] no unlocking of locks
889 * [3] no setting of unsupported bits
890 * [4] doing anything requires privilege (go read about
891 * the "sendmail capabilities bug")
894 /* cannot change a locked bit */
895 goto error;
896 new->securebits = arg2;
897 goto changed;
899 case PR_GET_SECUREBITS:
900 error = new->securebits;
901 goto no_change;
903 case PR_GET_KEEPCAPS:
904 if (issecure(SECURE_KEEP_CAPS))
905 error = 1;
906 goto no_change;
908 case PR_SET_KEEPCAPS:
909 error = -EINVAL;
910 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
911 goto error;
912 error = -EPERM;
913 if (issecure(SECURE_KEEP_CAPS_LOCKED))
914 goto error;
915 if (arg2)
916 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
917 else
918 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
919 goto changed;
921 default:
922 /* No functionality available - continue with default */
923 error = -ENOSYS;
924 goto error;
927 /* Functionality provided */
928 changed:
929 return commit_creds(new);
931 no_change:
932 error:
933 abort_creds(new);
934 return error;
938 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
939 * @mm: The VM space in which the new mapping is to be made
940 * @pages: The size of the mapping
942 * Determine whether the allocation of a new virtual mapping by the current
943 * task is permitted, returning 0 if permission is granted, -ve if not.
945 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
947 int cap_sys_admin = 0;
949 if (cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_ADMIN,
950 SECURITY_CAP_NOAUDIT) == 0)
951 cap_sys_admin = 1;
952 return __vm_enough_memory(mm, pages, cap_sys_admin);
956 * cap_file_mmap - check if able to map given addr
957 * @file: unused
958 * @reqprot: unused
959 * @prot: unused
960 * @flags: unused
961 * @addr: address attempting to be mapped
962 * @addr_only: unused
964 * If the process is attempting to map memory below dac_mmap_min_addr they need
965 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
966 * capability security module. Returns 0 if this mapping should be allowed
967 * -EPERM if not.
969 int cap_file_mmap(struct file *file, unsigned long reqprot,
970 unsigned long prot, unsigned long flags,
971 unsigned long addr, unsigned long addr_only)
973 int ret = 0;
975 if (addr < dac_mmap_min_addr) {
976 ret = cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_RAWIO,
977 SECURITY_CAP_AUDIT);
978 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
979 if (ret == 0)
980 current->flags |= PF_SUPERPRIV;
982 return ret;