net: usb: rtl8150: use irqsave() in USB's complete callback
[linux/fpc-iii.git] / mm / slub.c
bloba3b8467c14af642138deaf35fd3ed3f7f87aed93
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
39 #include <trace/events/kmem.h>
41 #include "internal.h"
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
49 * slab_mutex
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects:
56 * A. page->freelist -> List of object free in a page
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * Overloading of page flags that are otherwise used for LRU management.
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
119 static inline int kmem_cache_debug(struct kmem_cache *s)
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
128 void *fixup_red_left(struct kmem_cache *s, void *p)
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
133 return p;
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
146 * Issues still to be resolved:
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 #define MIN_PARTIAL 5
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
170 #define MAX_PARTIAL 10
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201 * Tracking user of a slab.
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208 #endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
231 #ifdef CONFIG_SLUB_STATS
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 return ptr;
256 #endif
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 return freelist_dereference(s, object + s->offset);
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
280 unsigned long freepointer_addr;
281 void *p;
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
313 /* Determine object index from a given position */
314 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
316 return (p - addr) / s->size;
319 static inline unsigned int order_objects(unsigned int order, unsigned int size)
321 return ((unsigned int)PAGE_SIZE << order) / size;
324 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
325 unsigned int size)
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size)
331 return x;
334 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
336 return x.x >> OO_SHIFT;
339 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
341 return x.x & OO_MASK;
345 * Per slab locking using the pagelock
347 static __always_inline void slab_lock(struct page *page)
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 bit_spin_lock(PG_locked, &page->flags);
353 static __always_inline void slab_unlock(struct page *page)
355 VM_BUG_ON_PAGE(PageTail(page), page);
356 __bit_spin_unlock(PG_locked, &page->flags);
359 /* Interrupts must be disabled (for the fallback code to work right) */
360 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
361 void *freelist_old, unsigned long counters_old,
362 void *freelist_new, unsigned long counters_new,
363 const char *n)
365 VM_BUG_ON(!irqs_disabled());
366 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
367 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
368 if (s->flags & __CMPXCHG_DOUBLE) {
369 if (cmpxchg_double(&page->freelist, &page->counters,
370 freelist_old, counters_old,
371 freelist_new, counters_new))
372 return true;
373 } else
374 #endif
376 slab_lock(page);
377 if (page->freelist == freelist_old &&
378 page->counters == counters_old) {
379 page->freelist = freelist_new;
380 page->counters = counters_new;
381 slab_unlock(page);
382 return true;
384 slab_unlock(page);
387 cpu_relax();
388 stat(s, CMPXCHG_DOUBLE_FAIL);
390 #ifdef SLUB_DEBUG_CMPXCHG
391 pr_info("%s %s: cmpxchg double redo ", n, s->name);
392 #endif
394 return false;
397 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
398 void *freelist_old, unsigned long counters_old,
399 void *freelist_new, unsigned long counters_new,
400 const char *n)
402 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
403 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist, &page->counters,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return true;
409 } else
410 #endif
412 unsigned long flags;
414 local_irq_save(flags);
415 slab_lock(page);
416 if (page->freelist == freelist_old &&
417 page->counters == counters_old) {
418 page->freelist = freelist_new;
419 page->counters = counters_new;
420 slab_unlock(page);
421 local_irq_restore(flags);
422 return true;
424 slab_unlock(page);
425 local_irq_restore(flags);
428 cpu_relax();
429 stat(s, CMPXCHG_DOUBLE_FAIL);
431 #ifdef SLUB_DEBUG_CMPXCHG
432 pr_info("%s %s: cmpxchg double redo ", n, s->name);
433 #endif
435 return false;
438 #ifdef CONFIG_SLUB_DEBUG
440 * Determine a map of object in use on a page.
442 * Node listlock must be held to guarantee that the page does
443 * not vanish from under us.
445 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
447 void *p;
448 void *addr = page_address(page);
450 for (p = page->freelist; p; p = get_freepointer(s, p))
451 set_bit(slab_index(p, s, addr), map);
454 static inline unsigned int size_from_object(struct kmem_cache *s)
456 if (s->flags & SLAB_RED_ZONE)
457 return s->size - s->red_left_pad;
459 return s->size;
462 static inline void *restore_red_left(struct kmem_cache *s, void *p)
464 if (s->flags & SLAB_RED_ZONE)
465 p -= s->red_left_pad;
467 return p;
471 * Debug settings:
473 #if defined(CONFIG_SLUB_DEBUG_ON)
474 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
475 #else
476 static slab_flags_t slub_debug;
477 #endif
479 static char *slub_debug_slabs;
480 static int disable_higher_order_debug;
483 * slub is about to manipulate internal object metadata. This memory lies
484 * outside the range of the allocated object, so accessing it would normally
485 * be reported by kasan as a bounds error. metadata_access_enable() is used
486 * to tell kasan that these accesses are OK.
488 static inline void metadata_access_enable(void)
490 kasan_disable_current();
493 static inline void metadata_access_disable(void)
495 kasan_enable_current();
499 * Object debugging
502 /* Verify that a pointer has an address that is valid within a slab page */
503 static inline int check_valid_pointer(struct kmem_cache *s,
504 struct page *page, void *object)
506 void *base;
508 if (!object)
509 return 1;
511 base = page_address(page);
512 object = restore_red_left(s, object);
513 if (object < base || object >= base + page->objects * s->size ||
514 (object - base) % s->size) {
515 return 0;
518 return 1;
521 static void print_section(char *level, char *text, u8 *addr,
522 unsigned int length)
524 metadata_access_enable();
525 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
526 length, 1);
527 metadata_access_disable();
530 static struct track *get_track(struct kmem_cache *s, void *object,
531 enum track_item alloc)
533 struct track *p;
535 if (s->offset)
536 p = object + s->offset + sizeof(void *);
537 else
538 p = object + s->inuse;
540 return p + alloc;
543 static void set_track(struct kmem_cache *s, void *object,
544 enum track_item alloc, unsigned long addr)
546 struct track *p = get_track(s, object, alloc);
548 if (addr) {
549 #ifdef CONFIG_STACKTRACE
550 struct stack_trace trace;
551 int i;
553 trace.nr_entries = 0;
554 trace.max_entries = TRACK_ADDRS_COUNT;
555 trace.entries = p->addrs;
556 trace.skip = 3;
557 metadata_access_enable();
558 save_stack_trace(&trace);
559 metadata_access_disable();
561 /* See rant in lockdep.c */
562 if (trace.nr_entries != 0 &&
563 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
564 trace.nr_entries--;
566 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
567 p->addrs[i] = 0;
568 #endif
569 p->addr = addr;
570 p->cpu = smp_processor_id();
571 p->pid = current->pid;
572 p->when = jiffies;
573 } else
574 memset(p, 0, sizeof(struct track));
577 static void init_tracking(struct kmem_cache *s, void *object)
579 if (!(s->flags & SLAB_STORE_USER))
580 return;
582 set_track(s, object, TRACK_FREE, 0UL);
583 set_track(s, object, TRACK_ALLOC, 0UL);
586 static void print_track(const char *s, struct track *t, unsigned long pr_time)
588 if (!t->addr)
589 return;
591 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
592 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
593 #ifdef CONFIG_STACKTRACE
595 int i;
596 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
597 if (t->addrs[i])
598 pr_err("\t%pS\n", (void *)t->addrs[i]);
599 else
600 break;
602 #endif
605 static void print_tracking(struct kmem_cache *s, void *object)
607 unsigned long pr_time = jiffies;
608 if (!(s->flags & SLAB_STORE_USER))
609 return;
611 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
612 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
615 static void print_page_info(struct page *page)
617 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
618 page, page->objects, page->inuse, page->freelist, page->flags);
622 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
624 struct va_format vaf;
625 va_list args;
627 va_start(args, fmt);
628 vaf.fmt = fmt;
629 vaf.va = &args;
630 pr_err("=============================================================================\n");
631 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
632 pr_err("-----------------------------------------------------------------------------\n\n");
634 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
635 va_end(args);
638 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
640 struct va_format vaf;
641 va_list args;
643 va_start(args, fmt);
644 vaf.fmt = fmt;
645 vaf.va = &args;
646 pr_err("FIX %s: %pV\n", s->name, &vaf);
647 va_end(args);
650 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
652 unsigned int off; /* Offset of last byte */
653 u8 *addr = page_address(page);
655 print_tracking(s, p);
657 print_page_info(page);
659 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
660 p, p - addr, get_freepointer(s, p));
662 if (s->flags & SLAB_RED_ZONE)
663 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
664 s->red_left_pad);
665 else if (p > addr + 16)
666 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
668 print_section(KERN_ERR, "Object ", p,
669 min_t(unsigned int, s->object_size, PAGE_SIZE));
670 if (s->flags & SLAB_RED_ZONE)
671 print_section(KERN_ERR, "Redzone ", p + s->object_size,
672 s->inuse - s->object_size);
674 if (s->offset)
675 off = s->offset + sizeof(void *);
676 else
677 off = s->inuse;
679 if (s->flags & SLAB_STORE_USER)
680 off += 2 * sizeof(struct track);
682 off += kasan_metadata_size(s);
684 if (off != size_from_object(s))
685 /* Beginning of the filler is the free pointer */
686 print_section(KERN_ERR, "Padding ", p + off,
687 size_from_object(s) - off);
689 dump_stack();
692 void object_err(struct kmem_cache *s, struct page *page,
693 u8 *object, char *reason)
695 slab_bug(s, "%s", reason);
696 print_trailer(s, page, object);
699 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
700 const char *fmt, ...)
702 va_list args;
703 char buf[100];
705 va_start(args, fmt);
706 vsnprintf(buf, sizeof(buf), fmt, args);
707 va_end(args);
708 slab_bug(s, "%s", buf);
709 print_page_info(page);
710 dump_stack();
713 static void init_object(struct kmem_cache *s, void *object, u8 val)
715 u8 *p = object;
717 if (s->flags & SLAB_RED_ZONE)
718 memset(p - s->red_left_pad, val, s->red_left_pad);
720 if (s->flags & __OBJECT_POISON) {
721 memset(p, POISON_FREE, s->object_size - 1);
722 p[s->object_size - 1] = POISON_END;
725 if (s->flags & SLAB_RED_ZONE)
726 memset(p + s->object_size, val, s->inuse - s->object_size);
729 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
730 void *from, void *to)
732 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
733 memset(from, data, to - from);
736 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
737 u8 *object, char *what,
738 u8 *start, unsigned int value, unsigned int bytes)
740 u8 *fault;
741 u8 *end;
743 metadata_access_enable();
744 fault = memchr_inv(start, value, bytes);
745 metadata_access_disable();
746 if (!fault)
747 return 1;
749 end = start + bytes;
750 while (end > fault && end[-1] == value)
751 end--;
753 slab_bug(s, "%s overwritten", what);
754 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
755 fault, end - 1, fault[0], value);
756 print_trailer(s, page, object);
758 restore_bytes(s, what, value, fault, end);
759 return 0;
763 * Object layout:
765 * object address
766 * Bytes of the object to be managed.
767 * If the freepointer may overlay the object then the free
768 * pointer is the first word of the object.
770 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
771 * 0xa5 (POISON_END)
773 * object + s->object_size
774 * Padding to reach word boundary. This is also used for Redzoning.
775 * Padding is extended by another word if Redzoning is enabled and
776 * object_size == inuse.
778 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
779 * 0xcc (RED_ACTIVE) for objects in use.
781 * object + s->inuse
782 * Meta data starts here.
784 * A. Free pointer (if we cannot overwrite object on free)
785 * B. Tracking data for SLAB_STORE_USER
786 * C. Padding to reach required alignment boundary or at mininum
787 * one word if debugging is on to be able to detect writes
788 * before the word boundary.
790 * Padding is done using 0x5a (POISON_INUSE)
792 * object + s->size
793 * Nothing is used beyond s->size.
795 * If slabcaches are merged then the object_size and inuse boundaries are mostly
796 * ignored. And therefore no slab options that rely on these boundaries
797 * may be used with merged slabcaches.
800 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
802 unsigned long off = s->inuse; /* The end of info */
804 if (s->offset)
805 /* Freepointer is placed after the object. */
806 off += sizeof(void *);
808 if (s->flags & SLAB_STORE_USER)
809 /* We also have user information there */
810 off += 2 * sizeof(struct track);
812 off += kasan_metadata_size(s);
814 if (size_from_object(s) == off)
815 return 1;
817 return check_bytes_and_report(s, page, p, "Object padding",
818 p + off, POISON_INUSE, size_from_object(s) - off);
821 /* Check the pad bytes at the end of a slab page */
822 static int slab_pad_check(struct kmem_cache *s, struct page *page)
824 u8 *start;
825 u8 *fault;
826 u8 *end;
827 u8 *pad;
828 int length;
829 int remainder;
831 if (!(s->flags & SLAB_POISON))
832 return 1;
834 start = page_address(page);
835 length = PAGE_SIZE << compound_order(page);
836 end = start + length;
837 remainder = length % s->size;
838 if (!remainder)
839 return 1;
841 pad = end - remainder;
842 metadata_access_enable();
843 fault = memchr_inv(pad, POISON_INUSE, remainder);
844 metadata_access_disable();
845 if (!fault)
846 return 1;
847 while (end > fault && end[-1] == POISON_INUSE)
848 end--;
850 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
851 print_section(KERN_ERR, "Padding ", pad, remainder);
853 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
854 return 0;
857 static int check_object(struct kmem_cache *s, struct page *page,
858 void *object, u8 val)
860 u8 *p = object;
861 u8 *endobject = object + s->object_size;
863 if (s->flags & SLAB_RED_ZONE) {
864 if (!check_bytes_and_report(s, page, object, "Redzone",
865 object - s->red_left_pad, val, s->red_left_pad))
866 return 0;
868 if (!check_bytes_and_report(s, page, object, "Redzone",
869 endobject, val, s->inuse - s->object_size))
870 return 0;
871 } else {
872 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
873 check_bytes_and_report(s, page, p, "Alignment padding",
874 endobject, POISON_INUSE,
875 s->inuse - s->object_size);
879 if (s->flags & SLAB_POISON) {
880 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
881 (!check_bytes_and_report(s, page, p, "Poison", p,
882 POISON_FREE, s->object_size - 1) ||
883 !check_bytes_and_report(s, page, p, "Poison",
884 p + s->object_size - 1, POISON_END, 1)))
885 return 0;
887 * check_pad_bytes cleans up on its own.
889 check_pad_bytes(s, page, p);
892 if (!s->offset && val == SLUB_RED_ACTIVE)
894 * Object and freepointer overlap. Cannot check
895 * freepointer while object is allocated.
897 return 1;
899 /* Check free pointer validity */
900 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
901 object_err(s, page, p, "Freepointer corrupt");
903 * No choice but to zap it and thus lose the remainder
904 * of the free objects in this slab. May cause
905 * another error because the object count is now wrong.
907 set_freepointer(s, p, NULL);
908 return 0;
910 return 1;
913 static int check_slab(struct kmem_cache *s, struct page *page)
915 int maxobj;
917 VM_BUG_ON(!irqs_disabled());
919 if (!PageSlab(page)) {
920 slab_err(s, page, "Not a valid slab page");
921 return 0;
924 maxobj = order_objects(compound_order(page), s->size);
925 if (page->objects > maxobj) {
926 slab_err(s, page, "objects %u > max %u",
927 page->objects, maxobj);
928 return 0;
930 if (page->inuse > page->objects) {
931 slab_err(s, page, "inuse %u > max %u",
932 page->inuse, page->objects);
933 return 0;
935 /* Slab_pad_check fixes things up after itself */
936 slab_pad_check(s, page);
937 return 1;
941 * Determine if a certain object on a page is on the freelist. Must hold the
942 * slab lock to guarantee that the chains are in a consistent state.
944 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
946 int nr = 0;
947 void *fp;
948 void *object = NULL;
949 int max_objects;
951 fp = page->freelist;
952 while (fp && nr <= page->objects) {
953 if (fp == search)
954 return 1;
955 if (!check_valid_pointer(s, page, fp)) {
956 if (object) {
957 object_err(s, page, object,
958 "Freechain corrupt");
959 set_freepointer(s, object, NULL);
960 } else {
961 slab_err(s, page, "Freepointer corrupt");
962 page->freelist = NULL;
963 page->inuse = page->objects;
964 slab_fix(s, "Freelist cleared");
965 return 0;
967 break;
969 object = fp;
970 fp = get_freepointer(s, object);
971 nr++;
974 max_objects = order_objects(compound_order(page), s->size);
975 if (max_objects > MAX_OBJS_PER_PAGE)
976 max_objects = MAX_OBJS_PER_PAGE;
978 if (page->objects != max_objects) {
979 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
980 page->objects, max_objects);
981 page->objects = max_objects;
982 slab_fix(s, "Number of objects adjusted.");
984 if (page->inuse != page->objects - nr) {
985 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
986 page->inuse, page->objects - nr);
987 page->inuse = page->objects - nr;
988 slab_fix(s, "Object count adjusted.");
990 return search == NULL;
993 static void trace(struct kmem_cache *s, struct page *page, void *object,
994 int alloc)
996 if (s->flags & SLAB_TRACE) {
997 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
998 s->name,
999 alloc ? "alloc" : "free",
1000 object, page->inuse,
1001 page->freelist);
1003 if (!alloc)
1004 print_section(KERN_INFO, "Object ", (void *)object,
1005 s->object_size);
1007 dump_stack();
1012 * Tracking of fully allocated slabs for debugging purposes.
