libceph: redo callbacks and factor out MOSDOpReply decoding
[linux/fpc-iii.git] / fs / xfs / xfs_buf.c
blob9a2191b911377f94e38d81d57d5d037a7e19ae8b
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
45 static kmem_zone_t *xfs_buf_zone;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp->b_addr && bp->b_page_count > 1;
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84 * b_lru_ref count so that the buffer is freed immediately when the buffer
85 * reference count falls to zero. If the buffer is already on the LRU, we need
86 * to remove the reference that LRU holds on the buffer.
88 * This prevents build-up of stale buffers on the LRU.
90 void
91 xfs_buf_stale(
92 struct xfs_buf *bp)
94 ASSERT(xfs_buf_islocked(bp));
96 bp->b_flags |= XBF_STALE;
99 * Clear the delwri status so that a delwri queue walker will not
100 * flush this buffer to disk now that it is stale. The delwri queue has
101 * a reference to the buffer, so this is safe to do.
103 bp->b_flags &= ~_XBF_DELWRI_Q;
105 spin_lock(&bp->b_lock);
106 atomic_set(&bp->b_lru_ref, 0);
107 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
108 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109 atomic_dec(&bp->b_hold);
111 ASSERT(atomic_read(&bp->b_hold) >= 1);
112 spin_unlock(&bp->b_lock);
115 static int
116 xfs_buf_get_maps(
117 struct xfs_buf *bp,
118 int map_count)
120 ASSERT(bp->b_maps == NULL);
121 bp->b_map_count = map_count;
123 if (map_count == 1) {
124 bp->b_maps = &bp->__b_map;
125 return 0;
128 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
129 KM_NOFS);
130 if (!bp->b_maps)
131 return -ENOMEM;
132 return 0;
136 * Frees b_pages if it was allocated.
138 static void
139 xfs_buf_free_maps(
140 struct xfs_buf *bp)
142 if (bp->b_maps != &bp->__b_map) {
143 kmem_free(bp->b_maps);
144 bp->b_maps = NULL;
148 struct xfs_buf *
149 _xfs_buf_alloc(
150 struct xfs_buftarg *target,
151 struct xfs_buf_map *map,
152 int nmaps,
153 xfs_buf_flags_t flags)
155 struct xfs_buf *bp;
156 int error;
157 int i;
159 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
160 if (unlikely(!bp))
161 return NULL;
164 * We don't want certain flags to appear in b_flags unless they are
165 * specifically set by later operations on the buffer.
167 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
169 atomic_set(&bp->b_hold, 1);
170 atomic_set(&bp->b_lru_ref, 1);
171 init_completion(&bp->b_iowait);
172 INIT_LIST_HEAD(&bp->b_lru);
173 INIT_LIST_HEAD(&bp->b_list);
174 RB_CLEAR_NODE(&bp->b_rbnode);
175 sema_init(&bp->b_sema, 0); /* held, no waiters */
176 spin_lock_init(&bp->b_lock);
177 XB_SET_OWNER(bp);
178 bp->b_target = target;
179 bp->b_flags = flags;
182 * Set length and io_length to the same value initially.
183 * I/O routines should use io_length, which will be the same in
184 * most cases but may be reset (e.g. XFS recovery).
186 error = xfs_buf_get_maps(bp, nmaps);
187 if (error) {
188 kmem_zone_free(xfs_buf_zone, bp);
189 return NULL;
192 bp->b_bn = map[0].bm_bn;
193 bp->b_length = 0;
194 for (i = 0; i < nmaps; i++) {
195 bp->b_maps[i].bm_bn = map[i].bm_bn;
196 bp->b_maps[i].bm_len = map[i].bm_len;
197 bp->b_length += map[i].bm_len;
199 bp->b_io_length = bp->b_length;
201 atomic_set(&bp->b_pin_count, 0);
202 init_waitqueue_head(&bp->b_waiters);
204 XFS_STATS_INC(target->bt_mount, xb_create);
205 trace_xfs_buf_init(bp, _RET_IP_);
207 return bp;
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
214 STATIC int
215 _xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count)
219 /* Make sure that we have a page list */
220 if (bp->b_pages == NULL) {
221 bp->b_page_count = page_count;
222 if (page_count <= XB_PAGES) {
223 bp->b_pages = bp->b_page_array;
224 } else {
225 bp->b_pages = kmem_alloc(sizeof(struct page *) *
226 page_count, KM_NOFS);
227 if (bp->b_pages == NULL)
228 return -ENOMEM;
230 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
232 return 0;
236 * Frees b_pages if it was allocated.
238 STATIC void
239 _xfs_buf_free_pages(
240 xfs_buf_t *bp)
242 if (bp->b_pages != bp->b_page_array) {
243 kmem_free(bp->b_pages);
244 bp->b_pages = NULL;
249 * Releases the specified buffer.
251 * The modification state of any associated pages is left unchanged.
252 * The buffer must not be on any hash - use xfs_buf_rele instead for
253 * hashed and refcounted buffers
255 void
256 xfs_buf_free(
257 xfs_buf_t *bp)
259 trace_xfs_buf_free(bp, _RET_IP_);
261 ASSERT(list_empty(&bp->b_lru));
263 if (bp->b_flags & _XBF_PAGES) {
264 uint i;
266 if (xfs_buf_is_vmapped(bp))
267 vm_unmap_ram(bp->b_addr - bp->b_offset,
268 bp->b_page_count);
270 for (i = 0; i < bp->b_page_count; i++) {
271 struct page *page = bp->b_pages[i];
273 __free_page(page);
275 } else if (bp->b_flags & _XBF_KMEM)
276 kmem_free(bp->b_addr);
277 _xfs_buf_free_pages(bp);
278 xfs_buf_free_maps(bp);
279 kmem_zone_free(xfs_buf_zone, bp);
283 * Allocates all the pages for buffer in question and builds it's page list.
285 STATIC int
286 xfs_buf_allocate_memory(
287 xfs_buf_t *bp,
288 uint flags)
290 size_t size;
291 size_t nbytes, offset;
292 gfp_t gfp_mask = xb_to_gfp(flags);
293 unsigned short page_count, i;
294 xfs_off_t start, end;
295 int error;
298 * for buffers that are contained within a single page, just allocate
299 * the memory from the heap - there's no need for the complexity of
300 * page arrays to keep allocation down to order 0.
