1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
39 #include <trace/events/kmem.h>
45 * 1. slab_mutex (Global Mutex)
47 * 3. slab_lock(page) (Only on some arches and for debugging)
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects:
56 * A. page->freelist -> List of object free in a page
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * Overloading of page flags that are otherwise used for LRU management.
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
119 static inline int kmem_cache_debug(struct kmem_cache
*s
)
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
128 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
130 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
131 p
+= s
->red_left_pad
;
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s
);
146 * Issues still to be resolved:
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 #define MIN_PARTIAL 5
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
170 #define MAX_PARTIAL 10
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
194 /* Internal SLUB flags */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201 * Tracking user of a slab.
203 #define TRACK_ADDRS_COUNT 16
205 unsigned long addr
; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
209 int cpu
; /* Was running on cpu */
210 int pid
; /* Pid context */
211 unsigned long when
; /* When did the operation occur */
214 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
217 static int sysfs_slab_add(struct kmem_cache
*);
218 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
220 static void sysfs_slab_remove(struct kmem_cache
*s
);
222 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
226 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
229 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
231 #ifdef CONFIG_SLUB_STATS
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
236 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
249 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
250 unsigned long ptr_addr
)
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr
^ s
->random
^ ptr_addr
);
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache
*s
,
263 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
264 (unsigned long)ptr_addr
);
267 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
269 return freelist_dereference(s
, object
+ s
->offset
);
272 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
275 prefetch(freelist_dereference(s
, object
+ s
->offset
));
278 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
280 unsigned long freepointer_addr
;
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s
, object
);
286 freepointer_addr
= (unsigned long)object
+ s
->offset
;
287 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
288 return freelist_ptr(s
, p
, freepointer_addr
);
291 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
293 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
299 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
313 /* Determine object index from a given position */
314 static inline unsigned int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
316 return (p
- addr
) / s
->size
;
319 static inline unsigned int order_objects(unsigned int order
, unsigned int size
)
321 return ((unsigned int)PAGE_SIZE
<< order
) / size
;
324 static inline struct kmem_cache_order_objects
oo_make(unsigned int order
,
327 struct kmem_cache_order_objects x
= {
328 (order
<< OO_SHIFT
) + order_objects(order
, size
)
334 static inline unsigned int oo_order(struct kmem_cache_order_objects x
)
336 return x
.x
>> OO_SHIFT
;
339 static inline unsigned int oo_objects(struct kmem_cache_order_objects x
)
341 return x
.x
& OO_MASK
;
345 * Per slab locking using the pagelock
347 static __always_inline
void slab_lock(struct page
*page
)
349 VM_BUG_ON_PAGE(PageTail(page
), page
);
350 bit_spin_lock(PG_locked
, &page
->flags
);
353 static __always_inline
void slab_unlock(struct page
*page
)
355 VM_BUG_ON_PAGE(PageTail(page
), page
);
356 __bit_spin_unlock(PG_locked
, &page
->flags
);
359 /* Interrupts must be disabled (for the fallback code to work right) */
360 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
361 void *freelist_old
, unsigned long counters_old
,
362 void *freelist_new
, unsigned long counters_new
,
365 VM_BUG_ON(!irqs_disabled());
366 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
367 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
368 if (s
->flags
& __CMPXCHG_DOUBLE
) {
369 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
370 freelist_old
, counters_old
,
371 freelist_new
, counters_new
))
377 if (page
->freelist
== freelist_old
&&
378 page
->counters
== counters_old
) {
379 page
->freelist
= freelist_new
;
380 page
->counters
= counters_new
;
388 stat(s
, CMPXCHG_DOUBLE_FAIL
);
390 #ifdef SLUB_DEBUG_CMPXCHG
391 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
397 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
398 void *freelist_old
, unsigned long counters_old
,
399 void *freelist_new
, unsigned long counters_new
,
402 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
403 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
404 if (s
->flags
& __CMPXCHG_DOUBLE
) {
405 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
406 freelist_old
, counters_old
,
407 freelist_new
, counters_new
))
414 local_irq_save(flags
);
416 if (page
->freelist
== freelist_old
&&
417 page
->counters
== counters_old
) {
418 page
->freelist
= freelist_new
;
419 page
->counters
= counters_new
;
421 local_irq_restore(flags
);
425 local_irq_restore(flags
);
429 stat(s
, CMPXCHG_DOUBLE_FAIL
);
431 #ifdef SLUB_DEBUG_CMPXCHG
432 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
438 #ifdef CONFIG_SLUB_DEBUG
440 * Determine a map of object in use on a page.
442 * Node listlock must be held to guarantee that the page does
443 * not vanish from under us.
445 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
448 void *addr
= page_address(page
);
450 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
451 set_bit(slab_index(p
, s
, addr
), map
);
454 static inline unsigned int size_from_object(struct kmem_cache
*s
)
456 if (s
->flags
& SLAB_RED_ZONE
)
457 return s
->size
- s
->red_left_pad
;
462 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
464 if (s
->flags
& SLAB_RED_ZONE
)
465 p
-= s
->red_left_pad
;
473 #if defined(CONFIG_SLUB_DEBUG_ON)
474 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
476 static slab_flags_t slub_debug
;
479 static char *slub_debug_slabs
;
480 static int disable_higher_order_debug
;
483 * slub is about to manipulate internal object metadata. This memory lies
484 * outside the range of the allocated object, so accessing it would normally
485 * be reported by kasan as a bounds error. metadata_access_enable() is used
486 * to tell kasan that these accesses are OK.
488 static inline void metadata_access_enable(void)
490 kasan_disable_current();
493 static inline void metadata_access_disable(void)
495 kasan_enable_current();
502 /* Verify that a pointer has an address that is valid within a slab page */
503 static inline int check_valid_pointer(struct kmem_cache
*s
,
504 struct page
*page
, void *object
)
511 base
= page_address(page
);
512 object
= restore_red_left(s
, object
);
513 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
514 (object
- base
) % s
->size
) {
521 static void print_section(char *level
, char *text
, u8
*addr
,
524 metadata_access_enable();
525 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
527 metadata_access_disable();
530 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
531 enum track_item alloc
)
536 p
= object
+ s
->offset
+ sizeof(void *);
538 p
= object
+ s
->inuse
;
543 static void set_track(struct kmem_cache
*s
, void *object
,
544 enum track_item alloc
, unsigned long addr
)
546 struct track
*p
= get_track(s
, object
, alloc
);
549 #ifdef CONFIG_STACKTRACE
550 struct stack_trace trace
;
553 trace
.nr_entries
= 0;
554 trace
.max_entries
= TRACK_ADDRS_COUNT
;
555 trace
.entries
= p
->addrs
;
557 metadata_access_enable();
558 save_stack_trace(&trace
);
559 metadata_access_disable();
561 /* See rant in lockdep.c */
562 if (trace
.nr_entries
!= 0 &&
563 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
566 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
570 p
->cpu
= smp_processor_id();
571 p
->pid
= current
->pid
;
574 memset(p
, 0, sizeof(struct track
));
577 static void init_tracking(struct kmem_cache
*s
, void *object
)
579 if (!(s
->flags
& SLAB_STORE_USER
))
582 set_track(s
, object
, TRACK_FREE
, 0UL);
583 set_track(s
, object
, TRACK_ALLOC
, 0UL);
586 static void print_track(const char *s
, struct track
*t
, unsigned long pr_time
)
591 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
592 s
, (void *)t
->addr
, pr_time
- t
->when
, t
->cpu
, t
->pid
);
593 #ifdef CONFIG_STACKTRACE
596 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
598 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
605 static void print_tracking(struct kmem_cache
*s
, void *object
)
607 unsigned long pr_time
= jiffies
;
608 if (!(s
->flags
& SLAB_STORE_USER
))
611 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
), pr_time
);
612 print_track("Freed", get_track(s
, object
, TRACK_FREE
), pr_time
);
615 static void print_page_info(struct page
*page
)
617 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
618 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
622 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
624 struct va_format vaf
;
630 pr_err("=============================================================================\n");
631 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
632 pr_err("-----------------------------------------------------------------------------\n\n");
634 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
638 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
640 struct va_format vaf
;
646 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
650 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
652 unsigned int off
; /* Offset of last byte */
653 u8
*addr
= page_address(page
);
655 print_tracking(s
, p
);
657 print_page_info(page
);
659 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
660 p
, p
- addr
, get_freepointer(s
, p
));
662 if (s
->flags
& SLAB_RED_ZONE
)
663 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
665 else if (p
> addr
+ 16)
666 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
668 print_section(KERN_ERR
, "Object ", p
,
669 min_t(unsigned int, s
->object_size
, PAGE_SIZE
));
670 if (s
->flags
& SLAB_RED_ZONE
)
671 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
672 s
->inuse
- s
->object_size
);
675 off
= s
->offset
+ sizeof(void *);
679 if (s
->flags
& SLAB_STORE_USER
)
680 off
+= 2 * sizeof(struct track
);
682 off
+= kasan_metadata_size(s
);
684 if (off
!= size_from_object(s
))
685 /* Beginning of the filler is the free pointer */
686 print_section(KERN_ERR
, "Padding ", p
+ off
,
687 size_from_object(s
) - off
);
692 void object_err(struct kmem_cache
*s
, struct page
*page
,
693 u8
*object
, char *reason
)
695 slab_bug(s
, "%s", reason
);
696 print_trailer(s
, page
, object
);
699 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct page
*page
,
700 const char *fmt
, ...)
706 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
708 slab_bug(s
, "%s", buf
);
709 print_page_info(page
);
713 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
717 if (s
->flags
& SLAB_RED_ZONE
)
718 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
720 if (s
->flags
& __OBJECT_POISON
) {
721 memset(p
, POISON_FREE
, s
->object_size
- 1);
722 p
[s
->object_size
- 1] = POISON_END
;
725 if (s
->flags
& SLAB_RED_ZONE
)
726 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
729 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
730 void *from
, void *to
)
732 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
733 memset(from
, data
, to
- from
);
736 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
737 u8
*object
, char *what
,
738 u8
*start
, unsigned int value
, unsigned int bytes
)
743 metadata_access_enable();
744 fault
= memchr_inv(start
, value
, bytes
);
745 metadata_access_disable();
750 while (end
> fault
&& end
[-1] == value
)
753 slab_bug(s
, "%s overwritten", what
);
754 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
755 fault
, end
- 1, fault
[0], value
);
756 print_trailer(s
, page
, object
);
758 restore_bytes(s
, what
, value
, fault
, end
);
766 * Bytes of the object to be managed.
767 * If the freepointer may overlay the object then the free
768 * pointer is the first word of the object.
770 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
773 * object + s->object_size
774 * Padding to reach word boundary. This is also used for Redzoning.
775 * Padding is extended by another word if Redzoning is enabled and
776 * object_size == inuse.
778 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
779 * 0xcc (RED_ACTIVE) for objects in use.
782 * Meta data starts here.
784 * A. Free pointer (if we cannot overwrite object on free)
785 * B. Tracking data for SLAB_STORE_USER
786 * C. Padding to reach required alignment boundary or at mininum
787 * one word if debugging is on to be able to detect writes
788 * before the word boundary.
790 * Padding is done using 0x5a (POISON_INUSE)
793 * Nothing is used beyond s->size.
795 * If slabcaches are merged then the object_size and inuse boundaries are mostly
796 * ignored. And therefore no slab options that rely on these boundaries
797 * may be used with merged slabcaches.
800 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
802 unsigned long off
= s
->inuse
; /* The end of info */
805 /* Freepointer is placed after the object. */
806 off
+= sizeof(void *);
808 if (s
->flags
& SLAB_STORE_USER
)
809 /* We also have user information there */
810 off
+= 2 * sizeof(struct track
);
812 off
+= kasan_metadata_size(s
);
814 if (size_from_object(s
) == off
)
817 return check_bytes_and_report(s
, page
, p
, "Object padding",
818 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
821 /* Check the pad bytes at the end of a slab page */
822 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
831 if (!(s
->flags
& SLAB_POISON
))
834 start
= page_address(page
);
835 length
= PAGE_SIZE
<< compound_order(page
);
836 end
= start
+ length
;
837 remainder
= length
% s
->size
;
841 pad
= end
- remainder
;
842 metadata_access_enable();
843 fault
= memchr_inv(pad
, POISON_INUSE
, remainder
);
844 metadata_access_disable();
847 while (end
> fault
&& end
[-1] == POISON_INUSE
)
850 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
851 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
853 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
857 static int check_object(struct kmem_cache
*s
, struct page
*page
,
858 void *object
, u8 val
)
861 u8
*endobject
= object
+ s
->object_size
;
863 if (s
->flags
& SLAB_RED_ZONE
) {
864 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
865 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
868 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
869 endobject
, val
, s
->inuse
- s
->object_size
))
872 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
873 check_bytes_and_report(s
, page
, p
, "Alignment padding",
874 endobject
, POISON_INUSE
,
875 s
->inuse
- s
->object_size
);
879 if (s
->flags
& SLAB_POISON
) {
880 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
881 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
882 POISON_FREE
, s
->object_size
- 1) ||
883 !check_bytes_and_report(s
, page
, p
, "Poison",
884 p
+ s
->object_size
- 1, POISON_END
, 1)))
887 * check_pad_bytes cleans up on its own.
889 check_pad_bytes(s
, page
, p
);
892 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
894 * Object and freepointer overlap. Cannot check
895 * freepointer while object is allocated.
899 /* Check free pointer validity */
900 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
901 object_err(s
, page
, p
, "Freepointer corrupt");
903 * No choice but to zap it and thus lose the remainder
904 * of the free objects in this slab. May cause
905 * another error because the object count is now wrong.
907 set_freepointer(s
, p
, NULL
);
913 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
917 VM_BUG_ON(!irqs_disabled());
919 if (!PageSlab(page
)) {
920 slab_err(s
, page
, "Not a valid slab page");
924 maxobj
= order_objects(compound_order(page
), s
->size
);
925 if (page
->objects
> maxobj
) {
926 slab_err(s
, page
, "objects %u > max %u",
927 page
->objects
, maxobj
);
930 if (page
->inuse
> page
->objects
) {
931 slab_err(s
, page
, "inuse %u > max %u",
932 page
->inuse
, page
->objects
);
935 /* Slab_pad_check fixes things up after itself */
936 slab_pad_check(s
, page
);
941 * Determine if a certain object on a page is on the freelist. Must hold the
942 * slab lock to guarantee that the chains are in a consistent state.