1014 static void add_full(struct kmem_cache *s,
1015 struct kmem_cache_node *n, struct page *page)
1017 if (!(s->flags & SLAB_STORE_USER))
1018 return;
1020 lockdep_assert_held(&n->list_lock);
1021 list_add(&page->lru, &n->full);
1024 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1026 if (!(s->flags & SLAB_STORE_USER))
1027 return;
1029 lockdep_assert_held(&n->list_lock);
1030 list_del(&page->lru);
1033 /* Tracking of the number of slabs for debugging purposes */
1034 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1036 struct kmem_cache_node *n = get_node(s, node);
1038 return atomic_long_read(&n->nr_slabs);
1041 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1043 return atomic_long_read(&n->nr_slabs);
1046 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1048 struct kmem_cache_node *n = get_node(s, node);
1051 * May be called early in order to allocate a slab for the
1052 * kmem_cache_node structure. Solve the chicken-egg
1053 * dilemma by deferring the increment of the count during
1054 * bootstrap (see early_kmem_cache_node_alloc).
1056 if (likely(n)) {
1057 atomic_long_inc(&n->nr_slabs);
1058 atomic_long_add(objects, &n->total_objects);
1061 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1063 struct kmem_cache_node *n = get_node(s, node);
1065 atomic_long_dec(&n->nr_slabs);
1066 atomic_long_sub(objects, &n->total_objects);
1069 /* Object debug checks for alloc/free paths */
1070 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1071 void *object)
1073 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1074 return;
1076 init_object(s, object, SLUB_RED_INACTIVE);
1077 init_tracking(s, object);
1080 static inline int alloc_consistency_checks(struct kmem_cache *s,
1081 struct page *page,
1082 void *object, unsigned long addr)
1084 if (!check_slab(s, page))
1085 return 0;
1087 if (!check_valid_pointer(s, page, object)) {
1088 object_err(s, page, object, "Freelist Pointer check fails");
1089 return 0;
1092 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1093 return 0;
1095 return 1;
1098 static noinline int alloc_debug_processing(struct kmem_cache *s,
1099 struct page *page,
1100 void *object, unsigned long addr)
1102 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1103 if (!alloc_consistency_checks(s, page, object, addr))
1104 goto bad;
1107 /* Success perform special debug activities for allocs */
1108 if (s->flags & SLAB_STORE_USER)
1109 set_track(s, object, TRACK_ALLOC, addr);
1110 trace(s, page, object, 1);
1111 init_object(s, object, SLUB_RED_ACTIVE);
1112 return 1;
1114 bad:
1115 if (PageSlab(page)) {
1117 * If this is a slab page then lets do the best we can
1118 * to avoid issues in the future. Marking all objects
1119 * as used avoids touching the remaining objects.
1121 slab_fix(s, "Marking all objects used");
1122 page->inuse = page->objects;
1123 page->freelist = NULL;
1125 return 0;
1128 static inline int free_consistency_checks(struct kmem_cache *s,
1129 struct page *page, void *object, unsigned long addr)
1131 if (!check_valid_pointer(s, page, object)) {
1132 slab_err(s, page, "Invalid object pointer 0x%p", object);
1133 return 0;
1136 if (on_freelist(s, page, object)) {
1137 object_err(s, page, object, "Object already free");
1138 return 0;
1141 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1142 return 0;
1144 if (unlikely(s != page->slab_cache)) {
1145 if (!PageSlab(page)) {
1146 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1147 object);
1148 } else if (!page->slab_cache) {
1149 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1150 object);
1151 dump_stack();
1152 } else
1153 object_err(s, page, object,
1154 "page slab pointer corrupt.");
1155 return 0;
1157 return 1;
1160 /* Supports checking bulk free of a constructed freelist */
1161 static noinline int free_debug_processing(
1162 struct kmem_cache *s, struct page *page,
1163 void *head, void *tail, int bulk_cnt,
1164 unsigned long addr)
1166 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1167 void *object = head;
1168 int cnt = 0;
1169 unsigned long uninitialized_var(flags);
1170 int ret = 0;
1172 spin_lock_irqsave(&n->list_lock, flags);
1173 slab_lock(page);
1175 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1176 if (!check_slab(s, page))
1177 goto out;
1180 next_object:
1181 cnt++;
1183 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1184 if (!free_consistency_checks(s, page, object, addr))
1185 goto out;
1188 if (s->flags & SLAB_STORE_USER)
1189 set_track(s, object, TRACK_FREE, addr);
1190 trace(s, page, object, 0);
1191 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1192 init_object(s, object, SLUB_RED_INACTIVE);
1194 /* Reached end of constructed freelist yet? */
1195 if (object != tail) {
1196 object = get_freepointer(s, object);
1197 goto next_object;
1199 ret = 1;
1201 out:
1202 if (cnt != bulk_cnt)
1203 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1204 bulk_cnt, cnt);
1206 slab_unlock(page);
1207 spin_unlock_irqrestore(&n->list_lock, flags);
1208 if (!ret)
1209 slab_fix(s, "Object at 0x%p not freed", object);
1210 return ret;
1213 static int __init setup_slub_debug(char *str)
1215 slub_debug = DEBUG_DEFAULT_FLAGS;
1216 if (*str++ != '=' || !*str)
1218 * No options specified. Switch on full debugging.
1220 goto out;
1222 if (*str == ',')
1224 * No options but restriction on slabs. This means full
1225 * debugging for slabs matching a pattern.
1227 goto check_slabs;
1229 slub_debug = 0;
1230 if (*str == '-')
1232 * Switch off all debugging measures.
1234 goto out;
1237 * Determine which debug features should be switched on
1239 for (; *str && *str != ','; str++) {
1240 switch (tolower(*str)) {
1241 case 'f':
1242 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1243 break;
1244 case 'z':
1245 slub_debug |= SLAB_RED_ZONE;
1246 break;
1247 case 'p':
1248 slub_debug |= SLAB_POISON;
1249 break;
1250 case 'u':
1251 slub_debug |= SLAB_STORE_USER;
1252 break;
1253 case 't':
1254 slub_debug |= SLAB_TRACE;
1255 break;
1256 case 'a':
1257 slub_debug |= SLAB_FAILSLAB;
1258 break;
1259 case 'o':
1261 * Avoid enabling debugging on caches if its minimum
1262 * order would increase as a result.
1264 disable_higher_order_debug = 1;
1265 break;
1266 default:
1267 pr_err("slub_debug option '%c' unknown. skipped\n",
1268 *str);
1272 check_slabs:
1273 if (*str == ',')
1274 slub_debug_slabs = str + 1;
1275 out:
1276 return 1;
1279 __setup("slub_debug", setup_slub_debug);
1281 slab_flags_t kmem_cache_flags(unsigned int object_size,
1282 slab_flags_t flags, const char *name,
1283 void (*ctor)(void *))
1286 * Enable debugging if selected on the kernel commandline.
1288 if (slub_debug && (!slub_debug_slabs || (name &&
1289 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1290 flags |= slub_debug;
1292 return flags;
1294 #else /* !CONFIG_SLUB_DEBUG */
1295 static inline void setup_object_debug(struct kmem_cache *s,
1296 struct page *page, void *object) {}
1298 static inline int alloc_debug_processing(struct kmem_cache *s,
1299 struct page *page, void *object, unsigned long addr) { return 0; }
1301 static inline int free_debug_processing(
1302 struct kmem_cache *s, struct page *page,
1303 void *head, void *tail, int bulk_cnt,
1304 unsigned long addr) { return 0; }
1306 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1307 { return 1; }
1308 static inline int check_object(struct kmem_cache *s, struct page *page,
1309 void *object, u8 val) { return 1; }
1310 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1311 struct page *page) {}
1312 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1313 struct page *page) {}
1314 slab_flags_t kmem_cache_flags(unsigned int object_size,
1315 slab_flags_t flags, const char *name,
1316 void (*ctor)(void *))
1318 return flags;
1320 #define slub_debug 0
1322 #define disable_higher_order_debug 0
1324 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1325 { return 0; }
1326 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1327 { return 0; }
1328 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1329 int objects) {}
1330 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1331 int objects) {}
1333 #endif /* CONFIG_SLUB_DEBUG */
1336 * Hooks for other subsystems that check memory allocations. In a typical
1337 * production configuration these hooks all should produce no code at all.
1339 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1341 kmemleak_alloc(ptr, size, 1, flags);
1342 kasan_kmalloc_large(ptr, size, flags);
1345 static __always_inline void kfree_hook(void *x)
1347 kmemleak_free(x);
1348 kasan_kfree_large(x, _RET_IP_);
1351 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1353 kmemleak_free_recursive(x, s->flags);
1356 * Trouble is that we may no longer disable interrupts in the fast path
1357 * So in order to make the debug calls that expect irqs to be
1358 * disabled we need to disable interrupts temporarily.
1360 #ifdef CONFIG_LOCKDEP
1362 unsigned long flags;
1364 local_irq_save(flags);
1365 debug_check_no_locks_freed(x, s->object_size);
1366 local_irq_restore(flags);
1368 #endif
1369 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1370 debug_check_no_obj_freed(x, s->object_size);
1372 /* KASAN might put x into memory quarantine, delaying its reuse */
1373 return kasan_slab_free(s, x, _RET_IP_);
1376 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1377 void **head, void **tail)
1380 * Compiler cannot detect this function can be removed if slab_free_hook()
1381 * evaluates to nothing. Thus, catch all relevant config debug options here.
1383 #if defined(CONFIG_LOCKDEP) || \
1384 defined(CONFIG_DEBUG_KMEMLEAK) || \
1385 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1386 defined(CONFIG_KASAN)
1388 void *object;
1389 void *next = *head;
1390 void *old_tail = *tail ? *tail : *head;
1392 /* Head and tail of the reconstructed freelist */
1393 *head = NULL;
1394 *tail = NULL;
1396 do {
1397 object = next;
1398 next = get_freepointer(s, object);
1399 /* If object's reuse doesn't have to be delayed */
1400 if (!slab_free_hook(s, object)) {
1401 /* Move object to the new freelist */
1402 set_freepointer(s, object, *head);
1403 *head = object;
1404 if (!*tail)
1405 *tail = object;
1407 } while (object != old_tail);
1409 if (*head == *tail)
1410 *tail = NULL;
1412 return *head != NULL;
1413 #else
1414 return true;
1415 #endif
1418 static void setup_object(struct kmem_cache *s, struct page *page,
1419 void *object)
1421 setup_object_debug(s, page, object);
1422 kasan_init_slab_obj(s, object);
1423 if (unlikely(s->ctor)) {
1424 kasan_unpoison_object_data(s, object);
1425 s->ctor(object);
1426 kasan_poison_object_data(s, object);
1431 * Slab allocation and freeing
1433 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1434 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1436 struct page *page;
1437 unsigned int order = oo_order(oo);
1439 if (node == NUMA_NO_NODE)
1440 page = alloc_pages(flags, order);
1441 else
1442 page = __alloc_pages_node(node, flags, order);
1444 if (page && memcg_charge_slab(page, flags, order, s)) {
1445 __free_pages(page, order);
1446 page = NULL;
1449 return page;
1452 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1453 /* Pre-initialize the random sequence cache */
1454 static int init_cache_random_seq(struct kmem_cache *s)
1456 unsigned int count = oo_objects(s->oo);
1457 int err;
1459 /* Bailout if already initialised */
1460 if (s->random_seq)
1461 return 0;
1463 err = cache_random_seq_create(s, count, GFP_KERNEL);
1464 if (err) {
1465 pr_err("SLUB: Unable to initialize free list for %s\n",
1466 s->name);
1467 return err;
1470 /* Transform to an offset on the set of pages */
1471 if (s->random_seq) {
1472 unsigned int i;
1474 for (i = 0; i < count; i++)
1475 s->random_seq[i] *= s->size;
1477 return 0;
1480 /* Initialize each random sequence freelist per cache */
1481 static void __init init_freelist_randomization(void)
1483 struct kmem_cache *s;
1485 mutex_lock(&slab_mutex);
1487 list_for_each_entry(s, &slab_caches, list)
1488 init_cache_random_seq(s);
1490 mutex_unlock(&slab_mutex);
1493 /* Get the next entry on the pre-computed freelist randomized */
1494 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1495 unsigned long *pos, void *start,
1496 unsigned long page_limit,
1497 unsigned long freelist_count)
1499 unsigned int idx;
1502 * If the target page allocation failed, the number of objects on the
1503 * page might be smaller than the usual size defined by the cache.
1505 do {
1506 idx = s->random_seq[*pos];
1507 *pos += 1;
1508 if (*pos >= freelist_count)
1509 *pos = 0;
1510 } while (unlikely(idx >= page_limit));
1512 return (char *)start + idx;
1515 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1516 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1518 void *start;
1519 void *cur;
1520 void *next;
1521 unsigned long idx, pos, page_limit, freelist_count;
1523 if (page->objects < 2 || !s->random_seq)
1524 return false;
1526 freelist_count = oo_objects(s->oo);
1527 pos = get_random_int() % freelist_count;
1529 page_limit = page->objects * s->size;
1530 start = fixup_red_left(s, page_address(page));
1532 /* First entry is used as the base of the freelist */
1533 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1534 freelist_count);
1535 page->freelist = cur;
1537 for (idx = 1; idx < page->objects; idx++) {
1538 setup_object(s, page, cur);
1539 next = next_freelist_entry(s, page, &pos, start, page_limit,
1540 freelist_count);
1541 set_freepointer(s, cur, next);
1542 cur = next;
1544 setup_object(s, page, cur);
1545 set_freepointer(s, cur, NULL);
1547 return true;
1549 #else
1550 static inline int init_cache_random_seq(struct kmem_cache *s)
1552 return 0;
1554 static inline void init_freelist_randomization(void) { }
1555 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1557 return false;
1559 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1561 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1563 struct page *page;
1564 struct kmem_cache_order_objects oo = s->oo;
1565 gfp_t alloc_gfp;
1566 void *start, *p;
1567 int idx, order;
1568 bool shuffle;
1570 flags &= gfp_allowed_mask;
1572 if (gfpflags_allow_blocking(flags))
1573 local_irq_enable();
1575 flags |= s->allocflags;
1578 * Let the initial higher-order allocation fail under memory pressure
1579 * so we fall-back to the minimum order allocation.
1581 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1582 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1583 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1585 page = alloc_slab_page(s, alloc_gfp, node, oo);
1586 if (unlikely(!page)) {
1587 oo = s->min;
1588 alloc_gfp = flags;
1590 * Allocation may have failed due to fragmentation.
1591 * Try a lower order alloc if possible
1593 page = alloc_slab_page(s, alloc_gfp, node, oo);
1594 if (unlikely(!page))
1595 goto out;
1596 stat(s, ORDER_FALLBACK);
1599 page->objects = oo_objects(oo);
1601 order = compound_order(page);
1602 page->slab_cache = s;
1603 __SetPageSlab(page);
1604 if (page_is_pfmemalloc(page))
1605 SetPageSlabPfmemalloc(page);
1607 start = page_address(page);
1609 if (unlikely(s->flags & SLAB_POISON))
1610 memset(start, POISON_INUSE, PAGE_SIZE << order);
1612 kasan_poison_slab(page);
1614 shuffle = shuffle_freelist(s, page);
1616 if (!shuffle) {
1617 for_each_object_idx(p, idx, s, start, page->objects) {
1618 setup_object(s, page, p);
1619 if (likely(idx < page->objects))
1620 set_freepointer(s, p, p + s->size);
1621 else
1622 set_freepointer(s, p, NULL);
1624 page->freelist = fixup_red_left(s, start);
1627 page->inuse = page->objects;
1628 page->frozen = 1;
1630 out:
1631 if (gfpflags_allow_blocking(flags))
1632 local_irq_disable();
1633 if (!page)
1634 return NULL;
1636 mod_lruvec_page_state(page,
1637 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1638 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1639 1 << oo_order(oo));
1641 inc_slabs_node(s, page_to_nid(page), page->objects);
1643 return page;
1646 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1648 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1649 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1650 flags &= ~GFP_SLAB_BUG_MASK;
1651 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1652 invalid_mask, &invalid_mask, flags, &flags);
1653 dump_stack();
1656 return allocate_slab(s,
1657 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1660 static void __free_slab(struct kmem_cache *s, struct page *page)
1662 int order = compound_order(page);
1663 int pages = 1 << order;
1665 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1666 void *p;
1668 slab_pad_check(s, page);
1669 for_each_object(p, s, page_address(page),
1670 page->objects)
1671 check_object(s, page, p, SLUB_RED_INACTIVE);
1674 mod_lruvec_page_state(page,
1675 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1676 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1677 -pages);
1679 __ClearPageSlabPfmemalloc(page);
1680 __ClearPageSlab(page);
1682 page->mapping = NULL;
1683 if (current->reclaim_state)
1684 current->reclaim_state->reclaimed_slab += pages;
1685 memcg_uncharge_slab(page, order, s);
1686 __free_pages(page, order);
1689 static void rcu_free_slab(struct rcu_head *h)
1691 struct page *page = container_of(h, struct page, rcu_head);
1693 __free_slab(page->slab_cache, page);
1696 static void free_slab(struct kmem_cache *s, struct page *page)
1698 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1699 call_rcu(&page->rcu_head, rcu_free_slab);
1700 } else
1701 __free_slab(s, page);
1704 static void discard_slab(struct kmem_cache *s, struct page *page)
1706 dec_slabs_node(s, page_to_nid(page), page->objects);
1707 free_slab(s, page);
1711 * Management of partially allocated slabs.