302 size = BBTOB(bp->b_length);
303 if (size < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(size, KM_NOFS);
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
310 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
311 ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 /* b_addr spans two pages - use alloc_page instead */
313 kmem_free(bp->b_addr);
314 bp->b_addr = NULL;
315 goto use_alloc_page;
317 bp->b_offset = offset_in_page(bp->b_addr);
318 bp->b_pages = bp->b_page_array;
319 bp->b_pages[0] = virt_to_page(bp->b_addr);
320 bp->b_page_count = 1;
321 bp->b_flags |= _XBF_KMEM;
322 return 0;
325 use_alloc_page:
326 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
328 >> PAGE_SHIFT;
329 page_count = end - start;
330 error = _xfs_buf_get_pages(bp, page_count);
331 if (unlikely(error))
332 return error;
334 offset = bp->b_offset;
335 bp->b_flags |= _XBF_PAGES;
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page;
339 uint retries = 0;
340 retry:
341 page = alloc_page(gfp_mask);
342 if (unlikely(page == NULL)) {
343 if (flags & XBF_READ_AHEAD) {
344 bp->b_page_count = i;
345 error = -ENOMEM;
346 goto out_free_pages;
350 * This could deadlock.
352 * But until all the XFS lowlevel code is revamped to
353 * handle buffer allocation failures we can't do much.
355 if (!(++retries % 100))
356 xfs_err(NULL,
357 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
358 current->comm, current->pid,
359 __func__, gfp_mask);
361 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
362 congestion_wait(BLK_RW_ASYNC, HZ/50);
363 goto retry;
366 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
368 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
369 size -= nbytes;
370 bp->b_pages[i] = page;
371 offset = 0;
373 return 0;
375 out_free_pages:
376 for (i = 0; i < bp->b_page_count; i++)
377 __free_page(bp->b_pages[i]);
378 return error;
382 * Map buffer into kernel address-space if necessary.
384 STATIC int
385 _xfs_buf_map_pages(
386 xfs_buf_t *bp,
387 uint flags)
389 ASSERT(bp->b_flags & _XBF_PAGES);
390 if (bp->b_page_count == 1) {
391 /* A single page buffer is always mappable */
392 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
393 } else if (flags & XBF_UNMAPPED) {
394 bp->b_addr = NULL;
395 } else {
396 int retried = 0;
397 unsigned noio_flag;
400 * vm_map_ram() will allocate auxillary structures (e.g.
401 * pagetables) with GFP_KERNEL, yet we are likely to be under
402 * GFP_NOFS context here. Hence we need to tell memory reclaim
403 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
404 * memory reclaim re-entering the filesystem here and
405 * potentially deadlocking.
407 noio_flag = memalloc_noio_save();
408 do {
409 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
410 -1, PAGE_KERNEL);
411 if (bp->b_addr)
412 break;
413 vm_unmap_aliases();
414 } while (retried++ <= 1);
415 memalloc_noio_restore(noio_flag);
417 if (!bp->b_addr)
418 return -ENOMEM;
419 bp->b_addr += bp->b_offset;
422 return 0;
426 * Finding and Reading Buffers
430 * Look up, and creates if absent, a lockable buffer for
431 * a given range of an inode. The buffer is returned
432 * locked. No I/O is implied by this call.
434 xfs_buf_t *
435 _xfs_buf_find(
436 struct xfs_buftarg *btp,
437 struct xfs_buf_map *map,
438 int nmaps,
439 xfs_buf_flags_t flags,
440 xfs_buf_t *new_bp)
442 struct xfs_perag *pag;
443 struct rb_node **rbp;
444 struct rb_node *parent;
445 xfs_buf_t *bp;
446 xfs_daddr_t blkno = map[0].bm_bn;
447 xfs_daddr_t eofs;
448 int numblks = 0;
449 int i;
451 for (i = 0; i < nmaps; i++)
452 numblks += map[i].bm_len;
454 /* Check for IOs smaller than the sector size / not sector aligned */
455 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
456 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
459 * Corrupted block numbers can get through to here, unfortunately, so we
460 * have to check that the buffer falls within the filesystem bounds.
462 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
463 if (blkno < 0 || blkno >= eofs) {
465 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
466 * but none of the higher level infrastructure supports
467 * returning a specific error on buffer lookup failures.
469 xfs_alert(btp->bt_mount,
470 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
471 __func__, blkno, eofs);
472 WARN_ON(1);
473 return NULL;
476 /* get tree root */
477 pag = xfs_perag_get(btp->bt_mount,
478 xfs_daddr_to_agno(btp->bt_mount, blkno));
480 /* walk tree */
481 spin_lock(&pag->pag_buf_lock);
482 rbp = &pag->pag_buf_tree.rb_node;
483 parent = NULL;
484 bp = NULL;
485 while (*rbp) {
486 parent = *rbp;
487 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
489 if (blkno < bp->b_bn)
490 rbp = &(*rbp)->rb_left;
491 else if (blkno > bp->b_bn)
492 rbp = &(*rbp)->rb_right;
493 else {
495 * found a block number match. If the range doesn't
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching to the right for an exact match.
502 if (bp->b_length != numblks) {
503 ASSERT(bp->b_flags & XBF_STALE);
504 rbp = &(*rbp)->rb_right;
505 continue;
507 atomic_inc(&bp->b_hold);
508 goto found;
512 /* No match found */
513 if (new_bp) {
514 rb_link_node(&new_bp->b_rbnode, parent, rbp);
515 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
516 /* the buffer keeps the perag reference until it is freed */
517 new_bp->b_pag = pag;
518 spin_unlock(&pag->pag_buf_lock);
519 } else {
520 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
521 spin_unlock(&pag->pag_buf_lock);
522 xfs_perag_put(pag);
524 return new_bp;
526 found:
527 spin_unlock(&pag->pag_buf_lock);
528 xfs_perag_put(pag);
530 if (!xfs_buf_trylock(bp)) {
531 if (flags & XBF_TRYLOCK) {
532 xfs_buf_rele(bp);
533 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
534 return NULL;
536 xfs_buf_lock(bp);
537 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
541 * if the buffer is stale, clear all the external state associated with
542 * it. We need to keep flags such as how we allocated the buffer memory
543 * intact here.
