1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/personality.h>
34 * If a non-root user executes a setuid-root binary in
35 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
36 * However if fE is also set, then the intent is for only
37 * the file capabilities to be applied, and the setuid-root
38 * bit is left on either to change the uid (plausible) or
39 * to get full privilege on a kernel without file capabilities
40 * support. So in that case we do not raise capabilities.
42 * Warn if that happens, once per boot.
44 static void warn_setuid_and_fcaps_mixed(const char *fname
)
48 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
49 " effective capabilities. Therefore not raising all"
50 " capabilities.\n", fname
);
55 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
60 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
62 if (!cap_raised(current_cap(), cap
))
66 EXPORT_SYMBOL(cap_netlink_recv
);
69 * cap_capable - Determine whether a task has a particular effective capability
70 * @tsk: The task to query
71 * @cred: The credentials to use
72 * @ns: The user namespace in which we need the capability
73 * @cap: The capability to check for
74 * @audit: Whether to write an audit message or not
76 * Determine whether the nominated task has the specified capability amongst
77 * its effective set, returning 0 if it does, -ve if it does not.
79 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
80 * and has_capability() functions. That is, it has the reverse semantics:
81 * cap_has_capability() returns 0 when a task has a capability, but the
82 * kernel's capable() and has_capability() returns 1 for this case.
84 int cap_capable(struct task_struct
*tsk
, const struct cred
*cred
,
85 struct user_namespace
*targ_ns
, int cap
, int audit
)
88 /* The creator of the user namespace has all caps. */
89 if (targ_ns
!= &init_user_ns
&& targ_ns
->creator
== cred
->user
)
92 /* Do we have the necessary capabilities? */
93 if (targ_ns
== cred
->user
->user_ns
)
94 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
96 /* Have we tried all of the parent namespaces? */
97 if (targ_ns
== &init_user_ns
)
101 *If you have a capability in a parent user ns, then you have
102 * it over all children user namespaces as well.
104 targ_ns
= targ_ns
->creator
->user_ns
;
107 /* We never get here */
111 * cap_settime - Determine whether the current process may set the system clock
112 * @ts: The time to set
113 * @tz: The timezone to set
115 * Determine whether the current process may set the system clock and timezone
116 * information, returning 0 if permission granted, -ve if denied.
118 int cap_settime(const struct timespec
*ts
, const struct timezone
*tz
)
120 if (!capable(CAP_SYS_TIME
))
126 * cap_ptrace_access_check - Determine whether the current process may access
128 * @child: The process to be accessed
129 * @mode: The mode of attachment.
131 * If we are in the same or an ancestor user_ns and have all the target
132 * task's capabilities, then ptrace access is allowed.
133 * If we have the ptrace capability to the target user_ns, then ptrace
137 * Determine whether a process may access another, returning 0 if permission
138 * granted, -ve if denied.
140 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
143 const struct cred
*cred
, *child_cred
;
146 cred
= current_cred();
147 child_cred
= __task_cred(child
);
148 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
149 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
151 if (ns_capable(child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
160 * cap_ptrace_traceme - Determine whether another process may trace the current
161 * @parent: The task proposed to be the tracer
163 * If parent is in the same or an ancestor user_ns and has all current's
164 * capabilities, then ptrace access is allowed.
165 * If parent has the ptrace capability to current's user_ns, then ptrace
169 * Determine whether the nominated task is permitted to trace the current
170 * process, returning 0 if permission is granted, -ve if denied.
172 int cap_ptrace_traceme(struct task_struct
*parent
)
175 const struct cred
*cred
, *child_cred
;
178 cred
= __task_cred(parent
);
179 child_cred
= current_cred();
180 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
181 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
183 if (has_ns_capability(parent
, child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
192 * cap_capget - Retrieve a task's capability sets
193 * @target: The task from which to retrieve the capability sets
194 * @effective: The place to record the effective set
195 * @inheritable: The place to record the inheritable set
196 * @permitted: The place to record the permitted set
198 * This function retrieves the capabilities of the nominated task and returns
199 * them to the caller.