1713 static inline void
1714 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1716 n->nr_partial++;
1717 if (tail == DEACTIVATE_TO_TAIL)
1718 list_add_tail(&page->lru, &n->partial);
1719 else
1720 list_add(&page->lru, &n->partial);
1723 static inline void add_partial(struct kmem_cache_node *n,
1724 struct page *page, int tail)
1726 lockdep_assert_held(&n->list_lock);
1727 __add_partial(n, page, tail);
1730 static inline void remove_partial(struct kmem_cache_node *n,
1731 struct page *page)
1733 lockdep_assert_held(&n->list_lock);
1734 list_del(&page->lru);
1735 n->nr_partial--;
1739 * Remove slab from the partial list, freeze it and
1740 * return the pointer to the freelist.
1742 * Returns a list of objects or NULL if it fails.
1744 static inline void *acquire_slab(struct kmem_cache *s,
1745 struct kmem_cache_node *n, struct page *page,
1746 int mode, int *objects)
1748 void *freelist;
1749 unsigned long counters;
1750 struct page new;
1752 lockdep_assert_held(&n->list_lock);
1755 * Zap the freelist and set the frozen bit.
1756 * The old freelist is the list of objects for the
1757 * per cpu allocation list.
1759 freelist = page->freelist;
1760 counters = page->counters;
1761 new.counters = counters;
1762 *objects = new.objects - new.inuse;
1763 if (mode) {
1764 new.inuse = page->objects;
1765 new.freelist = NULL;
1766 } else {
1767 new.freelist = freelist;
1770 VM_BUG_ON(new.frozen);
1771 new.frozen = 1;
1773 if (!__cmpxchg_double_slab(s, page,
1774 freelist, counters,
1775 new.freelist, new.counters,
1776 "acquire_slab"))
1777 return NULL;
1779 remove_partial(n, page);
1780 WARN_ON(!freelist);
1781 return freelist;
1784 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1785 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1788 * Try to allocate a partial slab from a specific node.
1790 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1791 struct kmem_cache_cpu *c, gfp_t flags)
1793 struct page *page, *page2;
1794 void *object = NULL;
1795 unsigned int available = 0;
1796 int objects;
1799 * Racy check. If we mistakenly see no partial slabs then we
1800 * just allocate an empty slab. If we mistakenly try to get a
1801 * partial slab and there is none available then get_partials()
1802 * will return NULL.
1804 if (!n || !n->nr_partial)
1805 return NULL;
1807 spin_lock(&n->list_lock);
1808 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1809 void *t;
1811 if (!pfmemalloc_match(page, flags))
1812 continue;
1814 t = acquire_slab(s, n, page, object == NULL, &objects);
1815 if (!t)
1816 break;
1818 available += objects;
1819 if (!object) {
1820 c->page = page;
1821 stat(s, ALLOC_FROM_PARTIAL);
1822 object = t;
1823 } else {
1824 put_cpu_partial(s, page, 0);
1825 stat(s, CPU_PARTIAL_NODE);
1827 if (!kmem_cache_has_cpu_partial(s)
1828 || available > slub_cpu_partial(s) / 2)
1829 break;
1832 spin_unlock(&n->list_lock);
1833 return object;
1837 * Get a page from somewhere. Search in increasing NUMA distances.
1839 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1840 struct kmem_cache_cpu *c)
1842 #ifdef CONFIG_NUMA
1843 struct zonelist *zonelist;
1844 struct zoneref *z;
1845 struct zone *zone;
1846 enum zone_type high_zoneidx = gfp_zone(flags);
1847 void *object;
1848 unsigned int cpuset_mems_cookie;
1851 * The defrag ratio allows a configuration of the tradeoffs between
1852 * inter node defragmentation and node local allocations. A lower
1853 * defrag_ratio increases the tendency to do local allocations
1854 * instead of attempting to obtain partial slabs from other nodes.
1856 * If the defrag_ratio is set to 0 then kmalloc() always
1857 * returns node local objects. If the ratio is higher then kmalloc()
1858 * may return off node objects because partial slabs are obtained
1859 * from other nodes and filled up.
1861 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1862 * (which makes defrag_ratio = 1000) then every (well almost)
1863 * allocation will first attempt to defrag slab caches on other nodes.
1864 * This means scanning over all nodes to look for partial slabs which
1865 * may be expensive if we do it every time we are trying to find a slab
1866 * with available objects.
1868 if (!s->remote_node_defrag_ratio ||
1869 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1870 return NULL;
1872 do {
1873 cpuset_mems_cookie = read_mems_allowed_begin();
1874 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1875 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1876 struct kmem_cache_node *n;
1878 n = get_node(s, zone_to_nid(zone));
1880 if (n && cpuset_zone_allowed(zone, flags) &&
1881 n->nr_partial > s->min_partial) {
1882 object = get_partial_node(s, n, c, flags);
1883 if (object) {
1885 * Don't check read_mems_allowed_retry()
1886 * here - if mems_allowed was updated in
1887 * parallel, that was a harmless race
1888 * between allocation and the cpuset
1889 * update
1891 return object;
1895 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1896 #endif
1897 return NULL;
1901 * Get a partial page, lock it and return it.
1903 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1904 struct kmem_cache_cpu *c)
1906 void *object;
1907 int searchnode = node;
1909 if (node == NUMA_NO_NODE)
1910 searchnode = numa_mem_id();
1911 else if (!node_present_pages(node))
1912 searchnode = node_to_mem_node(node);
1914 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1915 if (object || node != NUMA_NO_NODE)
1916 return object;
1918 return get_any_partial(s, flags, c);
1921 #ifdef CONFIG_PREEMPT
1923 * Calculate the next globally unique transaction for disambiguiation
1924 * during cmpxchg. The transactions start with the cpu number and are then
1925 * incremented by CONFIG_NR_CPUS.
1927 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1928 #else
1930 * No preemption supported therefore also no need to check for
1931 * different cpus.
1933 #define TID_STEP 1
1934 #endif
1936 static inline unsigned long next_tid(unsigned long tid)
1938 return tid + TID_STEP;
1941 static inline unsigned int tid_to_cpu(unsigned long tid)
1943 return tid % TID_STEP;
1946 static inline unsigned long tid_to_event(unsigned long tid)
1948 return tid / TID_STEP;
1951 static inline unsigned int init_tid(int cpu)
1953 return cpu;
1956 static inline void note_cmpxchg_failure(const char *n,
1957 const struct kmem_cache *s, unsigned long tid)
1959 #ifdef SLUB_DEBUG_CMPXCHG
1960 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1962 pr_info("%s %s: cmpxchg redo ", n, s->name);
1964 #ifdef CONFIG_PREEMPT
1965 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1966 pr_warn("due to cpu change %d -> %d\n",
1967 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1968 else
1969 #endif
1970 if (tid_to_event(tid) != tid_to_event(actual_tid))
1971 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1972 tid_to_event(tid), tid_to_event(actual_tid));
1973 else
1974 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1975 actual_tid, tid, next_tid(tid));
1976 #endif
1977 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1980 static void init_kmem_cache_cpus(struct kmem_cache *s)
1982 int cpu;
1984 for_each_possible_cpu(cpu)
1985 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1989 * Remove the cpu slab
1991 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1992 void *freelist, struct kmem_cache_cpu *c)
1994 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1995 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1996 int lock = 0;
1997 enum slab_modes l = M_NONE, m = M_NONE;
1998 void *nextfree;
1999 int tail = DEACTIVATE_TO_HEAD;
2000 struct page new;
2001 struct page old;
2003 if (page->freelist) {
2004 stat(s, DEACTIVATE_REMOTE_FREES);
2005 tail = DEACTIVATE_TO_TAIL;
2009 * Stage one: Free all available per cpu objects back
2010 * to the page freelist while it is still frozen. Leave the
2011 * last one.
2013 * There is no need to take the list->lock because the page
2014 * is still frozen.
2016 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2017 void *prior;
2018 unsigned long counters;
2020 do {
2021 prior = page->freelist;
2022 counters = page->counters;
2023 set_freepointer(s, freelist, prior);
2024 new.counters = counters;
2025 new.inuse--;
2026 VM_BUG_ON(!new.frozen);
2028 } while (!__cmpxchg_double_slab(s, page,
2029 prior, counters,
2030 freelist, new.counters,
2031 "drain percpu freelist"));
2033 freelist = nextfree;
2037 * Stage two: Ensure that the page is unfrozen while the
2038 * list presence reflects the actual number of objects
2039 * during unfreeze.
2041 * We setup the list membership and then perform a cmpxchg
2042 * with the count. If there is a mismatch then the page
2043 * is not unfrozen but the page is on the wrong list.
2045 * Then we restart the process which may have to remove
2046 * the page from the list that we just put it on again
2047 * because the number of objects in the slab may have
2048 * changed.
2050 redo:
2052 old.freelist = page->freelist;
2053 old.counters = page->counters;
2054 VM_BUG_ON(!old.frozen);
2056 /* Determine target state of the slab */
2057 new.counters = old.counters;
2058 if (freelist) {
2059 new.inuse--;
2060 set_freepointer(s, freelist, old.freelist);
2061 new.freelist = freelist;
2062 } else
2063 new.freelist = old.freelist;
2065 new.frozen = 0;
2067 if (!new.inuse && n->nr_partial >= s->min_partial)
2068 m = M_FREE;
2069 else if (new.freelist) {
2070 m = M_PARTIAL;
2071 if (!lock) {
2072 lock = 1;
2074 * Taking the spinlock removes the possiblity
2075 * that acquire_slab() will see a slab page that
2076 * is frozen
2078 spin_lock(&n->list_lock);
2080 } else {
2081 m = M_FULL;
2082 if (kmem_cache_debug(s) && !lock) {
2083 lock = 1;
2085 * This also ensures that the scanning of full
2086 * slabs from diagnostic functions will not see
2087 * any frozen slabs.
2089 spin_lock(&n->list_lock);
2093 if (l != m) {
2095 if (l == M_PARTIAL)
2097 remove_partial(n, page);
2099 else if (l == M_FULL)
2101 remove_full(s, n, page);
2103 if (m == M_PARTIAL) {
2105 add_partial(n, page, tail);
2106 stat(s, tail);
2108 } else if (m == M_FULL) {
2110 stat(s, DEACTIVATE_FULL);
2111 add_full(s, n, page);
2116 l = m;
2117 if (!__cmpxchg_double_slab(s, page,
2118 old.freelist, old.counters,
2119 new.freelist, new.counters,
2120 "unfreezing slab"))
2121 goto redo;
2123 if (lock)
2124 spin_unlock(&n->list_lock);
2126 if (m == M_FREE) {
2127 stat(s, DEACTIVATE_EMPTY);
2128 discard_slab(s, page);
2129 stat(s, FREE_SLAB);
2132 c->page = NULL;
2133 c->freelist = NULL;
2137 * Unfreeze all the cpu partial slabs.
2139 * This function must be called with interrupts disabled
2140 * for the cpu using c (or some other guarantee must be there
2141 * to guarantee no concurrent accesses).
2143 static void unfreeze_partials(struct kmem_cache *s,
2144 struct kmem_cache_cpu *c)
2146 #ifdef CONFIG_SLUB_CPU_PARTIAL
2147 struct kmem_cache_node *n = NULL, *n2 = NULL;
2148 struct page *page, *discard_page = NULL;
2150 while ((page = c->partial)) {
2151 struct page new;
2152 struct page old;
2154 c->partial = page->next;
2156 n2 = get_node(s, page_to_nid(page));
2157 if (n != n2) {
2158 if (n)
2159 spin_unlock(&n->list_lock);
2161 n = n2;
2162 spin_lock(&n->list_lock);
2165 do {
2167 old.freelist = page->freelist;
2168 old.counters = page->counters;
2169 VM_BUG_ON(!old.frozen);
2171 new.counters = old.counters;
2172 new.freelist = old.freelist;
2174 new.frozen = 0;
2176 } while (!__cmpxchg_double_slab(s, page,
2177 old.freelist, old.counters,
2178 new.freelist, new.counters,
2179 "unfreezing slab"));
2181 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2182 page->next = discard_page;
2183 discard_page = page;
2184 } else {
2185 add_partial(n, page, DEACTIVATE_TO_TAIL);
2186 stat(s, FREE_ADD_PARTIAL);
2190 if (n)
2191 spin_unlock(&n->list_lock);
2193 while (discard_page) {
2194 page = discard_page;
2195 discard_page = discard_page->next;
2197 stat(s, DEACTIVATE_EMPTY);
2198 discard_slab(s, page);
2199 stat(s, FREE_SLAB);
2201 #endif
2205 * Put a page that was just frozen (in __slab_free) into a partial page
2206 * slot if available.
2208 * If we did not find a slot then simply move all the partials to the
2209 * per node partial list.
2211 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2213 #ifdef CONFIG_SLUB_CPU_PARTIAL
2214 struct page *oldpage;
2215 int pages;
2216 int pobjects;
2218 preempt_disable();
2219 do {
2220 pages = 0;
2221 pobjects = 0;
2222 oldpage = this_cpu_read(s->cpu_slab->partial);
2224 if (oldpage) {
2225 pobjects = oldpage->pobjects;
2226 pages = oldpage->pages;
2227 if (drain && pobjects > s->cpu_partial) {
2228 unsigned long flags;
2230 * partial array is full. Move the existing
2231 * set to the per node partial list.
2233 local_irq_save(flags);
2234 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2235 local_irq_restore(flags);
2236 oldpage = NULL;
2237 pobjects = 0;
2238 pages = 0;
2239 stat(s, CPU_PARTIAL_DRAIN);
2243 pages++;
2244 pobjects += page->objects - page->inuse;
2246 page->pages = pages;
2247 page->pobjects = pobjects;
2248 page->next = oldpage;
2250 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2251 != oldpage);
2252 if (unlikely(!s->cpu_partial)) {
2253 unsigned long flags;
2255 local_irq_save(flags);
2256 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2257 local_irq_restore(flags);
2259 preempt_enable();
2260 #endif
2263 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2265 stat(s, CPUSLAB_FLUSH);
2266 deactivate_slab(s, c->page, c->freelist, c);
2268 c->tid = next_tid(c->tid);
2272 * Flush cpu slab.
2274 * Called from IPI handler with interrupts disabled.
2276 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2278 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2280 if (likely(c)) {
2281 if (c->page)
2282 flush_slab(s, c);
2284 unfreeze_partials(s, c);
2288 static void flush_cpu_slab(void *d)
2290 struct kmem_cache *s = d;
2292 __flush_cpu_slab(s, smp_processor_id());
2295 static bool has_cpu_slab(int cpu, void *info)
2297 struct kmem_cache *s = info;
2298 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2300 return c->page || slub_percpu_partial(c);
2303 static void flush_all(struct kmem_cache *s)
2305 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2309 * Use the cpu notifier to insure that the cpu slabs are flushed when
2310 * necessary.
2312 static int slub_cpu_dead(unsigned int cpu)
2314 struct kmem_cache *s;
2315 unsigned long flags;
2317 mutex_lock(&slab_mutex);
2318 list_for_each_entry(s, &slab_caches, list) {
2319 local_irq_save(flags);
2320 __flush_cpu_slab(s, cpu);
2321 local_irq_restore(flags);
2323 mutex_unlock(&slab_mutex);
2324 return 0;
2328 * Check if the objects in a per cpu structure fit numa
2329 * locality expectations.