944 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
952 while (fp
&& nr
<= page
->objects
) {
955 if (!check_valid_pointer(s
, page
, fp
)) {
957 object_err(s
, page
, object
,
958 "Freechain corrupt");
959 set_freepointer(s
, object
, NULL
);
961 slab_err(s
, page
, "Freepointer corrupt");
962 page
->freelist
= NULL
;
963 page
->inuse
= page
->objects
;
964 slab_fix(s
, "Freelist cleared");
970 fp
= get_freepointer(s
, object
);
974 max_objects
= order_objects(compound_order(page
), s
->size
);
975 if (max_objects
> MAX_OBJS_PER_PAGE
)
976 max_objects
= MAX_OBJS_PER_PAGE
;
978 if (page
->objects
!= max_objects
) {
979 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
980 page
->objects
, max_objects
);
981 page
->objects
= max_objects
;
982 slab_fix(s
, "Number of objects adjusted.");
984 if (page
->inuse
!= page
->objects
- nr
) {
985 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
986 page
->inuse
, page
->objects
- nr
);
987 page
->inuse
= page
->objects
- nr
;
988 slab_fix(s
, "Object count adjusted.");
990 return search
== NULL
;
993 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
996 if (s
->flags
& SLAB_TRACE
) {
997 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
999 alloc
? "alloc" : "free",
1000 object
, page
->inuse
,
1004 print_section(KERN_INFO
, "Object ", (void *)object
,
1012 * Tracking of fully allocated slabs for debugging purposes.
1014 static void add_full(struct kmem_cache
*s
,
1015 struct kmem_cache_node
*n
, struct page
*page
)
1017 if (!(s
->flags
& SLAB_STORE_USER
))
1020 lockdep_assert_held(&n
->list_lock
);
1021 list_add(&page
->lru
, &n
->full
);
1024 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1026 if (!(s
->flags
& SLAB_STORE_USER
))
1029 lockdep_assert_held(&n
->list_lock
);
1030 list_del(&page
->lru
);
1033 /* Tracking of the number of slabs for debugging purposes */
1034 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1036 struct kmem_cache_node
*n
= get_node(s
, node
);
1038 return atomic_long_read(&n
->nr_slabs
);
1041 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1043 return atomic_long_read(&n
->nr_slabs
);
1046 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1048 struct kmem_cache_node
*n
= get_node(s
, node
);
1051 * May be called early in order to allocate a slab for the
1052 * kmem_cache_node structure. Solve the chicken-egg
1053 * dilemma by deferring the increment of the count during
1054 * bootstrap (see early_kmem_cache_node_alloc).
1057 atomic_long_inc(&n
->nr_slabs
);
1058 atomic_long_add(objects
, &n
->total_objects
);
1061 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1063 struct kmem_cache_node
*n
= get_node(s
, node
);
1065 atomic_long_dec(&n
->nr_slabs
);
1066 atomic_long_sub(objects
, &n
->total_objects
);
1069 /* Object debug checks for alloc/free paths */
1070 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1073 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1076 init_object(s
, object
, SLUB_RED_INACTIVE
);
1077 init_tracking(s
, object
);
1080 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1082 void *object
, unsigned long addr
)
1084 if (!check_slab(s
, page
))
1087 if (!check_valid_pointer(s
, page
, object
)) {
1088 object_err(s
, page
, object
, "Freelist Pointer check fails");
1092 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1098 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1100 void *object
, unsigned long addr
)
1102 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1103 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1107 /* Success perform special debug activities for allocs */
1108 if (s
->flags
& SLAB_STORE_USER
)
1109 set_track(s
, object
, TRACK_ALLOC
, addr
);
1110 trace(s
, page
, object
, 1);
1111 init_object(s
, object
, SLUB_RED_ACTIVE
);
1115 if (PageSlab(page
)) {
1117 * If this is a slab page then lets do the best we can
1118 * to avoid issues in the future. Marking all objects
1119 * as used avoids touching the remaining objects.
1121 slab_fix(s
, "Marking all objects used");
1122 page
->inuse
= page
->objects
;
1123 page
->freelist
= NULL
;
1128 static inline int free_consistency_checks(struct kmem_cache
*s
,
1129 struct page
*page
, void *object
, unsigned long addr
)
1131 if (!check_valid_pointer(s
, page
, object
)) {
1132 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1136 if (on_freelist(s
, page
, object
)) {
1137 object_err(s
, page
, object
, "Object already free");
1141 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1144 if (unlikely(s
!= page
->slab_cache
)) {
1145 if (!PageSlab(page
)) {
1146 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1148 } else if (!page
->slab_cache
) {
1149 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1153 object_err(s
, page
, object
,
1154 "page slab pointer corrupt.");
1160 /* Supports checking bulk free of a constructed freelist */
1161 static noinline
int free_debug_processing(
1162 struct kmem_cache
*s
, struct page
*page
,
1163 void *head
, void *tail
, int bulk_cnt
,
1166 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1167 void *object
= head
;
1169 unsigned long uninitialized_var(flags
);
1172 spin_lock_irqsave(&n
->list_lock
, flags
);
1175 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1176 if (!check_slab(s
, page
))
1183 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1184 if (!free_consistency_checks(s
, page
, object
, addr
))
1188 if (s
->flags
& SLAB_STORE_USER
)
1189 set_track(s
, object
, TRACK_FREE
, addr
);
1190 trace(s
, page
, object
, 0);
1191 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1192 init_object(s
, object
, SLUB_RED_INACTIVE
);
1194 /* Reached end of constructed freelist yet? */
1195 if (object
!= tail
) {
1196 object
= get_freepointer(s
, object
);
1202 if (cnt
!= bulk_cnt
)
1203 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1207 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1209 slab_fix(s
, "Object at 0x%p not freed", object
);
1213 static int __init
setup_slub_debug(char *str
)
1215 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1216 if (*str
++ != '=' || !*str
)
1218 * No options specified. Switch on full debugging.
1224 * No options but restriction on slabs. This means full
1225 * debugging for slabs matching a pattern.
1232 * Switch off all debugging measures.
1237 * Determine which debug features should be switched on
1239 for (; *str
&& *str
!= ','; str
++) {
1240 switch (tolower(*str
)) {
1242 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1245 slub_debug
|= SLAB_RED_ZONE
;
1248 slub_debug
|= SLAB_POISON
;
1251 slub_debug
|= SLAB_STORE_USER
;
1254 slub_debug
|= SLAB_TRACE
;
1257 slub_debug
|= SLAB_FAILSLAB
;
1261 * Avoid enabling debugging on caches if its minimum
1262 * order would increase as a result.
1264 disable_higher_order_debug
= 1;
1267 pr_err("slub_debug option '%c' unknown. skipped\n",
1274 slub_debug_slabs
= str
+ 1;
1279 __setup("slub_debug", setup_slub_debug
);
1281 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1282 slab_flags_t flags
, const char *name
,
1283 void (*ctor
)(void *))
1286 * Enable debugging if selected on the kernel commandline.
1288 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1289 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1290 flags
|= slub_debug
;
1294 #else /* !CONFIG_SLUB_DEBUG */
1295 static inline void setup_object_debug(struct kmem_cache
*s
,
1296 struct page
*page
, void *object
) {}
1298 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1299 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1301 static inline int free_debug_processing(
1302 struct kmem_cache
*s
, struct page
*page
,
1303 void *head
, void *tail
, int bulk_cnt
,
1304 unsigned long addr
) { return 0; }
1306 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1308 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1309 void *object
, u8 val
) { return 1; }
1310 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1311 struct page
*page
) {}
1312 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1313 struct page
*page
) {}
1314 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1315 slab_flags_t flags
, const char *name
,
1316 void (*ctor
)(void *))
1320 #define slub_debug 0
1322 #define disable_higher_order_debug 0
1324 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1326 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1328 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1330 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1333 #endif /* CONFIG_SLUB_DEBUG */
1336 * Hooks for other subsystems that check memory allocations. In a typical
1337 * production configuration these hooks all should produce no code at all.
1339 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1341 kmemleak_alloc(ptr
, size
, 1, flags
);
1342 kasan_kmalloc_large(ptr
, size
, flags
);
1345 static __always_inline
void kfree_hook(void *x
)
1348 kasan_kfree_large(x
, _RET_IP_
);
1351 static __always_inline
bool slab_free_hook(struct kmem_cache
*s
, void *x
)
1353 kmemleak_free_recursive(x
, s
->flags
);
1356 * Trouble is that we may no longer disable interrupts in the fast path
1357 * So in order to make the debug calls that expect irqs to be
1358 * disabled we need to disable interrupts temporarily.
1360 #ifdef CONFIG_LOCKDEP
1362 unsigned long flags
;
1364 local_irq_save(flags
);
1365 debug_check_no_locks_freed(x
, s
->object_size
);
1366 local_irq_restore(flags
);
1369 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1370 debug_check_no_obj_freed(x
, s
->object_size
);
1372 /* KASAN might put x into memory quarantine, delaying its reuse */
1373 return kasan_slab_free(s
, x
, _RET_IP_
);
1376 static inline bool slab_free_freelist_hook(struct kmem_cache
*s
,
1377 void **head
, void **tail
)
1380 * Compiler cannot detect this function can be removed if slab_free_hook()
1381 * evaluates to nothing. Thus, catch all relevant config debug options here.
1383 #if defined(CONFIG_LOCKDEP) || \
1384 defined(CONFIG_DEBUG_KMEMLEAK) || \
1385 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1386 defined(CONFIG_KASAN)
1390 void *old_tail
= *tail
? *tail
: *head
;
1392 /* Head and tail of the reconstructed freelist */
1398 next
= get_freepointer(s
, object
);
1399 /* If object's reuse doesn't have to be delayed */
1400 if (!slab_free_hook(s
, object
)) {
1401 /* Move object to the new freelist */
1402 set_freepointer(s
, object
, *head
);
1407 } while (object
!= old_tail
);
1412 return *head
!= NULL
;
1418 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1421 setup_object_debug(s
, page
, object
);
1422 kasan_init_slab_obj(s
, object
);
1423 if (unlikely(s
->ctor
)) {
1424 kasan_unpoison_object_data(s
, object
);
1426 kasan_poison_object_data(s
, object
);
1431 * Slab allocation and freeing
1433 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1434 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1437 unsigned int order
= oo_order(oo
);
1439 if (node
== NUMA_NO_NODE
)
1440 page
= alloc_pages(flags
, order
);
1442 page
= __alloc_pages_node(node
, flags
, order
);
1444 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1445 __free_pages(page
, order
);
1452 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1453 /* Pre-initialize the random sequence cache */
1454 static int init_cache_random_seq(struct kmem_cache
*s
)
1456 unsigned int count
= oo_objects(s
->oo
);
1459 /* Bailout if already initialised */
1463 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1465 pr_err("SLUB: Unable to initialize free list for %s\n",
1470 /* Transform to an offset on the set of pages */
1471 if (s
->random_seq
) {
1474 for (i
= 0; i
< count
; i
++)
1475 s
->random_seq
[i
] *= s
->size
;
1480 /* Initialize each random sequence freelist per cache */
1481 static void __init
init_freelist_randomization(void)
1483 struct kmem_cache
*s
;
1485 mutex_lock(&slab_mutex
);
1487 list_for_each_entry(s
, &slab_caches
, list
)
1488 init_cache_random_seq(s
);
1490 mutex_unlock(&slab_mutex
);
1493 /* Get the next entry on the pre-computed freelist randomized */
1494 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1495 unsigned long *pos
, void *start
,
1496 unsigned long page_limit
,
1497 unsigned long freelist_count
)
1502 * If the target page allocation failed, the number of objects on the
1503 * page might be smaller than the usual size defined by the cache.
1506 idx
= s
->random_seq
[*pos
];
1508 if (*pos
>= freelist_count
)
1510 } while (unlikely(idx
>= page_limit
));
1512 return (char *)start
+ idx
;
1515 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1516 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1521 unsigned long idx
, pos
, page_limit
, freelist_count
;
1523 if (page
->objects
< 2 || !s
->random_seq
)
1526 freelist_count
= oo_objects(s
->oo
);
1527 pos
= get_random_int() % freelist_count
;
1529 page_limit
= page
->objects
* s
->size
;
1530 start
= fixup_red_left(s
, page_address(page
));
1532 /* First entry is used as the base of the freelist */
1533 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1535 page
->freelist
= cur
;
1537 for (idx
= 1; idx
< page
->objects
; idx
++) {
1538 setup_object(s
, page
, cur
);
1539 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1541 set_freepointer(s
, cur
, next
);
1544 setup_object(s
, page
, cur
);
1545 set_freepointer(s
, cur
, NULL
);
1550 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1554 static inline void init_freelist_randomization(void) { }
1555 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1559 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1561 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1564 struct kmem_cache_order_objects oo
= s
->oo
;
1570 flags
&= gfp_allowed_mask
;
1572 if (gfpflags_allow_blocking(flags
))
1575 flags
|= s
->allocflags
;
1578 * Let the initial higher-order allocation fail under memory pressure
1579 * so we fall-back to the minimum order allocation.
1581 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1582 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1583 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1585 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1586 if (unlikely(!page
)) {
1590 * Allocation may have failed due to fragmentation.
1591 * Try a lower order alloc if possible
1593 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1594 if (unlikely(!page
))
1596 stat(s
, ORDER_FALLBACK
);
1599 page
->objects
= oo_objects(oo
);
1601 order
= compound_order(page
);
1602 page
->slab_cache
= s
;
1603 __SetPageSlab(page
);
1604 if (page_is_pfmemalloc(page
))
1605 SetPageSlabPfmemalloc(page
);
1607 start
= page_address(page
);
1609 if (unlikely(s
->flags
& SLAB_POISON
))
1610 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1612 kasan_poison_slab(page
);
1614 shuffle
= shuffle_freelist(s
, page
);
1617 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1618 setup_object(s
, page
, p
);
1619 if (likely(idx
< page
->objects
))
1620 set_freepointer(s
, p
, p
+ s
->size
);
1622 set_freepointer(s
, p
, NULL
);
1624 page
->freelist
= fixup_red_left(s
, start
);
1627 page
->inuse
= page
->objects
;
1631 if (gfpflags_allow_blocking(flags
))
1632 local_irq_disable();
1636 mod_lruvec_page_state(page
,
1637 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1638 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1641 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1646 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1648 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1649 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1650 flags
&= ~GFP_SLAB_BUG_MASK
;
1651 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1652 invalid_mask
, &invalid_mask
, flags
, &flags
);
1656 return allocate_slab(s
,
1657 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1660 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1662 int order
= compound_order(page
);
1663 int pages
= 1 << order
;
1665 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1668 slab_pad_check(s
, page
);
1669 for_each_object(p
, s
, page_address(page
),
1671 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1674 mod_lruvec_page_state(page
,
1675 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1676 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1679 __ClearPageSlabPfmemalloc(page
);
1680 __ClearPageSlab(page
);
1682 page
->mapping
= NULL
;
1683 if (current
->reclaim_state
)
1684 current
->reclaim_state
->reclaimed_slab
+= pages
;
1685 memcg_uncharge_slab(page
, order
, s
);
1686 __free_pages(page
, order
);
1689 static void rcu_free_slab(struct rcu_head
*h
)
1691 struct page
*page
= container_of(h
, struct page
, rcu_head
);
1693 __free_slab(page
->slab_cache
, page
);
1696 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1698 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1699 call_rcu(&page
->rcu_head
, rcu_free_slab
);
1701 __free_slab(s
, page
);
1704 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1706 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1711 * Management of partially allocated slabs.