201 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
202 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
204 const struct cred
*cred
;
206 /* Derived from kernel/capability.c:sys_capget. */
208 cred
= __task_cred(target
);
209 *effective
= cred
->cap_effective
;
210 *inheritable
= cred
->cap_inheritable
;
211 *permitted
= cred
->cap_permitted
;
217 * Determine whether the inheritable capabilities are limited to the old
218 * permitted set. Returns 1 if they are limited, 0 if they are not.
220 static inline int cap_inh_is_capped(void)
223 /* they are so limited unless the current task has the CAP_SETPCAP
226 if (cap_capable(current
, current_cred(),
227 current_cred()->user
->user_ns
, CAP_SETPCAP
,
228 SECURITY_CAP_AUDIT
) == 0)
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
245 int cap_capset(struct cred
*new,
246 const struct cred
*old
,
247 const kernel_cap_t
*effective
,
248 const kernel_cap_t
*inheritable
,
249 const kernel_cap_t
*permitted
)
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable
,
253 cap_combine(old
->cap_inheritable
,
254 old
->cap_permitted
)))
255 /* incapable of using this inheritable set */
258 if (!cap_issubset(*inheritable
,
259 cap_combine(old
->cap_inheritable
,
261 /* no new pI capabilities outside bounding set */
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted
, old
->cap_permitted
))
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective
, *permitted
))
272 new->cap_effective
= *effective
;
273 new->cap_inheritable
= *inheritable
;
274 new->cap_permitted
= *permitted
;
279 * Clear proposed capability sets for execve().
281 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
283 cap_clear(bprm
->cred
->cap_permitted
);
284 bprm
->cap_effective
= false;
288 * cap_inode_need_killpriv - Determine if inode change affects privileges
289 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
291 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
292 * affects the security markings on that inode, and if it is, should
293 * inode_killpriv() be invoked or the change rejected?
295 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
296 * -ve to deny the change.
298 int cap_inode_need_killpriv(struct dentry
*dentry
)
300 struct inode
*inode
= dentry
->d_inode
;
303 if (!inode
->i_op
->getxattr
)
306 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
313 * cap_inode_killpriv - Erase the security markings on an inode
314 * @dentry: The inode/dentry to alter
316 * Erase the privilege-enhancing security markings on an inode.
318 * Returns 0 if successful, -ve on error.
320 int cap_inode_killpriv(struct dentry
*dentry
)
322 struct inode
*inode
= dentry
->d_inode
;
324 if (!inode
->i_op
->removexattr
)
327 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
331 * Calculate the new process capability sets from the capability sets attached
334 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
335 struct linux_binprm
*bprm
,
339 struct cred
*new = bprm
->cred
;
343 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
346 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
349 CAP_FOR_EACH_U32(i
) {
350 __u32 permitted
= caps
->permitted
.cap
[i
];
351 __u32 inheritable
= caps
->inheritable
.cap
[i
];
354 * pP' = (X & fP) | (pI & fI)
356 new->cap_permitted
.cap
[i
] =
357 (new->cap_bset
.cap
[i
] & permitted
) |
358 (new->cap_inheritable
.cap
[i
] & inheritable
);
360 if (permitted
& ~new->cap_permitted
.cap
[i
])
361 /* insufficient to execute correctly */
366 * For legacy apps, with no internal support for recognizing they
367 * do not have enough capabilities, we return an error if they are
368 * missing some "forced" (aka file-permitted) capabilities.
370 return *effective
? ret
: 0;
374 * Extract the on-exec-apply capability sets for an executable file.
376 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
378 struct inode
*inode
= dentry
->d_inode
;
382 struct vfs_cap_data caps
;
384 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
386 if (!inode
|| !inode
->i_op
->getxattr
)
389 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
391 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
392 /* no data, that's ok */
397 if (size
< sizeof(magic_etc
))
400 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
402 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
403 case VFS_CAP_REVISION_1
:
404 if (size
!= XATTR_CAPS_SZ_1
)
406 tocopy
= VFS_CAP_U32_1
;
408 case VFS_CAP_REVISION_2
:
409 if (size
!= XATTR_CAPS_SZ_2
)
411 tocopy
= VFS_CAP_U32_2
;
417 CAP_FOR_EACH_U32(i
) {
420 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
421 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
428 * Attempt to get the on-exec apply capability sets for an executable file from
429 * its xattrs and, if present, apply them to the proposed credentials being
430 * constructed by execve().