545 if (bp->b_flags & XBF_STALE) {
546 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
547 ASSERT(bp->b_iodone == NULL);
548 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
549 bp->b_ops = NULL;
552 trace_xfs_buf_find(bp, flags, _RET_IP_);
553 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
554 return bp;
558 * Assembles a buffer covering the specified range. The code is optimised for
559 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
560 * more hits than misses.
562 struct xfs_buf *
563 xfs_buf_get_map(
564 struct xfs_buftarg *target,
565 struct xfs_buf_map *map,
566 int nmaps,
567 xfs_buf_flags_t flags)
569 struct xfs_buf *bp;
570 struct xfs_buf *new_bp;
571 int error = 0;
573 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
574 if (likely(bp))
575 goto found;
577 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
578 if (unlikely(!new_bp))
579 return NULL;
581 error = xfs_buf_allocate_memory(new_bp, flags);
582 if (error) {
583 xfs_buf_free(new_bp);
584 return NULL;
587 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
588 if (!bp) {
589 xfs_buf_free(new_bp);
590 return NULL;
593 if (bp != new_bp)
594 xfs_buf_free(new_bp);
596 found:
597 if (!bp->b_addr) {
598 error = _xfs_buf_map_pages(bp, flags);
599 if (unlikely(error)) {
600 xfs_warn(target->bt_mount,
601 "%s: failed to map pagesn", __func__);
602 xfs_buf_relse(bp);
603 return NULL;
608 * Clear b_error if this is a lookup from a caller that doesn't expect
609 * valid data to be found in the buffer.
611 if (!(flags & XBF_READ))
612 xfs_buf_ioerror(bp, 0);
614 XFS_STATS_INC(target->bt_mount, xb_get);
615 trace_xfs_buf_get(bp, flags, _RET_IP_);
616 return bp;
619 STATIC int
620 _xfs_buf_read(
621 xfs_buf_t *bp,
622 xfs_buf_flags_t flags)
624 ASSERT(!(flags & XBF_WRITE));
625 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
627 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
628 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
630 if (flags & XBF_ASYNC) {
631 xfs_buf_submit(bp);
632 return 0;
634 return xfs_buf_submit_wait(bp);
637 xfs_buf_t *
638 xfs_buf_read_map(
639 struct xfs_buftarg *target,
640 struct xfs_buf_map *map,
641 int nmaps,
642 xfs_buf_flags_t flags,
643 const struct xfs_buf_ops *ops)
645 struct xfs_buf *bp;
647 flags |= XBF_READ;
649 bp = xfs_buf_get_map(target, map, nmaps, flags);
650 if (bp) {
651 trace_xfs_buf_read(bp, flags, _RET_IP_);
653 if (!(bp->b_flags & XBF_DONE)) {
654 XFS_STATS_INC(target->bt_mount, xb_get_read);
655 bp->b_ops = ops;
656 _xfs_buf_read(bp, flags);
657 } else if (flags & XBF_ASYNC) {
659 * Read ahead call which is already satisfied,
660 * drop the buffer
662 xfs_buf_relse(bp);
663 return NULL;
664 } else {
665 /* We do not want read in the flags */
666 bp->b_flags &= ~XBF_READ;
670 return bp;
674 * If we are not low on memory then do the readahead in a deadlock
675 * safe manner.
677 void
678 xfs_buf_readahead_map(
679 struct xfs_buftarg *target,
680 struct xfs_buf_map *map,
681 int nmaps,
682 const struct xfs_buf_ops *ops)
684 if (bdi_read_congested(target->bt_bdi))
685 return;
687 xfs_buf_read_map(target, map, nmaps,
688 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
692 * Read an uncached buffer from disk. Allocates and returns a locked
693 * buffer containing the disk contents or nothing.
696 xfs_buf_read_uncached(
697 struct xfs_buftarg *target,
698 xfs_daddr_t daddr,
699 size_t numblks,
700 int flags,
701 struct xfs_buf **bpp,
702 const struct xfs_buf_ops *ops)
704 struct xfs_buf *bp;
706 *bpp = NULL;
708 bp = xfs_buf_get_uncached(target, numblks, flags);
709 if (!bp)
710 return -ENOMEM;
712 /* set up the buffer for a read IO */
713 ASSERT(bp->b_map_count == 1);
714 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
715 bp->b_maps[0].bm_bn = daddr;
716 bp->b_flags |= XBF_READ;
717 bp->b_ops = ops;
719 xfs_buf_submit_wait(bp);
720 if (bp->b_error) {
721 int error = bp->b_error;
722 xfs_buf_relse(bp);
723 return error;
726 *bpp = bp;
727 return 0;
731 * Return a buffer allocated as an empty buffer and associated to external
732 * memory via xfs_buf_associate_memory() back to it's empty state.
