efi: Enumerate EFI_MEMORY_SP
[linux/fpc-iii.git] / lib / xarray.c
blob446b956c918888d06dfca776d00aed8f3c2e54de
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * XArray implementation
4 * Copyright (c) 2017 Microsoft Corporation
5 * Author: Matthew Wilcox <willy@infradead.org>
6 */
8 #include <linux/bitmap.h>
9 #include <linux/export.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/xarray.h>
15 * Coding conventions in this file:
17 * @xa is used to refer to the entire xarray.
18 * @xas is the 'xarray operation state'. It may be either a pointer to
19 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
20 * ambiguity.
21 * @index is the index of the entry being operated on
22 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
23 * @node refers to an xa_node; usually the primary one being operated on by
24 * this function.
25 * @offset is the index into the slots array inside an xa_node.
26 * @parent refers to the @xa_node closer to the head than @node.
27 * @entry refers to something stored in a slot in the xarray
30 static inline unsigned int xa_lock_type(const struct xarray *xa)
32 return (__force unsigned int)xa->xa_flags & 3;
35 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
37 if (lock_type == XA_LOCK_IRQ)
38 xas_lock_irq(xas);
39 else if (lock_type == XA_LOCK_BH)
40 xas_lock_bh(xas);
41 else
42 xas_lock(xas);
45 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
47 if (lock_type == XA_LOCK_IRQ)
48 xas_unlock_irq(xas);
49 else if (lock_type == XA_LOCK_BH)
50 xas_unlock_bh(xas);
51 else
52 xas_unlock(xas);
55 static inline bool xa_track_free(const struct xarray *xa)
57 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
60 static inline bool xa_zero_busy(const struct xarray *xa)
62 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
65 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
67 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
68 xa->xa_flags |= XA_FLAGS_MARK(mark);
71 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
73 if (xa->xa_flags & XA_FLAGS_MARK(mark))
74 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
77 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
79 return node->marks[(__force unsigned)mark];
82 static inline bool node_get_mark(struct xa_node *node,
83 unsigned int offset, xa_mark_t mark)
85 return test_bit(offset, node_marks(node, mark));
88 /* returns true if the bit was set */
89 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
90 xa_mark_t mark)
92 return __test_and_set_bit(offset, node_marks(node, mark));
95 /* returns true if the bit was set */
96 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
97 xa_mark_t mark)
99 return __test_and_clear_bit(offset, node_marks(node, mark));
102 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
104 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
107 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
109 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
112 #define mark_inc(mark) do { \
113 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
114 } while (0)
117 * xas_squash_marks() - Merge all marks to the first entry
118 * @xas: Array operation state.
120 * Set a mark on the first entry if any entry has it set. Clear marks on
121 * all sibling entries.
123 static void xas_squash_marks(const struct xa_state *xas)
125 unsigned int mark = 0;
126 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
128 if (!xas->xa_sibs)
129 return;
131 do {
132 unsigned long *marks = xas->xa_node->marks[mark];
133 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
134 continue;
135 __set_bit(xas->xa_offset, marks);
136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
137 } while (mark++ != (__force unsigned)XA_MARK_MAX);
140 /* extracts the offset within this node from the index */
141 static unsigned int get_offset(unsigned long index, struct xa_node *node)
143 return (index >> node->shift) & XA_CHUNK_MASK;
146 static void xas_set_offset(struct xa_state *xas)
148 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
151 /* move the index either forwards (find) or backwards (sibling slot) */
152 static void xas_move_index(struct xa_state *xas, unsigned long offset)
154 unsigned int shift = xas->xa_node->shift;
155 xas->xa_index &= ~XA_CHUNK_MASK << shift;
156 xas->xa_index += offset << shift;
159 static void xas_advance(struct xa_state *xas)
161 xas->xa_offset++;
162 xas_move_index(xas, xas->xa_offset);
165 static void *set_bounds(struct xa_state *xas)
167 xas->xa_node = XAS_BOUNDS;
168 return NULL;
172 * Starts a walk. If the @xas is already valid, we assume that it's on
173 * the right path and just return where we've got to. If we're in an
174 * error state, return NULL. If the index is outside the current scope
175 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
176 * set @xas->xa_node to NULL and return the current head of the array.
178 static void *xas_start(struct xa_state *xas)
180 void *entry;
182 if (xas_valid(xas))
183 return xas_reload(xas);
184 if (xas_error(xas))
185 return NULL;
187 entry = xa_head(xas->xa);
188 if (!xa_is_node(entry)) {
189 if (xas->xa_index)
190 return set_bounds(xas);
191 } else {
192 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
193 return set_bounds(xas);
196 xas->xa_node = NULL;
197 return entry;
200 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
202 unsigned int offset = get_offset(xas->xa_index, node);
203 void *entry = xa_entry(xas->xa, node, offset);
205 xas->xa_node = node;
206 if (xa_is_sibling(entry)) {
207 offset = xa_to_sibling(entry);
208 entry = xa_entry(xas->xa, node, offset);
211 xas->xa_offset = offset;
212 return entry;
216 * xas_load() - Load an entry from the XArray (advanced).
217 * @xas: XArray operation state.
219 * Usually walks the @xas to the appropriate state to load the entry
220 * stored at xa_index. However, it will do nothing and return %NULL if
221 * @xas is in an error state. xas_load() will never expand the tree.
223 * If the xa_state is set up to operate on a multi-index entry, xas_load()
224 * may return %NULL or an internal entry, even if there are entries
225 * present within the range specified by @xas.
227 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
228 * Return: Usually an entry in the XArray, but see description for exceptions.
230 void *xas_load(struct xa_state *xas)
232 void *entry = xas_start(xas);
234 while (xa_is_node(entry)) {
235 struct xa_node *node = xa_to_node(entry);
237 if (xas->xa_shift > node->shift)
238 break;
239 entry = xas_descend(xas, node);
240 if (node->shift == 0)
241 break;
243 return entry;
245 EXPORT_SYMBOL_GPL(xas_load);
247 /* Move the radix tree node cache here */
248 extern struct kmem_cache *radix_tree_node_cachep;
249 extern void radix_tree_node_rcu_free(struct rcu_head *head);
251 #define XA_RCU_FREE ((struct xarray *)1)
253 static void xa_node_free(struct xa_node *node)
255 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
256 node->array = XA_RCU_FREE;
257 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
261 * xas_destroy() - Free any resources allocated during the XArray operation.
262 * @xas: XArray operation state.
264 * This function is now internal-only.
266 static void xas_destroy(struct xa_state *xas)
268 struct xa_node *node = xas->xa_alloc;
270 if (!node)
271 return;
272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
273 kmem_cache_free(radix_tree_node_cachep, node);
274 xas->xa_alloc = NULL;
278 * xas_nomem() - Allocate memory if needed.
279 * @xas: XArray operation state.
280 * @gfp: Memory allocation flags.
282 * If we need to add new nodes to the XArray, we try to allocate memory
283 * with GFP_NOWAIT while holding the lock, which will usually succeed.
284 * If it fails, @xas is flagged as needing memory to continue. The caller
285 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
286 * the caller should retry the operation.
288 * Forward progress is guaranteed as one node is allocated here and
289 * stored in the xa_state where it will be found by xas_alloc(). More
290 * nodes will likely be found in the slab allocator, but we do not tie
291 * them up here.