2331 static inline int node_match(struct page *page, int node)
2333 #ifdef CONFIG_NUMA
2334 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2335 return 0;
2336 #endif
2337 return 1;
2340 #ifdef CONFIG_SLUB_DEBUG
2341 static int count_free(struct page *page)
2343 return page->objects - page->inuse;
2346 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2348 return atomic_long_read(&n->total_objects);
2350 #endif /* CONFIG_SLUB_DEBUG */
2352 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2353 static unsigned long count_partial(struct kmem_cache_node *n,
2354 int (*get_count)(struct page *))
2356 unsigned long flags;
2357 unsigned long x = 0;
2358 struct page *page;
2360 spin_lock_irqsave(&n->list_lock, flags);
2361 list_for_each_entry(page, &n->partial, lru)
2362 x += get_count(page);
2363 spin_unlock_irqrestore(&n->list_lock, flags);
2364 return x;
2366 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2368 static noinline void
2369 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2371 #ifdef CONFIG_SLUB_DEBUG
2372 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2373 DEFAULT_RATELIMIT_BURST);
2374 int node;
2375 struct kmem_cache_node *n;
2377 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2378 return;
2380 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2381 nid, gfpflags, &gfpflags);
2382 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2383 s->name, s->object_size, s->size, oo_order(s->oo),
2384 oo_order(s->min));
2386 if (oo_order(s->min) > get_order(s->object_size))
2387 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2388 s->name);
2390 for_each_kmem_cache_node(s, node, n) {
2391 unsigned long nr_slabs;
2392 unsigned long nr_objs;
2393 unsigned long nr_free;
2395 nr_free = count_partial(n, count_free);
2396 nr_slabs = node_nr_slabs(n);
2397 nr_objs = node_nr_objs(n);
2399 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2400 node, nr_slabs, nr_objs, nr_free);
2402 #endif
2405 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2406 int node, struct kmem_cache_cpu **pc)
2408 void *freelist;
2409 struct kmem_cache_cpu *c = *pc;
2410 struct page *page;
2412 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2414 freelist = get_partial(s, flags, node, c);
2416 if (freelist)
2417 return freelist;
2419 page = new_slab(s, flags, node);
2420 if (page) {
2421 c = raw_cpu_ptr(s->cpu_slab);
2422 if (c->page)
2423 flush_slab(s, c);
2426 * No other reference to the page yet so we can
2427 * muck around with it freely without cmpxchg
2429 freelist = page->freelist;
2430 page->freelist = NULL;
2432 stat(s, ALLOC_SLAB);
2433 c->page = page;
2434 *pc = c;
2435 } else
2436 freelist = NULL;
2438 return freelist;
2441 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2443 if (unlikely(PageSlabPfmemalloc(page)))
2444 return gfp_pfmemalloc_allowed(gfpflags);
2446 return true;
2450 * Check the page->freelist of a page and either transfer the freelist to the
2451 * per cpu freelist or deactivate the page.
2453 * The page is still frozen if the return value is not NULL.
2455 * If this function returns NULL then the page has been unfrozen.
2457 * This function must be called with interrupt disabled.
2459 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2461 struct page new;
2462 unsigned long counters;
2463 void *freelist;
2465 do {
2466 freelist = page->freelist;
2467 counters = page->counters;
2469 new.counters = counters;
2470 VM_BUG_ON(!new.frozen);
2472 new.inuse = page->objects;
2473 new.frozen = freelist != NULL;
2475 } while (!__cmpxchg_double_slab(s, page,
2476 freelist, counters,
2477 NULL, new.counters,
2478 "get_freelist"));
2480 return freelist;
2484 * Slow path. The lockless freelist is empty or we need to perform
2485 * debugging duties.
2487 * Processing is still very fast if new objects have been freed to the
2488 * regular freelist. In that case we simply take over the regular freelist
2489 * as the lockless freelist and zap the regular freelist.
2491 * If that is not working then we fall back to the partial lists. We take the
2492 * first element of the freelist as the object to allocate now and move the
2493 * rest of the freelist to the lockless freelist.
2495 * And if we were unable to get a new slab from the partial slab lists then
2496 * we need to allocate a new slab. This is the slowest path since it involves
2497 * a call to the page allocator and the setup of a new slab.
2499 * Version of __slab_alloc to use when we know that interrupts are
2500 * already disabled (which is the case for bulk allocation).
2502 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2503 unsigned long addr, struct kmem_cache_cpu *c)
2505 void *freelist;
2506 struct page *page;
2508 page = c->page;
2509 if (!page)
2510 goto new_slab;
2511 redo:
2513 if (unlikely(!node_match(page, node))) {
2514 int searchnode = node;
2516 if (node != NUMA_NO_NODE && !node_present_pages(node))
2517 searchnode = node_to_mem_node(node);
2519 if (unlikely(!node_match(page, searchnode))) {
2520 stat(s, ALLOC_NODE_MISMATCH);
2521 deactivate_slab(s, page, c->freelist, c);
2522 goto new_slab;
2527 * By rights, we should be searching for a slab page that was
2528 * PFMEMALLOC but right now, we are losing the pfmemalloc
2529 * information when the page leaves the per-cpu allocator
2531 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2532 deactivate_slab(s, page, c->freelist, c);
2533 goto new_slab;
2536 /* must check again c->freelist in case of cpu migration or IRQ */
2537 freelist = c->freelist;
2538 if (freelist)
2539 goto load_freelist;
2541 freelist = get_freelist(s, page);
2543 if (!freelist) {
2544 c->page = NULL;
2545 stat(s, DEACTIVATE_BYPASS);
2546 goto new_slab;
2549 stat(s, ALLOC_REFILL);
2551 load_freelist:
2553 * freelist is pointing to the list of objects to be used.
2554 * page is pointing to the page from which the objects are obtained.
2555 * That page must be frozen for per cpu allocations to work.
2557 VM_BUG_ON(!c->page->frozen);
2558 c->freelist = get_freepointer(s, freelist);
2559 c->tid = next_tid(c->tid);
2560 return freelist;
2562 new_slab:
2564 if (slub_percpu_partial(c)) {
2565 page = c->page = slub_percpu_partial(c);
2566 slub_set_percpu_partial(c, page);
2567 stat(s, CPU_PARTIAL_ALLOC);
2568 goto redo;
2571 freelist = new_slab_objects(s, gfpflags, node, &c);
2573 if (unlikely(!freelist)) {
2574 slab_out_of_memory(s, gfpflags, node);
2575 return NULL;
2578 page = c->page;
2579 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2580 goto load_freelist;
2582 /* Only entered in the debug case */
2583 if (kmem_cache_debug(s) &&
2584 !alloc_debug_processing(s, page, freelist, addr))
2585 goto new_slab; /* Slab failed checks. Next slab needed */
2587 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2588 return freelist;
2592 * Another one that disabled interrupt and compensates for possible
2593 * cpu changes by refetching the per cpu area pointer.
2595 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2596 unsigned long addr, struct kmem_cache_cpu *c)
2598 void *p;
2599 unsigned long flags;
2601 local_irq_save(flags);
2602 #ifdef CONFIG_PREEMPT
2604 * We may have been preempted and rescheduled on a different
2605 * cpu before disabling interrupts. Need to reload cpu area
2606 * pointer.
2608 c = this_cpu_ptr(s->cpu_slab);
2609 #endif
2611 p = ___slab_alloc(s, gfpflags, node, addr, c);
2612 local_irq_restore(flags);
2613 return p;
2617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2618 * have the fastpath folded into their functions. So no function call
2619 * overhead for requests that can be satisfied on the fastpath.
2621 * The fastpath works by first checking if the lockless freelist can be used.
2622 * If not then __slab_alloc is called for slow processing.
2624 * Otherwise we can simply pick the next object from the lockless free list.
2626 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2627 gfp_t gfpflags, int node, unsigned long addr)
2629 void *object;
2630 struct kmem_cache_cpu *c;
2631 struct page *page;
2632 unsigned long tid;
2634 s = slab_pre_alloc_hook(s, gfpflags);
2635 if (!s)
2636 return NULL;
2637 redo:
2639 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2640 * enabled. We may switch back and forth between cpus while
2641 * reading from one cpu area. That does not matter as long
2642 * as we end up on the original cpu again when doing the cmpxchg.
2644 * We should guarantee that tid and kmem_cache are retrieved on
2645 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2646 * to check if it is matched or not.
2648 do {
2649 tid = this_cpu_read(s->cpu_slab->tid);
2650 c = raw_cpu_ptr(s->cpu_slab);
2651 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2652 unlikely(tid != READ_ONCE(c->tid)));
2655 * Irqless object alloc/free algorithm used here depends on sequence
2656 * of fetching cpu_slab's data. tid should be fetched before anything
2657 * on c to guarantee that object and page associated with previous tid
2658 * won't be used with current tid. If we fetch tid first, object and
2659 * page could be one associated with next tid and our alloc/free
2660 * request will be failed. In this case, we will retry. So, no problem.
2662 barrier();
2665 * The transaction ids are globally unique per cpu and per operation on
2666 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2667 * occurs on the right processor and that there was no operation on the
2668 * linked list in between.
2671 object = c->freelist;
2672 page = c->page;
2673 if (unlikely(!object || !node_match(page, node))) {
2674 object = __slab_alloc(s, gfpflags, node, addr, c);
2675 stat(s, ALLOC_SLOWPATH);
2676 } else {
2677 void *next_object = get_freepointer_safe(s, object);
2680 * The cmpxchg will only match if there was no additional
2681 * operation and if we are on the right processor.
2683 * The cmpxchg does the following atomically (without lock
2684 * semantics!)
2685 * 1. Relocate first pointer to the current per cpu area.
2686 * 2. Verify that tid and freelist have not been changed
2687 * 3. If they were not changed replace tid and freelist
2689 * Since this is without lock semantics the protection is only
2690 * against code executing on this cpu *not* from access by
2691 * other cpus.
2693 if (unlikely(!this_cpu_cmpxchg_double(
2694 s->cpu_slab->freelist, s->cpu_slab->tid,
2695 object, tid,
2696 next_object, next_tid(tid)))) {
2698 note_cmpxchg_failure("slab_alloc", s, tid);
2699 goto redo;
2701 prefetch_freepointer(s, next_object);
2702 stat(s, ALLOC_FASTPATH);
2705 if (unlikely(gfpflags & __GFP_ZERO) && object)
2706 memset(object, 0, s->object_size);
2708 slab_post_alloc_hook(s, gfpflags, 1, &object);
2710 return object;
2713 static __always_inline void *slab_alloc(struct kmem_cache *s,
2714 gfp_t gfpflags, unsigned long addr)
2716 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2719 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2721 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2723 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2724 s->size, gfpflags);
2726 return ret;
2728 EXPORT_SYMBOL(kmem_cache_alloc);
2730 #ifdef CONFIG_TRACING
2731 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2733 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2734 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2735 kasan_kmalloc(s, ret, size, gfpflags);
2736 return ret;
2738 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2739 #endif
2741 #ifdef CONFIG_NUMA
2742 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2744 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2746 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2747 s->object_size, s->size, gfpflags, node);
2749 return ret;
2751 EXPORT_SYMBOL(kmem_cache_alloc_node);
2753 #ifdef CONFIG_TRACING
2754 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2755 gfp_t gfpflags,
2756 int node, size_t size)
2758 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2760 trace_kmalloc_node(_RET_IP_, ret,
2761 size, s->size, gfpflags, node);
2763 kasan_kmalloc(s, ret, size, gfpflags);
2764 return ret;
2766 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2767 #endif
2768 #endif
2771 * Slow path handling. This may still be called frequently since objects
2772 * have a longer lifetime than the cpu slabs in most processing loads.
2774 * So we still attempt to reduce cache line usage. Just take the slab
2775 * lock and free the item. If there is no additional partial page
2776 * handling required then we can return immediately.
2778 static void __slab_free(struct kmem_cache *s, struct page *page,
2779 void *head, void *tail, int cnt,
2780 unsigned long addr)
2783 void *prior;
2784 int was_frozen;
2785 struct page new;
2786 unsigned long counters;
2787 struct kmem_cache_node *n = NULL;
2788 unsigned long uninitialized_var(flags);
2790 stat(s, FREE_SLOWPATH);
2792 if (kmem_cache_debug(s) &&
2793 !free_debug_processing(s, page, head, tail, cnt, addr))
2794 return;
2796 do {
2797 if (unlikely(n)) {
2798 spin_unlock_irqrestore(&n->list_lock, flags);
2799 n = NULL;
2801 prior = page->freelist;
2802 counters = page->counters;
2803 set_freepointer(s, tail, prior);
2804 new.counters = counters;
2805 was_frozen = new.frozen;
2806 new.inuse -= cnt;
2807 if ((!new.inuse || !prior) && !was_frozen) {
2809 if (kmem_cache_has_cpu_partial(s) && !prior) {
2812 * Slab was on no list before and will be
2813 * partially empty
2814 * We can defer the list move and instead
2815 * freeze it.
2817 new.frozen = 1;
2819 } else { /* Needs to be taken off a list */
2821 n = get_node(s, page_to_nid(page));
2823 * Speculatively acquire the list_lock.
2824 * If the cmpxchg does not succeed then we may
2825 * drop the list_lock without any processing.
2827 * Otherwise the list_lock will synchronize with
2828 * other processors updating the list of slabs.
2830 spin_lock_irqsave(&n->list_lock, flags);
2835 } while (!cmpxchg_double_slab(s, page,
2836 prior, counters,
2837 head, new.counters,
2838 "__slab_free"));
2840 if (likely(!n)) {
2843 * If we just froze the page then put it onto the
2844 * per cpu partial list.
2846 if (new.frozen && !was_frozen) {
2847 put_cpu_partial(s, page, 1);
2848 stat(s, CPU_PARTIAL_FREE);
2851 * The list lock was not taken therefore no list
2852 * activity can be necessary.
2854 if (was_frozen)
2855 stat(s, FREE_FROZEN);
2856 return;
2859 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2860 goto slab_empty;
2863 * Objects left in the slab. If it was not on the partial list before
2864 * then add it.
2866 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2867 if (kmem_cache_debug(s))
2868 remove_full(s, n, page);
2869 add_partial(n, page, DEACTIVATE_TO_TAIL);
2870 stat(s, FREE_ADD_PARTIAL);
2872 spin_unlock_irqrestore(&n->list_lock, flags);
2873 return;
2875 slab_empty:
2876 if (prior) {
2878 * Slab on the partial list.
2880 remove_partial(n, page);
2881 stat(s, FREE_REMOVE_PARTIAL);
2882 } else {
2883 /* Slab must be on the full list */
2884 remove_full(s, n, page);
2887 spin_unlock_irqrestore(&n->list_lock, flags);
2888 stat(s, FREE_SLAB);
2889 discard_slab(s, page);
2893 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2894 * can perform fastpath freeing without additional function calls.
2896 * The fastpath is only possible if we are freeing to the current cpu slab
2897 * of this processor. This typically the case if we have just allocated
2898 * the item before.
2900 * If fastpath is not possible then fall back to __slab_free where we deal
2901 * with all sorts of special processing.
2903 * Bulk free of a freelist with several objects (all pointing to the
2904 * same page) possible by specifying head and tail ptr, plus objects
2905 * count (cnt). Bulk free indicated by tail pointer being set.
2907 static __always_inline void do_slab_free(struct kmem_cache *s,
2908 struct page *page, void *head, void *tail,
2909 int cnt, unsigned long addr)
2911 void *tail_obj = tail ? : head;
2912 struct kmem_cache_cpu *c;
2913 unsigned long tid;
2914 redo:
2916 * Determine the currently cpus per cpu slab.
2917 * The cpu may change afterward. However that does not matter since
2918 * data is retrieved via this pointer. If we are on the same cpu
2919 * during the cmpxchg then the free will succeed.
2921 do {
2922 tid = this_cpu_read(s->cpu_slab->tid);
2923 c = raw_cpu_ptr(s->cpu_slab);
2924 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2925 unlikely(tid != READ_ONCE(c->tid)));
2927 /* Same with comment on barrier() in slab_alloc_node() */
2928 barrier();
2930 if (likely(page == c->page)) {
2931 set_freepointer(s, tail_obj, c->freelist);
2933 if (unlikely(!this_cpu_cmpxchg_double(
2934 s->cpu_slab->freelist, s->cpu_slab->tid,
2935 c->freelist, tid,
2936 head, next_tid(tid)))) {
2938 note_cmpxchg_failure("slab_free", s, tid);
2939 goto redo;
2941 stat(s, FREE_FASTPATH);
2942 } else
2943 __slab_free(s, page, head, tail_obj, cnt, addr);
2947 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2948 void *head, void *tail, int cnt,
2949 unsigned long addr)
2952 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2953 * to remove objects, whose reuse must be delayed.
2955 if (slab_free_freelist_hook(s, &head, &tail))
2956 do_slab_free(s, page, head, tail, cnt, addr);
2959 #ifdef CONFIG_KASAN
2960 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2962 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2964 #endif
2966 void kmem_cache_free(struct kmem_cache *s, void *x)
2968 s = cache_from_obj(s, x);
2969 if (!s)
2970 return;
2971 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2972 trace_kmem_cache_free(_RET_IP_, x);
2974 EXPORT_SYMBOL(kmem_cache_free);
2976 struct detached_freelist {
2977 struct page *page;
2978 void *tail;
2979 void *freelist;
2980 int cnt;
2981 struct kmem_cache *s;
2985 * This function progressively scans the array with free objects (with
2986 * a limited look ahead) and extract objects belonging to the same
2987 * page. It builds a detached freelist directly within the given
2988 * page/objects. This can happen without any need for
2989 * synchronization, because the objects are owned by running process.
2990 * The freelist is build up as a single linked list in the objects.