1714 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1717 if (tail
== DEACTIVATE_TO_TAIL
)
1718 list_add_tail(&page
->lru
, &n
->partial
);
1720 list_add(&page
->lru
, &n
->partial
);
1723 static inline void add_partial(struct kmem_cache_node
*n
,
1724 struct page
*page
, int tail
)
1726 lockdep_assert_held(&n
->list_lock
);
1727 __add_partial(n
, page
, tail
);
1730 static inline void remove_partial(struct kmem_cache_node
*n
,
1733 lockdep_assert_held(&n
->list_lock
);
1734 list_del(&page
->lru
);
1739 * Remove slab from the partial list, freeze it and
1740 * return the pointer to the freelist.
1742 * Returns a list of objects or NULL if it fails.
1744 static inline void *acquire_slab(struct kmem_cache
*s
,
1745 struct kmem_cache_node
*n
, struct page
*page
,
1746 int mode
, int *objects
)
1749 unsigned long counters
;
1752 lockdep_assert_held(&n
->list_lock
);
1755 * Zap the freelist and set the frozen bit.
1756 * The old freelist is the list of objects for the
1757 * per cpu allocation list.
1759 freelist
= page
->freelist
;
1760 counters
= page
->counters
;
1761 new.counters
= counters
;
1762 *objects
= new.objects
- new.inuse
;
1764 new.inuse
= page
->objects
;
1765 new.freelist
= NULL
;
1767 new.freelist
= freelist
;
1770 VM_BUG_ON(new.frozen
);
1773 if (!__cmpxchg_double_slab(s
, page
,
1775 new.freelist
, new.counters
,
1779 remove_partial(n
, page
);
1784 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1785 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1788 * Try to allocate a partial slab from a specific node.
1790 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1791 struct kmem_cache_cpu
*c
, gfp_t flags
)
1793 struct page
*page
, *page2
;
1794 void *object
= NULL
;
1795 unsigned int available
= 0;
1799 * Racy check. If we mistakenly see no partial slabs then we
1800 * just allocate an empty slab. If we mistakenly try to get a
1801 * partial slab and there is none available then get_partials()
1804 if (!n
|| !n
->nr_partial
)
1807 spin_lock(&n
->list_lock
);
1808 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1811 if (!pfmemalloc_match(page
, flags
))
1814 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1818 available
+= objects
;
1821 stat(s
, ALLOC_FROM_PARTIAL
);
1824 put_cpu_partial(s
, page
, 0);
1825 stat(s
, CPU_PARTIAL_NODE
);
1827 if (!kmem_cache_has_cpu_partial(s
)
1828 || available
> slub_cpu_partial(s
) / 2)
1832 spin_unlock(&n
->list_lock
);
1837 * Get a page from somewhere. Search in increasing NUMA distances.
1839 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1840 struct kmem_cache_cpu
*c
)
1843 struct zonelist
*zonelist
;
1846 enum zone_type high_zoneidx
= gfp_zone(flags
);
1848 unsigned int cpuset_mems_cookie
;
1851 * The defrag ratio allows a configuration of the tradeoffs between
1852 * inter node defragmentation and node local allocations. A lower
1853 * defrag_ratio increases the tendency to do local allocations
1854 * instead of attempting to obtain partial slabs from other nodes.
1856 * If the defrag_ratio is set to 0 then kmalloc() always
1857 * returns node local objects. If the ratio is higher then kmalloc()
1858 * may return off node objects because partial slabs are obtained
1859 * from other nodes and filled up.
1861 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1862 * (which makes defrag_ratio = 1000) then every (well almost)
1863 * allocation will first attempt to defrag slab caches on other nodes.
1864 * This means scanning over all nodes to look for partial slabs which
1865 * may be expensive if we do it every time we are trying to find a slab
1866 * with available objects.
1868 if (!s
->remote_node_defrag_ratio
||
1869 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1873 cpuset_mems_cookie
= read_mems_allowed_begin();
1874 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1875 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1876 struct kmem_cache_node
*n
;
1878 n
= get_node(s
, zone_to_nid(zone
));
1880 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1881 n
->nr_partial
> s
->min_partial
) {
1882 object
= get_partial_node(s
, n
, c
, flags
);
1885 * Don't check read_mems_allowed_retry()
1886 * here - if mems_allowed was updated in
1887 * parallel, that was a harmless race
1888 * between allocation and the cpuset
1895 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1901 * Get a partial page, lock it and return it.
1903 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1904 struct kmem_cache_cpu
*c
)
1907 int searchnode
= node
;
1909 if (node
== NUMA_NO_NODE
)
1910 searchnode
= numa_mem_id();
1911 else if (!node_present_pages(node
))
1912 searchnode
= node_to_mem_node(node
);
1914 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1915 if (object
|| node
!= NUMA_NO_NODE
)
1918 return get_any_partial(s
, flags
, c
);
1921 #ifdef CONFIG_PREEMPT
1923 * Calculate the next globally unique transaction for disambiguiation
1924 * during cmpxchg. The transactions start with the cpu number and are then
1925 * incremented by CONFIG_NR_CPUS.
1927 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1930 * No preemption supported therefore also no need to check for
1936 static inline unsigned long next_tid(unsigned long tid
)
1938 return tid
+ TID_STEP
;
1941 static inline unsigned int tid_to_cpu(unsigned long tid
)
1943 return tid
% TID_STEP
;
1946 static inline unsigned long tid_to_event(unsigned long tid
)
1948 return tid
/ TID_STEP
;
1951 static inline unsigned int init_tid(int cpu
)
1956 static inline void note_cmpxchg_failure(const char *n
,
1957 const struct kmem_cache
*s
, unsigned long tid
)
1959 #ifdef SLUB_DEBUG_CMPXCHG
1960 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1962 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1964 #ifdef CONFIG_PREEMPT
1965 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1966 pr_warn("due to cpu change %d -> %d\n",
1967 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1970 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1971 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1972 tid_to_event(tid
), tid_to_event(actual_tid
));
1974 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1975 actual_tid
, tid
, next_tid(tid
));
1977 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1980 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1984 for_each_possible_cpu(cpu
)
1985 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1989 * Remove the cpu slab
1991 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1992 void *freelist
, struct kmem_cache_cpu
*c
)
1994 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1995 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1997 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1999 int tail
= DEACTIVATE_TO_HEAD
;
2003 if (page
->freelist
) {
2004 stat(s
, DEACTIVATE_REMOTE_FREES
);
2005 tail
= DEACTIVATE_TO_TAIL
;
2009 * Stage one: Free all available per cpu objects back
2010 * to the page freelist while it is still frozen. Leave the
2013 * There is no need to take the list->lock because the page
2016 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2018 unsigned long counters
;
2021 prior
= page
->freelist
;
2022 counters
= page
->counters
;
2023 set_freepointer(s
, freelist
, prior
);
2024 new.counters
= counters
;
2026 VM_BUG_ON(!new.frozen
);
2028 } while (!__cmpxchg_double_slab(s
, page
,
2030 freelist
, new.counters
,
2031 "drain percpu freelist"));
2033 freelist
= nextfree
;
2037 * Stage two: Ensure that the page is unfrozen while the
2038 * list presence reflects the actual number of objects
2041 * We setup the list membership and then perform a cmpxchg
2042 * with the count. If there is a mismatch then the page
2043 * is not unfrozen but the page is on the wrong list.
2045 * Then we restart the process which may have to remove
2046 * the page from the list that we just put it on again
2047 * because the number of objects in the slab may have
2052 old
.freelist
= page
->freelist
;
2053 old
.counters
= page
->counters
;
2054 VM_BUG_ON(!old
.frozen
);
2056 /* Determine target state of the slab */
2057 new.counters
= old
.counters
;
2060 set_freepointer(s
, freelist
, old
.freelist
);
2061 new.freelist
= freelist
;
2063 new.freelist
= old
.freelist
;
2067 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2069 else if (new.freelist
) {
2074 * Taking the spinlock removes the possiblity
2075 * that acquire_slab() will see a slab page that
2078 spin_lock(&n
->list_lock
);
2082 if (kmem_cache_debug(s
) && !lock
) {
2085 * This also ensures that the scanning of full
2086 * slabs from diagnostic functions will not see
2089 spin_lock(&n
->list_lock
);
2097 remove_partial(n
, page
);
2099 else if (l
== M_FULL
)
2101 remove_full(s
, n
, page
);
2103 if (m
== M_PARTIAL
) {
2105 add_partial(n
, page
, tail
);
2108 } else if (m
== M_FULL
) {
2110 stat(s
, DEACTIVATE_FULL
);
2111 add_full(s
, n
, page
);
2117 if (!__cmpxchg_double_slab(s
, page
,
2118 old
.freelist
, old
.counters
,
2119 new.freelist
, new.counters
,
2124 spin_unlock(&n
->list_lock
);
2127 stat(s
, DEACTIVATE_EMPTY
);
2128 discard_slab(s
, page
);
2137 * Unfreeze all the cpu partial slabs.
2139 * This function must be called with interrupts disabled
2140 * for the cpu using c (or some other guarantee must be there
2141 * to guarantee no concurrent accesses).
2143 static void unfreeze_partials(struct kmem_cache
*s
,
2144 struct kmem_cache_cpu
*c
)
2146 #ifdef CONFIG_SLUB_CPU_PARTIAL
2147 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2148 struct page
*page
, *discard_page
= NULL
;
2150 while ((page
= c
->partial
)) {
2154 c
->partial
= page
->next
;
2156 n2
= get_node(s
, page_to_nid(page
));
2159 spin_unlock(&n
->list_lock
);
2162 spin_lock(&n
->list_lock
);
2167 old
.freelist
= page
->freelist
;
2168 old
.counters
= page
->counters
;
2169 VM_BUG_ON(!old
.frozen
);
2171 new.counters
= old
.counters
;
2172 new.freelist
= old
.freelist
;
2176 } while (!__cmpxchg_double_slab(s
, page
,
2177 old
.freelist
, old
.counters
,
2178 new.freelist
, new.counters
,
2179 "unfreezing slab"));
2181 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2182 page
->next
= discard_page
;
2183 discard_page
= page
;
2185 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2186 stat(s
, FREE_ADD_PARTIAL
);
2191 spin_unlock(&n
->list_lock
);
2193 while (discard_page
) {
2194 page
= discard_page
;
2195 discard_page
= discard_page
->next
;
2197 stat(s
, DEACTIVATE_EMPTY
);
2198 discard_slab(s
, page
);
2205 * Put a page that was just frozen (in __slab_free) into a partial page
2206 * slot if available.
2208 * If we did not find a slot then simply move all the partials to the
2209 * per node partial list.
2211 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2213 #ifdef CONFIG_SLUB_CPU_PARTIAL
2214 struct page
*oldpage
;
2222 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2225 pobjects
= oldpage
->pobjects
;
2226 pages
= oldpage
->pages
;
2227 if (drain
&& pobjects
> s
->cpu_partial
) {
2228 unsigned long flags
;
2230 * partial array is full. Move the existing
2231 * set to the per node partial list.
2233 local_irq_save(flags
);
2234 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2235 local_irq_restore(flags
);
2239 stat(s
, CPU_PARTIAL_DRAIN
);
2244 pobjects
+= page
->objects
- page
->inuse
;
2246 page
->pages
= pages
;
2247 page
->pobjects
= pobjects
;
2248 page
->next
= oldpage
;
2250 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2252 if (unlikely(!s
->cpu_partial
)) {
2253 unsigned long flags
;
2255 local_irq_save(flags
);
2256 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2257 local_irq_restore(flags
);
2263 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2265 stat(s
, CPUSLAB_FLUSH
);
2266 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2268 c
->tid
= next_tid(c
->tid
);
2274 * Called from IPI handler with interrupts disabled.
2276 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2278 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2284 unfreeze_partials(s
, c
);
2288 static void flush_cpu_slab(void *d
)
2290 struct kmem_cache
*s
= d
;
2292 __flush_cpu_slab(s
, smp_processor_id());
2295 static bool has_cpu_slab(int cpu
, void *info
)
2297 struct kmem_cache
*s
= info
;
2298 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2300 return c
->page
|| slub_percpu_partial(c
);
2303 static void flush_all(struct kmem_cache
*s
)
2305 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2309 * Use the cpu notifier to insure that the cpu slabs are flushed when
2312 static int slub_cpu_dead(unsigned int cpu
)
2314 struct kmem_cache
*s
;
2315 unsigned long flags
;
2317 mutex_lock(&slab_mutex
);
2318 list_for_each_entry(s
, &slab_caches
, list
) {
2319 local_irq_save(flags
);
2320 __flush_cpu_slab(s
, cpu
);
2321 local_irq_restore(flags
);
2323 mutex_unlock(&slab_mutex
);
2328 * Check if the objects in a per cpu structure fit numa
2329 * locality expectations.