293 * Return: true if memory was needed, and was successfully allocated.
295 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
297 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
298 xas_destroy(xas);
299 return false;
301 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
302 gfp |= __GFP_ACCOUNT;
303 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
304 if (!xas->xa_alloc)
305 return false;
306 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
307 xas->xa_node = XAS_RESTART;
308 return true;
310 EXPORT_SYMBOL_GPL(xas_nomem);
313 * __xas_nomem() - Drop locks and allocate memory if needed.
314 * @xas: XArray operation state.
315 * @gfp: Memory allocation flags.
317 * Internal variant of xas_nomem().
319 * Return: true if memory was needed, and was successfully allocated.
321 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
322 __must_hold(xas->xa->xa_lock)
324 unsigned int lock_type = xa_lock_type(xas->xa);
326 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
327 xas_destroy(xas);
328 return false;
330 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
331 gfp |= __GFP_ACCOUNT;
332 if (gfpflags_allow_blocking(gfp)) {
333 xas_unlock_type(xas, lock_type);
334 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
335 xas_lock_type(xas, lock_type);
336 } else {
337 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
339 if (!xas->xa_alloc)
340 return false;
341 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
342 xas->xa_node = XAS_RESTART;
343 return true;
346 static void xas_update(struct xa_state *xas, struct xa_node *node)
348 if (xas->xa_update)
349 xas->xa_update(node);
350 else
351 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
354 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
356 struct xa_node *parent = xas->xa_node;
357 struct xa_node *node = xas->xa_alloc;
359 if (xas_invalid(xas))
360 return NULL;
362 if (node) {
363 xas->xa_alloc = NULL;
364 } else {
365 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
367 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
368 gfp |= __GFP_ACCOUNT;
370 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
371 if (!node) {
372 xas_set_err(xas, -ENOMEM);
373 return NULL;
377 if (parent) {
378 node->offset = xas->xa_offset;
379 parent->count++;
380 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
381 xas_update(xas, parent);
383 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
384 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
385 node->shift = shift;
386 node->count = 0;
387 node->nr_values = 0;
388 RCU_INIT_POINTER(node->parent, xas->xa_node);
389 node->array = xas->xa;
391 return node;
394 #ifdef CONFIG_XARRAY_MULTI
395 /* Returns the number of indices covered by a given xa_state */
396 static unsigned long xas_size(const struct xa_state *xas)
398 return (xas->xa_sibs + 1UL) << xas->xa_shift;
400 #endif
403 * Use this to calculate the maximum index that will need to be created
404 * in order to add the entry described by @xas. Because we cannot store a
405 * multiple-index entry at index 0, the calculation is a little more complex
406 * than you might expect.
408 static unsigned long xas_max(struct xa_state *xas)
410 unsigned long max = xas->xa_index;
412 #ifdef CONFIG_XARRAY_MULTI
413 if (xas->xa_shift || xas->xa_sibs) {
414 unsigned long mask = xas_size(xas) - 1;
415 max |= mask;
416 if (mask == max)
417 max++;
419 #endif
421 return max;
424 /* The maximum index that can be contained in the array without expanding it */
425 static unsigned long max_index(void *entry)
427 if (!xa_is_node(entry))
428 return 0;
429 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
432 static void xas_shrink(struct xa_state *xas)
434 struct xarray *xa = xas->xa;
435 struct xa_node *node = xas->xa_node;
437 for (;;) {
438 void *entry;
440 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
441 if (node->count != 1)
442 break;
443 entry = xa_entry_locked(xa, node, 0);
444 if (!entry)
445 break;
446 if (!xa_is_node(entry) && node->shift)
447 break;
448 if (xa_is_zero(entry) && xa_zero_busy(xa))
449 entry = NULL;
450 xas->xa_node = XAS_BOUNDS;
452 RCU_INIT_POINTER(xa->xa_head, entry);
453 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
454 xa_mark_clear(xa, XA_FREE_MARK);
456 node->count = 0;
457 node->nr_values = 0;
458 if (!xa_is_node(entry))
459 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
460 xas_update(xas, node);
461 xa_node_free(node);
462 if (!xa_is_node(entry))
463 break;
464 node = xa_to_node(entry);
465 node->parent = NULL;
470 * xas_delete_node() - Attempt to delete an xa_node
471 * @xas: Array operation state.
473 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
474 * a non-zero reference count.
476 static void xas_delete_node(struct xa_state *xas)
478 struct xa_node *node = xas->xa_node;
480 for (;;) {
481 struct xa_node *parent;
483 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
484 if (node->count)
485 break;
487 parent = xa_parent_locked(xas->xa, node);
488 xas->xa_node = parent;
489 xas->xa_offset = node->offset;
490 xa_node_free(node);
492 if (!parent) {
493 xas->xa->xa_head = NULL;
494 xas->xa_node = XAS_BOUNDS;
495 return;
498 parent->slots[xas->xa_offset] = NULL;
499 parent->count--;
500 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
501 node = parent;
502 xas_update(xas, node);
505 if (!node->parent)
506 xas_shrink(xas);
510 * xas_free_nodes() - Free this node and all nodes that it references
511 * @xas: Array operation state.
512 * @top: Node to free
514 * This node has been removed from the tree. We must now free it and all
515 * of its subnodes. There may be RCU walkers with references into the tree,
516 * so we must replace all entries with retry markers.
518 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
520 unsigned int offset = 0;
521 struct xa_node *node = top;
523 for (;;) {
524 void *entry = xa_entry_locked(xas->xa, node, offset);
526 if (node->shift && xa_is_node(entry)) {
527 node = xa_to_node(entry);
528 offset = 0;
529 continue;
531 if (entry)
532 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
533 offset++;
534 while (offset == XA_CHUNK_SIZE) {
535 struct xa_node *parent;
537 parent = xa_parent_locked(xas->xa, node);
538 offset = node->offset + 1;
539 node->count = 0;
540 node->nr_values = 0;
541 xas_update(xas, node);
542 xa_node_free(node);
543 if (node == top)
544 return;
545 node = parent;
551 * xas_expand adds nodes to the head of the tree until it has reached
552 * sufficient height to be able to contain @xas->xa_index
554 static int xas_expand(struct xa_state *xas, void *head)
556 struct xarray *xa = xas->xa;
557 struct xa_node *node = NULL;
558 unsigned int shift = 0;
559 unsigned long max = xas_max(xas);
561 if (!head) {
562 if (max == 0)
563 return 0;
564 while ((max >> shift) >= XA_CHUNK_SIZE)
565 shift += XA_CHUNK_SHIFT;
566 return shift + XA_CHUNK_SHIFT;
567 } else if (xa_is_node(head)) {
568 node = xa_to_node(head);
569 shift = node->shift + XA_CHUNK_SHIFT;
571 xas->xa_node = NULL;
573 while (max > max_index(head)) {
574 xa_mark_t mark = 0;
576 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
577 node = xas_alloc(xas, shift);
578 if (!node)
579 return -ENOMEM;
581 node->count = 1;
582 if (xa_is_value(head))
583 node->nr_values = 1;
584 RCU_INIT_POINTER(node->slots[0], head);
586 /* Propagate the aggregated mark info to the new child */
587 for (;;) {
588 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
589 node_mark_all(node, XA_FREE_MARK);
590 if (!xa_marked(xa, XA_FREE_MARK)) {
591 node_clear_mark(node, 0, XA_FREE_MARK);
592 xa_mark_set(xa, XA_FREE_MARK);
594 } else if (xa_marked(xa, mark)) {
595 node_set_mark(node, 0, mark);
597 if (mark == XA_MARK_MAX)
598 break;
599 mark_inc(mark);
603 * Now that the new node is fully initialised, we can add
604 * it to the tree
606 if (xa_is_node(head)) {
607 xa_to_node(head)->offset = 0;
608 rcu_assign_pointer(xa_to_node(head)->parent, node);
610 head = xa_mk_node(node);
611 rcu_assign_pointer(xa->xa_head, head);
612 xas_update(xas, node);
614 shift += XA_CHUNK_SHIFT;
617 xas->xa_node = node;
618 return shift;
622 * xas_create() - Create a slot to store an entry in.