2991 * The idea is, that this detached freelist can then be bulk
2992 * transferred to the real freelist(s), but only requiring a single
2993 * synchronization primitive. Look ahead in the array is limited due
2994 * to performance reasons.
2996 static inline
2997 int build_detached_freelist(struct kmem_cache *s, size_t size,
2998 void **p, struct detached_freelist *df)
3000 size_t first_skipped_index = 0;
3001 int lookahead = 3;
3002 void *object;
3003 struct page *page;
3005 /* Always re-init detached_freelist */
3006 df->page = NULL;
3008 do {
3009 object = p[--size];
3010 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3011 } while (!object && size);
3013 if (!object)
3014 return 0;
3016 page = virt_to_head_page(object);
3017 if (!s) {
3018 /* Handle kalloc'ed objects */
3019 if (unlikely(!PageSlab(page))) {
3020 BUG_ON(!PageCompound(page));
3021 kfree_hook(object);
3022 __free_pages(page, compound_order(page));
3023 p[size] = NULL; /* mark object processed */
3024 return size;
3026 /* Derive kmem_cache from object */
3027 df->s = page->slab_cache;
3028 } else {
3029 df->s = cache_from_obj(s, object); /* Support for memcg */
3032 /* Start new detached freelist */
3033 df->page = page;
3034 set_freepointer(df->s, object, NULL);
3035 df->tail = object;
3036 df->freelist = object;
3037 p[size] = NULL; /* mark object processed */
3038 df->cnt = 1;
3040 while (size) {
3041 object = p[--size];
3042 if (!object)
3043 continue; /* Skip processed objects */
3045 /* df->page is always set at this point */
3046 if (df->page == virt_to_head_page(object)) {
3047 /* Opportunity build freelist */
3048 set_freepointer(df->s, object, df->freelist);
3049 df->freelist = object;
3050 df->cnt++;
3051 p[size] = NULL; /* mark object processed */
3053 continue;
3056 /* Limit look ahead search */
3057 if (!--lookahead)
3058 break;
3060 if (!first_skipped_index)
3061 first_skipped_index = size + 1;
3064 return first_skipped_index;
3067 /* Note that interrupts must be enabled when calling this function. */
3068 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3070 if (WARN_ON(!size))
3071 return;
3073 do {
3074 struct detached_freelist df;
3076 size = build_detached_freelist(s, size, p, &df);
3077 if (!df.page)
3078 continue;
3080 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3081 } while (likely(size));
3083 EXPORT_SYMBOL(kmem_cache_free_bulk);
3085 /* Note that interrupts must be enabled when calling this function. */
3086 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3087 void **p)
3089 struct kmem_cache_cpu *c;
3090 int i;
3092 /* memcg and kmem_cache debug support */
3093 s = slab_pre_alloc_hook(s, flags);
3094 if (unlikely(!s))
3095 return false;
3097 * Drain objects in the per cpu slab, while disabling local
3098 * IRQs, which protects against PREEMPT and interrupts
3099 * handlers invoking normal fastpath.
3101 local_irq_disable();
3102 c = this_cpu_ptr(s->cpu_slab);
3104 for (i = 0; i < size; i++) {
3105 void *object = c->freelist;
3107 if (unlikely(!object)) {
3109 * Invoking slow path likely have side-effect
3110 * of re-populating per CPU c->freelist
3112 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3113 _RET_IP_, c);
3114 if (unlikely(!p[i]))
3115 goto error;
3117 c = this_cpu_ptr(s->cpu_slab);
3118 continue; /* goto for-loop */
3120 c->freelist = get_freepointer(s, object);
3121 p[i] = object;
3123 c->tid = next_tid(c->tid);
3124 local_irq_enable();
3126 /* Clear memory outside IRQ disabled fastpath loop */
3127 if (unlikely(flags & __GFP_ZERO)) {
3128 int j;
3130 for (j = 0; j < i; j++)
3131 memset(p[j], 0, s->object_size);
3134 /* memcg and kmem_cache debug support */
3135 slab_post_alloc_hook(s, flags, size, p);
3136 return i;
3137 error:
3138 local_irq_enable();
3139 slab_post_alloc_hook(s, flags, i, p);
3140 __kmem_cache_free_bulk(s, i, p);
3141 return 0;
3143 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3147 * Object placement in a slab is made very easy because we always start at
3148 * offset 0. If we tune the size of the object to the alignment then we can
3149 * get the required alignment by putting one properly sized object after
3150 * another.
3152 * Notice that the allocation order determines the sizes of the per cpu
3153 * caches. Each processor has always one slab available for allocations.
3154 * Increasing the allocation order reduces the number of times that slabs
3155 * must be moved on and off the partial lists and is therefore a factor in
3156 * locking overhead.
3160 * Mininum / Maximum order of slab pages. This influences locking overhead
3161 * and slab fragmentation. A higher order reduces the number of partial slabs
3162 * and increases the number of allocations possible without having to
3163 * take the list_lock.
3165 static unsigned int slub_min_order;
3166 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3167 static unsigned int slub_min_objects;
3170 * Calculate the order of allocation given an slab object size.
3172 * The order of allocation has significant impact on performance and other
3173 * system components. Generally order 0 allocations should be preferred since
3174 * order 0 does not cause fragmentation in the page allocator. Larger objects
3175 * be problematic to put into order 0 slabs because there may be too much
3176 * unused space left. We go to a higher order if more than 1/16th of the slab
3177 * would be wasted.
3179 * In order to reach satisfactory performance we must ensure that a minimum
3180 * number of objects is in one slab. Otherwise we may generate too much
3181 * activity on the partial lists which requires taking the list_lock. This is
3182 * less a concern for large slabs though which are rarely used.
3184 * slub_max_order specifies the order where we begin to stop considering the
3185 * number of objects in a slab as critical. If we reach slub_max_order then
3186 * we try to keep the page order as low as possible. So we accept more waste
3187 * of space in favor of a small page order.
3189 * Higher order allocations also allow the placement of more objects in a
3190 * slab and thereby reduce object handling overhead. If the user has
3191 * requested a higher mininum order then we start with that one instead of
3192 * the smallest order which will fit the object.
3194 static inline unsigned int slab_order(unsigned int size,
3195 unsigned int min_objects, unsigned int max_order,
3196 unsigned int fract_leftover)
3198 unsigned int min_order = slub_min_order;
3199 unsigned int order;
3201 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3202 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3204 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3205 order <= max_order; order++) {
3207 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3208 unsigned int rem;
3210 rem = slab_size % size;
3212 if (rem <= slab_size / fract_leftover)
3213 break;
3216 return order;
3219 static inline int calculate_order(unsigned int size)
3221 unsigned int order;
3222 unsigned int min_objects;
3223 unsigned int max_objects;
3226 * Attempt to find best configuration for a slab. This
3227 * works by first attempting to generate a layout with
3228 * the best configuration and backing off gradually.
3230 * First we increase the acceptable waste in a slab. Then
3231 * we reduce the minimum objects required in a slab.
3233 min_objects = slub_min_objects;
3234 if (!min_objects)
3235 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3236 max_objects = order_objects(slub_max_order, size);
3237 min_objects = min(min_objects, max_objects);
3239 while (min_objects > 1) {
3240 unsigned int fraction;
3242 fraction = 16;
3243 while (fraction >= 4) {
3244 order = slab_order(size, min_objects,
3245 slub_max_order, fraction);
3246 if (order <= slub_max_order)
3247 return order;
3248 fraction /= 2;
3250 min_objects--;
3254 * We were unable to place multiple objects in a slab. Now
3255 * lets see if we can place a single object there.
3257 order = slab_order(size, 1, slub_max_order, 1);
3258 if (order <= slub_max_order)
3259 return order;
3262 * Doh this slab cannot be placed using slub_max_order.
3264 order = slab_order(size, 1, MAX_ORDER, 1);
3265 if (order < MAX_ORDER)
3266 return order;
3267 return -ENOSYS;
3270 static void
3271 init_kmem_cache_node(struct kmem_cache_node *n)
3273 n->nr_partial = 0;
3274 spin_lock_init(&n->list_lock);
3275 INIT_LIST_HEAD(&n->partial);
3276 #ifdef CONFIG_SLUB_DEBUG
3277 atomic_long_set(&n->nr_slabs, 0);
3278 atomic_long_set(&n->total_objects, 0);
3279 INIT_LIST_HEAD(&n->full);
3280 #endif
3283 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3285 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3286 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3289 * Must align to double word boundary for the double cmpxchg
3290 * instructions to work; see __pcpu_double_call_return_bool().
3292 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3293 2 * sizeof(void *));
3295 if (!s->cpu_slab)
3296 return 0;
3298 init_kmem_cache_cpus(s);
3300 return 1;
3303 static struct kmem_cache *kmem_cache_node;
3306 * No kmalloc_node yet so do it by hand. We know that this is the first
3307 * slab on the node for this slabcache. There are no concurrent accesses
3308 * possible.
3310 * Note that this function only works on the kmem_cache_node
3311 * when allocating for the kmem_cache_node. This is used for bootstrapping
3312 * memory on a fresh node that has no slab structures yet.
3314 static void early_kmem_cache_node_alloc(int node)
3316 struct page *page;
3317 struct kmem_cache_node *n;
3319 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3321 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3323 BUG_ON(!page);
3324 if (page_to_nid(page) != node) {
3325 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3326 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3329 n = page->freelist;
3330 BUG_ON(!n);
3331 page->freelist = get_freepointer(kmem_cache_node, n);
3332 page->inuse = 1;
3333 page->frozen = 0;
3334 kmem_cache_node->node[node] = n;
3335 #ifdef CONFIG_SLUB_DEBUG
3336 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3337 init_tracking(kmem_cache_node, n);
3338 #endif
3339 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3340 GFP_KERNEL);
3341 init_kmem_cache_node(n);
3342 inc_slabs_node(kmem_cache_node, node, page->objects);
3345 * No locks need to be taken here as it has just been
3346 * initialized and there is no concurrent access.
3348 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3351 static void free_kmem_cache_nodes(struct kmem_cache *s)
3353 int node;
3354 struct kmem_cache_node *n;
3356 for_each_kmem_cache_node(s, node, n) {
3357 s->node[node] = NULL;
3358 kmem_cache_free(kmem_cache_node, n);
3362 void __kmem_cache_release(struct kmem_cache *s)
3364 cache_random_seq_destroy(s);
3365 free_percpu(s->cpu_slab);
3366 free_kmem_cache_nodes(s);
3369 static int init_kmem_cache_nodes(struct kmem_cache *s)
3371 int node;
3373 for_each_node_state(node, N_NORMAL_MEMORY) {
3374 struct kmem_cache_node *n;
3376 if (slab_state == DOWN) {
3377 early_kmem_cache_node_alloc(node);
3378 continue;
3380 n = kmem_cache_alloc_node(kmem_cache_node,
3381 GFP_KERNEL, node);
3383 if (!n) {
3384 free_kmem_cache_nodes(s);
3385 return 0;
3388 init_kmem_cache_node(n);
3389 s->node[node] = n;
3391 return 1;
3394 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3396 if (min < MIN_PARTIAL)
3397 min = MIN_PARTIAL;
3398 else if (min > MAX_PARTIAL)
3399 min = MAX_PARTIAL;
3400 s->min_partial = min;
3403 static void set_cpu_partial(struct kmem_cache *s)
3405 #ifdef CONFIG_SLUB_CPU_PARTIAL
3407 * cpu_partial determined the maximum number of objects kept in the
3408 * per cpu partial lists of a processor.
3410 * Per cpu partial lists mainly contain slabs that just have one
3411 * object freed. If they are used for allocation then they can be
3412 * filled up again with minimal effort. The slab will never hit the
3413 * per node partial lists and therefore no locking will be required.
3415 * This setting also determines
3417 * A) The number of objects from per cpu partial slabs dumped to the
3418 * per node list when we reach the limit.
3419 * B) The number of objects in cpu partial slabs to extract from the
3420 * per node list when we run out of per cpu objects. We only fetch
3421 * 50% to keep some capacity around for frees.
3423 if (!kmem_cache_has_cpu_partial(s))
3424 s->cpu_partial = 0;
3425 else if (s->size >= PAGE_SIZE)
3426 s->cpu_partial = 2;
3427 else if (s->size >= 1024)
3428 s->cpu_partial = 6;
3429 else if (s->size >= 256)
3430 s->cpu_partial = 13;
3431 else
3432 s->cpu_partial = 30;
3433 #endif
3437 * calculate_sizes() determines the order and the distribution of data within
3438 * a slab object.
3440 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3442 slab_flags_t flags = s->flags;
3443 unsigned int size = s->object_size;
3444 unsigned int order;
3447 * Round up object size to the next word boundary. We can only
3448 * place the free pointer at word boundaries and this determines
3449 * the possible location of the free pointer.
3451 size = ALIGN(size, sizeof(void *));
3453 #ifdef CONFIG_SLUB_DEBUG
3455 * Determine if we can poison the object itself. If the user of
3456 * the slab may touch the object after free or before allocation
3457 * then we should never poison the object itself.
3459 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3460 !s->ctor)
3461 s->flags |= __OBJECT_POISON;
3462 else
3463 s->flags &= ~__OBJECT_POISON;
3467 * If we are Redzoning then check if there is some space between the
3468 * end of the object and the free pointer. If not then add an
3469 * additional word to have some bytes to store Redzone information.
3471 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3472 size += sizeof(void *);
3473 #endif
3476 * With that we have determined the number of bytes in actual use
3477 * by the object. This is the potential offset to the free pointer.
3479 s->inuse = size;
3481 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3482 s->ctor)) {
3484 * Relocate free pointer after the object if it is not
3485 * permitted to overwrite the first word of the object on
3486 * kmem_cache_free.
3488 * This is the case if we do RCU, have a constructor or
3489 * destructor or are poisoning the objects.
3491 s->offset = size;
3492 size += sizeof(void *);
3495 #ifdef CONFIG_SLUB_DEBUG
3496 if (flags & SLAB_STORE_USER)
3498 * Need to store information about allocs and frees after
3499 * the object.
3501 size += 2 * sizeof(struct track);
3502 #endif
3504 kasan_cache_create(s, &size, &s->flags);
3505 #ifdef CONFIG_SLUB_DEBUG
3506 if (flags & SLAB_RED_ZONE) {
3508 * Add some empty padding so that we can catch
3509 * overwrites from earlier objects rather than let
3510 * tracking information or the free pointer be
3511 * corrupted if a user writes before the start
3512 * of the object.
3514 size += sizeof(void *);
3516 s->red_left_pad = sizeof(void *);
3517 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3518 size += s->red_left_pad;
3520 #endif
3523 * SLUB stores one object immediately after another beginning from
3524 * offset 0. In order to align the objects we have to simply size
3525 * each object to conform to the alignment.
3527 size = ALIGN(size, s->align);
3528 s->size = size;
3529 if (forced_order >= 0)
3530 order = forced_order;
3531 else
3532 order = calculate_order(size);
3534 if ((int)order < 0)
3535 return 0;
3537 s->allocflags = 0;
3538 if (order)
3539 s->allocflags |= __GFP_COMP;
3541 if (s->flags & SLAB_CACHE_DMA)
3542 s->allocflags |= GFP_DMA;
3544 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3545 s->allocflags |= __GFP_RECLAIMABLE;
3548 * Determine the number of objects per slab
3550 s->oo = oo_make(order, size);
3551 s->min = oo_make(get_order(size), size);
3552 if (oo_objects(s->oo) > oo_objects(s->max))
3553 s->max = s->oo;
3555 return !!oo_objects(s->oo);
3558 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3560 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3561 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3562 s->random = get_random_long();
3563 #endif
3565 if (!calculate_sizes(s, -1))
3566 goto error;
3567 if (disable_higher_order_debug) {
3569 * Disable debugging flags that store metadata if the min slab
3570 * order increased.
3572 if (get_order(s->size) > get_order(s->object_size)) {
3573 s->flags &= ~DEBUG_METADATA_FLAGS;
3574 s->offset = 0;
3575 if (!calculate_sizes(s, -1))
3576 goto error;
3580 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3581 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3582 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3583 /* Enable fast mode */
3584 s->flags |= __CMPXCHG_DOUBLE;
3585 #endif
3588 * The larger the object size is, the more pages we want on the partial
3589 * list to avoid pounding the page allocator excessively.
3591 set_min_partial(s, ilog2(s->size) / 2);
3593 set_cpu_partial(s);
3595 #ifdef CONFIG_NUMA
3596 s->remote_node_defrag_ratio = 1000;
3597 #endif
3599 /* Initialize the pre-computed randomized freelist if slab is up */
3600 if (slab_state >= UP) {
3601 if (init_cache_random_seq(s))
3602 goto error;
3605 if (!init_kmem_cache_nodes(s))
3606 goto error;
3608 if (alloc_kmem_cache_cpus(s))
3609 return 0;
3611 free_kmem_cache_nodes(s);
3612 error:
3613 if (flags & SLAB_PANIC)
3614 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3615 s->name, s->size, s->size,
3616 oo_order(s->oo), s->offset, (unsigned long)flags);
3617 return -EINVAL;
3620 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3621 const char *text)
3623 #ifdef CONFIG_SLUB_DEBUG
3624 void *addr = page_address(page);
3625 void *p;
3626 unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects),
3627 sizeof(long),
3628 GFP_ATOMIC);
3629 if (!map)
3630 return;
3631 slab_err(s, page, text, s->name);
3632 slab_lock(page);
3634 get_map(s, page, map);
3635 for_each_object(p, s, addr, page->objects) {
3637 if (!test_bit(slab_index(p, s, addr), map)) {
3638 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3639 print_tracking(s, p);
3642 slab_unlock(page);
3643 kfree(map);
3644 #endif
3648 * Attempt to free all partial slabs on a node.