2331 static inline int node_match(struct page
*page
, int node
)
2334 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2340 #ifdef CONFIG_SLUB_DEBUG
2341 static int count_free(struct page
*page
)
2343 return page
->objects
- page
->inuse
;
2346 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2348 return atomic_long_read(&n
->total_objects
);
2350 #endif /* CONFIG_SLUB_DEBUG */
2352 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2353 static unsigned long count_partial(struct kmem_cache_node
*n
,
2354 int (*get_count
)(struct page
*))
2356 unsigned long flags
;
2357 unsigned long x
= 0;
2360 spin_lock_irqsave(&n
->list_lock
, flags
);
2361 list_for_each_entry(page
, &n
->partial
, lru
)
2362 x
+= get_count(page
);
2363 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2366 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2368 static noinline
void
2369 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2371 #ifdef CONFIG_SLUB_DEBUG
2372 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2373 DEFAULT_RATELIMIT_BURST
);
2375 struct kmem_cache_node
*n
;
2377 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2380 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2381 nid
, gfpflags
, &gfpflags
);
2382 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2383 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2386 if (oo_order(s
->min
) > get_order(s
->object_size
))
2387 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2390 for_each_kmem_cache_node(s
, node
, n
) {
2391 unsigned long nr_slabs
;
2392 unsigned long nr_objs
;
2393 unsigned long nr_free
;
2395 nr_free
= count_partial(n
, count_free
);
2396 nr_slabs
= node_nr_slabs(n
);
2397 nr_objs
= node_nr_objs(n
);
2399 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2400 node
, nr_slabs
, nr_objs
, nr_free
);
2405 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2406 int node
, struct kmem_cache_cpu
**pc
)
2409 struct kmem_cache_cpu
*c
= *pc
;
2412 WARN_ON_ONCE(s
->ctor
&& (flags
& __GFP_ZERO
));
2414 freelist
= get_partial(s
, flags
, node
, c
);
2419 page
= new_slab(s
, flags
, node
);
2421 c
= raw_cpu_ptr(s
->cpu_slab
);
2426 * No other reference to the page yet so we can
2427 * muck around with it freely without cmpxchg
2429 freelist
= page
->freelist
;
2430 page
->freelist
= NULL
;
2432 stat(s
, ALLOC_SLAB
);
2441 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2443 if (unlikely(PageSlabPfmemalloc(page
)))
2444 return gfp_pfmemalloc_allowed(gfpflags
);
2450 * Check the page->freelist of a page and either transfer the freelist to the
2451 * per cpu freelist or deactivate the page.
2453 * The page is still frozen if the return value is not NULL.
2455 * If this function returns NULL then the page has been unfrozen.
2457 * This function must be called with interrupt disabled.
2459 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2462 unsigned long counters
;
2466 freelist
= page
->freelist
;
2467 counters
= page
->counters
;
2469 new.counters
= counters
;
2470 VM_BUG_ON(!new.frozen
);
2472 new.inuse
= page
->objects
;
2473 new.frozen
= freelist
!= NULL
;
2475 } while (!__cmpxchg_double_slab(s
, page
,
2484 * Slow path. The lockless freelist is empty or we need to perform
2487 * Processing is still very fast if new objects have been freed to the
2488 * regular freelist. In that case we simply take over the regular freelist
2489 * as the lockless freelist and zap the regular freelist.
2491 * If that is not working then we fall back to the partial lists. We take the
2492 * first element of the freelist as the object to allocate now and move the
2493 * rest of the freelist to the lockless freelist.
2495 * And if we were unable to get a new slab from the partial slab lists then
2496 * we need to allocate a new slab. This is the slowest path since it involves
2497 * a call to the page allocator and the setup of a new slab.
2499 * Version of __slab_alloc to use when we know that interrupts are
2500 * already disabled (which is the case for bulk allocation).
2502 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2503 unsigned long addr
, struct kmem_cache_cpu
*c
)
2513 if (unlikely(!node_match(page
, node
))) {
2514 int searchnode
= node
;
2516 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2517 searchnode
= node_to_mem_node(node
);
2519 if (unlikely(!node_match(page
, searchnode
))) {
2520 stat(s
, ALLOC_NODE_MISMATCH
);
2521 deactivate_slab(s
, page
, c
->freelist
, c
);
2527 * By rights, we should be searching for a slab page that was
2528 * PFMEMALLOC but right now, we are losing the pfmemalloc
2529 * information when the page leaves the per-cpu allocator
2531 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2532 deactivate_slab(s
, page
, c
->freelist
, c
);
2536 /* must check again c->freelist in case of cpu migration or IRQ */
2537 freelist
= c
->freelist
;
2541 freelist
= get_freelist(s
, page
);
2545 stat(s
, DEACTIVATE_BYPASS
);
2549 stat(s
, ALLOC_REFILL
);
2553 * freelist is pointing to the list of objects to be used.
2554 * page is pointing to the page from which the objects are obtained.
2555 * That page must be frozen for per cpu allocations to work.
2557 VM_BUG_ON(!c
->page
->frozen
);
2558 c
->freelist
= get_freepointer(s
, freelist
);
2559 c
->tid
= next_tid(c
->tid
);
2564 if (slub_percpu_partial(c
)) {
2565 page
= c
->page
= slub_percpu_partial(c
);
2566 slub_set_percpu_partial(c
, page
);
2567 stat(s
, CPU_PARTIAL_ALLOC
);
2571 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2573 if (unlikely(!freelist
)) {
2574 slab_out_of_memory(s
, gfpflags
, node
);
2579 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2582 /* Only entered in the debug case */
2583 if (kmem_cache_debug(s
) &&
2584 !alloc_debug_processing(s
, page
, freelist
, addr
))
2585 goto new_slab
; /* Slab failed checks. Next slab needed */
2587 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2592 * Another one that disabled interrupt and compensates for possible
2593 * cpu changes by refetching the per cpu area pointer.
2595 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2596 unsigned long addr
, struct kmem_cache_cpu
*c
)
2599 unsigned long flags
;
2601 local_irq_save(flags
);
2602 #ifdef CONFIG_PREEMPT
2604 * We may have been preempted and rescheduled on a different
2605 * cpu before disabling interrupts. Need to reload cpu area
2608 c
= this_cpu_ptr(s
->cpu_slab
);
2611 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2612 local_irq_restore(flags
);
2617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2618 * have the fastpath folded into their functions. So no function call
2619 * overhead for requests that can be satisfied on the fastpath.
2621 * The fastpath works by first checking if the lockless freelist can be used.
2622 * If not then __slab_alloc is called for slow processing.
2624 * Otherwise we can simply pick the next object from the lockless free list.
2626 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2627 gfp_t gfpflags
, int node
, unsigned long addr
)
2630 struct kmem_cache_cpu
*c
;
2634 s
= slab_pre_alloc_hook(s
, gfpflags
);
2639 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2640 * enabled. We may switch back and forth between cpus while
2641 * reading from one cpu area. That does not matter as long
2642 * as we end up on the original cpu again when doing the cmpxchg.
2644 * We should guarantee that tid and kmem_cache are retrieved on
2645 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2646 * to check if it is matched or not.
2649 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2650 c
= raw_cpu_ptr(s
->cpu_slab
);
2651 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2652 unlikely(tid
!= READ_ONCE(c
->tid
)));
2655 * Irqless object alloc/free algorithm used here depends on sequence
2656 * of fetching cpu_slab's data. tid should be fetched before anything
2657 * on c to guarantee that object and page associated with previous tid
2658 * won't be used with current tid. If we fetch tid first, object and
2659 * page could be one associated with next tid and our alloc/free
2660 * request will be failed. In this case, we will retry. So, no problem.
2665 * The transaction ids are globally unique per cpu and per operation on
2666 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2667 * occurs on the right processor and that there was no operation on the
2668 * linked list in between.
2671 object
= c
->freelist
;
2673 if (unlikely(!object
|| !node_match(page
, node
))) {
2674 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2675 stat(s
, ALLOC_SLOWPATH
);
2677 void *next_object
= get_freepointer_safe(s
, object
);
2680 * The cmpxchg will only match if there was no additional
2681 * operation and if we are on the right processor.
2683 * The cmpxchg does the following atomically (without lock
2685 * 1. Relocate first pointer to the current per cpu area.
2686 * 2. Verify that tid and freelist have not been changed
2687 * 3. If they were not changed replace tid and freelist
2689 * Since this is without lock semantics the protection is only
2690 * against code executing on this cpu *not* from access by
2693 if (unlikely(!this_cpu_cmpxchg_double(
2694 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2696 next_object
, next_tid(tid
)))) {
2698 note_cmpxchg_failure("slab_alloc", s
, tid
);
2701 prefetch_freepointer(s
, next_object
);
2702 stat(s
, ALLOC_FASTPATH
);
2705 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2706 memset(object
, 0, s
->object_size
);
2708 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2713 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2714 gfp_t gfpflags
, unsigned long addr
)
2716 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2719 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2721 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2723 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2728 EXPORT_SYMBOL(kmem_cache_alloc
);
2730 #ifdef CONFIG_TRACING
2731 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2733 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2734 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2735 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2738 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2742 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2744 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2746 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2747 s
->object_size
, s
->size
, gfpflags
, node
);
2751 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2753 #ifdef CONFIG_TRACING
2754 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2756 int node
, size_t size
)
2758 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2760 trace_kmalloc_node(_RET_IP_
, ret
,
2761 size
, s
->size
, gfpflags
, node
);
2763 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2766 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2771 * Slow path handling. This may still be called frequently since objects
2772 * have a longer lifetime than the cpu slabs in most processing loads.
2774 * So we still attempt to reduce cache line usage. Just take the slab
2775 * lock and free the item. If there is no additional partial page
2776 * handling required then we can return immediately.
2778 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2779 void *head
, void *tail
, int cnt
,
2786 unsigned long counters
;
2787 struct kmem_cache_node
*n
= NULL
;
2788 unsigned long uninitialized_var(flags
);
2790 stat(s
, FREE_SLOWPATH
);
2792 if (kmem_cache_debug(s
) &&
2793 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2798 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2801 prior
= page
->freelist
;
2802 counters
= page
->counters
;
2803 set_freepointer(s
, tail
, prior
);
2804 new.counters
= counters
;
2805 was_frozen
= new.frozen
;
2807 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2809 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2812 * Slab was on no list before and will be
2814 * We can defer the list move and instead
2819 } else { /* Needs to be taken off a list */
2821 n
= get_node(s
, page_to_nid(page
));
2823 * Speculatively acquire the list_lock.
2824 * If the cmpxchg does not succeed then we may
2825 * drop the list_lock without any processing.
2827 * Otherwise the list_lock will synchronize with
2828 * other processors updating the list of slabs.
2830 spin_lock_irqsave(&n
->list_lock
, flags
);
2835 } while (!cmpxchg_double_slab(s
, page
,
2843 * If we just froze the page then put it onto the
2844 * per cpu partial list.
2846 if (new.frozen
&& !was_frozen
) {
2847 put_cpu_partial(s
, page
, 1);
2848 stat(s
, CPU_PARTIAL_FREE
);
2851 * The list lock was not taken therefore no list
2852 * activity can be necessary.
2855 stat(s
, FREE_FROZEN
);
2859 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2863 * Objects left in the slab. If it was not on the partial list before
2866 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2867 if (kmem_cache_debug(s
))
2868 remove_full(s
, n
, page
);
2869 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2870 stat(s
, FREE_ADD_PARTIAL
);
2872 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2878 * Slab on the partial list.
2880 remove_partial(n
, page
);
2881 stat(s
, FREE_REMOVE_PARTIAL
);
2883 /* Slab must be on the full list */
2884 remove_full(s
, n
, page
);
2887 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2889 discard_slab(s
, page
);
2893 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2894 * can perform fastpath freeing without additional function calls.
2896 * The fastpath is only possible if we are freeing to the current cpu slab
2897 * of this processor. This typically the case if we have just allocated
2900 * If fastpath is not possible then fall back to __slab_free where we deal
2901 * with all sorts of special processing.
2903 * Bulk free of a freelist with several objects (all pointing to the
2904 * same page) possible by specifying head and tail ptr, plus objects
2905 * count (cnt). Bulk free indicated by tail pointer being set.
2907 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2908 struct page
*page
, void *head
, void *tail
,
2909 int cnt
, unsigned long addr
)
2911 void *tail_obj
= tail
? : head
;
2912 struct kmem_cache_cpu
*c
;
2916 * Determine the currently cpus per cpu slab.
2917 * The cpu may change afterward. However that does not matter since
2918 * data is retrieved via this pointer. If we are on the same cpu
2919 * during the cmpxchg then the free will succeed.
2922 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2923 c
= raw_cpu_ptr(s
->cpu_slab
);
2924 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2925 unlikely(tid
!= READ_ONCE(c
->tid
)));
2927 /* Same with comment on barrier() in slab_alloc_node() */
2930 if (likely(page
== c
->page
)) {
2931 set_freepointer(s
, tail_obj
, c
->freelist
);
2933 if (unlikely(!this_cpu_cmpxchg_double(
2934 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2936 head
, next_tid(tid
)))) {
2938 note_cmpxchg_failure("slab_free", s
, tid
);
2941 stat(s
, FREE_FASTPATH
);
2943 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2947 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2948 void *head
, void *tail
, int cnt
,
2952 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2953 * to remove objects, whose reuse must be delayed.
2955 if (slab_free_freelist_hook(s
, &head
, &tail
))
2956 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
2960 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
2962 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
2966 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2968 s
= cache_from_obj(s
, x
);
2971 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2972 trace_kmem_cache_free(_RET_IP_
, x
);
2974 EXPORT_SYMBOL(kmem_cache_free
);
2976 struct detached_freelist
{
2981 struct kmem_cache
*s
;
2985 * This function progressively scans the array with free objects (with
2986 * a limited look ahead) and extract objects belonging to the same
2987 * page. It builds a detached freelist directly within the given
2988 * page/objects. This can happen without any need for
2989 * synchronization, because the objects are owned by running process.
2990 * The freelist is build up as a single linked list in the objects.
2991 * The idea is, that this detached freelist can then be bulk
2992 * transferred to the real freelist(s), but only requiring a single
2993 * synchronization primitive. Look ahead in the array is limited due
2994 * to performance reasons.
2997 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
2998 void **p
, struct detached_freelist
*df
)
3000 size_t first_skipped_index
= 0;
3005 /* Always re-init detached_freelist */
3010 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3011 } while (!object
&& size
);
3016 page
= virt_to_head_page(object
);
3018 /* Handle kalloc'ed objects */
3019 if (unlikely(!PageSlab(page
))) {
3020 BUG_ON(!PageCompound(page
));
3022 __free_pages(page
, compound_order(page
));
3023 p
[size
] = NULL
; /* mark object processed */
3026 /* Derive kmem_cache from object */
3027 df
->s
= page
->slab_cache
;
3029 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3032 /* Start new detached freelist */
3034 set_freepointer(df
->s
, object
, NULL
);
3036 df
->freelist
= object
;
3037 p
[size
] = NULL
; /* mark object processed */
3043 continue; /* Skip processed objects */
3045 /* df->page is always set at this point */
3046 if (df
->page
== virt_to_head_page(object
)) {
3047 /* Opportunity build freelist */
3048 set_freepointer(df
->s
, object
, df
->freelist
);
3049 df
->freelist
= object
;
3051 p
[size
] = NULL
; /* mark object processed */
3056 /* Limit look ahead search */
3060 if (!first_skipped_index
)
3061 first_skipped_index
= size
+ 1;
3064 return first_skipped_index
;
3067 /* Note that interrupts must be enabled when calling this function. */
3068 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3074 struct detached_freelist df
;
3076 size
= build_detached_freelist(s
, size
, p
, &df
);
3080 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3081 } while (likely(size
));
3083 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3085 /* Note that interrupts must be enabled when calling this function. */
3086 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3089 struct kmem_cache_cpu
*c
;
3092 /* memcg and kmem_cache debug support */
3093 s
= slab_pre_alloc_hook(s
, flags
);
3097 * Drain objects in the per cpu slab, while disabling local
3098 * IRQs, which protects against PREEMPT and interrupts
3099 * handlers invoking normal fastpath.