623 * @xas: XArray operation state.
624 * @allow_root: %true if we can store the entry in the root directly
626 * Most users will not need to call this function directly, as it is called
627 * by xas_store(). It is useful for doing conditional store operations
628 * (see the xa_cmpxchg() implementation for an example).
630 * Return: If the slot already existed, returns the contents of this slot.
631 * If the slot was newly created, returns %NULL. If it failed to create the
632 * slot, returns %NULL and indicates the error in @xas.
634 static void *xas_create(struct xa_state *xas, bool allow_root)
636 struct xarray *xa = xas->xa;
637 void *entry;
638 void __rcu **slot;
639 struct xa_node *node = xas->xa_node;
640 int shift;
641 unsigned int order = xas->xa_shift;
643 if (xas_top(node)) {
644 entry = xa_head_locked(xa);
645 xas->xa_node = NULL;
646 if (!entry && xa_zero_busy(xa))
647 entry = XA_ZERO_ENTRY;
648 shift = xas_expand(xas, entry);
649 if (shift < 0)
650 return NULL;
651 if (!shift && !allow_root)
652 shift = XA_CHUNK_SHIFT;
653 entry = xa_head_locked(xa);
654 slot = &xa->xa_head;
655 } else if (xas_error(xas)) {
656 return NULL;
657 } else if (node) {
658 unsigned int offset = xas->xa_offset;
660 shift = node->shift;
661 entry = xa_entry_locked(xa, node, offset);
662 slot = &node->slots[offset];
663 } else {
664 shift = 0;
665 entry = xa_head_locked(xa);
666 slot = &xa->xa_head;
669 while (shift > order) {
670 shift -= XA_CHUNK_SHIFT;
671 if (!entry) {
672 node = xas_alloc(xas, shift);
673 if (!node)
674 break;
675 if (xa_track_free(xa))
676 node_mark_all(node, XA_FREE_MARK);
677 rcu_assign_pointer(*slot, xa_mk_node(node));
678 } else if (xa_is_node(entry)) {
679 node = xa_to_node(entry);
680 } else {
681 break;
683 entry = xas_descend(xas, node);
684 slot = &node->slots[xas->xa_offset];
687 return entry;
691 * xas_create_range() - Ensure that stores to this range will succeed
692 * @xas: XArray operation state.
694 * Creates all of the slots in the range covered by @xas. Sets @xas to
695 * create single-index entries and positions it at the beginning of the
696 * range. This is for the benefit of users which have not yet been
697 * converted to use multi-index entries.
699 void xas_create_range(struct xa_state *xas)
701 unsigned long index = xas->xa_index;
702 unsigned char shift = xas->xa_shift;
703 unsigned char sibs = xas->xa_sibs;
705 xas->xa_index |= ((sibs + 1) << shift) - 1;
706 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
707 xas->xa_offset |= sibs;
708 xas->xa_shift = 0;
709 xas->xa_sibs = 0;
711 for (;;) {
712 xas_create(xas, true);
713 if (xas_error(xas))
714 goto restore;
715 if (xas->xa_index <= (index | XA_CHUNK_MASK))
716 goto success;
717 xas->xa_index -= XA_CHUNK_SIZE;
719 for (;;) {
720 struct xa_node *node = xas->xa_node;
721 xas->xa_node = xa_parent_locked(xas->xa, node);
722 xas->xa_offset = node->offset - 1;
723 if (node->offset != 0)
724 break;
728 restore:
729 xas->xa_shift = shift;
730 xas->xa_sibs = sibs;
731 xas->xa_index = index;
732 return;
733 success:
734 xas->xa_index = index;
735 if (xas->xa_node)
736 xas_set_offset(xas);
738 EXPORT_SYMBOL_GPL(xas_create_range);
740 static void update_node(struct xa_state *xas, struct xa_node *node,
741 int count, int values)
743 if (!node || (!count && !values))
744 return;
746 node->count += count;
747 node->nr_values += values;
748 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
749 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
750 xas_update(xas, node);
751 if (count < 0)
752 xas_delete_node(xas);
756 * xas_store() - Store this entry in the XArray.
757 * @xas: XArray operation state.
758 * @entry: New entry.
760 * If @xas is operating on a multi-index entry, the entry returned by this
761 * function is essentially meaningless (it may be an internal entry or it
762 * may be %NULL, even if there are non-NULL entries at some of the indices
763 * covered by the range). This is not a problem for any current users,
764 * and can be changed if needed.
766 * Return: The old entry at this index.
768 void *xas_store(struct xa_state *xas, void *entry)
770 struct xa_node *node;
771 void __rcu **slot = &xas->xa->xa_head;
772 unsigned int offset, max;
773 int count = 0;
774 int values = 0;
775 void *first, *next;
776 bool value = xa_is_value(entry);
778 if (entry) {
779 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
780 first = xas_create(xas, allow_root);
781 } else {
782 first = xas_load(xas);
785 if (xas_invalid(xas))
786 return first;
787 node = xas->xa_node;
788 if (node && (xas->xa_shift < node->shift))
789 xas->xa_sibs = 0;
790 if ((first == entry) && !xas->xa_sibs)
791 return first;
793 next = first;
794 offset = xas->xa_offset;
795 max = xas->xa_offset + xas->xa_sibs;
796 if (node) {
797 slot = &node->slots[offset];
798 if (xas->xa_sibs)
799 xas_squash_marks(xas);
801 if (!entry)
802 xas_init_marks(xas);
804 for (;;) {
806 * Must clear the marks before setting the entry to NULL,
807 * otherwise xas_for_each_marked may find a NULL entry and
808 * stop early. rcu_assign_pointer contains a release barrier
809 * so the mark clearing will appear to happen before the
810 * entry is set to NULL.
812 rcu_assign_pointer(*slot, entry);
813 if (xa_is_node(next) && (!node || node->shift))
814 xas_free_nodes(xas, xa_to_node(next));
815 if (!node)
816 break;
817 count += !next - !entry;
818 values += !xa_is_value(first) - !value;
819 if (entry) {
820 if (offset == max)
821 break;
822 if (!xa_is_sibling(entry))
823 entry = xa_mk_sibling(xas->xa_offset);
824 } else {
825 if (offset == XA_CHUNK_MASK)
826 break;
828 next = xa_entry_locked(xas->xa, node, ++offset);
829 if (!xa_is_sibling(next)) {
830 if (!entry && (offset > max))
831 break;
832 first = next;
834 slot++;
837 update_node(xas, node, count, values);
838 return first;
840 EXPORT_SYMBOL_GPL(xas_store);
843 * xas_get_mark() - Returns the state of this mark.