3649 * This is called from __kmem_cache_shutdown(). We must take list_lock
3650 * because sysfs file might still access partial list after the shutdowning.
3652 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3654 LIST_HEAD(discard);
3655 struct page *page, *h;
3657 BUG_ON(irqs_disabled());
3658 spin_lock_irq(&n->list_lock);
3659 list_for_each_entry_safe(page, h, &n->partial, lru) {
3660 if (!page->inuse) {
3661 remove_partial(n, page);
3662 list_add(&page->lru, &discard);
3663 } else {
3664 list_slab_objects(s, page,
3665 "Objects remaining in %s on __kmem_cache_shutdown()");
3668 spin_unlock_irq(&n->list_lock);
3670 list_for_each_entry_safe(page, h, &discard, lru)
3671 discard_slab(s, page);
3674 bool __kmem_cache_empty(struct kmem_cache *s)
3676 int node;
3677 struct kmem_cache_node *n;
3679 for_each_kmem_cache_node(s, node, n)
3680 if (n->nr_partial || slabs_node(s, node))
3681 return false;
3682 return true;
3686 * Release all resources used by a slab cache.
3688 int __kmem_cache_shutdown(struct kmem_cache *s)
3690 int node;
3691 struct kmem_cache_node *n;
3693 flush_all(s);
3694 /* Attempt to free all objects */
3695 for_each_kmem_cache_node(s, node, n) {
3696 free_partial(s, n);
3697 if (n->nr_partial || slabs_node(s, node))
3698 return 1;
3700 sysfs_slab_remove(s);
3701 return 0;
3704 /********************************************************************
3705 * Kmalloc subsystem
3706 *******************************************************************/
3708 static int __init setup_slub_min_order(char *str)
3710 get_option(&str, (int *)&slub_min_order);
3712 return 1;
3715 __setup("slub_min_order=", setup_slub_min_order);
3717 static int __init setup_slub_max_order(char *str)
3719 get_option(&str, (int *)&slub_max_order);
3720 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3722 return 1;
3725 __setup("slub_max_order=", setup_slub_max_order);
3727 static int __init setup_slub_min_objects(char *str)
3729 get_option(&str, (int *)&slub_min_objects);
3731 return 1;
3734 __setup("slub_min_objects=", setup_slub_min_objects);
3736 void *__kmalloc(size_t size, gfp_t flags)
3738 struct kmem_cache *s;
3739 void *ret;
3741 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3742 return kmalloc_large(size, flags);
3744 s = kmalloc_slab(size, flags);
3746 if (unlikely(ZERO_OR_NULL_PTR(s)))
3747 return s;
3749 ret = slab_alloc(s, flags, _RET_IP_);
3751 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3753 kasan_kmalloc(s, ret, size, flags);
3755 return ret;
3757 EXPORT_SYMBOL(__kmalloc);
3759 #ifdef CONFIG_NUMA
3760 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3762 struct page *page;
3763 void *ptr = NULL;
3765 flags |= __GFP_COMP;
3766 page = alloc_pages_node(node, flags, get_order(size));
3767 if (page)
3768 ptr = page_address(page);
3770 kmalloc_large_node_hook(ptr, size, flags);
3771 return ptr;
3774 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3776 struct kmem_cache *s;
3777 void *ret;
3779 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3780 ret = kmalloc_large_node(size, flags, node);
3782 trace_kmalloc_node(_RET_IP_, ret,
3783 size, PAGE_SIZE << get_order(size),
3784 flags, node);
3786 return ret;
3789 s = kmalloc_slab(size, flags);
3791 if (unlikely(ZERO_OR_NULL_PTR(s)))
3792 return s;
3794 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3796 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3798 kasan_kmalloc(s, ret, size, flags);
3800 return ret;
3802 EXPORT_SYMBOL(__kmalloc_node);
3803 #endif
3805 #ifdef CONFIG_HARDENED_USERCOPY
3807 * Rejects incorrectly sized objects and objects that are to be copied
3808 * to/from userspace but do not fall entirely within the containing slab
3809 * cache's usercopy region.
3811 * Returns NULL if check passes, otherwise const char * to name of cache
3812 * to indicate an error.
3814 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3815 bool to_user)
3817 struct kmem_cache *s;
3818 unsigned int offset;
3819 size_t object_size;
3821 /* Find object and usable object size. */
3822 s = page->slab_cache;
3824 /* Reject impossible pointers. */
3825 if (ptr < page_address(page))
3826 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3827 to_user, 0, n);
3829 /* Find offset within object. */
3830 offset = (ptr - page_address(page)) % s->size;
3832 /* Adjust for redzone and reject if within the redzone. */
3833 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3834 if (offset < s->red_left_pad)
3835 usercopy_abort("SLUB object in left red zone",
3836 s->name, to_user, offset, n);
3837 offset -= s->red_left_pad;
3840 /* Allow address range falling entirely within usercopy region. */
3841 if (offset >= s->useroffset &&
3842 offset - s->useroffset <= s->usersize &&
3843 n <= s->useroffset - offset + s->usersize)
3844 return;
3847 * If the copy is still within the allocated object, produce
3848 * a warning instead of rejecting the copy. This is intended
3849 * to be a temporary method to find any missing usercopy
3850 * whitelists.
3852 object_size = slab_ksize(s);
3853 if (usercopy_fallback &&
3854 offset <= object_size && n <= object_size - offset) {
3855 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3856 return;
3859 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3861 #endif /* CONFIG_HARDENED_USERCOPY */
3863 static size_t __ksize(const void *object)
3865 struct page *page;
3867 if (unlikely(object == ZERO_SIZE_PTR))
3868 return 0;
3870 page = virt_to_head_page(object);
3872 if (unlikely(!PageSlab(page))) {
3873 WARN_ON(!PageCompound(page));
3874 return PAGE_SIZE << compound_order(page);
3877 return slab_ksize(page->slab_cache);
3880 size_t ksize(const void *object)
3882 size_t size = __ksize(object);
3883 /* We assume that ksize callers could use whole allocated area,
3884 * so we need to unpoison this area.
3886 kasan_unpoison_shadow(object, size);
3887 return size;
3889 EXPORT_SYMBOL(ksize);
3891 void kfree(const void *x)
3893 struct page *page;
3894 void *object = (void *)x;
3896 trace_kfree(_RET_IP_, x);
3898 if (unlikely(ZERO_OR_NULL_PTR(x)))
3899 return;
3901 page = virt_to_head_page(x);
3902 if (unlikely(!PageSlab(page))) {
3903 BUG_ON(!PageCompound(page));
3904 kfree_hook(object);
3905 __free_pages(page, compound_order(page));
3906 return;
3908 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3910 EXPORT_SYMBOL(kfree);
3912 #define SHRINK_PROMOTE_MAX 32
3915 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3916 * up most to the head of the partial lists. New allocations will then
3917 * fill those up and thus they can be removed from the partial lists.
3919 * The slabs with the least items are placed last. This results in them
3920 * being allocated from last increasing the chance that the last objects
3921 * are freed in them.
3923 int __kmem_cache_shrink(struct kmem_cache *s)
3925 int node;
3926 int i;
3927 struct kmem_cache_node *n;
3928 struct page *page;
3929 struct page *t;
3930 struct list_head discard;
3931 struct list_head promote[SHRINK_PROMOTE_MAX];
3932 unsigned long flags;
3933 int ret = 0;
3935 flush_all(s);
3936 for_each_kmem_cache_node(s, node, n) {
3937 INIT_LIST_HEAD(&discard);
3938 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3939 INIT_LIST_HEAD(promote + i);
3941 spin_lock_irqsave(&n->list_lock, flags);
3944 * Build lists of slabs to discard or promote.
3946 * Note that concurrent frees may occur while we hold the
3947 * list_lock. page->inuse here is the upper limit.
3949 list_for_each_entry_safe(page, t, &n->partial, lru) {
3950 int free = page->objects - page->inuse;
3952 /* Do not reread page->inuse */
3953 barrier();
3955 /* We do not keep full slabs on the list */
3956 BUG_ON(free <= 0);
3958 if (free == page->objects) {
3959 list_move(&page->lru, &discard);
3960 n->nr_partial--;
3961 } else if (free <= SHRINK_PROMOTE_MAX)
3962 list_move(&page->lru, promote + free - 1);
3966 * Promote the slabs filled up most to the head of the
3967 * partial list.
3969 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3970 list_splice(promote + i, &n->partial);
3972 spin_unlock_irqrestore(&n->list_lock, flags);
3974 /* Release empty slabs */
3975 list_for_each_entry_safe(page, t, &discard, lru)
3976 discard_slab(s, page);
3978 if (slabs_node(s, node))
3979 ret = 1;
3982 return ret;
3985 #ifdef CONFIG_MEMCG
3986 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3989 * Called with all the locks held after a sched RCU grace period.
3990 * Even if @s becomes empty after shrinking, we can't know that @s
3991 * doesn't have allocations already in-flight and thus can't
3992 * destroy @s until the associated memcg is released.
3994 * However, let's remove the sysfs files for empty caches here.
3995 * Each cache has a lot of interface files which aren't
3996 * particularly useful for empty draining caches; otherwise, we can
3997 * easily end up with millions of unnecessary sysfs files on
3998 * systems which have a lot of memory and transient cgroups.
4000 if (!__kmem_cache_shrink(s))
4001 sysfs_slab_remove(s);
4004 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4007 * Disable empty slabs caching. Used to avoid pinning offline
4008 * memory cgroups by kmem pages that can be freed.
4010 slub_set_cpu_partial(s, 0);
4011 s->min_partial = 0;
4014 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4015 * we have to make sure the change is visible before shrinking.
4017 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4019 #endif
4021 static int slab_mem_going_offline_callback(void *arg)
4023 struct kmem_cache *s;
4025 mutex_lock(&slab_mutex);
4026 list_for_each_entry(s, &slab_caches, list)
4027 __kmem_cache_shrink(s);
4028 mutex_unlock(&slab_mutex);
4030 return 0;
4033 static void slab_mem_offline_callback(void *arg)
4035 struct kmem_cache_node *n;
4036 struct kmem_cache *s;
4037 struct memory_notify *marg = arg;
4038 int offline_node;
4040 offline_node = marg->status_change_nid_normal;
4043 * If the node still has available memory. we need kmem_cache_node
4044 * for it yet.
4046 if (offline_node < 0)
4047 return;
4049 mutex_lock(&slab_mutex);
4050 list_for_each_entry(s, &slab_caches, list) {
4051 n = get_node(s, offline_node);
4052 if (n) {
4054 * if n->nr_slabs > 0, slabs still exist on the node
4055 * that is going down. We were unable to free them,
4056 * and offline_pages() function shouldn't call this
4057 * callback. So, we must fail.
4059 BUG_ON(slabs_node(s, offline_node));
4061 s->node[offline_node] = NULL;
4062 kmem_cache_free(kmem_cache_node, n);
4065 mutex_unlock(&slab_mutex);
4068 static int slab_mem_going_online_callback(void *arg)
4070 struct kmem_cache_node *n;
4071 struct kmem_cache *s;
4072 struct memory_notify *marg = arg;
4073 int nid = marg->status_change_nid_normal;
4074 int ret = 0;
4077 * If the node's memory is already available, then kmem_cache_node is
4078 * already created. Nothing to do.
4080 if (nid < 0)
4081 return 0;
4084 * We are bringing a node online. No memory is available yet. We must
4085 * allocate a kmem_cache_node structure in order to bring the node
4086 * online.
4088 mutex_lock(&slab_mutex);
4089 list_for_each_entry(s, &slab_caches, list) {
4091 * XXX: kmem_cache_alloc_node will fallback to other nodes
4092 * since memory is not yet available from the node that
4093 * is brought up.
4095 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4096 if (!n) {
4097 ret = -ENOMEM;
4098 goto out;
4100 init_kmem_cache_node(n);
4101 s->node[nid] = n;
4103 out:
4104 mutex_unlock(&slab_mutex);
4105 return ret;
4108 static int slab_memory_callback(struct notifier_block *self,
4109 unsigned long action, void *arg)
4111 int ret = 0;
4113 switch (action) {
4114 case MEM_GOING_ONLINE:
4115 ret = slab_mem_going_online_callback(arg);
4116 break;
4117 case MEM_GOING_OFFLINE:
4118 ret = slab_mem_going_offline_callback(arg);
4119 break;
4120 case MEM_OFFLINE:
4121 case MEM_CANCEL_ONLINE:
4122 slab_mem_offline_callback(arg);
4123 break;
4124 case MEM_ONLINE:
4125 case MEM_CANCEL_OFFLINE:
4126 break;
4128 if (ret)
4129 ret = notifier_from_errno(ret);
4130 else
4131 ret = NOTIFY_OK;
4132 return ret;
4135 static struct notifier_block slab_memory_callback_nb = {
4136 .notifier_call = slab_memory_callback,
4137 .priority = SLAB_CALLBACK_PRI,
4140 /********************************************************************
4141 * Basic setup of slabs
4142 *******************************************************************/
4145 * Used for early kmem_cache structures that were allocated using
4146 * the page allocator. Allocate them properly then fix up the pointers
4147 * that may be pointing to the wrong kmem_cache structure.
4150 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4152 int node;
4153 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4154 struct kmem_cache_node *n;
4156 memcpy(s, static_cache, kmem_cache->object_size);
4159 * This runs very early, and only the boot processor is supposed to be
4160 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4161 * IPIs around.
4163 __flush_cpu_slab(s, smp_processor_id());
4164 for_each_kmem_cache_node(s, node, n) {
4165 struct page *p;
4167 list_for_each_entry(p, &n->partial, lru)
4168 p->slab_cache = s;
4170 #ifdef CONFIG_SLUB_DEBUG
4171 list_for_each_entry(p, &n->full, lru)
4172 p->slab_cache = s;
4173 #endif
4175 slab_init_memcg_params(s);
4176 list_add(&s->list, &slab_caches);
4177 memcg_link_cache(s);
4178 return s;
4181 void __init kmem_cache_init(void)
4183 static __initdata struct kmem_cache boot_kmem_cache,
4184 boot_kmem_cache_node;
4186 if (debug_guardpage_minorder())
4187 slub_max_order = 0;
4189 kmem_cache_node = &boot_kmem_cache_node;
4190 kmem_cache = &boot_kmem_cache;
4192 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4193 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4195 register_hotmemory_notifier(&slab_memory_callback_nb);
4197 /* Able to allocate the per node structures */
4198 slab_state = PARTIAL;
4200 create_boot_cache(kmem_cache, "kmem_cache",
4201 offsetof(struct kmem_cache, node) +
4202 nr_node_ids * sizeof(struct kmem_cache_node *),
4203 SLAB_HWCACHE_ALIGN, 0, 0);
4205 kmem_cache = bootstrap(&boot_kmem_cache);
4206 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4208 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4209 setup_kmalloc_cache_index_table();
4210 create_kmalloc_caches(0);
4212 /* Setup random freelists for each cache */
4213 init_freelist_randomization();
4215 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4216 slub_cpu_dead);
4218 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4219 cache_line_size(),
4220 slub_min_order, slub_max_order, slub_min_objects,
4221 nr_cpu_ids, nr_node_ids);
4224 void __init kmem_cache_init_late(void)
4228 struct kmem_cache *
4229 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4230 slab_flags_t flags, void (*ctor)(void *))
4232 struct kmem_cache *s, *c;
4234 s = find_mergeable(size, align, flags, name, ctor);
4235 if (s) {
4236 s->refcount++;
4239 * Adjust the object sizes so that we clear
4240 * the complete object on kzalloc.