3101 local_irq_disable();
3102 c
= this_cpu_ptr(s
->cpu_slab
);
3104 for (i
= 0; i
< size
; i
++) {
3105 void *object
= c
->freelist
;
3107 if (unlikely(!object
)) {
3109 * Invoking slow path likely have side-effect
3110 * of re-populating per CPU c->freelist
3112 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3114 if (unlikely(!p
[i
]))
3117 c
= this_cpu_ptr(s
->cpu_slab
);
3118 continue; /* goto for-loop */
3120 c
->freelist
= get_freepointer(s
, object
);
3123 c
->tid
= next_tid(c
->tid
);
3126 /* Clear memory outside IRQ disabled fastpath loop */
3127 if (unlikely(flags
& __GFP_ZERO
)) {
3130 for (j
= 0; j
< i
; j
++)
3131 memset(p
[j
], 0, s
->object_size
);
3134 /* memcg and kmem_cache debug support */
3135 slab_post_alloc_hook(s
, flags
, size
, p
);
3139 slab_post_alloc_hook(s
, flags
, i
, p
);
3140 __kmem_cache_free_bulk(s
, i
, p
);
3143 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3147 * Object placement in a slab is made very easy because we always start at
3148 * offset 0. If we tune the size of the object to the alignment then we can
3149 * get the required alignment by putting one properly sized object after
3152 * Notice that the allocation order determines the sizes of the per cpu
3153 * caches. Each processor has always one slab available for allocations.
3154 * Increasing the allocation order reduces the number of times that slabs
3155 * must be moved on and off the partial lists and is therefore a factor in
3160 * Mininum / Maximum order of slab pages. This influences locking overhead
3161 * and slab fragmentation. A higher order reduces the number of partial slabs
3162 * and increases the number of allocations possible without having to
3163 * take the list_lock.
3165 static unsigned int slub_min_order
;
3166 static unsigned int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3167 static unsigned int slub_min_objects
;
3170 * Calculate the order of allocation given an slab object size.
3172 * The order of allocation has significant impact on performance and other
3173 * system components. Generally order 0 allocations should be preferred since
3174 * order 0 does not cause fragmentation in the page allocator. Larger objects
3175 * be problematic to put into order 0 slabs because there may be too much
3176 * unused space left. We go to a higher order if more than 1/16th of the slab
3179 * In order to reach satisfactory performance we must ensure that a minimum
3180 * number of objects is in one slab. Otherwise we may generate too much
3181 * activity on the partial lists which requires taking the list_lock. This is
3182 * less a concern for large slabs though which are rarely used.
3184 * slub_max_order specifies the order where we begin to stop considering the
3185 * number of objects in a slab as critical. If we reach slub_max_order then
3186 * we try to keep the page order as low as possible. So we accept more waste
3187 * of space in favor of a small page order.
3189 * Higher order allocations also allow the placement of more objects in a
3190 * slab and thereby reduce object handling overhead. If the user has
3191 * requested a higher mininum order then we start with that one instead of
3192 * the smallest order which will fit the object.
3194 static inline unsigned int slab_order(unsigned int size
,
3195 unsigned int min_objects
, unsigned int max_order
,
3196 unsigned int fract_leftover
)
3198 unsigned int min_order
= slub_min_order
;
3201 if (order_objects(min_order
, size
) > MAX_OBJS_PER_PAGE
)
3202 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3204 for (order
= max(min_order
, (unsigned int)get_order(min_objects
* size
));
3205 order
<= max_order
; order
++) {
3207 unsigned int slab_size
= (unsigned int)PAGE_SIZE
<< order
;
3210 rem
= slab_size
% size
;
3212 if (rem
<= slab_size
/ fract_leftover
)
3219 static inline int calculate_order(unsigned int size
)
3222 unsigned int min_objects
;
3223 unsigned int max_objects
;
3226 * Attempt to find best configuration for a slab. This
3227 * works by first attempting to generate a layout with
3228 * the best configuration and backing off gradually.
3230 * First we increase the acceptable waste in a slab. Then
3231 * we reduce the minimum objects required in a slab.
3233 min_objects
= slub_min_objects
;
3235 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3236 max_objects
= order_objects(slub_max_order
, size
);
3237 min_objects
= min(min_objects
, max_objects
);
3239 while (min_objects
> 1) {
3240 unsigned int fraction
;
3243 while (fraction
>= 4) {
3244 order
= slab_order(size
, min_objects
,
3245 slub_max_order
, fraction
);
3246 if (order
<= slub_max_order
)
3254 * We were unable to place multiple objects in a slab. Now
3255 * lets see if we can place a single object there.
3257 order
= slab_order(size
, 1, slub_max_order
, 1);
3258 if (order
<= slub_max_order
)
3262 * Doh this slab cannot be placed using slub_max_order.
3264 order
= slab_order(size
, 1, MAX_ORDER
, 1);
3265 if (order
< MAX_ORDER
)
3271 init_kmem_cache_node(struct kmem_cache_node
*n
)
3274 spin_lock_init(&n
->list_lock
);
3275 INIT_LIST_HEAD(&n
->partial
);
3276 #ifdef CONFIG_SLUB_DEBUG
3277 atomic_long_set(&n
->nr_slabs
, 0);
3278 atomic_long_set(&n
->total_objects
, 0);
3279 INIT_LIST_HEAD(&n
->full
);
3283 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3285 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3286 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3289 * Must align to double word boundary for the double cmpxchg
3290 * instructions to work; see __pcpu_double_call_return_bool().
3292 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3293 2 * sizeof(void *));
3298 init_kmem_cache_cpus(s
);
3303 static struct kmem_cache
*kmem_cache_node
;
3306 * No kmalloc_node yet so do it by hand. We know that this is the first
3307 * slab on the node for this slabcache. There are no concurrent accesses
3310 * Note that this function only works on the kmem_cache_node
3311 * when allocating for the kmem_cache_node. This is used for bootstrapping
3312 * memory on a fresh node that has no slab structures yet.
3314 static void early_kmem_cache_node_alloc(int node
)
3317 struct kmem_cache_node
*n
;
3319 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3321 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3324 if (page_to_nid(page
) != node
) {
3325 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3326 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3331 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3334 kmem_cache_node
->node
[node
] = n
;
3335 #ifdef CONFIG_SLUB_DEBUG
3336 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3337 init_tracking(kmem_cache_node
, n
);
3339 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3341 init_kmem_cache_node(n
);
3342 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3345 * No locks need to be taken here as it has just been
3346 * initialized and there is no concurrent access.
3348 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3351 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3354 struct kmem_cache_node
*n
;
3356 for_each_kmem_cache_node(s
, node
, n
) {
3357 s
->node
[node
] = NULL
;
3358 kmem_cache_free(kmem_cache_node
, n
);
3362 void __kmem_cache_release(struct kmem_cache
*s
)
3364 cache_random_seq_destroy(s
);
3365 free_percpu(s
->cpu_slab
);
3366 free_kmem_cache_nodes(s
);
3369 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3373 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3374 struct kmem_cache_node
*n
;
3376 if (slab_state
== DOWN
) {
3377 early_kmem_cache_node_alloc(node
);
3380 n
= kmem_cache_alloc_node(kmem_cache_node
,
3384 free_kmem_cache_nodes(s
);
3388 init_kmem_cache_node(n
);
3394 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3396 if (min
< MIN_PARTIAL
)
3398 else if (min
> MAX_PARTIAL
)
3400 s
->min_partial
= min
;
3403 static void set_cpu_partial(struct kmem_cache
*s
)
3405 #ifdef CONFIG_SLUB_CPU_PARTIAL
3407 * cpu_partial determined the maximum number of objects kept in the
3408 * per cpu partial lists of a processor.
3410 * Per cpu partial lists mainly contain slabs that just have one
3411 * object freed. If they are used for allocation then they can be
3412 * filled up again with minimal effort. The slab will never hit the
3413 * per node partial lists and therefore no locking will be required.
3415 * This setting also determines
3417 * A) The number of objects from per cpu partial slabs dumped to the
3418 * per node list when we reach the limit.
3419 * B) The number of objects in cpu partial slabs to extract from the
3420 * per node list when we run out of per cpu objects. We only fetch
3421 * 50% to keep some capacity around for frees.
3423 if (!kmem_cache_has_cpu_partial(s
))
3425 else if (s
->size
>= PAGE_SIZE
)
3427 else if (s
->size
>= 1024)
3429 else if (s
->size
>= 256)
3430 s
->cpu_partial
= 13;
3432 s
->cpu_partial
= 30;
3437 * calculate_sizes() determines the order and the distribution of data within
3440 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3442 slab_flags_t flags
= s
->flags
;
3443 unsigned int size
= s
->object_size
;
3447 * Round up object size to the next word boundary. We can only
3448 * place the free pointer at word boundaries and this determines
3449 * the possible location of the free pointer.
3451 size
= ALIGN(size
, sizeof(void *));
3453 #ifdef CONFIG_SLUB_DEBUG
3455 * Determine if we can poison the object itself. If the user of
3456 * the slab may touch the object after free or before allocation
3457 * then we should never poison the object itself.
3459 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3461 s
->flags
|= __OBJECT_POISON
;
3463 s
->flags
&= ~__OBJECT_POISON
;
3467 * If we are Redzoning then check if there is some space between the
3468 * end of the object and the free pointer. If not then add an
3469 * additional word to have some bytes to store Redzone information.
3471 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3472 size
+= sizeof(void *);
3476 * With that we have determined the number of bytes in actual use
3477 * by the object. This is the potential offset to the free pointer.
3481 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3484 * Relocate free pointer after the object if it is not
3485 * permitted to overwrite the first word of the object on
3488 * This is the case if we do RCU, have a constructor or
3489 * destructor or are poisoning the objects.
3492 size
+= sizeof(void *);
3495 #ifdef CONFIG_SLUB_DEBUG
3496 if (flags
& SLAB_STORE_USER
)
3498 * Need to store information about allocs and frees after
3501 size
+= 2 * sizeof(struct track
);
3504 kasan_cache_create(s
, &size
, &s
->flags
);
3505 #ifdef CONFIG_SLUB_DEBUG
3506 if (flags
& SLAB_RED_ZONE
) {
3508 * Add some empty padding so that we can catch
3509 * overwrites from earlier objects rather than let
3510 * tracking information or the free pointer be
3511 * corrupted if a user writes before the start
3514 size
+= sizeof(void *);
3516 s
->red_left_pad
= sizeof(void *);
3517 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3518 size
+= s
->red_left_pad
;
3523 * SLUB stores one object immediately after another beginning from
3524 * offset 0. In order to align the objects we have to simply size
3525 * each object to conform to the alignment.
3527 size
= ALIGN(size
, s
->align
);
3529 if (forced_order
>= 0)
3530 order
= forced_order
;
3532 order
= calculate_order(size
);
3539 s
->allocflags
|= __GFP_COMP
;
3541 if (s
->flags
& SLAB_CACHE_DMA
)
3542 s
->allocflags
|= GFP_DMA
;
3544 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3545 s
->allocflags
|= __GFP_RECLAIMABLE
;
3548 * Determine the number of objects per slab
3550 s
->oo
= oo_make(order
, size
);
3551 s
->min
= oo_make(get_order(size
), size
);
3552 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3555 return !!oo_objects(s
->oo
);
3558 static int kmem_cache_open(struct kmem_cache
*s
, slab_flags_t flags
)
3560 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3561 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3562 s
->random
= get_random_long();
3565 if (!calculate_sizes(s
, -1))
3567 if (disable_higher_order_debug
) {
3569 * Disable debugging flags that store metadata if the min slab
3572 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3573 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3575 if (!calculate_sizes(s
, -1))
3580 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3581 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3582 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3583 /* Enable fast mode */
3584 s
->flags
|= __CMPXCHG_DOUBLE
;
3588 * The larger the object size is, the more pages we want on the partial
3589 * list to avoid pounding the page allocator excessively.
3591 set_min_partial(s
, ilog2(s
->size
) / 2);
3596 s
->remote_node_defrag_ratio
= 1000;
3599 /* Initialize the pre-computed randomized freelist if slab is up */
3600 if (slab_state
>= UP
) {
3601 if (init_cache_random_seq(s
))
3605 if (!init_kmem_cache_nodes(s
))
3608 if (alloc_kmem_cache_cpus(s
))
3611 free_kmem_cache_nodes(s
);
3613 if (flags
& SLAB_PANIC
)
3614 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3615 s
->name
, s
->size
, s
->size
,
3616 oo_order(s
->oo
), s
->offset
, (unsigned long)flags
);
3620 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3623 #ifdef CONFIG_SLUB_DEBUG
3624 void *addr
= page_address(page
);
3626 unsigned long *map
= kcalloc(BITS_TO_LONGS(page
->objects
),
3631 slab_err(s
, page
, text
, s
->name
);
3634 get_map(s
, page
, map
);
3635 for_each_object(p
, s
, addr
, page
->objects
) {
3637 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3638 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3639 print_tracking(s
, p
);
3648 * Attempt to free all partial slabs on a node.
3649 * This is called from __kmem_cache_shutdown(). We must take list_lock
3650 * because sysfs file might still access partial list after the shutdowning.
3652 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3655 struct page
*page
, *h
;
3657 BUG_ON(irqs_disabled());
3658 spin_lock_irq(&n
->list_lock
);
3659 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3661 remove_partial(n
, page
);
3662 list_add(&page
->lru
, &discard
);
3664 list_slab_objects(s
, page
,
3665 "Objects remaining in %s on __kmem_cache_shutdown()");
3668 spin_unlock_irq(&n
->list_lock
);
3670 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3671 discard_slab(s
, page
);
3674 bool __kmem_cache_empty(struct kmem_cache
*s
)
3677 struct kmem_cache_node
*n
;
3679 for_each_kmem_cache_node(s
, node
, n
)
3680 if (n
->nr_partial
|| slabs_node(s
, node
))
3686 * Release all resources used by a slab cache.