844 * @xas: XArray operation state.
845 * @mark: Mark number.
847 * Return: true if the mark is set, false if the mark is clear or @xas
848 * is in an error state.
850 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
852 if (xas_invalid(xas))
853 return false;
854 if (!xas->xa_node)
855 return xa_marked(xas->xa, mark);
856 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
858 EXPORT_SYMBOL_GPL(xas_get_mark);
861 * xas_set_mark() - Sets the mark on this entry and its parents.
862 * @xas: XArray operation state.
863 * @mark: Mark number.
865 * Sets the specified mark on this entry, and walks up the tree setting it
866 * on all the ancestor entries. Does nothing if @xas has not been walked to
867 * an entry, or is in an error state.
869 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
871 struct xa_node *node = xas->xa_node;
872 unsigned int offset = xas->xa_offset;
874 if (xas_invalid(xas))
875 return;
877 while (node) {
878 if (node_set_mark(node, offset, mark))
879 return;
880 offset = node->offset;
881 node = xa_parent_locked(xas->xa, node);
884 if (!xa_marked(xas->xa, mark))
885 xa_mark_set(xas->xa, mark);
887 EXPORT_SYMBOL_GPL(xas_set_mark);
890 * xas_clear_mark() - Clears the mark on this entry and its parents.
891 * @xas: XArray operation state.
892 * @mark: Mark number.
894 * Clears the specified mark on this entry, and walks back to the head
895 * attempting to clear it on all the ancestor entries. Does nothing if
896 * @xas has not been walked to an entry, or is in an error state.
898 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
900 struct xa_node *node = xas->xa_node;
901 unsigned int offset = xas->xa_offset;
903 if (xas_invalid(xas))
904 return;
906 while (node) {
907 if (!node_clear_mark(node, offset, mark))
908 return;
909 if (node_any_mark(node, mark))
910 return;
912 offset = node->offset;
913 node = xa_parent_locked(xas->xa, node);
916 if (xa_marked(xas->xa, mark))
917 xa_mark_clear(xas->xa, mark);
919 EXPORT_SYMBOL_GPL(xas_clear_mark);
922 * xas_init_marks() - Initialise all marks for the entry
923 * @xas: Array operations state.
925 * Initialise all marks for the entry specified by @xas. If we're tracking
926 * free entries with a mark, we need to set it on all entries. All other
927 * marks are cleared.
929 * This implementation is not as efficient as it could be; we may walk
930 * up the tree multiple times.
932 void xas_init_marks(const struct xa_state *xas)
934 xa_mark_t mark = 0;
936 for (;;) {
937 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
938 xas_set_mark(xas, mark);
939 else
940 xas_clear_mark(xas, mark);
941 if (mark == XA_MARK_MAX)
942 break;
943 mark_inc(mark);
946 EXPORT_SYMBOL_GPL(xas_init_marks);
949 * xas_pause() - Pause a walk to drop a lock.
950 * @xas: XArray operation state.
952 * Some users need to pause a walk and drop the lock they're holding in
953 * order to yield to a higher priority thread or carry out an operation
954 * on an entry. Those users should call this function before they drop
955 * the lock. It resets the @xas to be suitable for the next iteration
956 * of the loop after the user has reacquired the lock. If most entries
957 * found during a walk require you to call xas_pause(), the xa_for_each()
958 * iterator may be more appropriate.
960 * Note that xas_pause() only works for forward iteration. If a user needs
961 * to pause a reverse iteration, we will need a xas_pause_rev().
963 void xas_pause(struct xa_state *xas)
965 struct xa_node *node = xas->xa_node;
967 if (xas_invalid(xas))
968 return;
970 if (node) {
971 unsigned int offset = xas->xa_offset;
972 while (++offset < XA_CHUNK_SIZE) {
973 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
974 break;
976 xas->xa_index += (offset - xas->xa_offset) << node->shift;
977 } else {
978 xas->xa_index++;
980 xas->xa_node = XAS_RESTART;
982 EXPORT_SYMBOL_GPL(xas_pause);
985 * __xas_prev() - Find the previous entry in the XArray.
986 * @xas: XArray operation state.
988 * Helper function for xas_prev() which handles all the complex cases
989 * out of line.
991 void *__xas_prev(struct xa_state *xas)
993 void *entry;
995 if (!xas_frozen(xas->xa_node))
996 xas->xa_index--;
997 if (xas_not_node(xas->xa_node))
998 return xas_load(xas);
1000 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1001 xas->xa_offset--;
1003 while (xas->xa_offset == 255) {
1004 xas->xa_offset = xas->xa_node->offset - 1;
1005 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1006 if (!xas->xa_node)
1007 return set_bounds(xas);
1010 for (;;) {
1011 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1012 if (!xa_is_node(entry))
1013 return entry;
1015 xas->xa_node = xa_to_node(entry);
1016 xas_set_offset(xas);
1019 EXPORT_SYMBOL_GPL(__xas_prev);
1022 * __xas_next() - Find the next entry in the XArray.
1023 * @xas: XArray operation state.
1025 * Helper function for xas_next() which handles all the complex cases
1026 * out of line.
1028 void *__xas_next(struct xa_state *xas)
1030 void *entry;
1032 if (!xas_frozen(xas->xa_node))
1033 xas->xa_index++;
1034 if (xas_not_node(xas->xa_node))
1035 return xas_load(xas);
1037 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1038 xas->xa_offset++;
1040 while (xas->xa_offset == XA_CHUNK_SIZE) {
1041 xas->xa_offset = xas->xa_node->offset + 1;
1042 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1043 if (!xas->xa_node)
1044 return set_bounds(xas);
1047 for (;;) {
1048 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1049 if (!xa_is_node(entry))
1050 return entry;
1052 xas->xa_node = xa_to_node(entry);
1053 xas_set_offset(xas);
1056 EXPORT_SYMBOL_GPL(__xas_next);
1059 * xas_find() - Find the next present entry in the XArray.
1060 * @xas: XArray operation state.
1061 * @max: Highest index to return.
1063 * If the @xas has not yet been walked to an entry, return the entry
1064 * which has an index >= xas.xa_index. If it has been walked, the entry
1065 * currently being pointed at has been processed, and so we move to the
1066 * next entry.
1068 * If no entry is found and the array is smaller than @max, the iterator
1069 * is set to the smallest index not yet in the array. This allows @xas
1070 * to be immediately passed to xas_store().
1072 * Return: The entry, if found, otherwise %NULL.