734 void
735 xfs_buf_set_empty(
736 struct xfs_buf *bp,
737 size_t numblks)
739 if (bp->b_pages)
740 _xfs_buf_free_pages(bp);
742 bp->b_pages = NULL;
743 bp->b_page_count = 0;
744 bp->b_addr = NULL;
745 bp->b_length = numblks;
746 bp->b_io_length = numblks;
748 ASSERT(bp->b_map_count == 1);
749 bp->b_bn = XFS_BUF_DADDR_NULL;
750 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
751 bp->b_maps[0].bm_len = bp->b_length;
754 static inline struct page *
755 mem_to_page(
756 void *addr)
758 if ((!is_vmalloc_addr(addr))) {
759 return virt_to_page(addr);
760 } else {
761 return vmalloc_to_page(addr);
766 xfs_buf_associate_memory(
767 xfs_buf_t *bp,
768 void *mem,
769 size_t len)
771 int rval;
772 int i = 0;
773 unsigned long pageaddr;
774 unsigned long offset;
775 size_t buflen;
776 int page_count;
778 pageaddr = (unsigned long)mem & PAGE_MASK;
779 offset = (unsigned long)mem - pageaddr;
780 buflen = PAGE_ALIGN(len + offset);
781 page_count = buflen >> PAGE_SHIFT;
783 /* Free any previous set of page pointers */
784 if (bp->b_pages)
785 _xfs_buf_free_pages(bp);
787 bp->b_pages = NULL;
788 bp->b_addr = mem;
790 rval = _xfs_buf_get_pages(bp, page_count);
791 if (rval)
792 return rval;
794 bp->b_offset = offset;
796 for (i = 0; i < bp->b_page_count; i++) {
797 bp->b_pages[i] = mem_to_page((void *)pageaddr);
798 pageaddr += PAGE_SIZE;
801 bp->b_io_length = BTOBB(len);
802 bp->b_length = BTOBB(buflen);
804 return 0;
807 xfs_buf_t *
808 xfs_buf_get_uncached(
809 struct xfs_buftarg *target,
810 size_t numblks,
811 int flags)
813 unsigned long page_count;
814 int error, i;
815 struct xfs_buf *bp;
816 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
818 bp = _xfs_buf_alloc(target, &map, 1, 0);
819 if (unlikely(bp == NULL))
820 goto fail;
822 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
823 error = _xfs_buf_get_pages(bp, page_count);
824 if (error)
825 goto fail_free_buf;
827 for (i = 0; i < page_count; i++) {
828 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
829 if (!bp->b_pages[i])
830 goto fail_free_mem;
832 bp->b_flags |= _XBF_PAGES;
834 error = _xfs_buf_map_pages(bp, 0);
835 if (unlikely(error)) {
836 xfs_warn(target->bt_mount,
837 "%s: failed to map pages", __func__);
838 goto fail_free_mem;
841 trace_xfs_buf_get_uncached(bp, _RET_IP_);
842 return bp;
844 fail_free_mem:
845 while (--i >= 0)
846 __free_page(bp->b_pages[i]);
847 _xfs_buf_free_pages(bp);
848 fail_free_buf:
849 xfs_buf_free_maps(bp);
850 kmem_zone_free(xfs_buf_zone, bp);
851 fail:
852 return NULL;
856 * Increment reference count on buffer, to hold the buffer concurrently
857 * with another thread which may release (free) the buffer asynchronously.
858 * Must hold the buffer already to call this function.
860 void
861 xfs_buf_hold(
862 xfs_buf_t *bp)
864 trace_xfs_buf_hold(bp, _RET_IP_);
865 atomic_inc(&bp->b_hold);
869 * Releases a hold on the specified buffer. If the
870 * the hold count is 1, calls xfs_buf_free.
872 void
873 xfs_buf_rele(
874 xfs_buf_t *bp)
876 struct xfs_perag *pag = bp->b_pag;
878 trace_xfs_buf_rele(bp, _RET_IP_);
880 if (!pag) {
881 ASSERT(list_empty(&bp->b_lru));
882 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
883 if (atomic_dec_and_test(&bp->b_hold))
884 xfs_buf_free(bp);
885 return;
888 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
890 ASSERT(atomic_read(&bp->b_hold) > 0);
891 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
892 spin_lock(&bp->b_lock);
893 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
895 * If the buffer is added to the LRU take a new
896 * reference to the buffer for the LRU and clear the
897 * (now stale) dispose list state flag
899 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
900 bp->b_state &= ~XFS_BSTATE_DISPOSE;
901 atomic_inc(&bp->b_hold);
903 spin_unlock(&bp->b_lock);
904 spin_unlock(&pag->pag_buf_lock);
905 } else {
907 * most of the time buffers will already be removed from
908 * the LRU, so optimise that case by checking for the
909 * XFS_BSTATE_DISPOSE flag indicating the last list the
910 * buffer was on was the disposal list
912 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
913 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
914 } else {
915 ASSERT(list_empty(&bp->b_lru));
917 spin_unlock(&bp->b_lock);
919 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
920 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
921 spin_unlock(&pag->pag_buf_lock);
922 xfs_perag_put(pag);
923 xfs_buf_free(bp);
930 * Lock a buffer object, if it is not already locked.
932 * If we come across a stale, pinned, locked buffer, we know that we are
933 * being asked to lock a buffer that has been reallocated. Because it is
934 * pinned, we know that the log has not been pushed to disk and hence it
935 * will still be locked. Rather than continuing to have trylock attempts
936 * fail until someone else pushes the log, push it ourselves before
937 * returning. This means that the xfsaild will not get stuck trying
938 * to push on stale inode buffers.
941 xfs_buf_trylock(
942 struct xfs_buf *bp)
944 int locked;
946 locked = down_trylock(&bp->b_sema) == 0;
947 if (locked)
948 XB_SET_OWNER(bp);
950 trace_xfs_buf_trylock(bp, _RET_IP_);
951 return locked;
955 * Lock a buffer object.
957 * If we come across a stale, pinned, locked buffer, we know that we
958 * are being asked to lock a buffer that has been reallocated. Because
959 * it is pinned, we know that the log has not been pushed to disk and
960 * hence it will still be locked. Rather than sleeping until someone
961 * else pushes the log, push it ourselves before trying to get the lock.
963 void
964 xfs_buf_lock(
965 struct xfs_buf *bp)
967 trace_xfs_buf_lock(bp, _RET_IP_);
969 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
970 xfs_log_force(bp->b_target->bt_mount, 0);
971 down(&bp->b_sema);
972 XB_SET_OWNER(bp);
974 trace_xfs_buf_lock_done(bp, _RET_IP_);
977 void
978 xfs_buf_unlock(
979 struct xfs_buf *bp)
981 XB_CLEAR_OWNER(bp);
982 up(&bp->b_sema);
984 trace_xfs_buf_unlock(bp, _RET_IP_);
987 STATIC void
988 xfs_buf_wait_unpin(
989 xfs_buf_t *bp)
991 DECLARE_WAITQUEUE (wait, current);
993 if (atomic_read(&bp->b_pin_count) == 0)
994 return;
996 add_wait_queue(&bp->b_waiters, &wait);
997 for (;;) {
998 set_current_state(TASK_UNINTERRUPTIBLE);
999 if (atomic_read(&bp->b_pin_count) == 0)
1000 break;
1001 io_schedule();
1003 remove_wait_queue(&bp->b_waiters, &wait);
1004 set_current_state(TASK_RUNNING);
1008 * Buffer Utility Routines
1011 void
1012 xfs_buf_ioend(
1013 struct xfs_buf *bp)
1015 bool read = bp->b_flags & XBF_READ;
1017 trace_xfs_buf_iodone(bp, _RET_IP_);
1019 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1022 * Pull in IO completion errors now. We are guaranteed to be running
1023 * single threaded, so we don't need the lock to read b_io_error.