3688 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3691 struct kmem_cache_node
*n
;
3694 /* Attempt to free all objects */
3695 for_each_kmem_cache_node(s
, node
, n
) {
3697 if (n
->nr_partial
|| slabs_node(s
, node
))
3700 sysfs_slab_remove(s
);
3704 /********************************************************************
3706 *******************************************************************/
3708 static int __init
setup_slub_min_order(char *str
)
3710 get_option(&str
, (int *)&slub_min_order
);
3715 __setup("slub_min_order=", setup_slub_min_order
);
3717 static int __init
setup_slub_max_order(char *str
)
3719 get_option(&str
, (int *)&slub_max_order
);
3720 slub_max_order
= min(slub_max_order
, (unsigned int)MAX_ORDER
- 1);
3725 __setup("slub_max_order=", setup_slub_max_order
);
3727 static int __init
setup_slub_min_objects(char *str
)
3729 get_option(&str
, (int *)&slub_min_objects
);
3734 __setup("slub_min_objects=", setup_slub_min_objects
);
3736 void *__kmalloc(size_t size
, gfp_t flags
)
3738 struct kmem_cache
*s
;
3741 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3742 return kmalloc_large(size
, flags
);
3744 s
= kmalloc_slab(size
, flags
);
3746 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3749 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3751 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3753 kasan_kmalloc(s
, ret
, size
, flags
);
3757 EXPORT_SYMBOL(__kmalloc
);
3760 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3765 flags
|= __GFP_COMP
;
3766 page
= alloc_pages_node(node
, flags
, get_order(size
));
3768 ptr
= page_address(page
);
3770 kmalloc_large_node_hook(ptr
, size
, flags
);
3774 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3776 struct kmem_cache
*s
;
3779 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3780 ret
= kmalloc_large_node(size
, flags
, node
);
3782 trace_kmalloc_node(_RET_IP_
, ret
,
3783 size
, PAGE_SIZE
<< get_order(size
),
3789 s
= kmalloc_slab(size
, flags
);
3791 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3794 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3796 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3798 kasan_kmalloc(s
, ret
, size
, flags
);
3802 EXPORT_SYMBOL(__kmalloc_node
);
3805 #ifdef CONFIG_HARDENED_USERCOPY
3807 * Rejects incorrectly sized objects and objects that are to be copied
3808 * to/from userspace but do not fall entirely within the containing slab
3809 * cache's usercopy region.
3811 * Returns NULL if check passes, otherwise const char * to name of cache
3812 * to indicate an error.
3814 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
3817 struct kmem_cache
*s
;
3818 unsigned int offset
;
3821 /* Find object and usable object size. */
3822 s
= page
->slab_cache
;
3824 /* Reject impossible pointers. */
3825 if (ptr
< page_address(page
))
3826 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
3829 /* Find offset within object. */
3830 offset
= (ptr
- page_address(page
)) % s
->size
;
3832 /* Adjust for redzone and reject if within the redzone. */
3833 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3834 if (offset
< s
->red_left_pad
)
3835 usercopy_abort("SLUB object in left red zone",
3836 s
->name
, to_user
, offset
, n
);
3837 offset
-= s
->red_left_pad
;
3840 /* Allow address range falling entirely within usercopy region. */
3841 if (offset
>= s
->useroffset
&&
3842 offset
- s
->useroffset
<= s
->usersize
&&
3843 n
<= s
->useroffset
- offset
+ s
->usersize
)
3847 * If the copy is still within the allocated object, produce
3848 * a warning instead of rejecting the copy. This is intended
3849 * to be a temporary method to find any missing usercopy
3852 object_size
= slab_ksize(s
);
3853 if (usercopy_fallback
&&
3854 offset
<= object_size
&& n
<= object_size
- offset
) {
3855 usercopy_warn("SLUB object", s
->name
, to_user
, offset
, n
);
3859 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
3861 #endif /* CONFIG_HARDENED_USERCOPY */
3863 static size_t __ksize(const void *object
)
3867 if (unlikely(object
== ZERO_SIZE_PTR
))
3870 page
= virt_to_head_page(object
);
3872 if (unlikely(!PageSlab(page
))) {
3873 WARN_ON(!PageCompound(page
));
3874 return PAGE_SIZE
<< compound_order(page
);
3877 return slab_ksize(page
->slab_cache
);
3880 size_t ksize(const void *object
)
3882 size_t size
= __ksize(object
);
3883 /* We assume that ksize callers could use whole allocated area,
3884 * so we need to unpoison this area.
3886 kasan_unpoison_shadow(object
, size
);
3889 EXPORT_SYMBOL(ksize
);
3891 void kfree(const void *x
)
3894 void *object
= (void *)x
;
3896 trace_kfree(_RET_IP_
, x
);
3898 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3901 page
= virt_to_head_page(x
);
3902 if (unlikely(!PageSlab(page
))) {
3903 BUG_ON(!PageCompound(page
));
3905 __free_pages(page
, compound_order(page
));
3908 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3910 EXPORT_SYMBOL(kfree
);
3912 #define SHRINK_PROMOTE_MAX 32
3915 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3916 * up most to the head of the partial lists. New allocations will then
3917 * fill those up and thus they can be removed from the partial lists.
3919 * The slabs with the least items are placed last. This results in them
3920 * being allocated from last increasing the chance that the last objects
3921 * are freed in them.
3923 int __kmem_cache_shrink(struct kmem_cache
*s
)
3927 struct kmem_cache_node
*n
;
3930 struct list_head discard
;
3931 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3932 unsigned long flags
;
3936 for_each_kmem_cache_node(s
, node
, n
) {
3937 INIT_LIST_HEAD(&discard
);
3938 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3939 INIT_LIST_HEAD(promote
+ i
);
3941 spin_lock_irqsave(&n
->list_lock
, flags
);
3944 * Build lists of slabs to discard or promote.
3946 * Note that concurrent frees may occur while we hold the
3947 * list_lock. page->inuse here is the upper limit.
3949 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3950 int free
= page
->objects
- page
->inuse
;
3952 /* Do not reread page->inuse */
3955 /* We do not keep full slabs on the list */
3958 if (free
== page
->objects
) {
3959 list_move(&page
->lru
, &discard
);
3961 } else if (free
<= SHRINK_PROMOTE_MAX
)
3962 list_move(&page
->lru
, promote
+ free
- 1);
3966 * Promote the slabs filled up most to the head of the
3969 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3970 list_splice(promote
+ i
, &n
->partial
);
3972 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3974 /* Release empty slabs */
3975 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3976 discard_slab(s
, page
);
3978 if (slabs_node(s
, node
))
3986 static void kmemcg_cache_deact_after_rcu(struct kmem_cache
*s
)
3989 * Called with all the locks held after a sched RCU grace period.
3990 * Even if @s becomes empty after shrinking, we can't know that @s
3991 * doesn't have allocations already in-flight and thus can't
3992 * destroy @s until the associated memcg is released.
3994 * However, let's remove the sysfs files for empty caches here.
3995 * Each cache has a lot of interface files which aren't
3996 * particularly useful for empty draining caches; otherwise, we can
3997 * easily end up with millions of unnecessary sysfs files on
3998 * systems which have a lot of memory and transient cgroups.
4000 if (!__kmem_cache_shrink(s
))
4001 sysfs_slab_remove(s
);
4004 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
4007 * Disable empty slabs caching. Used to avoid pinning offline
4008 * memory cgroups by kmem pages that can be freed.
4010 slub_set_cpu_partial(s
, 0);
4014 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4015 * we have to make sure the change is visible before shrinking.
4017 slab_deactivate_memcg_cache_rcu_sched(s
, kmemcg_cache_deact_after_rcu
);
4021 static int slab_mem_going_offline_callback(void *arg
)
4023 struct kmem_cache
*s
;
4025 mutex_lock(&slab_mutex
);
4026 list_for_each_entry(s
, &slab_caches
, list
)
4027 __kmem_cache_shrink(s
);
4028 mutex_unlock(&slab_mutex
);
4033 static void slab_mem_offline_callback(void *arg
)
4035 struct kmem_cache_node
*n
;
4036 struct kmem_cache
*s
;
4037 struct memory_notify
*marg
= arg
;
4040 offline_node
= marg
->status_change_nid_normal
;
4043 * If the node still has available memory. we need kmem_cache_node
4046 if (offline_node
< 0)
4049 mutex_lock(&slab_mutex
);
4050 list_for_each_entry(s
, &slab_caches
, list
) {
4051 n
= get_node(s
, offline_node
);
4054 * if n->nr_slabs > 0, slabs still exist on the node
4055 * that is going down. We were unable to free them,
4056 * and offline_pages() function shouldn't call this
4057 * callback. So, we must fail.
4059 BUG_ON(slabs_node(s
, offline_node
));
4061 s
->node
[offline_node
] = NULL
;
4062 kmem_cache_free(kmem_cache_node
, n
);
4065 mutex_unlock(&slab_mutex
);
4068 static int slab_mem_going_online_callback(void *arg
)
4070 struct kmem_cache_node
*n
;
4071 struct kmem_cache
*s
;
4072 struct memory_notify
*marg
= arg
;
4073 int nid
= marg
->status_change_nid_normal
;
4077 * If the node's memory is already available, then kmem_cache_node is
4078 * already created. Nothing to do.
4084 * We are bringing a node online. No memory is available yet. We must
4085 * allocate a kmem_cache_node structure in order to bring the node
4088 mutex_lock(&slab_mutex
);
4089 list_for_each_entry(s
, &slab_caches
, list
) {
4091 * XXX: kmem_cache_alloc_node will fallback to other nodes
4092 * since memory is not yet available from the node that
4095 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4100 init_kmem_cache_node(n
);
4104 mutex_unlock(&slab_mutex
);
4108 static int slab_memory_callback(struct notifier_block
*self
,
4109 unsigned long action
, void *arg
)
4114 case MEM_GOING_ONLINE
:
4115 ret
= slab_mem_going_online_callback(arg
);
4117 case MEM_GOING_OFFLINE
:
4118 ret
= slab_mem_going_offline_callback(arg
);
4121 case MEM_CANCEL_ONLINE
:
4122 slab_mem_offline_callback(arg
);
4125 case MEM_CANCEL_OFFLINE
:
4129 ret
= notifier_from_errno(ret
);
4135 static struct notifier_block slab_memory_callback_nb
= {
4136 .notifier_call
= slab_memory_callback
,
4137 .priority
= SLAB_CALLBACK_PRI
,
4140 /********************************************************************
4141 * Basic setup of slabs
4142 *******************************************************************/
4145 * Used for early kmem_cache structures that were allocated using
4146 * the page allocator. Allocate them properly then fix up the pointers
4147 * that may be pointing to the wrong kmem_cache structure.
4150 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4153 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4154 struct kmem_cache_node
*n
;
4156 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4159 * This runs very early, and only the boot processor is supposed to be
4160 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4163 __flush_cpu_slab(s
, smp_processor_id());
4164 for_each_kmem_cache_node(s
, node
, n
) {
4167 list_for_each_entry(p
, &n
->partial
, lru
)
4170 #ifdef CONFIG_SLUB_DEBUG
4171 list_for_each_entry(p
, &n
->full
, lru
)
4175 slab_init_memcg_params(s
);
4176 list_add(&s
->list
, &slab_caches
);
4177 memcg_link_cache(s
);
4181 void __init
kmem_cache_init(void)
4183 static __initdata
struct kmem_cache boot_kmem_cache
,
4184 boot_kmem_cache_node
;
4186 if (debug_guardpage_minorder())
4189 kmem_cache_node
= &boot_kmem_cache_node
;
4190 kmem_cache
= &boot_kmem_cache
;
4192 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4193 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
, 0, 0);
4195 register_hotmemory_notifier(&slab_memory_callback_nb
);
4197 /* Able to allocate the per node structures */
4198 slab_state
= PARTIAL
;
4200 create_boot_cache(kmem_cache
, "kmem_cache",
4201 offsetof(struct kmem_cache
, node
) +
4202 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4203 SLAB_HWCACHE_ALIGN
, 0, 0);
4205 kmem_cache
= bootstrap(&boot_kmem_cache
);
4206 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4208 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4209 setup_kmalloc_cache_index_table();
4210 create_kmalloc_caches(0);
4212 /* Setup random freelists for each cache */
4213 init_freelist_randomization();
4215 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4218 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4220 slub_min_order
, slub_max_order
, slub_min_objects
,
4221 nr_cpu_ids
, nr_node_ids
);
4224 void __init
kmem_cache_init_late(void)
4229 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
4230 slab_flags_t flags
, void (*ctor
)(void *))
4232 struct kmem_cache
*s
, *c
;
4234 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4239 * Adjust the object sizes so that we clear
4240 * the complete object on kzalloc.
4242 s
->object_size
= max(s
->object_size
, size
);
4243 s
->inuse
= max(s
->inuse
, ALIGN(size
, sizeof(void *)));
4245 for_each_memcg_cache(c
, s
) {
4246 c
->object_size
= s
->object_size
;
4247 c
->inuse
= max(c
->inuse
, ALIGN(size
, sizeof(void *)));
4250 if (sysfs_slab_alias(s
, name
)) {
4259 int __kmem_cache_create(struct kmem_cache
*s
, slab_flags_t flags
)
4263 err
= kmem_cache_open(s
, flags
);
4267 /* Mutex is not taken during early boot */
4268 if (slab_state
<= UP
)
4271 memcg_propagate_slab_attrs(s
);
4272 err
= sysfs_slab_add(s
);
4274 __kmem_cache_release(s
);
4279 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4281 struct kmem_cache
*s
;
4284 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4285 return kmalloc_large(size
, gfpflags
);
4287 s
= kmalloc_slab(size
, gfpflags
);
4289 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4292 ret
= slab_alloc(s
, gfpflags
, caller
);
4294 /* Honor the call site pointer we received. */
4295 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4301 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4302 int node
, unsigned long caller
)
4304 struct kmem_cache
*s
;
4307 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4308 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4310 trace_kmalloc_node(caller
, ret
,
4311 size
, PAGE_SIZE
<< get_order(size
),
4317 s
= kmalloc_slab(size
, gfpflags
);
4319 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4322 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4324 /* Honor the call site pointer we received. */
4325 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4332 static int count_inuse(struct page
*page
)
4337 static int count_total(struct page
*page
)
4339 return page
->objects
;
4343 #ifdef CONFIG_SLUB_DEBUG
4344 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4348 void *addr
= page_address(page
);
4350 if (!check_slab(s
, page
) ||
4351 !on_freelist(s
, page
, NULL
))
4354 /* Now we know that a valid freelist exists */
4355 bitmap_zero(map
, page
->objects
);
4357 get_map(s
, page
, map
);
4358 for_each_object(p
, s
, addr
, page
->objects
) {
4359 if (test_bit(slab_index(p
, s
, addr
), map
))
4360 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4364 for_each_object(p
, s
, addr
, page
->objects
)
4365 if (!test_bit(slab_index(p
, s
, addr
), map
))
4366 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4371 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4375 validate_slab(s
, page
, map
);
4379 static int validate_slab_node(struct kmem_cache
*s
,
4380 struct kmem_cache_node
*n
, unsigned long *map
)
4382 unsigned long count
= 0;
4384 unsigned long flags
;
4386 spin_lock_irqsave(&n
->list_lock
, flags
);
4388 list_for_each_entry(page
, &n
->partial
, lru
) {
4389 validate_slab_slab(s
, page
, map
);
4392 if (count
!= n
->nr_partial
)
4393 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4394 s
->name
, count
, n
->nr_partial
);
4396 if (!(s
->flags
& SLAB_STORE_USER
))
4399 list_for_each_entry(page
, &n
->full
, lru
) {
4400 validate_slab_slab(s
, page
, map
);
4403 if (count
!= atomic_long_read(&n
->nr_slabs
))
4404 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4405 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4408 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4412 static long validate_slab_cache(struct kmem_cache
*s
)
4415 unsigned long count
= 0;
4416 unsigned long *map
= kmalloc_array(BITS_TO_LONGS(oo_objects(s
->max
)),
4417 sizeof(unsigned long),
4419 struct kmem_cache_node
*n
;
4425 for_each_kmem_cache_node(s
, node
, n
)
4426 count
+= validate_slab_node(s
, n
, map
);
4431 * Generate lists of code addresses where slabcache objects are allocated
4436 unsigned long count
;
4443 DECLARE_BITMAP(cpus
, NR_CPUS
);
4449 unsigned long count
;
4450 struct location
*loc
;
4453 static void free_loc_track(struct loc_track
*t
)
4456 free_pages((unsigned long)t
->loc
,
4457 get_order(sizeof(struct location
) * t
->max
));
4460 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4465 order
= get_order(sizeof(struct location
) * max
);
4467 l
= (void *)__get_free_pages(flags
, order
);
4472 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4480 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4481 const struct track
*track
)
4483 long start
, end
, pos
;
4485 unsigned long caddr
;
4486 unsigned long age
= jiffies
- track
->when
;
4492 pos
= start
+ (end
- start
+ 1) / 2;
4495 * There is nothing at "end". If we end up there
4496 * we need to add something to before end.