1074 void *xas_find(struct xa_state *xas, unsigned long max)
1076 void *entry;
1078 if (xas_error(xas))
1079 return NULL;
1081 if (!xas->xa_node) {
1082 xas->xa_index = 1;
1083 return set_bounds(xas);
1084 } else if (xas_top(xas->xa_node)) {
1085 entry = xas_load(xas);
1086 if (entry || xas_not_node(xas->xa_node))
1087 return entry;
1088 } else if (!xas->xa_node->shift &&
1089 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1090 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1093 xas_advance(xas);
1095 while (xas->xa_node && (xas->xa_index <= max)) {
1096 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1097 xas->xa_offset = xas->xa_node->offset + 1;
1098 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1099 continue;
1102 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1103 if (xa_is_node(entry)) {
1104 xas->xa_node = xa_to_node(entry);
1105 xas->xa_offset = 0;
1106 continue;
1108 if (entry && !xa_is_sibling(entry))
1109 return entry;
1111 xas_advance(xas);
1114 if (!xas->xa_node)
1115 xas->xa_node = XAS_BOUNDS;
1116 return NULL;
1118 EXPORT_SYMBOL_GPL(xas_find);
1121 * xas_find_marked() - Find the next marked entry in the XArray.
1122 * @xas: XArray operation state.
1123 * @max: Highest index to return.
1124 * @mark: Mark number to search for.
1126 * If the @xas has not yet been walked to an entry, return the marked entry
1127 * which has an index >= xas.xa_index. If it has been walked, the entry
1128 * currently being pointed at has been processed, and so we return the
1129 * first marked entry with an index > xas.xa_index.
1131 * If no marked entry is found and the array is smaller than @max, @xas is
1132 * set to the bounds state and xas->xa_index is set to the smallest index
1133 * not yet in the array. This allows @xas to be immediately passed to
1134 * xas_store().
1136 * If no entry is found before @max is reached, @xas is set to the restart
1137 * state.
1139 * Return: The entry, if found, otherwise %NULL.
1141 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1143 bool advance = true;
1144 unsigned int offset;
1145 void *entry;
1147 if (xas_error(xas))
1148 return NULL;
1150 if (!xas->xa_node) {
1151 xas->xa_index = 1;
1152 goto out;
1153 } else if (xas_top(xas->xa_node)) {
1154 advance = false;
1155 entry = xa_head(xas->xa);
1156 xas->xa_node = NULL;
1157 if (xas->xa_index > max_index(entry))
1158 goto out;
1159 if (!xa_is_node(entry)) {
1160 if (xa_marked(xas->xa, mark))
1161 return entry;
1162 xas->xa_index = 1;
1163 goto out;
1165 xas->xa_node = xa_to_node(entry);
1166 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1169 while (xas->xa_index <= max) {
1170 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1171 xas->xa_offset = xas->xa_node->offset + 1;
1172 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1173 if (!xas->xa_node)
1174 break;
1175 advance = false;
1176 continue;
1179 if (!advance) {
1180 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1181 if (xa_is_sibling(entry)) {
1182 xas->xa_offset = xa_to_sibling(entry);
1183 xas_move_index(xas, xas->xa_offset);
1187 offset = xas_find_chunk(xas, advance, mark);
1188 if (offset > xas->xa_offset) {
1189 advance = false;
1190 xas_move_index(xas, offset);
1191 /* Mind the wrap */
1192 if ((xas->xa_index - 1) >= max)
1193 goto max;
1194 xas->xa_offset = offset;
1195 if (offset == XA_CHUNK_SIZE)
1196 continue;
1199 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1200 if (!xa_is_node(entry))
1201 return entry;
1202 xas->xa_node = xa_to_node(entry);
1203 xas_set_offset(xas);
1206 out:
1207 if (xas->xa_index > max)
1208 goto max;
1209 return set_bounds(xas);
1210 max:
1211 xas->xa_node = XAS_RESTART;
1212 return NULL;
1214 EXPORT_SYMBOL_GPL(xas_find_marked);
1217 * xas_find_conflict() - Find the next present entry in a range.
1218 * @xas: XArray operation state.
1220 * The @xas describes both a range and a position within that range.
1222 * Context: Any context. Expects xa_lock to be held.
1223 * Return: The next entry in the range covered by @xas or %NULL.
1225 void *xas_find_conflict(struct xa_state *xas)
1227 void *curr;
1229 if (xas_error(xas))
1230 return NULL;
1232 if (!xas->xa_node)
1233 return NULL;
1235 if (xas_top(xas->xa_node)) {
1236 curr = xas_start(xas);
1237 if (!curr)
1238 return NULL;
1239 while (xa_is_node(curr)) {
1240 struct xa_node *node = xa_to_node(curr);
1241 curr = xas_descend(xas, node);
1243 if (curr)
1244 return curr;
1247 if (xas->xa_node->shift > xas->xa_shift)
1248 return NULL;
1250 for (;;) {
1251 if (xas->xa_node->shift == xas->xa_shift) {
1252 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1253 break;
1254 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1255 xas->xa_offset = xas->xa_node->offset;
1256 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1257 if (!xas->xa_node)
1258 break;
1259 continue;
1261 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1262 if (xa_is_sibling(curr))
1263 continue;
1264 while (xa_is_node(curr)) {
1265 xas->xa_node = xa_to_node(curr);
1266 xas->xa_offset = 0;
1267 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1269 if (curr)
1270 return curr;
1272 xas->xa_offset -= xas->xa_sibs;
1273 return NULL;
1275 EXPORT_SYMBOL_GPL(xas_find_conflict);
1278 * xa_load() - Load an entry from an XArray.
1279 * @xa: XArray.
1280 * @index: index into array.
1282 * Context: Any context. Takes and releases the RCU lock.
1283 * Return: The entry at @index in @xa.
1285 void *xa_load(struct xarray *xa, unsigned long index)
1287 XA_STATE(xas, xa, index);
1288 void *entry;
1290 rcu_read_lock();
1291 do {
1292 entry = xas_load(&xas);
1293 if (xa_is_zero(entry))
1294 entry = NULL;
1295 } while (xas_retry(&xas, entry));
1296 rcu_read_unlock();
1298 return entry;
1300 EXPORT_SYMBOL(xa_load);
1302 static void *xas_result(struct xa_state *xas, void *curr)
1304 if (xa_is_zero(curr))
1305 return NULL;
1306 if (xas_error(xas))
1307 curr = xas->xa_node;
1308 return curr;
1312 * __xa_erase() - Erase this entry from the XArray while locked.
1313 * @xa: XArray.
1314 * @index: Index into array.
1316 * After this function returns, loading from @index will return %NULL.
1317 * If the index is part of a multi-index entry, all indices will be erased
1318 * and none of the entries will be part of a multi-index entry.
1320 * Context: Any context. Expects xa_lock to be held on entry.
1321 * Return: The entry which used to be at this index.
1323 void *__xa_erase(struct xarray *xa, unsigned long index)
1325 XA_STATE(xas, xa, index);
1326 return xas_result(&xas, xas_store(&xas, NULL));
1328 EXPORT_SYMBOL(__xa_erase);
1331 * xa_erase() - Erase this entry from the XArray.
1332 * @xa: XArray.
1333 * @index: Index of entry.
1335 * After this function returns, loading from @index will return %NULL.
1336 * If the index is part of a multi-index entry, all indices will be erased
1337 * and none of the entries will be part of a multi-index entry.
1339 * Context: Any context. Takes and releases the xa_lock.
1340 * Return: The entry which used to be at this index.
1342 void *xa_erase(struct xarray *xa, unsigned long index)
1344 void *entry;
1346 xa_lock(xa);
1347 entry = __xa_erase(xa, index);
1348 xa_unlock(xa);
1350 return entry;
1352 EXPORT_SYMBOL(xa_erase);
1355 * __xa_store() - Store this entry in the XArray.