4242 s->object_size = max(s->object_size, size);
4243 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4245 for_each_memcg_cache(c, s) {
4246 c->object_size = s->object_size;
4247 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4250 if (sysfs_slab_alias(s, name)) {
4251 s->refcount--;
4252 s = NULL;
4256 return s;
4259 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4261 int err;
4263 err = kmem_cache_open(s, flags);
4264 if (err)
4265 return err;
4267 /* Mutex is not taken during early boot */
4268 if (slab_state <= UP)
4269 return 0;
4271 memcg_propagate_slab_attrs(s);
4272 err = sysfs_slab_add(s);
4273 if (err)
4274 __kmem_cache_release(s);
4276 return err;
4279 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4281 struct kmem_cache *s;
4282 void *ret;
4284 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4285 return kmalloc_large(size, gfpflags);
4287 s = kmalloc_slab(size, gfpflags);
4289 if (unlikely(ZERO_OR_NULL_PTR(s)))
4290 return s;
4292 ret = slab_alloc(s, gfpflags, caller);
4294 /* Honor the call site pointer we received. */
4295 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4297 return ret;
4300 #ifdef CONFIG_NUMA
4301 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4302 int node, unsigned long caller)
4304 struct kmem_cache *s;
4305 void *ret;
4307 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4308 ret = kmalloc_large_node(size, gfpflags, node);
4310 trace_kmalloc_node(caller, ret,
4311 size, PAGE_SIZE << get_order(size),
4312 gfpflags, node);
4314 return ret;
4317 s = kmalloc_slab(size, gfpflags);
4319 if (unlikely(ZERO_OR_NULL_PTR(s)))
4320 return s;
4322 ret = slab_alloc_node(s, gfpflags, node, caller);
4324 /* Honor the call site pointer we received. */
4325 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4327 return ret;
4329 #endif
4331 #ifdef CONFIG_SYSFS
4332 static int count_inuse(struct page *page)
4334 return page->inuse;
4337 static int count_total(struct page *page)
4339 return page->objects;
4341 #endif
4343 #ifdef CONFIG_SLUB_DEBUG
4344 static int validate_slab(struct kmem_cache *s, struct page *page,
4345 unsigned long *map)
4347 void *p;
4348 void *addr = page_address(page);
4350 if (!check_slab(s, page) ||
4351 !on_freelist(s, page, NULL))
4352 return 0;
4354 /* Now we know that a valid freelist exists */
4355 bitmap_zero(map, page->objects);
4357 get_map(s, page, map);
4358 for_each_object(p, s, addr, page->objects) {
4359 if (test_bit(slab_index(p, s, addr), map))
4360 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4361 return 0;
4364 for_each_object(p, s, addr, page->objects)
4365 if (!test_bit(slab_index(p, s, addr), map))
4366 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4367 return 0;
4368 return 1;
4371 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4372 unsigned long *map)
4374 slab_lock(page);
4375 validate_slab(s, page, map);
4376 slab_unlock(page);
4379 static int validate_slab_node(struct kmem_cache *s,
4380 struct kmem_cache_node *n, unsigned long *map)
4382 unsigned long count = 0;
4383 struct page *page;
4384 unsigned long flags;
4386 spin_lock_irqsave(&n->list_lock, flags);
4388 list_for_each_entry(page, &n->partial, lru) {
4389 validate_slab_slab(s, page, map);
4390 count++;
4392 if (count != n->nr_partial)
4393 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4394 s->name, count, n->nr_partial);
4396 if (!(s->flags & SLAB_STORE_USER))
4397 goto out;
4399 list_for_each_entry(page, &n->full, lru) {
4400 validate_slab_slab(s, page, map);
4401 count++;
4403 if (count != atomic_long_read(&n->nr_slabs))
4404 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4405 s->name, count, atomic_long_read(&n->nr_slabs));
4407 out:
4408 spin_unlock_irqrestore(&n->list_lock, flags);
4409 return count;
4412 static long validate_slab_cache(struct kmem_cache *s)
4414 int node;
4415 unsigned long count = 0;
4416 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4417 sizeof(unsigned long),
4418 GFP_KERNEL);
4419 struct kmem_cache_node *n;
4421 if (!map)
4422 return -ENOMEM;
4424 flush_all(s);
4425 for_each_kmem_cache_node(s, node, n)
4426 count += validate_slab_node(s, n, map);
4427 kfree(map);
4428 return count;
4431 * Generate lists of code addresses where slabcache objects are allocated
4432 * and freed.
4435 struct location {
4436 unsigned long count;
4437 unsigned long addr;
4438 long long sum_time;
4439 long min_time;
4440 long max_time;
4441 long min_pid;
4442 long max_pid;
4443 DECLARE_BITMAP(cpus, NR_CPUS);
4444 nodemask_t nodes;
4447 struct loc_track {
4448 unsigned long max;
4449 unsigned long count;
4450 struct location *loc;
4453 static void free_loc_track(struct loc_track *t)
4455 if (t->max)
4456 free_pages((unsigned long)t->loc,
4457 get_order(sizeof(struct location) * t->max));
4460 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4462 struct location *l;
4463 int order;
4465 order = get_order(sizeof(struct location) * max);
4467 l = (void *)__get_free_pages(flags, order);
4468 if (!l)
4469 return 0;
4471 if (t->count) {
4472 memcpy(l, t->loc, sizeof(struct location) * t->count);
4473 free_loc_track(t);
4475 t->max = max;
4476 t->loc = l;
4477 return 1;
4480 static int add_location(struct loc_track *t, struct kmem_cache *s,
4481 const struct track *track)
4483 long start, end, pos;
4484 struct location *l;
4485 unsigned long caddr;
4486 unsigned long age = jiffies - track->when;
4488 start = -1;
4489 end = t->count;
4491 for ( ; ; ) {
4492 pos = start + (end - start + 1) / 2;
4495 * There is nothing at "end". If we end up there
4496 * we need to add something to before end.
4498 if (pos == end)
4499 break;
4501 caddr = t->loc[pos].addr;
4502 if (track->addr == caddr) {
4504 l = &t->loc[pos];
4505 l->count++;
4506 if (track->when) {
4507 l->sum_time += age;
4508 if (age < l->min_time)
4509 l->min_time = age;
4510 if (age > l->max_time)
4511 l->max_time = age;
4513 if (track->pid < l->min_pid)
4514 l->min_pid = track->pid;
4515 if (track->pid > l->max_pid)
4516 l->max_pid = track->pid;
4518 cpumask_set_cpu(track->cpu,
4519 to_cpumask(l->cpus));
4521 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4522 return 1;
4525 if (track->addr < caddr)
4526 end = pos;
4527 else
4528 start = pos;
4532 * Not found. Insert new tracking element.
4534 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4535 return 0;
4537 l = t->loc + pos;
4538 if (pos < t->count)
4539 memmove(l + 1, l,
4540 (t->count - pos) * sizeof(struct location));
4541 t->count++;
4542 l->count = 1;
4543 l->addr = track->addr;
4544 l->sum_time = age;
4545 l->min_time = age;
4546 l->max_time = age;
4547 l->min_pid = track->pid;
4548 l->max_pid = track->pid;
4549 cpumask_clear(to_cpumask(l->cpus));
4550 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4551 nodes_clear(l->nodes);
4552 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4553 return 1;
4556 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4557 struct page *page, enum track_item alloc,
4558 unsigned long *map)
4560 void *addr = page_address(page);
4561 void *p;
4563 bitmap_zero(map, page->objects);
4564 get_map(s, page, map);
4566 for_each_object(p, s, addr, page->objects)
4567 if (!test_bit(slab_index(p, s, addr), map))
4568 add_location(t, s, get_track(s, p, alloc));
4571 static int list_locations(struct kmem_cache *s, char *buf,
4572 enum track_item alloc)
4574 int len = 0;
4575 unsigned long i;
4576 struct loc_track t = { 0, 0, NULL };
4577 int node;
4578 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4579 sizeof(unsigned long),
4580 GFP_KERNEL);
4581 struct kmem_cache_node *n;
4583 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4584 GFP_KERNEL)) {
4585 kfree(map);
4586 return sprintf(buf, "Out of memory\n");
4588 /* Push back cpu slabs */
4589 flush_all(s);
4591 for_each_kmem_cache_node(s, node, n) {
4592 unsigned long flags;
4593 struct page *page;
4595 if (!atomic_long_read(&n->nr_slabs))
4596 continue;
4598 spin_lock_irqsave(&n->list_lock, flags);
4599 list_for_each_entry(page, &n->partial, lru)
4600 process_slab(&t, s, page, alloc, map);
4601 list_for_each_entry(page, &n->full, lru)
4602 process_slab(&t, s, page, alloc, map);
4603 spin_unlock_irqrestore(&n->list_lock, flags);
4606 for (i = 0; i < t.count; i++) {
4607 struct location *l = &t.loc[i];
4609 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4610 break;
4611 len += sprintf(buf + len, "%7ld ", l->count);
4613 if (l->addr)
4614 len += sprintf(buf + len, "%pS", (void *)l->addr);
4615 else
4616 len += sprintf(buf + len, "<not-available>");
4618 if (l->sum_time != l->min_time) {
4619 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4620 l->min_time,
4621 (long)div_u64(l->sum_time, l->count),
4622 l->max_time);
4623 } else
4624 len += sprintf(buf + len, " age=%ld",
4625 l->min_time);
4627 if (l->min_pid != l->max_pid)
4628 len += sprintf(buf + len, " pid=%ld-%ld",
4629 l->min_pid, l->max_pid);
4630 else
4631 len += sprintf(buf + len, " pid=%ld",
4632 l->min_pid);
4634 if (num_online_cpus() > 1 &&
4635 !cpumask_empty(to_cpumask(l->cpus)) &&
4636 len < PAGE_SIZE - 60)
4637 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4638 " cpus=%*pbl",
4639 cpumask_pr_args(to_cpumask(l->cpus)));
4641 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4642 len < PAGE_SIZE - 60)
4643 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4644 " nodes=%*pbl",
4645 nodemask_pr_args(&l->nodes));
4647 len += sprintf(buf + len, "\n");
4650 free_loc_track(&t);
4651 kfree(map);
4652 if (!t.count)
4653 len += sprintf(buf, "No data\n");
4654 return len;
4656 #endif
4658 #ifdef SLUB_RESILIENCY_TEST
4659 static void __init resiliency_test(void)
4661 u8 *p;
4663 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4665 pr_err("SLUB resiliency testing\n");
4666 pr_err("-----------------------\n");
4667 pr_err("A. Corruption after allocation\n");
4669 p = kzalloc(16, GFP_KERNEL);
4670 p[16] = 0x12;
4671 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4672 p + 16);
4674 validate_slab_cache(kmalloc_caches[4]);
4676 /* Hmmm... The next two are dangerous */
4677 p = kzalloc(32, GFP_KERNEL);
4678 p[32 + sizeof(void *)] = 0x34;
4679 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4681 pr_err("If allocated object is overwritten then not detectable\n\n");
4683 validate_slab_cache(kmalloc_caches[5]);
4684 p = kzalloc(64, GFP_KERNEL);
4685 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4686 *p = 0x56;
4687 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4689 pr_err("If allocated object is overwritten then not detectable\n\n");
4690 validate_slab_cache(kmalloc_caches[6]);
4692 pr_err("\nB. Corruption after free\n");
4693 p = kzalloc(128, GFP_KERNEL);
4694 kfree(p);
4695 *p = 0x78;
4696 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4697 validate_slab_cache(kmalloc_caches[7]);
4699 p = kzalloc(256, GFP_KERNEL);
4700 kfree(p);
4701 p[50] = 0x9a;
4702 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4703 validate_slab_cache(kmalloc_caches[8]);
4705 p = kzalloc(512, GFP_KERNEL);
4706 kfree(p);
4707 p[512] = 0xab;
4708 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4709 validate_slab_cache(kmalloc_caches[9]);
4711 #else
4712 #ifdef CONFIG_SYSFS
4713 static void resiliency_test(void) {};
4714 #endif
4715 #endif
4717 #ifdef CONFIG_SYSFS
4718 enum slab_stat_type {
4719 SL_ALL, /* All slabs */
4720 SL_PARTIAL, /* Only partially allocated slabs */
4721 SL_CPU, /* Only slabs used for cpu caches */
4722 SL_OBJECTS, /* Determine allocated objects not slabs */
4723 SL_TOTAL /* Determine object capacity not slabs */
4726 #define SO_ALL (1 << SL_ALL)
4727 #define SO_PARTIAL (1 << SL_PARTIAL)
4728 #define SO_CPU (1 << SL_CPU)
4729 #define SO_OBJECTS (1 << SL_OBJECTS)
4730 #define SO_TOTAL (1 << SL_TOTAL)
4732 #ifdef CONFIG_MEMCG
4733 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4735 static int __init setup_slub_memcg_sysfs(char *str)
4737 int v;
4739 if (get_option(&str, &v) > 0)
4740 memcg_sysfs_enabled = v;
4742 return 1;
4745 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4746 #endif
4748 static ssize_t show_slab_objects(struct kmem_cache *s,
4749 char *buf, unsigned long flags)
4751 unsigned long total = 0;
4752 int node;
4753 int x;
4754 unsigned long *nodes;
4756 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4757 if (!nodes)
4758 return -ENOMEM;
4760 if (flags & SO_CPU) {
4761 int cpu;
4763 for_each_possible_cpu(cpu) {
4764 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4765 cpu);
4766 int node;
4767 struct page *page;
4769 page = READ_ONCE(c->page);
4770 if (!page)
4771 continue;
4773 node = page_to_nid(page);
4774 if (flags & SO_TOTAL)
4775 x = page->objects;
4776 else if (flags & SO_OBJECTS)
4777 x = page->inuse;
4778 else
4779 x = 1;
4781 total += x;
4782 nodes[node] += x;
4784 page = slub_percpu_partial_read_once(c);
4785 if (page) {
4786 node = page_to_nid(page);
4787 if (flags & SO_TOTAL)
4788 WARN_ON_ONCE(1);
4789 else if (flags & SO_OBJECTS)
4790 WARN_ON_ONCE(1);
4791 else
4792 x = page->pages;
4793 total += x;
4794 nodes[node] += x;
4799 get_online_mems();
4800 #ifdef CONFIG_SLUB_DEBUG
4801 if (flags & SO_ALL) {
4802 struct kmem_cache_node *n;
4804 for_each_kmem_cache_node(s, node, n) {
4806 if (flags & SO_TOTAL)
4807 x = atomic_long_read(&n->total_objects);
4808 else if (flags & SO_OBJECTS)
4809 x = atomic_long_read(&n->total_objects) -
4810 count_partial(n, count_free);
4811 else
4812 x = atomic_long_read(&n->nr_slabs);
4813 total += x;
4814 nodes[node] += x;
4817 } else
4818 #endif
4819 if (flags & SO_PARTIAL) {
4820 struct kmem_cache_node *n;
4822 for_each_kmem_cache_node(s, node, n) {
4823 if (flags & SO_TOTAL)
4824 x = count_partial(n, count_total);
4825 else if (flags & SO_OBJECTS)
4826 x = count_partial(n, count_inuse);
4827 else
4828 x = n->nr_partial;
4829 total += x;
4830 nodes[node] += x;
4833 x = sprintf(buf, "%lu", total);
4834 #ifdef CONFIG_NUMA
4835 for (node = 0; node < nr_node_ids; node++)
4836 if (nodes[node])
4837 x += sprintf(buf + x, " N%d=%lu",
4838 node, nodes[node]);
4839 #endif
4840 put_online_mems();
4841 kfree(nodes);
4842 return x + sprintf(buf + x, "\n");
4845 #ifdef CONFIG_SLUB_DEBUG
4846 static int any_slab_objects(struct kmem_cache *s)
4848 int node;
4849 struct kmem_cache_node *n;
4851 for_each_kmem_cache_node(s, node, n)
4852 if (atomic_long_read(&n->total_objects))
4853 return 1;
4855 return 0;
4857 #endif
4859 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4860 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4862 struct slab_attribute {
4863 struct attribute attr;
4864 ssize_t (*show)(struct kmem_cache *s, char *buf);
4865 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4868 #define SLAB_ATTR_RO(_name) \
4869 static struct slab_attribute _name##_attr = \
4870 __ATTR(_name, 0400, _name##_show, NULL)
4872 #define SLAB_ATTR(_name) \
4873 static struct slab_attribute _name##_attr = \
4874 __ATTR(_name, 0600, _name##_show, _name##_store)
4876 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4878 return sprintf(buf, "%u\n", s->size);
4880 SLAB_ATTR_RO(slab_size);
4882 static ssize_t align_show(struct kmem_cache *s, char *buf)
4884 return sprintf(buf, "%u\n", s->align);
4886 SLAB_ATTR_RO(align);
4888 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4890 return sprintf(buf, "%u\n", s->object_size);
4892 SLAB_ATTR_RO(object_size);
4894 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4896 return sprintf(buf, "%u\n", oo_objects(s->oo));
4898 SLAB_ATTR_RO(objs_per_slab);
4900 static ssize_t order_store(struct kmem_cache *s,
4901 const char *buf, size_t length)
4903 unsigned int order;
4904 int err;
4906 err = kstrtouint(buf, 10, &order);
4907 if (err)
4908 return err;
4910 if (order > slub_max_order || order < slub_min_order)
4911 return -EINVAL;
4913 calculate_sizes(s, order);
4914 return length;
4917 static ssize_t order_show(struct kmem_cache *s, char *buf)
4919 return sprintf(buf, "%u\n", oo_order(s->oo));
4921 SLAB_ATTR(order);
4923 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4925 return sprintf(buf, "%lu\n", s->min_partial);
4928 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4929 size_t length)
4931 unsigned long min;
4932 int err;
4934 err = kstrtoul(buf, 10, &min);
4935 if (err)
4936 return err;
4938 set_min_partial(s, min);
4939 return length;
4941 SLAB_ATTR(min_partial);
4943 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4945 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4948 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4949 size_t length)
4951 unsigned int objects;
4952 int err;
4954 err = kstrtouint(buf, 10, &objects);
4955 if (err)
4956 return err;
4957 if (objects && !kmem_cache_has_cpu_partial(s))
4958 return -EINVAL;
4960 slub_set_cpu_partial(s, objects);
4961 flush_all(s);
4962 return length;
4964 SLAB_ATTR(cpu_partial);
4966 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4968 if (!s->ctor)
4969 return 0;
4970 return sprintf(buf, "%pS\n", s->ctor);
4972 SLAB_ATTR_RO(ctor);
4974 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4976 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4978 SLAB_ATTR_RO(aliases);
4980 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4982 return show_slab_objects(s, buf, SO_PARTIAL);
4984 SLAB_ATTR_RO(partial);
4986 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4988 return show_slab_objects(s, buf, SO_CPU);
4990 SLAB_ATTR_RO(cpu_slabs);
4992 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4994 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4996 SLAB_ATTR_RO(objects);
4998 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5000 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5002 SLAB_ATTR_RO(objects_partial);
5004 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5006 int objects = 0;
5007 int pages = 0;
5008 int cpu;
5009 int len;
5011 for_each_online_cpu(cpu) {
5012 struct page *page;
5014 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5016 if (page) {
5017 pages += page->pages;
5018 objects += page->pobjects;
5022 len = sprintf(buf, "%d(%d)", objects, pages);
5024 #ifdef CONFIG_SMP
5025 for_each_online_cpu(cpu) {
5026 struct page *page;
5028 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5030 if (page && len < PAGE_SIZE - 20)
5031 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5032 page->pobjects, page->pages);
5034 #endif
5035 return len + sprintf(buf + len, "\n");
5037 SLAB_ATTR_RO(slabs_cpu_partial);
5039 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5041 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5044 static ssize_t reclaim_account_store(struct kmem_cache *s,
5045 const char *buf, size_t length)
5047 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5048 if (buf[0] == '1')
5049 s->flags |= SLAB_RECLAIM_ACCOUNT;
5050 return length;
5052 SLAB_ATTR(reclaim_account);
5054 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5056 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5058 SLAB_ATTR_RO(hwcache_align);
5060 #ifdef CONFIG_ZONE_DMA
5061 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5063 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5065 SLAB_ATTR_RO(cache_dma);
5066 #endif
5068 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5070 return sprintf(buf, "%u\n", s->usersize);
5072 SLAB_ATTR_RO(usersize);
5074 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5076 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5078 SLAB_ATTR_RO(destroy_by_rcu);
5080 #ifdef CONFIG_SLUB_DEBUG
5081 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5083 return show_slab_objects(s, buf, SO_ALL);
5085 SLAB_ATTR_RO(slabs);
5087 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5089 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5091 SLAB_ATTR_RO(total_objects);
5093 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5098 static ssize_t sanity_checks_store(struct kmem_cache *s,
5099 const char *buf, size_t length)
5101 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5102 if (buf[0] == '1') {
5103 s->flags &= ~__CMPXCHG_DOUBLE;
5104 s->flags |= SLAB_CONSISTENCY_CHECKS;
5106 return length;
5108 SLAB_ATTR(sanity_checks);
5110 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5115 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5116 size_t length)
5119 * Tracing a merged cache is going to give confusing results
5120 * as well as cause other issues like converting a mergeable
5121 * cache into an umergeable one.