1025 if (!bp->b_error && bp->b_io_error)
1026 xfs_buf_ioerror(bp, bp->b_io_error);
1028 /* Only validate buffers that were read without errors */
1029 if (read && !bp->b_error && bp->b_ops) {
1030 ASSERT(!bp->b_iodone);
1031 bp->b_ops->verify_read(bp);
1034 if (!bp->b_error)
1035 bp->b_flags |= XBF_DONE;
1037 if (bp->b_iodone)
1038 (*(bp->b_iodone))(bp);
1039 else if (bp->b_flags & XBF_ASYNC)
1040 xfs_buf_relse(bp);
1041 else
1042 complete(&bp->b_iowait);
1045 static void
1046 xfs_buf_ioend_work(
1047 struct work_struct *work)
1049 struct xfs_buf *bp =
1050 container_of(work, xfs_buf_t, b_ioend_work);
1052 xfs_buf_ioend(bp);
1055 static void
1056 xfs_buf_ioend_async(
1057 struct xfs_buf *bp)
1059 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1060 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1063 void
1064 xfs_buf_ioerror(
1065 xfs_buf_t *bp,
1066 int error)
1068 ASSERT(error <= 0 && error >= -1000);
1069 bp->b_error = error;
1070 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1073 void
1074 xfs_buf_ioerror_alert(
1075 struct xfs_buf *bp,
1076 const char *func)
1078 xfs_alert(bp->b_target->bt_mount,
1079 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1080 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1084 xfs_bwrite(
1085 struct xfs_buf *bp)
1087 int error;
1089 ASSERT(xfs_buf_islocked(bp));
1091 bp->b_flags |= XBF_WRITE;
1092 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1093 XBF_WRITE_FAIL | XBF_DONE);
1095 error = xfs_buf_submit_wait(bp);
1096 if (error) {
1097 xfs_force_shutdown(bp->b_target->bt_mount,
1098 SHUTDOWN_META_IO_ERROR);
1100 return error;
1103 STATIC void
1104 xfs_buf_bio_end_io(
1105 struct bio *bio)
1107 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1110 * don't overwrite existing errors - otherwise we can lose errors on
1111 * buffers that require multiple bios to complete.
1113 if (bio->bi_error) {
1114 spin_lock(&bp->b_lock);
1115 if (!bp->b_io_error)
1116 bp->b_io_error = bio->bi_error;
1117 spin_unlock(&bp->b_lock);
1120 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1121 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1123 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1124 xfs_buf_ioend_async(bp);
1125 bio_put(bio);
1128 static void
1129 xfs_buf_ioapply_map(
1130 struct xfs_buf *bp,
1131 int map,
1132 int *buf_offset,
1133 int *count,
1134 int rw)
1136 int page_index;
1137 int total_nr_pages = bp->b_page_count;
1138 int nr_pages;
1139 struct bio *bio;
1140 sector_t sector = bp->b_maps[map].bm_bn;
1141 int size;
1142 int offset;
1144 total_nr_pages = bp->b_page_count;
1146 /* skip the pages in the buffer before the start offset */
1147 page_index = 0;
1148 offset = *buf_offset;
1149 while (offset >= PAGE_SIZE) {
1150 page_index++;
1151 offset -= PAGE_SIZE;
1155 * Limit the IO size to the length of the current vector, and update the
1156 * remaining IO count for the next time around.
1158 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1159 *count -= size;
1160 *buf_offset += size;
1162 next_chunk:
1163 atomic_inc(&bp->b_io_remaining);
1164 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1165 if (nr_pages > total_nr_pages)
1166 nr_pages = total_nr_pages;
1168 bio = bio_alloc(GFP_NOIO, nr_pages);
1169 bio->bi_bdev = bp->b_target->bt_bdev;
1170 bio->bi_iter.bi_sector = sector;
1171 bio->bi_end_io = xfs_buf_bio_end_io;
1172 bio->bi_private = bp;
1175 for (; size && nr_pages; nr_pages--, page_index++) {
1176 int rbytes, nbytes = PAGE_SIZE - offset;
1178 if (nbytes > size)
1179 nbytes = size;
1181 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1182 offset);
1183 if (rbytes < nbytes)
1184 break;
1186 offset = 0;
1187 sector += BTOBB(nbytes);
1188 size -= nbytes;
1189 total_nr_pages--;
1192 if (likely(bio->bi_iter.bi_size)) {
1193 if (xfs_buf_is_vmapped(bp)) {
1194 flush_kernel_vmap_range(bp->b_addr,
1195 xfs_buf_vmap_len(bp));
1197 submit_bio(rw, bio);
1198 if (size)
1199 goto next_chunk;
1200 } else {
1202 * This is guaranteed not to be the last io reference count
1203 * because the caller (xfs_buf_submit) holds a count itself.
1205 atomic_dec(&bp->b_io_remaining);
1206 xfs_buf_ioerror(bp, -EIO);
1207 bio_put(bio);
1212 STATIC void
1213 _xfs_buf_ioapply(
1214 struct xfs_buf *bp)
1216 struct blk_plug plug;
1217 int rw;
1218 int offset;
1219 int size;
1220 int i;
1223 * Make sure we capture only current IO errors rather than stale errors
1224 * left over from previous use of the buffer (e.g. failed readahead).
1226 bp->b_error = 0;
1229 * Initialize the I/O completion workqueue if we haven't yet or the
1230 * submitter has not opted to specify a custom one.