1356 * @xa: XArray.
1357 * @index: Index into array.
1358 * @entry: New entry.
1359 * @gfp: Memory allocation flags.
1361 * You must already be holding the xa_lock when calling this function.
1362 * It will drop the lock if needed to allocate memory, and then reacquire
1363 * it afterwards.
1365 * Context: Any context. Expects xa_lock to be held on entry. May
1366 * release and reacquire xa_lock if @gfp flags permit.
1367 * Return: The old entry at this index or xa_err() if an error happened.
1369 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1371 XA_STATE(xas, xa, index);
1372 void *curr;
1374 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1375 return XA_ERROR(-EINVAL);
1376 if (xa_track_free(xa) && !entry)
1377 entry = XA_ZERO_ENTRY;
1379 do {
1380 curr = xas_store(&xas, entry);
1381 if (xa_track_free(xa))
1382 xas_clear_mark(&xas, XA_FREE_MARK);
1383 } while (__xas_nomem(&xas, gfp));
1385 return xas_result(&xas, curr);
1387 EXPORT_SYMBOL(__xa_store);
1390 * xa_store() - Store this entry in the XArray.
1391 * @xa: XArray.
1392 * @index: Index into array.
1393 * @entry: New entry.
1394 * @gfp: Memory allocation flags.
1396 * After this function returns, loads from this index will return @entry.
1397 * Storing into an existing multislot entry updates the entry of every index.
1398 * The marks associated with @index are unaffected unless @entry is %NULL.
1400 * Context: Any context. Takes and releases the xa_lock.
1401 * May sleep if the @gfp flags permit.
1402 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1403 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1404 * failed.
1406 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1408 void *curr;
1410 xa_lock(xa);
1411 curr = __xa_store(xa, index, entry, gfp);
1412 xa_unlock(xa);
1414 return curr;
1416 EXPORT_SYMBOL(xa_store);
1419 * __xa_cmpxchg() - Store this entry in the XArray.
1420 * @xa: XArray.
1421 * @index: Index into array.
1422 * @old: Old value to test against.
1423 * @entry: New entry.
1424 * @gfp: Memory allocation flags.
1426 * You must already be holding the xa_lock when calling this function.
1427 * It will drop the lock if needed to allocate memory, and then reacquire
1428 * it afterwards.
1430 * Context: Any context. Expects xa_lock to be held on entry. May
1431 * release and reacquire xa_lock if @gfp flags permit.
1432 * Return: The old entry at this index or xa_err() if an error happened.
1434 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1435 void *old, void *entry, gfp_t gfp)
1437 XA_STATE(xas, xa, index);
1438 void *curr;
1440 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1441 return XA_ERROR(-EINVAL);
1443 do {
1444 curr = xas_load(&xas);
1445 if (curr == old) {
1446 xas_store(&xas, entry);
1447 if (xa_track_free(xa) && entry && !curr)
1448 xas_clear_mark(&xas, XA_FREE_MARK);
1450 } while (__xas_nomem(&xas, gfp));
1452 return xas_result(&xas, curr);
1454 EXPORT_SYMBOL(__xa_cmpxchg);
1457 * __xa_insert() - Store this entry in the XArray if no entry is present.
1458 * @xa: XArray.
1459 * @index: Index into array.
1460 * @entry: New entry.
1461 * @gfp: Memory allocation flags.
1463 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1464 * if no entry is present. Inserting will fail if a reserved entry is
1465 * present, even though loading from this index will return NULL.
1467 * Context: Any context. Expects xa_lock to be held on entry. May
1468 * release and reacquire xa_lock if @gfp flags permit.
1469 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1470 * -ENOMEM if memory could not be allocated.
1472 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1474 XA_STATE(xas, xa, index);
1475 void *curr;
1477 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1478 return -EINVAL;
1479 if (!entry)
1480 entry = XA_ZERO_ENTRY;
1482 do {
1483 curr = xas_load(&xas);
1484 if (!curr) {
1485 xas_store(&xas, entry);
1486 if (xa_track_free(xa))
1487 xas_clear_mark(&xas, XA_FREE_MARK);
1488 } else {
1489 xas_set_err(&xas, -EBUSY);
1491 } while (__xas_nomem(&xas, gfp));
1493 return xas_error(&xas);
1495 EXPORT_SYMBOL(__xa_insert);
1497 #ifdef CONFIG_XARRAY_MULTI
1498 static void xas_set_range(struct xa_state *xas, unsigned long first,
1499 unsigned long last)
1501 unsigned int shift = 0;
1502 unsigned long sibs = last - first;
1503 unsigned int offset = XA_CHUNK_MASK;
1505 xas_set(xas, first);
1507 while ((first & XA_CHUNK_MASK) == 0) {
1508 if (sibs < XA_CHUNK_MASK)
1509 break;
1510 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1511 break;
1512 shift += XA_CHUNK_SHIFT;
1513 if (offset == XA_CHUNK_MASK)
1514 offset = sibs & XA_CHUNK_MASK;
1515 sibs >>= XA_CHUNK_SHIFT;
1516 first >>= XA_CHUNK_SHIFT;
1519 offset = first & XA_CHUNK_MASK;
1520 if (offset + sibs > XA_CHUNK_MASK)
1521 sibs = XA_CHUNK_MASK - offset;
1522 if ((((first + sibs + 1) << shift) - 1) > last)
1523 sibs -= 1;
1525 xas->xa_shift = shift;
1526 xas->xa_sibs = sibs;
1530 * xa_store_range() - Store this entry at a range of indices in the XArray.
1531 * @xa: XArray.
1532 * @first: First index to affect.
1533 * @last: Last index to affect.
1534 * @entry: New entry.
1535 * @gfp: Memory allocation flags.
1537 * After this function returns, loads from any index between @first and @last,
1538 * inclusive will return @entry.
1539 * Storing into an existing multislot entry updates the entry of every index.
1540 * The marks associated with @index are unaffected unless @entry is %NULL.
1542 * Context: Process context. Takes and releases the xa_lock. May sleep
1543 * if the @gfp flags permit.
1544 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1545 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1547 void *xa_store_range(struct xarray *xa, unsigned long first,
1548 unsigned long last, void *entry, gfp_t gfp)
1550 XA_STATE(xas, xa, 0);
1552 if (WARN_ON_ONCE(xa_is_internal(entry)))
1553 return XA_ERROR(-EINVAL);
1554 if (last < first)
1555 return XA_ERROR(-EINVAL);
1557 do {
1558 xas_lock(&xas);
1559 if (entry) {
1560 unsigned int order = BITS_PER_LONG;
1561 if (last + 1)
1562 order = __ffs(last + 1);
1563 xas_set_order(&xas, last, order);
1564 xas_create(&xas, true);
1565 if (xas_error(&xas))
1566 goto unlock;
1568 do {
1569 xas_set_range(&xas, first, last);
1570 xas_store(&xas, entry);
1571 if (xas_error(&xas))
1572 goto unlock;
1573 first += xas_size(&xas);
1574 } while (first <= last);
1575 unlock:
1576 xas_unlock(&xas);
1577 } while (xas_nomem(&xas, gfp));
1579 return xas_result(&xas, NULL);
1581 EXPORT_SYMBOL(xa_store_range);
1582 #endif /* CONFIG_XARRAY_MULTI */
1585 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1586 * @xa: XArray.