4501 caddr
= t
->loc
[pos
].addr
;
4502 if (track
->addr
== caddr
) {
4508 if (age
< l
->min_time
)
4510 if (age
> l
->max_time
)
4513 if (track
->pid
< l
->min_pid
)
4514 l
->min_pid
= track
->pid
;
4515 if (track
->pid
> l
->max_pid
)
4516 l
->max_pid
= track
->pid
;
4518 cpumask_set_cpu(track
->cpu
,
4519 to_cpumask(l
->cpus
));
4521 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4525 if (track
->addr
< caddr
)
4532 * Not found. Insert new tracking element.
4534 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4540 (t
->count
- pos
) * sizeof(struct location
));
4543 l
->addr
= track
->addr
;
4547 l
->min_pid
= track
->pid
;
4548 l
->max_pid
= track
->pid
;
4549 cpumask_clear(to_cpumask(l
->cpus
));
4550 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4551 nodes_clear(l
->nodes
);
4552 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4556 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4557 struct page
*page
, enum track_item alloc
,
4560 void *addr
= page_address(page
);
4563 bitmap_zero(map
, page
->objects
);
4564 get_map(s
, page
, map
);
4566 for_each_object(p
, s
, addr
, page
->objects
)
4567 if (!test_bit(slab_index(p
, s
, addr
), map
))
4568 add_location(t
, s
, get_track(s
, p
, alloc
));
4571 static int list_locations(struct kmem_cache
*s
, char *buf
,
4572 enum track_item alloc
)
4576 struct loc_track t
= { 0, 0, NULL
};
4578 unsigned long *map
= kmalloc_array(BITS_TO_LONGS(oo_objects(s
->max
)),
4579 sizeof(unsigned long),
4581 struct kmem_cache_node
*n
;
4583 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4586 return sprintf(buf
, "Out of memory\n");
4588 /* Push back cpu slabs */
4591 for_each_kmem_cache_node(s
, node
, n
) {
4592 unsigned long flags
;
4595 if (!atomic_long_read(&n
->nr_slabs
))
4598 spin_lock_irqsave(&n
->list_lock
, flags
);
4599 list_for_each_entry(page
, &n
->partial
, lru
)
4600 process_slab(&t
, s
, page
, alloc
, map
);
4601 list_for_each_entry(page
, &n
->full
, lru
)
4602 process_slab(&t
, s
, page
, alloc
, map
);
4603 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4606 for (i
= 0; i
< t
.count
; i
++) {
4607 struct location
*l
= &t
.loc
[i
];
4609 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4611 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4614 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4616 len
+= sprintf(buf
+ len
, "<not-available>");
4618 if (l
->sum_time
!= l
->min_time
) {
4619 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4621 (long)div_u64(l
->sum_time
, l
->count
),
4624 len
+= sprintf(buf
+ len
, " age=%ld",
4627 if (l
->min_pid
!= l
->max_pid
)
4628 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4629 l
->min_pid
, l
->max_pid
);
4631 len
+= sprintf(buf
+ len
, " pid=%ld",
4634 if (num_online_cpus() > 1 &&
4635 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4636 len
< PAGE_SIZE
- 60)
4637 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4639 cpumask_pr_args(to_cpumask(l
->cpus
)));
4641 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4642 len
< PAGE_SIZE
- 60)
4643 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4645 nodemask_pr_args(&l
->nodes
));
4647 len
+= sprintf(buf
+ len
, "\n");
4653 len
+= sprintf(buf
, "No data\n");
4658 #ifdef SLUB_RESILIENCY_TEST
4659 static void __init
resiliency_test(void)
4663 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4665 pr_err("SLUB resiliency testing\n");
4666 pr_err("-----------------------\n");
4667 pr_err("A. Corruption after allocation\n");
4669 p
= kzalloc(16, GFP_KERNEL
);
4671 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4674 validate_slab_cache(kmalloc_caches
[4]);
4676 /* Hmmm... The next two are dangerous */
4677 p
= kzalloc(32, GFP_KERNEL
);
4678 p
[32 + sizeof(void *)] = 0x34;
4679 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4681 pr_err("If allocated object is overwritten then not detectable\n\n");
4683 validate_slab_cache(kmalloc_caches
[5]);
4684 p
= kzalloc(64, GFP_KERNEL
);
4685 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4687 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4689 pr_err("If allocated object is overwritten then not detectable\n\n");
4690 validate_slab_cache(kmalloc_caches
[6]);
4692 pr_err("\nB. Corruption after free\n");
4693 p
= kzalloc(128, GFP_KERNEL
);
4696 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4697 validate_slab_cache(kmalloc_caches
[7]);
4699 p
= kzalloc(256, GFP_KERNEL
);
4702 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4703 validate_slab_cache(kmalloc_caches
[8]);
4705 p
= kzalloc(512, GFP_KERNEL
);
4708 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4709 validate_slab_cache(kmalloc_caches
[9]);
4713 static void resiliency_test(void) {};
4718 enum slab_stat_type
{
4719 SL_ALL
, /* All slabs */
4720 SL_PARTIAL
, /* Only partially allocated slabs */
4721 SL_CPU
, /* Only slabs used for cpu caches */
4722 SL_OBJECTS
, /* Determine allocated objects not slabs */
4723 SL_TOTAL
/* Determine object capacity not slabs */
4726 #define SO_ALL (1 << SL_ALL)
4727 #define SO_PARTIAL (1 << SL_PARTIAL)
4728 #define SO_CPU (1 << SL_CPU)
4729 #define SO_OBJECTS (1 << SL_OBJECTS)
4730 #define SO_TOTAL (1 << SL_TOTAL)
4733 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4735 static int __init
setup_slub_memcg_sysfs(char *str
)
4739 if (get_option(&str
, &v
) > 0)
4740 memcg_sysfs_enabled
= v
;
4745 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4748 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4749 char *buf
, unsigned long flags
)
4751 unsigned long total
= 0;
4754 unsigned long *nodes
;
4756 nodes
= kcalloc(nr_node_ids
, sizeof(unsigned long), GFP_KERNEL
);
4760 if (flags
& SO_CPU
) {
4763 for_each_possible_cpu(cpu
) {
4764 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4769 page
= READ_ONCE(c
->page
);
4773 node
= page_to_nid(page
);
4774 if (flags
& SO_TOTAL
)
4776 else if (flags
& SO_OBJECTS
)
4784 page
= slub_percpu_partial_read_once(c
);
4786 node
= page_to_nid(page
);
4787 if (flags
& SO_TOTAL
)
4789 else if (flags
& SO_OBJECTS
)
4800 #ifdef CONFIG_SLUB_DEBUG
4801 if (flags
& SO_ALL
) {
4802 struct kmem_cache_node
*n
;
4804 for_each_kmem_cache_node(s
, node
, n
) {
4806 if (flags
& SO_TOTAL
)
4807 x
= atomic_long_read(&n
->total_objects
);
4808 else if (flags
& SO_OBJECTS
)
4809 x
= atomic_long_read(&n
->total_objects
) -
4810 count_partial(n
, count_free
);
4812 x
= atomic_long_read(&n
->nr_slabs
);
4819 if (flags
& SO_PARTIAL
) {
4820 struct kmem_cache_node
*n
;
4822 for_each_kmem_cache_node(s
, node
, n
) {
4823 if (flags
& SO_TOTAL
)
4824 x
= count_partial(n
, count_total
);
4825 else if (flags
& SO_OBJECTS
)
4826 x
= count_partial(n
, count_inuse
);
4833 x
= sprintf(buf
, "%lu", total
);
4835 for (node
= 0; node
< nr_node_ids
; node
++)
4837 x
+= sprintf(buf
+ x
, " N%d=%lu",
4842 return x
+ sprintf(buf
+ x
, "\n");
4845 #ifdef CONFIG_SLUB_DEBUG
4846 static int any_slab_objects(struct kmem_cache
*s
)
4849 struct kmem_cache_node
*n
;
4851 for_each_kmem_cache_node(s
, node
, n
)
4852 if (atomic_long_read(&n
->total_objects
))
4859 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4860 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4862 struct slab_attribute
{
4863 struct attribute attr
;
4864 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4865 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4868 #define SLAB_ATTR_RO(_name) \
4869 static struct slab_attribute _name##_attr = \
4870 __ATTR(_name, 0400, _name##_show, NULL)
4872 #define SLAB_ATTR(_name) \
4873 static struct slab_attribute _name##_attr = \
4874 __ATTR(_name, 0600, _name##_show, _name##_store)
4876 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4878 return sprintf(buf
, "%u\n", s
->size
);
4880 SLAB_ATTR_RO(slab_size
);
4882 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4884 return sprintf(buf
, "%u\n", s
->align
);
4886 SLAB_ATTR_RO(align
);
4888 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4890 return sprintf(buf
, "%u\n", s
->object_size
);
4892 SLAB_ATTR_RO(object_size
);
4894 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4896 return sprintf(buf
, "%u\n", oo_objects(s
->oo
));
4898 SLAB_ATTR_RO(objs_per_slab
);
4900 static ssize_t
order_store(struct kmem_cache
*s
,
4901 const char *buf
, size_t length
)
4906 err
= kstrtouint(buf
, 10, &order
);
4910 if (order
> slub_max_order
|| order
< slub_min_order
)
4913 calculate_sizes(s
, order
);
4917 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4919 return sprintf(buf
, "%u\n", oo_order(s
->oo
));
4923 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4925 return sprintf(buf
, "%lu\n", s
->min_partial
);
4928 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4934 err
= kstrtoul(buf
, 10, &min
);
4938 set_min_partial(s
, min
);
4941 SLAB_ATTR(min_partial
);
4943 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4945 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
4948 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4951 unsigned int objects
;
4954 err
= kstrtouint(buf
, 10, &objects
);
4957 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4960 slub_set_cpu_partial(s
, objects
);
4964 SLAB_ATTR(cpu_partial
);
4966 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4970 return sprintf(buf
, "%pS\n", s
->ctor
);
4974 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4976 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4978 SLAB_ATTR_RO(aliases
);
4980 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4982 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4984 SLAB_ATTR_RO(partial
);
4986 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4988 return show_slab_objects(s
, buf
, SO_CPU
);
4990 SLAB_ATTR_RO(cpu_slabs
);
4992 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4994 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4996 SLAB_ATTR_RO(objects
);
4998 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5000 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5002 SLAB_ATTR_RO(objects_partial
);
5004 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5011 for_each_online_cpu(cpu
) {
5014 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5017 pages
+= page
->pages
;
5018 objects
+= page
->pobjects
;
5022 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5025 for_each_online_cpu(cpu
) {
5028 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5030 if (page
&& len
< PAGE_SIZE
- 20)
5031 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5032 page
->pobjects
, page
->pages
);
5035 return len
+ sprintf(buf
+ len
, "\n");
5037 SLAB_ATTR_RO(slabs_cpu_partial
);
5039 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5041 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5044 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5045 const char *buf
, size_t length
)
5047 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5049 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5052 SLAB_ATTR(reclaim_account
);
5054 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5056 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5058 SLAB_ATTR_RO(hwcache_align
);
5060 #ifdef CONFIG_ZONE_DMA
5061 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5063 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5065 SLAB_ATTR_RO(cache_dma
);
5068 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
5070 return sprintf(buf
, "%u\n", s
->usersize
);
5072 SLAB_ATTR_RO(usersize
);
5074 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5076 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5078 SLAB_ATTR_RO(destroy_by_rcu
);
5080 #ifdef CONFIG_SLUB_DEBUG
5081 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5083 return show_slab_objects(s
, buf
, SO_ALL
);
5085 SLAB_ATTR_RO(slabs
);
5087 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5089 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5091 SLAB_ATTR_RO(total_objects
);
5093 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5095 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5098 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5099 const char *buf
, size_t length
)
5101 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5102 if (buf
[0] == '1') {
5103 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5104 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5108 SLAB_ATTR(sanity_checks
);
5110 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5112 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5115 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5119 * Tracing a merged cache is going to give confusing results
5120 * as well as cause other issues like converting a mergeable
5121 * cache into an umergeable one.