1232 if (!bp->b_ioend_wq)
1233 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1235 if (bp->b_flags & XBF_WRITE) {
1236 if (bp->b_flags & XBF_SYNCIO)
1237 rw = WRITE_SYNC;
1238 else
1239 rw = WRITE;
1240 if (bp->b_flags & XBF_FUA)
1241 rw |= REQ_FUA;
1242 if (bp->b_flags & XBF_FLUSH)
1243 rw |= REQ_FLUSH;
1246 * Run the write verifier callback function if it exists. If
1247 * this function fails it will mark the buffer with an error and
1248 * the IO should not be dispatched.
1250 if (bp->b_ops) {
1251 bp->b_ops->verify_write(bp);
1252 if (bp->b_error) {
1253 xfs_force_shutdown(bp->b_target->bt_mount,
1254 SHUTDOWN_CORRUPT_INCORE);
1255 return;
1257 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1258 struct xfs_mount *mp = bp->b_target->bt_mount;
1261 * non-crc filesystems don't attach verifiers during
1262 * log recovery, so don't warn for such filesystems.
1264 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1265 xfs_warn(mp,
1266 "%s: no ops on block 0x%llx/0x%x",
1267 __func__, bp->b_bn, bp->b_length);
1268 xfs_hex_dump(bp->b_addr, 64);
1269 dump_stack();
1272 } else if (bp->b_flags & XBF_READ_AHEAD) {
1273 rw = READA;
1274 } else {
1275 rw = READ;
1278 /* we only use the buffer cache for meta-data */
1279 rw |= REQ_META;
1282 * Walk all the vectors issuing IO on them. Set up the initial offset
1283 * into the buffer and the desired IO size before we start -
1284 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1285 * subsequent call.
1287 offset = bp->b_offset;
1288 size = BBTOB(bp->b_io_length);
1289 blk_start_plug(&plug);
1290 for (i = 0; i < bp->b_map_count; i++) {
1291 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1292 if (bp->b_error)
1293 break;
1294 if (size <= 0)
1295 break; /* all done */
1297 blk_finish_plug(&plug);
1301 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1302 * the current reference to the IO. It is not safe to reference the buffer after
1303 * a call to this function unless the caller holds an additional reference
1304 * itself.
1306 void
1307 xfs_buf_submit(
1308 struct xfs_buf *bp)
1310 trace_xfs_buf_submit(bp, _RET_IP_);
1312 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1313 ASSERT(bp->b_flags & XBF_ASYNC);
1315 /* on shutdown we stale and complete the buffer immediately */
1316 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1317 xfs_buf_ioerror(bp, -EIO);
1318 bp->b_flags &= ~XBF_DONE;
1319 xfs_buf_stale(bp);
1320 xfs_buf_ioend(bp);
1321 return;
1324 if (bp->b_flags & XBF_WRITE)
1325 xfs_buf_wait_unpin(bp);
1327 /* clear the internal error state to avoid spurious errors */
1328 bp->b_io_error = 0;
1331 * The caller's reference is released during I/O completion.
1332 * This occurs some time after the last b_io_remaining reference is
1333 * released, so after we drop our Io reference we have to have some
1334 * other reference to ensure the buffer doesn't go away from underneath
1335 * us. Take a direct reference to ensure we have safe access to the
1336 * buffer until we are finished with it.
1338 xfs_buf_hold(bp);
1341 * Set the count to 1 initially, this will stop an I/O completion
1342 * callout which happens before we have started all the I/O from calling
1343 * xfs_buf_ioend too early.
1345 atomic_set(&bp->b_io_remaining, 1);
1346 _xfs_buf_ioapply(bp);
1349 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1350 * reference we took above. If we drop it to zero, run completion so
1351 * that we don't return to the caller with completion still pending.
1353 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1354 if (bp->b_error)
1355 xfs_buf_ioend(bp);
1356 else
1357 xfs_buf_ioend_async(bp);
1360 xfs_buf_rele(bp);
1361 /* Note: it is not safe to reference bp now we've dropped our ref */
1365 * Synchronous buffer IO submission path, read or write.
1368 xfs_buf_submit_wait(
1369 struct xfs_buf *bp)
1371 int error;
1373 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1375 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1377 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1378 xfs_buf_ioerror(bp, -EIO);
1379 xfs_buf_stale(bp);
1380 bp->b_flags &= ~XBF_DONE;
1381 return -EIO;
1384 if (bp->b_flags & XBF_WRITE)
1385 xfs_buf_wait_unpin(bp);
1387 /* clear the internal error state to avoid spurious errors */
1388 bp->b_io_error = 0;
1391 * For synchronous IO, the IO does not inherit the submitters reference
1392 * count, nor the buffer lock. Hence we cannot release the reference we
1393 * are about to take until we've waited for all IO completion to occur,
1394 * including any xfs_buf_ioend_async() work that may be pending.
1396 xfs_buf_hold(bp);
1399 * Set the count to 1 initially, this will stop an I/O completion
1400 * callout which happens before we have started all the I/O from calling
1401 * xfs_buf_ioend too early.
1403 atomic_set(&bp->b_io_remaining, 1);
1404 _xfs_buf_ioapply(bp);
1407 * make sure we run completion synchronously if it raced with us and is
1408 * already complete.
1410 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1411 xfs_buf_ioend(bp);
1413 /* wait for completion before gathering the error from the buffer */
1414 trace_xfs_buf_iowait(bp, _RET_IP_);
1415 wait_for_completion(&bp->b_iowait);
1416 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1417 error = bp->b_error;
1420 * all done now, we can release the hold that keeps the buffer
1421 * referenced for the entire IO.
1423 xfs_buf_rele(bp);
1424 return error;
1427 void *
1428 xfs_buf_offset(
1429 struct xfs_buf *bp,
1430 size_t offset)
1432 struct page *page;
1434 if (bp->b_addr)
1435 return bp->b_addr + offset;
1437 offset += bp->b_offset;
1438 page = bp->b_pages[offset >> PAGE_SHIFT];
1439 return page_address(page) + (offset & (PAGE_SIZE-1));
1443 * Move data into or out of a buffer.