432 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
, bool *has_cap
)
434 struct dentry
*dentry
;
436 struct cpu_vfs_cap_data vcaps
;
438 bprm_clear_caps(bprm
);
440 if (!file_caps_enabled
)
443 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)
446 dentry
= dget(bprm
->file
->f_dentry
);
448 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
451 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
452 __func__
, rc
, bprm
->filename
);
453 else if (rc
== -ENODATA
)
458 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_cap
);
460 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
461 __func__
, rc
, bprm
->filename
);
466 bprm_clear_caps(bprm
);
472 * cap_bprm_set_creds - Set up the proposed credentials for execve().
473 * @bprm: The execution parameters, including the proposed creds
475 * Set up the proposed credentials for a new execution context being
476 * constructed by execve(). The proposed creds in @bprm->cred is altered,
477 * which won't take effect immediately. Returns 0 if successful, -ve on error.
479 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
481 const struct cred
*old
= current_cred();
482 struct cred
*new = bprm
->cred
;
483 bool effective
, has_cap
= false;
487 ret
= get_file_caps(bprm
, &effective
, &has_cap
);
491 if (!issecure(SECURE_NOROOT
)) {
493 * If the legacy file capability is set, then don't set privs
494 * for a setuid root binary run by a non-root user. Do set it
495 * for a root user just to cause least surprise to an admin.
497 if (has_cap
&& new->uid
!= 0 && new->euid
== 0) {
498 warn_setuid_and_fcaps_mixed(bprm
->filename
);
502 * To support inheritance of root-permissions and suid-root
503 * executables under compatibility mode, we override the
504 * capability sets for the file.
506 * If only the real uid is 0, we do not set the effective bit.
508 if (new->euid
== 0 || new->uid
== 0) {
509 /* pP' = (cap_bset & ~0) | (pI & ~0) */
510 new->cap_permitted
= cap_combine(old
->cap_bset
,
511 old
->cap_inheritable
);
518 /* if we have fs caps, clear dangerous personality flags */
519 if (!cap_issubset(new->cap_permitted
, old
->cap_permitted
))
520 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
523 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
524 * credentials unless they have the appropriate permit
526 if ((new->euid
!= old
->uid
||
527 new->egid
!= old
->gid
||
528 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
529 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
530 /* downgrade; they get no more than they had, and maybe less */
531 if (!capable(CAP_SETUID
)) {
532 new->euid
= new->uid
;
533 new->egid
= new->gid
;
535 new->cap_permitted
= cap_intersect(new->cap_permitted
,
539 new->suid
= new->fsuid
= new->euid
;
540 new->sgid
= new->fsgid
= new->egid
;
543 new->cap_effective
= new->cap_permitted
;
545 cap_clear(new->cap_effective
);
546 bprm
->cap_effective
= effective
;
549 * Audit candidate if current->cap_effective is set
551 * We do not bother to audit if 3 things are true:
552 * 1) cap_effective has all caps
554 * 3) root is supposed to have all caps (SECURE_NOROOT)
555 * Since this is just a normal root execing a process.
557 * Number 1 above might fail if you don't have a full bset, but I think
558 * that is interesting information to audit.
560 if (!cap_isclear(new->cap_effective
)) {
561 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
562 new->euid
!= 0 || new->uid
!= 0 ||
563 issecure(SECURE_NOROOT
)) {
564 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
570 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
575 * cap_bprm_secureexec - Determine whether a secure execution is required
576 * @bprm: The execution parameters
578 * Determine whether a secure execution is required, return 1 if it is, and 0
581 * The credentials have been committed by this point, and so are no longer
582 * available through @bprm->cred.
584 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
586 const struct cred
*cred
= current_cred();
588 if (cred
->uid
!= 0) {
589 if (bprm
->cap_effective
)
591 if (!cap_isclear(cred
->cap_permitted
))
595 return (cred
->euid
!= cred
->uid
||
596 cred
->egid
!= cred
->gid
);
600 * cap_inode_setxattr - Determine whether an xattr may be altered
601 * @dentry: The inode/dentry being altered
602 * @name: The name of the xattr to be changed
603 * @value: The value that the xattr will be changed to
604 * @size: The size of value
605 * @flags: The replacement flag
607 * Determine whether an xattr may be altered or set on an inode, returning 0 if
608 * permission is granted, -ve if denied.