5123 if (s
->refcount
> 1)
5126 s
->flags
&= ~SLAB_TRACE
;
5127 if (buf
[0] == '1') {
5128 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5129 s
->flags
|= SLAB_TRACE
;
5135 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5137 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5140 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5141 const char *buf
, size_t length
)
5143 if (any_slab_objects(s
))
5146 s
->flags
&= ~SLAB_RED_ZONE
;
5147 if (buf
[0] == '1') {
5148 s
->flags
|= SLAB_RED_ZONE
;
5150 calculate_sizes(s
, -1);
5153 SLAB_ATTR(red_zone
);
5155 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5157 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5160 static ssize_t
poison_store(struct kmem_cache
*s
,
5161 const char *buf
, size_t length
)
5163 if (any_slab_objects(s
))
5166 s
->flags
&= ~SLAB_POISON
;
5167 if (buf
[0] == '1') {
5168 s
->flags
|= SLAB_POISON
;
5170 calculate_sizes(s
, -1);
5175 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5177 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5180 static ssize_t
store_user_store(struct kmem_cache
*s
,
5181 const char *buf
, size_t length
)
5183 if (any_slab_objects(s
))
5186 s
->flags
&= ~SLAB_STORE_USER
;
5187 if (buf
[0] == '1') {
5188 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5189 s
->flags
|= SLAB_STORE_USER
;
5191 calculate_sizes(s
, -1);
5194 SLAB_ATTR(store_user
);
5196 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5201 static ssize_t
validate_store(struct kmem_cache
*s
,
5202 const char *buf
, size_t length
)
5206 if (buf
[0] == '1') {
5207 ret
= validate_slab_cache(s
);
5213 SLAB_ATTR(validate
);
5215 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5217 if (!(s
->flags
& SLAB_STORE_USER
))
5219 return list_locations(s
, buf
, TRACK_ALLOC
);
5221 SLAB_ATTR_RO(alloc_calls
);
5223 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5225 if (!(s
->flags
& SLAB_STORE_USER
))
5227 return list_locations(s
, buf
, TRACK_FREE
);
5229 SLAB_ATTR_RO(free_calls
);
5230 #endif /* CONFIG_SLUB_DEBUG */
5232 #ifdef CONFIG_FAILSLAB
5233 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5235 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5238 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5241 if (s
->refcount
> 1)
5244 s
->flags
&= ~SLAB_FAILSLAB
;
5246 s
->flags
|= SLAB_FAILSLAB
;
5249 SLAB_ATTR(failslab
);
5252 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5257 static ssize_t
shrink_store(struct kmem_cache
*s
,
5258 const char *buf
, size_t length
)
5261 kmem_cache_shrink(s
);
5269 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5271 return sprintf(buf
, "%u\n", s
->remote_node_defrag_ratio
/ 10);
5274 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5275 const char *buf
, size_t length
)
5280 err
= kstrtouint(buf
, 10, &ratio
);
5286 s
->remote_node_defrag_ratio
= ratio
* 10;
5290 SLAB_ATTR(remote_node_defrag_ratio
);
5293 #ifdef CONFIG_SLUB_STATS
5294 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5296 unsigned long sum
= 0;
5299 int *data
= kmalloc_array(nr_cpu_ids
, sizeof(int), GFP_KERNEL
);
5304 for_each_online_cpu(cpu
) {
5305 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5311 len
= sprintf(buf
, "%lu", sum
);
5314 for_each_online_cpu(cpu
) {
5315 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5316 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5320 return len
+ sprintf(buf
+ len
, "\n");
5323 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5327 for_each_online_cpu(cpu
)
5328 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5331 #define STAT_ATTR(si, text) \
5332 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5334 return show_stat(s, buf, si); \
5336 static ssize_t text##_store(struct kmem_cache *s, \
5337 const char *buf, size_t length) \
5339 if (buf[0] != '0') \
5341 clear_stat(s, si); \
5346 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5347 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5348 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5349 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5350 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5351 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5352 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5353 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5354 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5355 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5356 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5357 STAT_ATTR(FREE_SLAB
, free_slab
);
5358 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5359 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5360 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5361 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5362 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5363 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5364 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5365 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5366 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5367 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5368 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5369 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5370 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5371 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5374 static struct attribute
*slab_attrs
[] = {
5375 &slab_size_attr
.attr
,
5376 &object_size_attr
.attr
,
5377 &objs_per_slab_attr
.attr
,
5379 &min_partial_attr
.attr
,
5380 &cpu_partial_attr
.attr
,
5382 &objects_partial_attr
.attr
,
5384 &cpu_slabs_attr
.attr
,
5388 &hwcache_align_attr
.attr
,
5389 &reclaim_account_attr
.attr
,
5390 &destroy_by_rcu_attr
.attr
,
5392 &slabs_cpu_partial_attr
.attr
,
5393 #ifdef CONFIG_SLUB_DEBUG
5394 &total_objects_attr
.attr
,
5396 &sanity_checks_attr
.attr
,
5398 &red_zone_attr
.attr
,
5400 &store_user_attr
.attr
,
5401 &validate_attr
.attr
,
5402 &alloc_calls_attr
.attr
,
5403 &free_calls_attr
.attr
,
5405 #ifdef CONFIG_ZONE_DMA
5406 &cache_dma_attr
.attr
,
5409 &remote_node_defrag_ratio_attr
.attr
,
5411 #ifdef CONFIG_SLUB_STATS
5412 &alloc_fastpath_attr
.attr
,
5413 &alloc_slowpath_attr
.attr
,
5414 &free_fastpath_attr
.attr
,
5415 &free_slowpath_attr
.attr
,
5416 &free_frozen_attr
.attr
,
5417 &free_add_partial_attr
.attr
,
5418 &free_remove_partial_attr
.attr
,
5419 &alloc_from_partial_attr
.attr
,
5420 &alloc_slab_attr
.attr
,
5421 &alloc_refill_attr
.attr
,
5422 &alloc_node_mismatch_attr
.attr
,
5423 &free_slab_attr
.attr
,
5424 &cpuslab_flush_attr
.attr
,
5425 &deactivate_full_attr
.attr
,
5426 &deactivate_empty_attr
.attr
,
5427 &deactivate_to_head_attr
.attr
,
5428 &deactivate_to_tail_attr
.attr
,
5429 &deactivate_remote_frees_attr
.attr
,
5430 &deactivate_bypass_attr
.attr
,
5431 &order_fallback_attr
.attr
,
5432 &cmpxchg_double_fail_attr
.attr
,
5433 &cmpxchg_double_cpu_fail_attr
.attr
,
5434 &cpu_partial_alloc_attr
.attr
,
5435 &cpu_partial_free_attr
.attr
,
5436 &cpu_partial_node_attr
.attr
,
5437 &cpu_partial_drain_attr
.attr
,
5439 #ifdef CONFIG_FAILSLAB
5440 &failslab_attr
.attr
,
5442 &usersize_attr
.attr
,
5447 static const struct attribute_group slab_attr_group
= {
5448 .attrs
= slab_attrs
,
5451 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5452 struct attribute
*attr
,
5455 struct slab_attribute
*attribute
;
5456 struct kmem_cache
*s
;
5459 attribute
= to_slab_attr(attr
);
5462 if (!attribute
->show
)
5465 err
= attribute
->show(s
, buf
);
5470 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5471 struct attribute
*attr
,
5472 const char *buf
, size_t len
)
5474 struct slab_attribute
*attribute
;
5475 struct kmem_cache
*s
;
5478 attribute
= to_slab_attr(attr
);
5481 if (!attribute
->store
)
5484 err
= attribute
->store(s
, buf
, len
);
5486 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5487 struct kmem_cache
*c
;
5489 mutex_lock(&slab_mutex
);
5490 if (s
->max_attr_size
< len
)
5491 s
->max_attr_size
= len
;
5494 * This is a best effort propagation, so this function's return
5495 * value will be determined by the parent cache only. This is
5496 * basically because not all attributes will have a well
5497 * defined semantics for rollbacks - most of the actions will
5498 * have permanent effects.
5500 * Returning the error value of any of the children that fail
5501 * is not 100 % defined, in the sense that users seeing the
5502 * error code won't be able to know anything about the state of
5505 * Only returning the error code for the parent cache at least
5506 * has well defined semantics. The cache being written to
5507 * directly either failed or succeeded, in which case we loop
5508 * through the descendants with best-effort propagation.
5510 for_each_memcg_cache(c
, s
)
5511 attribute
->store(c
, buf
, len
);
5512 mutex_unlock(&slab_mutex
);
5518 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5522 char *buffer
= NULL
;
5523 struct kmem_cache
*root_cache
;
5525 if (is_root_cache(s
))
5528 root_cache
= s
->memcg_params
.root_cache
;
5531 * This mean this cache had no attribute written. Therefore, no point
5532 * in copying default values around
5534 if (!root_cache
->max_attr_size
)
5537 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5540 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5543 if (!attr
|| !attr
->store
|| !attr
->show
)
5547 * It is really bad that we have to allocate here, so we will
5548 * do it only as a fallback. If we actually allocate, though,
5549 * we can just use the allocated buffer until the end.
5551 * Most of the slub attributes will tend to be very small in
5552 * size, but sysfs allows buffers up to a page, so they can
5553 * theoretically happen.
5557 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5560 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5561 if (WARN_ON(!buffer
))
5566 len
= attr
->show(root_cache
, buf
);
5568 attr
->store(s
, buf
, len
);
5572 free_page((unsigned long)buffer
);
5576 static void kmem_cache_release(struct kobject
*k
)
5578 slab_kmem_cache_release(to_slab(k
));
5581 static const struct sysfs_ops slab_sysfs_ops
= {
5582 .show
= slab_attr_show
,
5583 .store
= slab_attr_store
,
5586 static struct kobj_type slab_ktype
= {
5587 .sysfs_ops
= &slab_sysfs_ops
,
5588 .release
= kmem_cache_release
,
5591 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5593 struct kobj_type
*ktype
= get_ktype(kobj
);
5595 if (ktype
== &slab_ktype
)
5600 static const struct kset_uevent_ops slab_uevent_ops
= {
5601 .filter
= uevent_filter
,
5604 static struct kset
*slab_kset
;
5606 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5609 if (!is_root_cache(s
))
5610 return s
->memcg_params
.root_cache
->memcg_kset
;
5615 #define ID_STR_LENGTH 64
5617 /* Create a unique string id for a slab cache:
5619 * Format :[flags-]size
5621 static char *create_unique_id(struct kmem_cache
*s
)
5623 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5630 * First flags affecting slabcache operations. We will only
5631 * get here for aliasable slabs so we do not need to support
5632 * too many flags. The flags here must cover all flags that
5633 * are matched during merging to guarantee that the id is
5636 if (s
->flags
& SLAB_CACHE_DMA
)
5638 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5640 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5642 if (s
->flags
& SLAB_ACCOUNT
)
5646 p
+= sprintf(p
, "%07u", s
->size
);
5648 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5652 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5654 struct kmem_cache
*s
=
5655 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5657 if (!s
->kobj
.state_in_sysfs
)
5659 * For a memcg cache, this may be called during
5660 * deactivation and again on shutdown. Remove only once.
5661 * A cache is never shut down before deactivation is
5662 * complete, so no need to worry about synchronization.
5667 kset_unregister(s
->memcg_kset
);
5669 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5670 kobject_del(&s
->kobj
);
5672 kobject_put(&s
->kobj
);
5675 static int sysfs_slab_add(struct kmem_cache
*s
)
5679 struct kset
*kset
= cache_kset(s
);
5680 int unmergeable
= slab_unmergeable(s
);
5682 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5685 kobject_init(&s
->kobj
, &slab_ktype
);
5689 if (!unmergeable
&& disable_higher_order_debug
&&
5690 (slub_debug
& DEBUG_METADATA_FLAGS
))
5695 * Slabcache can never be merged so we can use the name proper.
5696 * This is typically the case for debug situations. In that
5697 * case we can catch duplicate names easily.
5699 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5703 * Create a unique name for the slab as a target
5706 name
= create_unique_id(s
);
5709 s
->kobj
.kset
= kset
;
5710 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5714 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5719 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5720 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5721 if (!s
->memcg_kset
) {
5728 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5730 /* Setup first alias */
5731 sysfs_slab_alias(s
, s
->name
);
5738 kobject_del(&s
->kobj
);
5742 static void sysfs_slab_remove(struct kmem_cache
*s
)
5744 if (slab_state
< FULL
)
5746 * Sysfs has not been setup yet so no need to remove the
5751 kobject_get(&s
->kobj
);
5752 schedule_work(&s
->kobj_remove_work
);
5755 void sysfs_slab_release(struct kmem_cache
*s
)
5757 if (slab_state
>= FULL
)
5758 kobject_put(&s
->kobj
);
5762 * Need to buffer aliases during bootup until sysfs becomes
5763 * available lest we lose that information.
5765 struct saved_alias
{
5766 struct kmem_cache
*s
;
5768 struct saved_alias
*next
;
5771 static struct saved_alias
*alias_list
;
5773 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5775 struct saved_alias
*al
;
5777 if (slab_state
== FULL
) {
5779 * If we have a leftover link then remove it.
5781 sysfs_remove_link(&slab_kset
->kobj
, name
);
5782 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5785 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5791 al
->next
= alias_list
;
5796 static int __init
slab_sysfs_init(void)
5798 struct kmem_cache
*s
;
5801 mutex_lock(&slab_mutex
);
5803 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5805 mutex_unlock(&slab_mutex
);
5806 pr_err("Cannot register slab subsystem.\n");
5812 list_for_each_entry(s
, &slab_caches
, list
) {
5813 err
= sysfs_slab_add(s
);
5815 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5819 while (alias_list
) {
5820 struct saved_alias
*al
= alias_list
;
5822 alias_list
= alias_list
->next
;
5823 err
= sysfs_slab_alias(al
->s
, al
->name
);
5825 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5830 mutex_unlock(&slab_mutex
);
5835 __initcall(slab_sysfs_init
);
5836 #endif /* CONFIG_SYSFS */
5839 * The /proc/slabinfo ABI
5841 #ifdef CONFIG_SLUB_DEBUG
5842 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5844 unsigned long nr_slabs
= 0;
5845 unsigned long nr_objs
= 0;
5846 unsigned long nr_free
= 0;
5848 struct kmem_cache_node
*n
;
5850 for_each_kmem_cache_node(s
, node
, n
) {
5851 nr_slabs
+= node_nr_slabs(n
);
5852 nr_objs
+= node_nr_objs(n
);
5853 nr_free
+= count_partial(n
, count_free
);
5856 sinfo
->active_objs
= nr_objs
- nr_free
;
5857 sinfo
->num_objs
= nr_objs
;
5858 sinfo
->active_slabs
= nr_slabs
;
5859 sinfo
->num_slabs
= nr_slabs
;
5860 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5861 sinfo
->cache_order
= oo_order(s
->oo
);
5864 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5868 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5869 size_t count
, loff_t
*ppos
)
5873 #endif /* CONFIG_SLUB_DEBUG */