1445 void
1446 xfs_buf_iomove(
1447 xfs_buf_t *bp, /* buffer to process */
1448 size_t boff, /* starting buffer offset */
1449 size_t bsize, /* length to copy */
1450 void *data, /* data address */
1451 xfs_buf_rw_t mode) /* read/write/zero flag */
1453 size_t bend;
1455 bend = boff + bsize;
1456 while (boff < bend) {
1457 struct page *page;
1458 int page_index, page_offset, csize;
1460 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1461 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1462 page = bp->b_pages[page_index];
1463 csize = min_t(size_t, PAGE_SIZE - page_offset,
1464 BBTOB(bp->b_io_length) - boff);
1466 ASSERT((csize + page_offset) <= PAGE_SIZE);
1468 switch (mode) {
1469 case XBRW_ZERO:
1470 memset(page_address(page) + page_offset, 0, csize);
1471 break;
1472 case XBRW_READ:
1473 memcpy(data, page_address(page) + page_offset, csize);
1474 break;
1475 case XBRW_WRITE:
1476 memcpy(page_address(page) + page_offset, data, csize);
1479 boff += csize;
1480 data += csize;
1485 * Handling of buffer targets (buftargs).
1489 * Wait for any bufs with callbacks that have been submitted but have not yet
1490 * returned. These buffers will have an elevated hold count, so wait on those
1491 * while freeing all the buffers only held by the LRU.
1493 static enum lru_status
1494 xfs_buftarg_wait_rele(
1495 struct list_head *item,
1496 struct list_lru_one *lru,
1497 spinlock_t *lru_lock,
1498 void *arg)
1501 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1502 struct list_head *dispose = arg;
1504 if (atomic_read(&bp->b_hold) > 1) {
1505 /* need to wait, so skip it this pass */
1506 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1507 return LRU_SKIP;
1509 if (!spin_trylock(&bp->b_lock))
1510 return LRU_SKIP;
1513 * clear the LRU reference count so the buffer doesn't get
1514 * ignored in xfs_buf_rele().
1516 atomic_set(&bp->b_lru_ref, 0);
1517 bp->b_state |= XFS_BSTATE_DISPOSE;
1518 list_lru_isolate_move(lru, item, dispose);
1519 spin_unlock(&bp->b_lock);
1520 return LRU_REMOVED;
1523 void
1524 xfs_wait_buftarg(
1525 struct xfs_buftarg *btp)
1527 LIST_HEAD(dispose);
1528 int loop = 0;
1531 * We need to flush the buffer workqueue to ensure that all IO
1532 * completion processing is 100% done. Just waiting on buffer locks is
1533 * not sufficient for async IO as the reference count held over IO is
1534 * not released until after the buffer lock is dropped. Hence we need to
1535 * ensure here that all reference counts have been dropped before we
1536 * start walking the LRU list.
1538 drain_workqueue(btp->bt_mount->m_buf_workqueue);
1540 /* loop until there is nothing left on the lru list. */
1541 while (list_lru_count(&btp->bt_lru)) {
1542 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1543 &dispose, LONG_MAX);
1545 while (!list_empty(&dispose)) {
1546 struct xfs_buf *bp;
1547 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1548 list_del_init(&bp->b_lru);
1549 if (bp->b_flags & XBF_WRITE_FAIL) {
1550 xfs_alert(btp->bt_mount,
1551 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1552 (long long)bp->b_bn);
1553 xfs_alert(btp->bt_mount,
1554 "Please run xfs_repair to determine the extent of the problem.");
1556 xfs_buf_rele(bp);
1558 if (loop++ != 0)
1559 delay(100);
1563 static enum lru_status
1564 xfs_buftarg_isolate(
1565 struct list_head *item,
1566 struct list_lru_one *lru,
1567 spinlock_t *lru_lock,
1568 void *arg)
1570 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1571 struct list_head *dispose = arg;
1574 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1575 * If we fail to get the lock, just skip it.
1577 if (!spin_trylock(&bp->b_lock))
1578 return LRU_SKIP;
1580 * Decrement the b_lru_ref count unless the value is already
1581 * zero. If the value is already zero, we need to reclaim the
1582 * buffer, otherwise it gets another trip through the LRU.
1584 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1585 spin_unlock(&bp->b_lock);
1586 return LRU_ROTATE;
1589 bp->b_state |= XFS_BSTATE_DISPOSE;
1590 list_lru_isolate_move(lru, item, dispose);
1591 spin_unlock(&bp->b_lock);
1592 return LRU_REMOVED;
1595 static unsigned long
1596 xfs_buftarg_shrink_scan(
1597 struct shrinker *shrink,
1598 struct shrink_control *sc)
1600 struct xfs_buftarg *btp = container_of(shrink,
1601 struct xfs_buftarg, bt_shrinker);
1602 LIST_HEAD(dispose);
1603 unsigned long freed;
1605 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1606 xfs_buftarg_isolate, &dispose);
1608 while (!list_empty(&dispose)) {
1609 struct xfs_buf *bp;
1610 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1611 list_del_init(&bp->b_lru);
1612 xfs_buf_rele(bp);
1615 return freed;
1618 static unsigned long
1619 xfs_buftarg_shrink_count(
1620 struct shrinker *shrink,
1621 struct shrink_control *sc)
1623 struct xfs_buftarg *btp = container_of(shrink,
1624 struct xfs_buftarg, bt_shrinker);
1625 return list_lru_shrink_count(&btp->bt_lru, sc);
1628 void
1629 xfs_free_buftarg(
1630 struct xfs_mount *mp,
1631 struct xfs_buftarg *btp)
1633 unregister_shrinker(&btp->bt_shrinker);
1634 list_lru_destroy(&btp->bt_lru);
1636 if (mp->m_flags & XFS_MOUNT_BARRIER)
1637 xfs_blkdev_issue_flush(btp);
1639 kmem_free(btp);
1643 xfs_setsize_buftarg(
1644 xfs_buftarg_t *btp,
1645 unsigned int sectorsize)
1647 /* Set up metadata sector size info */
1648 btp->bt_meta_sectorsize = sectorsize;
1649 btp->bt_meta_sectormask = sectorsize - 1;
1651 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1652 xfs_warn(btp->bt_mount,
1653 "Cannot set_blocksize to %u on device %pg",
1654 sectorsize, btp->bt_bdev);
1655 return -EINVAL;
1658 /* Set up device logical sector size mask */
1659 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1660 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1662 return 0;
1666 * When allocating the initial buffer target we have not yet
1667 * read in the superblock, so don't know what sized sectors
1668 * are being used at this early stage. Play safe.