610 * This is used to make sure security xattrs don't get updated or set by those
611 * who aren't privileged to do so.
613 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
614 const void *value
, size_t size
, int flags
)
616 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
617 if (!capable(CAP_SETFCAP
))
622 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
623 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
624 !capable(CAP_SYS_ADMIN
))
630 * cap_inode_removexattr - Determine whether an xattr may be removed
631 * @dentry: The inode/dentry being altered
632 * @name: The name of the xattr to be changed
634 * Determine whether an xattr may be removed from an inode, returning 0 if
635 * permission is granted, -ve if denied.
637 * This is used to make sure security xattrs don't get removed by those who
638 * aren't privileged to remove them.
640 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
642 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
643 if (!capable(CAP_SETFCAP
))
648 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
649 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
650 !capable(CAP_SYS_ADMIN
))
656 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
657 * a process after a call to setuid, setreuid, or setresuid.
659 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
660 * {r,e,s}uid != 0, the permitted and effective capabilities are
663 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
664 * capabilities of the process are cleared.
666 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
667 * capabilities are set to the permitted capabilities.
669 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
674 * cevans - New behaviour, Oct '99
675 * A process may, via prctl(), elect to keep its capabilities when it
676 * calls setuid() and switches away from uid==0. Both permitted and
677 * effective sets will be retained.
678 * Without this change, it was impossible for a daemon to drop only some
679 * of its privilege. The call to setuid(!=0) would drop all privileges!
680 * Keeping uid 0 is not an option because uid 0 owns too many vital
682 * Thanks to Olaf Kirch and Peter Benie for spotting this.
684 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
686 if ((old
->uid
== 0 || old
->euid
== 0 || old
->suid
== 0) &&
687 (new->uid
!= 0 && new->euid
!= 0 && new->suid
!= 0) &&
688 !issecure(SECURE_KEEP_CAPS
)) {
689 cap_clear(new->cap_permitted
);
690 cap_clear(new->cap_effective
);
692 if (old
->euid
== 0 && new->euid
!= 0)
693 cap_clear(new->cap_effective
);
694 if (old
->euid
!= 0 && new->euid
== 0)
695 new->cap_effective
= new->cap_permitted
;
699 * cap_task_fix_setuid - Fix up the results of setuid() call
700 * @new: The proposed credentials
701 * @old: The current task's current credentials
702 * @flags: Indications of what has changed
704 * Fix up the results of setuid() call before the credential changes are
705 * actually applied, returning 0 to grant the changes, -ve to deny them.
707 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
713 /* juggle the capabilities to follow [RES]UID changes unless
714 * otherwise suppressed */
715 if (!issecure(SECURE_NO_SETUID_FIXUP
))
716 cap_emulate_setxuid(new, old
);
720 /* juggle the capabilties to follow FSUID changes, unless
721 * otherwise suppressed
723 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
724 * if not, we might be a bit too harsh here.
726 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
727 if (old
->fsuid
== 0 && new->fsuid
!= 0)
729 cap_drop_fs_set(new->cap_effective
);
731 if (old
->fsuid
!= 0 && new->fsuid
== 0)
733 cap_raise_fs_set(new->cap_effective
,
746 * Rationale: code calling task_setscheduler, task_setioprio, and
747 * task_setnice, assumes that
748 * . if capable(cap_sys_nice), then those actions should be allowed
749 * . if not capable(cap_sys_nice), but acting on your own processes,
750 * then those actions should be allowed
751 * This is insufficient now since you can call code without suid, but
752 * yet with increased caps.
753 * So we check for increased caps on the target process.
755 static int cap_safe_nice(struct task_struct
*p
)
760 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
761 current_cred()->cap_permitted
);
764 if (!is_subset
&& !capable(CAP_SYS_NICE
))
770 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
771 * @p: The task to affect
773 * Detemine if the requested scheduler policy change is permitted for the
774 * specified task, returning 0 if permission is granted, -ve if denied.