1587 * @id: Pointer to ID.
1588 * @limit: Range for allocated ID.
1589 * @entry: New entry.
1590 * @gfp: Memory allocation flags.
1592 * Finds an empty entry in @xa between @limit.min and @limit.max,
1593 * stores the index into the @id pointer, then stores the entry at
1594 * that index. A concurrent lookup will not see an uninitialised @id.
1596 * Context: Any context. Expects xa_lock to be held on entry. May
1597 * release and reacquire xa_lock if @gfp flags permit.
1598 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1599 * -EBUSY if there are no free entries in @limit.
1601 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1602 struct xa_limit limit, gfp_t gfp)
1604 XA_STATE(xas, xa, 0);
1606 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1607 return -EINVAL;
1608 if (WARN_ON_ONCE(!xa_track_free(xa)))
1609 return -EINVAL;
1611 if (!entry)
1612 entry = XA_ZERO_ENTRY;
1614 do {
1615 xas.xa_index = limit.min;
1616 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1617 if (xas.xa_node == XAS_RESTART)
1618 xas_set_err(&xas, -EBUSY);
1619 else
1620 *id = xas.xa_index;
1621 xas_store(&xas, entry);
1622 xas_clear_mark(&xas, XA_FREE_MARK);
1623 } while (__xas_nomem(&xas, gfp));
1625 return xas_error(&xas);
1627 EXPORT_SYMBOL(__xa_alloc);
1630 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1631 * @xa: XArray.
1632 * @id: Pointer to ID.
1633 * @entry: New entry.
1634 * @limit: Range of allocated ID.
1635 * @next: Pointer to next ID to allocate.
1636 * @gfp: Memory allocation flags.
1638 * Finds an empty entry in @xa between @limit.min and @limit.max,
1639 * stores the index into the @id pointer, then stores the entry at
1640 * that index. A concurrent lookup will not see an uninitialised @id.
1641 * The search for an empty entry will start at @next and will wrap
1642 * around if necessary.
1644 * Context: Any context. Expects xa_lock to be held on entry. May
1645 * release and reacquire xa_lock if @gfp flags permit.
1646 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1647 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1648 * allocated or -EBUSY if there are no free entries in @limit.
1650 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1651 struct xa_limit limit, u32 *next, gfp_t gfp)
1653 u32 min = limit.min;
1654 int ret;
1656 limit.min = max(min, *next);
1657 ret = __xa_alloc(xa, id, entry, limit, gfp);
1658 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1659 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1660 ret = 1;
1663 if (ret < 0 && limit.min > min) {
1664 limit.min = min;
1665 ret = __xa_alloc(xa, id, entry, limit, gfp);
1666 if (ret == 0)
1667 ret = 1;
1670 if (ret >= 0) {
1671 *next = *id + 1;
1672 if (*next == 0)
1673 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1675 return ret;
1677 EXPORT_SYMBOL(__xa_alloc_cyclic);
1680 * __xa_set_mark() - Set this mark on this entry while locked.
1681 * @xa: XArray.
1682 * @index: Index of entry.
1683 * @mark: Mark number.
1685 * Attempting to set a mark on a %NULL entry does not succeed.
1687 * Context: Any context. Expects xa_lock to be held on entry.
1689 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1691 XA_STATE(xas, xa, index);
1692 void *entry = xas_load(&xas);
1694 if (entry)
1695 xas_set_mark(&xas, mark);
1697 EXPORT_SYMBOL(__xa_set_mark);
1700 * __xa_clear_mark() - Clear this mark on this entry while locked.
1701 * @xa: XArray.
1702 * @index: Index of entry.
1703 * @mark: Mark number.
1705 * Context: Any context. Expects xa_lock to be held on entry.
1707 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1709 XA_STATE(xas, xa, index);
1710 void *entry = xas_load(&xas);
1712 if (entry)
1713 xas_clear_mark(&xas, mark);
1715 EXPORT_SYMBOL(__xa_clear_mark);
1718 * xa_get_mark() - Inquire whether this mark is set on this entry.
1719 * @xa: XArray.
1720 * @index: Index of entry.
1721 * @mark: Mark number.
1723 * This function uses the RCU read lock, so the result may be out of date
1724 * by the time it returns. If you need the result to be stable, use a lock.
1726 * Context: Any context. Takes and releases the RCU lock.
1727 * Return: True if the entry at @index has this mark set, false if it doesn't.
1729 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1731 XA_STATE(xas, xa, index);
1732 void *entry;
1734 rcu_read_lock();
1735 entry = xas_start(&xas);
1736 while (xas_get_mark(&xas, mark)) {
1737 if (!xa_is_node(entry))
1738 goto found;
1739 entry = xas_descend(&xas, xa_to_node(entry));
1741 rcu_read_unlock();
1742 return false;
1743 found:
1744 rcu_read_unlock();
1745 return true;
1747 EXPORT_SYMBOL(xa_get_mark);
1750 * xa_set_mark() - Set this mark on this entry.
1751 * @xa: XArray.
1752 * @index: Index of entry.
1753 * @mark: Mark number.
1755 * Attempting to set a mark on a %NULL entry does not succeed.
1757 * Context: Process context. Takes and releases the xa_lock.
1759 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1761 xa_lock(xa);
1762 __xa_set_mark(xa, index, mark);
1763 xa_unlock(xa);
1765 EXPORT_SYMBOL(xa_set_mark);
1768 * xa_clear_mark() - Clear this mark on this entry.
1769 * @xa: XArray.
1770 * @index: Index of entry.
1771 * @mark: Mark number.
1773 * Clearing a mark always succeeds.
1775 * Context: Process context. Takes and releases the xa_lock.
1777 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1779 xa_lock(xa);
1780 __xa_clear_mark(xa, index, mark);
1781 xa_unlock(xa);
1783 EXPORT_SYMBOL(xa_clear_mark);
1786 * xa_find() - Search the XArray for an entry.
1787 * @xa: XArray.
1788 * @indexp: Pointer to an index.
1789 * @max: Maximum index to search to.
1790 * @filter: Selection criterion.
1792 * Finds the entry in @xa which matches the @filter, and has the lowest
1793 * index that is at least @indexp and no more than @max.
1794 * If an entry is found, @indexp is updated to be the index of the entry.
1795 * This function is protected by the RCU read lock, so it may not find
1796 * entries which are being simultaneously added. It will not return an
1797 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1799 * Context: Any context. Takes and releases the RCU lock.
1800 * Return: The entry, if found, otherwise %NULL.
1802 void *xa_find(struct xarray *xa, unsigned long *indexp,
1803 unsigned long max, xa_mark_t filter)
1805 XA_STATE(xas, xa, *indexp);
1806 void *entry;
1808 rcu_read_lock();
1809 do {
1810 if ((__force unsigned int)filter < XA_MAX_MARKS)
1811 entry = xas_find_marked(&xas, max, filter);
1812 else
1813 entry = xas_find(&xas, max);
1814 } while (xas_retry(&xas, entry));
1815 rcu_read_unlock();
1817 if (entry)
1818 *indexp = xas.xa_index;
1819 return entry;
1821 EXPORT_SYMBOL(xa_find);
1824 * xa_find_after() - Search the XArray for a present entry.