1670 STATIC int
1671 xfs_setsize_buftarg_early(
1672 xfs_buftarg_t *btp,
1673 struct block_device *bdev)
1675 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1678 xfs_buftarg_t *
1679 xfs_alloc_buftarg(
1680 struct xfs_mount *mp,
1681 struct block_device *bdev)
1683 xfs_buftarg_t *btp;
1685 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1687 btp->bt_mount = mp;
1688 btp->bt_dev = bdev->bd_dev;
1689 btp->bt_bdev = bdev;
1690 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1692 if (xfs_setsize_buftarg_early(btp, bdev))
1693 goto error;
1695 if (list_lru_init(&btp->bt_lru))
1696 goto error;
1698 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1699 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1700 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1701 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1702 register_shrinker(&btp->bt_shrinker);
1703 return btp;
1705 error:
1706 kmem_free(btp);
1707 return NULL;
1711 * Add a buffer to the delayed write list.
1713 * This queues a buffer for writeout if it hasn't already been. Note that
1714 * neither this routine nor the buffer list submission functions perform
1715 * any internal synchronization. It is expected that the lists are thread-local
1716 * to the callers.
1718 * Returns true if we queued up the buffer, or false if it already had
1719 * been on the buffer list.
1721 bool
1722 xfs_buf_delwri_queue(
1723 struct xfs_buf *bp,
1724 struct list_head *list)
1726 ASSERT(xfs_buf_islocked(bp));
1727 ASSERT(!(bp->b_flags & XBF_READ));
1730 * If the buffer is already marked delwri it already is queued up
1731 * by someone else for imediate writeout. Just ignore it in that
1732 * case.
1734 if (bp->b_flags & _XBF_DELWRI_Q) {
1735 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1736 return false;
1739 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1742 * If a buffer gets written out synchronously or marked stale while it
1743 * is on a delwri list we lazily remove it. To do this, the other party
1744 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1745 * It remains referenced and on the list. In a rare corner case it
1746 * might get readded to a delwri list after the synchronous writeout, in
1747 * which case we need just need to re-add the flag here.
1749 bp->b_flags |= _XBF_DELWRI_Q;
1750 if (list_empty(&bp->b_list)) {
1751 atomic_inc(&bp->b_hold);
1752 list_add_tail(&bp->b_list, list);
1755 return true;
1759 * Compare function is more complex than it needs to be because
1760 * the return value is only 32 bits and we are doing comparisons
1761 * on 64 bit values
1763 static int
1764 xfs_buf_cmp(
1765 void *priv,
1766 struct list_head *a,
1767 struct list_head *b)
1769 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1770 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1771 xfs_daddr_t diff;
1773 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1774 if (diff < 0)
1775 return -1;
1776 if (diff > 0)
1777 return 1;
1778 return 0;
1781 static int
1782 __xfs_buf_delwri_submit(
1783 struct list_head *buffer_list,
1784 struct list_head *io_list,
1785 bool wait)
1787 struct blk_plug plug;
1788 struct xfs_buf *bp, *n;
1789 int pinned = 0;
1791 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1792 if (!wait) {
1793 if (xfs_buf_ispinned(bp)) {
1794 pinned++;
1795 continue;
1797 if (!xfs_buf_trylock(bp))
1798 continue;
1799 } else {
1800 xfs_buf_lock(bp);
1804 * Someone else might have written the buffer synchronously or
1805 * marked it stale in the meantime. In that case only the
1806 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1807 * reference and remove it from the list here.
1809 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1810 list_del_init(&bp->b_list);
1811 xfs_buf_relse(bp);
1812 continue;
1815 list_move_tail(&bp->b_list, io_list);
1816 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1819 list_sort(NULL, io_list, xfs_buf_cmp);
1821 blk_start_plug(&plug);
1822 list_for_each_entry_safe(bp, n, io_list, b_list) {
1823 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1824 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1827 * we do all Io submission async. This means if we need to wait
1828 * for IO completion we need to take an extra reference so the
1829 * buffer is still valid on the other side.
1831 if (wait)
1832 xfs_buf_hold(bp);
1833 else
1834 list_del_init(&bp->b_list);
1836 xfs_buf_submit(bp);
1838 blk_finish_plug(&plug);
1840 return pinned;
1844 * Write out a buffer list asynchronously.
1846 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1847 * out and not wait for I/O completion on any of the buffers. This interface
1848 * is only safely useable for callers that can track I/O completion by higher
1849 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1850 * function.
1853 xfs_buf_delwri_submit_nowait(
1854 struct list_head *buffer_list)
1856 LIST_HEAD (io_list);
1857 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1861 * Write out a buffer list synchronously.
1863 * This will take the @buffer_list, write all buffers out and wait for I/O
1864 * completion on all of the buffers. @buffer_list is consumed by the function,
1865 * so callers must have some other way of tracking buffers if they require such
1866 * functionality.
1869 xfs_buf_delwri_submit(
1870 struct list_head *buffer_list)
1872 LIST_HEAD (io_list);
1873 int error = 0, error2;
1874 struct xfs_buf *bp;
1876 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1878 /* Wait for IO to complete. */
1879 while (!list_empty(&io_list)) {
1880 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1882 list_del_init(&bp->b_list);
1884 /* locking the buffer will wait for async IO completion. */
1885 xfs_buf_lock(bp);
1886 error2 = bp->b_error;
1887 xfs_buf_relse(bp);
1888 if (!error)
1889 error = error2;
1892 return error;
1895 int __init
1896 xfs_buf_init(void)
1898 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1899 KM_ZONE_HWALIGN, NULL);
1900 if (!xfs_buf_zone)
1901 goto out;
1903 return 0;
1905 out:
1906 return -ENOMEM;
1909 void
1910 xfs_buf_terminate(void)
1912 kmem_zone_destroy(xfs_buf_zone);