776 int cap_task_setscheduler(struct task_struct
*p
)
778 return cap_safe_nice(p
);
782 * cap_task_ioprio - Detemine if I/O priority change is permitted
783 * @p: The task to affect
784 * @ioprio: The I/O priority to set
786 * Detemine if the requested I/O priority change is permitted for the specified
787 * task, returning 0 if permission is granted, -ve if denied.
789 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
791 return cap_safe_nice(p
);
795 * cap_task_ioprio - Detemine if task priority change is permitted
796 * @p: The task to affect
797 * @nice: The nice value to set
799 * Detemine if the requested task priority change is permitted for the
800 * specified task, returning 0 if permission is granted, -ve if denied.
802 int cap_task_setnice(struct task_struct
*p
, int nice
)
804 return cap_safe_nice(p
);
808 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
809 * the current task's bounding set. Returns 0 on success, -ve on error.
811 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
813 if (!capable(CAP_SETPCAP
))
818 cap_lower(new->cap_bset
, cap
);
823 * cap_task_prctl - Implement process control functions for this security module
824 * @option: The process control function requested
825 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
827 * Allow process control functions (sys_prctl()) to alter capabilities; may
828 * also deny access to other functions not otherwise implemented here.
830 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
831 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
832 * modules will consider performing the function.
834 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
835 unsigned long arg4
, unsigned long arg5
)
840 new = prepare_creds();
845 case PR_CAPBSET_READ
:
847 if (!cap_valid(arg2
))
849 error
= !!cap_raised(new->cap_bset
, arg2
);
852 case PR_CAPBSET_DROP
:
853 error
= cap_prctl_drop(new, arg2
);
859 * The next four prctl's remain to assist with transitioning a
860 * system from legacy UID=0 based privilege (when filesystem
861 * capabilities are not in use) to a system using filesystem
862 * capabilities only - as the POSIX.1e draft intended.
866 * PR_SET_SECUREBITS =
867 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
868 * | issecure_mask(SECURE_NOROOT)
869 * | issecure_mask(SECURE_NOROOT_LOCKED)
870 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
871 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
873 * will ensure that the current process and all of its
874 * children will be locked into a pure
875 * capability-based-privilege environment.
877 case PR_SET_SECUREBITS
:
879 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
880 & (new->securebits
^ arg2
)) /*[1]*/
881 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
882 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
883 || (cap_capable(current
, current_cred(),
884 current_cred()->user
->user_ns
, CAP_SETPCAP
,
885 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
887 * [1] no changing of bits that are locked
888 * [2] no unlocking of locks
889 * [3] no setting of unsupported bits
890 * [4] doing anything requires privilege (go read about
891 * the "sendmail capabilities bug")
894 /* cannot change a locked bit */
896 new->securebits
= arg2
;
899 case PR_GET_SECUREBITS
:
900 error
= new->securebits
;
903 case PR_GET_KEEPCAPS
:
904 if (issecure(SECURE_KEEP_CAPS
))
908 case PR_SET_KEEPCAPS
:
910 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
913 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
916 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
918 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
922 /* No functionality available - continue with default */
927 /* Functionality provided */
929 return commit_creds(new);
938 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
939 * @mm: The VM space in which the new mapping is to be made
940 * @pages: The size of the mapping
942 * Determine whether the allocation of a new virtual mapping by the current
943 * task is permitted, returning 0 if permission is granted, -ve if not.
945 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
947 int cap_sys_admin
= 0;
949 if (cap_capable(current
, current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
950 SECURITY_CAP_NOAUDIT
) == 0)
952 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
956 * cap_file_mmap - check if able to map given addr
961 * @addr: address attempting to be mapped
964 * If the process is attempting to map memory below dac_mmap_min_addr they need
965 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
966 * capability security module. Returns 0 if this mapping should be allowed
969 int cap_file_mmap(struct file
*file
, unsigned long reqprot
,
970 unsigned long prot
, unsigned long flags
,
971 unsigned long addr
, unsigned long addr_only
)
975 if (addr
< dac_mmap_min_addr
) {
976 ret
= cap_capable(current
, current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
978 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
980 current
->flags
|= PF_SUPERPRIV
;