1825 * @xa: XArray.
1826 * @indexp: Pointer to an index.
1827 * @max: Maximum index to search to.
1828 * @filter: Selection criterion.
1830 * Finds the entry in @xa which matches the @filter and has the lowest
1831 * index that is above @indexp and no more than @max.
1832 * If an entry is found, @indexp is updated to be the index of the entry.
1833 * This function is protected by the RCU read lock, so it may miss entries
1834 * which are being simultaneously added. It will not return an
1835 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1837 * Context: Any context. Takes and releases the RCU lock.
1838 * Return: The pointer, if found, otherwise %NULL.
1840 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1841 unsigned long max, xa_mark_t filter)
1843 XA_STATE(xas, xa, *indexp + 1);
1844 void *entry;
1846 rcu_read_lock();
1847 for (;;) {
1848 if ((__force unsigned int)filter < XA_MAX_MARKS)
1849 entry = xas_find_marked(&xas, max, filter);
1850 else
1851 entry = xas_find(&xas, max);
1852 if (xas.xa_node == XAS_BOUNDS)
1853 break;
1854 if (xas.xa_shift) {
1855 if (xas.xa_index & ((1UL << xas.xa_shift) - 1))
1856 continue;
1857 } else {
1858 if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK))
1859 continue;
1861 if (!xas_retry(&xas, entry))
1862 break;
1864 rcu_read_unlock();
1866 if (entry)
1867 *indexp = xas.xa_index;
1868 return entry;
1870 EXPORT_SYMBOL(xa_find_after);
1872 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1873 unsigned long max, unsigned int n)
1875 void *entry;
1876 unsigned int i = 0;
1878 rcu_read_lock();
1879 xas_for_each(xas, entry, max) {
1880 if (xas_retry(xas, entry))
1881 continue;
1882 dst[i++] = entry;
1883 if (i == n)
1884 break;
1886 rcu_read_unlock();
1888 return i;
1891 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1892 unsigned long max, unsigned int n, xa_mark_t mark)
1894 void *entry;
1895 unsigned int i = 0;
1897 rcu_read_lock();
1898 xas_for_each_marked(xas, entry, max, mark) {
1899 if (xas_retry(xas, entry))
1900 continue;
1901 dst[i++] = entry;
1902 if (i == n)
1903 break;
1905 rcu_read_unlock();
1907 return i;
1911 * xa_extract() - Copy selected entries from the XArray into a normal array.
1912 * @xa: The source XArray to copy from.
1913 * @dst: The buffer to copy entries into.
1914 * @start: The first index in the XArray eligible to be selected.
1915 * @max: The last index in the XArray eligible to be selected.
1916 * @n: The maximum number of entries to copy.
1917 * @filter: Selection criterion.
1919 * Copies up to @n entries that match @filter from the XArray. The
1920 * copied entries will have indices between @start and @max, inclusive.
1922 * The @filter may be an XArray mark value, in which case entries which are
1923 * marked with that mark will be copied. It may also be %XA_PRESENT, in
1924 * which case all entries which are not %NULL will be copied.
1926 * The entries returned may not represent a snapshot of the XArray at a
1927 * moment in time. For example, if another thread stores to index 5, then
1928 * index 10, calling xa_extract() may return the old contents of index 5
1929 * and the new contents of index 10. Indices not modified while this
1930 * function is running will not be skipped.
1932 * If you need stronger guarantees, holding the xa_lock across calls to this
1933 * function will prevent concurrent modification.
1935 * Context: Any context. Takes and releases the RCU lock.
1936 * Return: The number of entries copied.
1938 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1939 unsigned long max, unsigned int n, xa_mark_t filter)
1941 XA_STATE(xas, xa, start);
1943 if (!n)
1944 return 0;
1946 if ((__force unsigned int)filter < XA_MAX_MARKS)
1947 return xas_extract_marked(&xas, dst, max, n, filter);
1948 return xas_extract_present(&xas, dst, max, n);
1950 EXPORT_SYMBOL(xa_extract);
1953 * xa_destroy() - Free all internal data structures.
1954 * @xa: XArray.
1956 * After calling this function, the XArray is empty and has freed all memory
1957 * allocated for its internal data structures. You are responsible for
1958 * freeing the objects referenced by the XArray.
1960 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
1962 void xa_destroy(struct xarray *xa)
1964 XA_STATE(xas, xa, 0);
1965 unsigned long flags;
1966 void *entry;
1968 xas.xa_node = NULL;
1969 xas_lock_irqsave(&xas, flags);
1970 entry = xa_head_locked(xa);
1971 RCU_INIT_POINTER(xa->xa_head, NULL);
1972 xas_init_marks(&xas);
1973 if (xa_zero_busy(xa))
1974 xa_mark_clear(xa, XA_FREE_MARK);
1975 /* lockdep checks we're still holding the lock in xas_free_nodes() */
1976 if (xa_is_node(entry))
1977 xas_free_nodes(&xas, xa_to_node(entry));
1978 xas_unlock_irqrestore(&xas, flags);
1980 EXPORT_SYMBOL(xa_destroy);
1982 #ifdef XA_DEBUG
1983 void xa_dump_node(const struct xa_node *node)
1985 unsigned i, j;
1987 if (!node)
1988 return;
1989 if ((unsigned long)node & 3) {
1990 pr_cont("node %px\n", node);
1991 return;
1994 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
1995 "array %px list %px %px marks",
1996 node, node->parent ? "offset" : "max", node->offset,
1997 node->parent, node->shift, node->count, node->nr_values,
1998 node->array, node->private_list.prev, node->private_list.next);
1999 for (i = 0; i < XA_MAX_MARKS; i++)
2000 for (j = 0; j < XA_MARK_LONGS; j++)
2001 pr_cont(" %lx", node->marks[i][j]);
2002 pr_cont("\n");
2005 void xa_dump_index(unsigned long index, unsigned int shift)
2007 if (!shift)
2008 pr_info("%lu: ", index);
2009 else if (shift >= BITS_PER_LONG)
2010 pr_info("0-%lu: ", ~0UL);
2011 else
2012 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2015 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2017 if (!entry)
2018 return;
2020 xa_dump_index(index, shift);
2022 if (xa_is_node(entry)) {
2023 if (shift == 0) {
2024 pr_cont("%px\n", entry);
2025 } else {
2026 unsigned long i;
2027 struct xa_node *node = xa_to_node(entry);
2028 xa_dump_node(node);
2029 for (i = 0; i < XA_CHUNK_SIZE; i++)
2030 xa_dump_entry(node->slots[i],
2031 index + (i << node->shift), node->shift);
2033 } else if (xa_is_value(entry))
2034 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2035 xa_to_value(entry), entry);
2036 else if (!xa_is_internal(entry))
2037 pr_cont("%px\n", entry);
2038 else if (xa_is_retry(entry))
2039 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2040 else if (xa_is_sibling(entry))
2041 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2042 else if (xa_is_zero(entry))
2043 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2044 else
2045 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2048 void xa_dump(const struct xarray *xa)
2050 void *entry = xa->xa_head;
2051 unsigned int shift = 0;
2053 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2054 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2055 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2056 if (xa_is_node(entry))
2057 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2058 xa_dump_entry(entry, 0, shift);
2060 #endif