5123 if (s->refcount > 1)
5124 return -EINVAL;
5126 s->flags &= ~SLAB_TRACE;
5127 if (buf[0] == '1') {
5128 s->flags &= ~__CMPXCHG_DOUBLE;
5129 s->flags |= SLAB_TRACE;
5131 return length;
5133 SLAB_ATTR(trace);
5135 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5140 static ssize_t red_zone_store(struct kmem_cache *s,
5141 const char *buf, size_t length)
5143 if (any_slab_objects(s))
5144 return -EBUSY;
5146 s->flags &= ~SLAB_RED_ZONE;
5147 if (buf[0] == '1') {
5148 s->flags |= SLAB_RED_ZONE;
5150 calculate_sizes(s, -1);
5151 return length;
5153 SLAB_ATTR(red_zone);
5155 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5157 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5160 static ssize_t poison_store(struct kmem_cache *s,
5161 const char *buf, size_t length)
5163 if (any_slab_objects(s))
5164 return -EBUSY;
5166 s->flags &= ~SLAB_POISON;
5167 if (buf[0] == '1') {
5168 s->flags |= SLAB_POISON;
5170 calculate_sizes(s, -1);
5171 return length;
5173 SLAB_ATTR(poison);
5175 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5177 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5180 static ssize_t store_user_store(struct kmem_cache *s,
5181 const char *buf, size_t length)
5183 if (any_slab_objects(s))
5184 return -EBUSY;
5186 s->flags &= ~SLAB_STORE_USER;
5187 if (buf[0] == '1') {
5188 s->flags &= ~__CMPXCHG_DOUBLE;
5189 s->flags |= SLAB_STORE_USER;
5191 calculate_sizes(s, -1);
5192 return length;
5194 SLAB_ATTR(store_user);
5196 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5198 return 0;
5201 static ssize_t validate_store(struct kmem_cache *s,
5202 const char *buf, size_t length)
5204 int ret = -EINVAL;
5206 if (buf[0] == '1') {
5207 ret = validate_slab_cache(s);
5208 if (ret >= 0)
5209 ret = length;
5211 return ret;
5213 SLAB_ATTR(validate);
5215 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5217 if (!(s->flags & SLAB_STORE_USER))
5218 return -ENOSYS;
5219 return list_locations(s, buf, TRACK_ALLOC);
5221 SLAB_ATTR_RO(alloc_calls);
5223 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5225 if (!(s->flags & SLAB_STORE_USER))
5226 return -ENOSYS;
5227 return list_locations(s, buf, TRACK_FREE);
5229 SLAB_ATTR_RO(free_calls);
5230 #endif /* CONFIG_SLUB_DEBUG */
5232 #ifdef CONFIG_FAILSLAB
5233 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5235 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5238 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5239 size_t length)
5241 if (s->refcount > 1)
5242 return -EINVAL;
5244 s->flags &= ~SLAB_FAILSLAB;
5245 if (buf[0] == '1')
5246 s->flags |= SLAB_FAILSLAB;
5247 return length;
5249 SLAB_ATTR(failslab);
5250 #endif
5252 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5254 return 0;
5257 static ssize_t shrink_store(struct kmem_cache *s,
5258 const char *buf, size_t length)
5260 if (buf[0] == '1')
5261 kmem_cache_shrink(s);
5262 else
5263 return -EINVAL;
5264 return length;
5266 SLAB_ATTR(shrink);
5268 #ifdef CONFIG_NUMA
5269 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5271 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5274 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5275 const char *buf, size_t length)
5277 unsigned int ratio;
5278 int err;
5280 err = kstrtouint(buf, 10, &ratio);
5281 if (err)
5282 return err;
5283 if (ratio > 100)
5284 return -ERANGE;
5286 s->remote_node_defrag_ratio = ratio * 10;
5288 return length;
5290 SLAB_ATTR(remote_node_defrag_ratio);
5291 #endif
5293 #ifdef CONFIG_SLUB_STATS
5294 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5296 unsigned long sum = 0;
5297 int cpu;
5298 int len;
5299 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5301 if (!data)
5302 return -ENOMEM;
5304 for_each_online_cpu(cpu) {
5305 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5307 data[cpu] = x;
5308 sum += x;
5311 len = sprintf(buf, "%lu", sum);
5313 #ifdef CONFIG_SMP
5314 for_each_online_cpu(cpu) {
5315 if (data[cpu] && len < PAGE_SIZE - 20)
5316 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5318 #endif
5319 kfree(data);
5320 return len + sprintf(buf + len, "\n");
5323 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5325 int cpu;
5327 for_each_online_cpu(cpu)
5328 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5331 #define STAT_ATTR(si, text) \
5332 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5334 return show_stat(s, buf, si); \
5336 static ssize_t text##_store(struct kmem_cache *s, \
5337 const char *buf, size_t length) \
5339 if (buf[0] != '0') \
5340 return -EINVAL; \
5341 clear_stat(s, si); \
5342 return length; \
5344 SLAB_ATTR(text); \
5346 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5347 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5348 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5349 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5350 STAT_ATTR(FREE_FROZEN, free_frozen);
5351 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5352 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5353 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5354 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5355 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5356 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5357 STAT_ATTR(FREE_SLAB, free_slab);
5358 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5359 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5360 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5361 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5362 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5363 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5364 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5365 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5366 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5367 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5368 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5369 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5370 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5371 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5372 #endif
5374 static struct attribute *slab_attrs[] = {
5375 &slab_size_attr.attr,
5376 &object_size_attr.attr,
5377 &objs_per_slab_attr.attr,
5378 &order_attr.attr,
5379 &min_partial_attr.attr,
5380 &cpu_partial_attr.attr,
5381 &objects_attr.attr,
5382 &objects_partial_attr.attr,
5383 &partial_attr.attr,
5384 &cpu_slabs_attr.attr,
5385 &ctor_attr.attr,
5386 &aliases_attr.attr,
5387 &align_attr.attr,
5388 &hwcache_align_attr.attr,
5389 &reclaim_account_attr.attr,
5390 &destroy_by_rcu_attr.attr,
5391 &shrink_attr.attr,
5392 &slabs_cpu_partial_attr.attr,
5393 #ifdef CONFIG_SLUB_DEBUG
5394 &total_objects_attr.attr,
5395 &slabs_attr.attr,
5396 &sanity_checks_attr.attr,
5397 &trace_attr.attr,
5398 &red_zone_attr.attr,
5399 &poison_attr.attr,
5400 &store_user_attr.attr,
5401 &validate_attr.attr,
5402 &alloc_calls_attr.attr,
5403 &free_calls_attr.attr,
5404 #endif
5405 #ifdef CONFIG_ZONE_DMA
5406 &cache_dma_attr.attr,
5407 #endif
5408 #ifdef CONFIG_NUMA
5409 &remote_node_defrag_ratio_attr.attr,
5410 #endif
5411 #ifdef CONFIG_SLUB_STATS
5412 &alloc_fastpath_attr.attr,
5413 &alloc_slowpath_attr.attr,
5414 &free_fastpath_attr.attr,
5415 &free_slowpath_attr.attr,
5416 &free_frozen_attr.attr,
5417 &free_add_partial_attr.attr,
5418 &free_remove_partial_attr.attr,
5419 &alloc_from_partial_attr.attr,
5420 &alloc_slab_attr.attr,
5421 &alloc_refill_attr.attr,
5422 &alloc_node_mismatch_attr.attr,
5423 &free_slab_attr.attr,
5424 &cpuslab_flush_attr.attr,
5425 &deactivate_full_attr.attr,
5426 &deactivate_empty_attr.attr,
5427 &deactivate_to_head_attr.attr,
5428 &deactivate_to_tail_attr.attr,
5429 &deactivate_remote_frees_attr.attr,
5430 &deactivate_bypass_attr.attr,
5431 &order_fallback_attr.attr,
5432 &cmpxchg_double_fail_attr.attr,
5433 &cmpxchg_double_cpu_fail_attr.attr,
5434 &cpu_partial_alloc_attr.attr,
5435 &cpu_partial_free_attr.attr,
5436 &cpu_partial_node_attr.attr,
5437 &cpu_partial_drain_attr.attr,
5438 #endif
5439 #ifdef CONFIG_FAILSLAB
5440 &failslab_attr.attr,
5441 #endif
5442 &usersize_attr.attr,
5444 NULL
5447 static const struct attribute_group slab_attr_group = {
5448 .attrs = slab_attrs,
5451 static ssize_t slab_attr_show(struct kobject *kobj,
5452 struct attribute *attr,
5453 char *buf)
5455 struct slab_attribute *attribute;
5456 struct kmem_cache *s;
5457 int err;
5459 attribute = to_slab_attr(attr);
5460 s = to_slab(kobj);
5462 if (!attribute->show)
5463 return -EIO;
5465 err = attribute->show(s, buf);
5467 return err;
5470 static ssize_t slab_attr_store(struct kobject *kobj,
5471 struct attribute *attr,
5472 const char *buf, size_t len)
5474 struct slab_attribute *attribute;
5475 struct kmem_cache *s;
5476 int err;
5478 attribute = to_slab_attr(attr);
5479 s = to_slab(kobj);
5481 if (!attribute->store)
5482 return -EIO;
5484 err = attribute->store(s, buf, len);
5485 #ifdef CONFIG_MEMCG
5486 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5487 struct kmem_cache *c;
5489 mutex_lock(&slab_mutex);
5490 if (s->max_attr_size < len)
5491 s->max_attr_size = len;
5494 * This is a best effort propagation, so this function's return
5495 * value will be determined by the parent cache only. This is
5496 * basically because not all attributes will have a well
5497 * defined semantics for rollbacks - most of the actions will
5498 * have permanent effects.
5500 * Returning the error value of any of the children that fail
5501 * is not 100 % defined, in the sense that users seeing the
5502 * error code won't be able to know anything about the state of
5503 * the cache.
5505 * Only returning the error code for the parent cache at least
5506 * has well defined semantics. The cache being written to
5507 * directly either failed or succeeded, in which case we loop
5508 * through the descendants with best-effort propagation.
5510 for_each_memcg_cache(c, s)
5511 attribute->store(c, buf, len);
5512 mutex_unlock(&slab_mutex);
5514 #endif
5515 return err;
5518 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5520 #ifdef CONFIG_MEMCG
5521 int i;
5522 char *buffer = NULL;
5523 struct kmem_cache *root_cache;
5525 if (is_root_cache(s))
5526 return;
5528 root_cache = s->memcg_params.root_cache;
5531 * This mean this cache had no attribute written. Therefore, no point
5532 * in copying default values around
5534 if (!root_cache->max_attr_size)
5535 return;
5537 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5538 char mbuf[64];
5539 char *buf;
5540 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5541 ssize_t len;
5543 if (!attr || !attr->store || !attr->show)
5544 continue;
5547 * It is really bad that we have to allocate here, so we will
5548 * do it only as a fallback. If we actually allocate, though,
5549 * we can just use the allocated buffer until the end.
5551 * Most of the slub attributes will tend to be very small in
5552 * size, but sysfs allows buffers up to a page, so they can
5553 * theoretically happen.
5555 if (buffer)
5556 buf = buffer;
5557 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5558 buf = mbuf;
5559 else {
5560 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5561 if (WARN_ON(!buffer))
5562 continue;
5563 buf = buffer;
5566 len = attr->show(root_cache, buf);
5567 if (len > 0)
5568 attr->store(s, buf, len);
5571 if (buffer)
5572 free_page((unsigned long)buffer);
5573 #endif
5576 static void kmem_cache_release(struct kobject *k)
5578 slab_kmem_cache_release(to_slab(k));
5581 static const struct sysfs_ops slab_sysfs_ops = {
5582 .show = slab_attr_show,
5583 .store = slab_attr_store,
5586 static struct kobj_type slab_ktype = {
5587 .sysfs_ops = &slab_sysfs_ops,
5588 .release = kmem_cache_release,
5591 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5593 struct kobj_type *ktype = get_ktype(kobj);
5595 if (ktype == &slab_ktype)
5596 return 1;
5597 return 0;
5600 static const struct kset_uevent_ops slab_uevent_ops = {
5601 .filter = uevent_filter,
5604 static struct kset *slab_kset;
5606 static inline struct kset *cache_kset(struct kmem_cache *s)
5608 #ifdef CONFIG_MEMCG
5609 if (!is_root_cache(s))
5610 return s->memcg_params.root_cache->memcg_kset;
5611 #endif
5612 return slab_kset;
5615 #define ID_STR_LENGTH 64
5617 /* Create a unique string id for a slab cache:
5619 * Format :[flags-]size
5621 static char *create_unique_id(struct kmem_cache *s)
5623 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5624 char *p = name;
5626 BUG_ON(!name);
5628 *p++ = ':';
5630 * First flags affecting slabcache operations. We will only
5631 * get here for aliasable slabs so we do not need to support
5632 * too many flags. The flags here must cover all flags that
5633 * are matched during merging to guarantee that the id is
5634 * unique.
5636 if (s->flags & SLAB_CACHE_DMA)
5637 *p++ = 'd';
5638 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5639 *p++ = 'a';
5640 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5641 *p++ = 'F';
5642 if (s->flags & SLAB_ACCOUNT)
5643 *p++ = 'A';
5644 if (p != name + 1)
5645 *p++ = '-';
5646 p += sprintf(p, "%07u", s->size);
5648 BUG_ON(p > name + ID_STR_LENGTH - 1);
5649 return name;
5652 static void sysfs_slab_remove_workfn(struct work_struct *work)
5654 struct kmem_cache *s =
5655 container_of(work, struct kmem_cache, kobj_remove_work);
5657 if (!s->kobj.state_in_sysfs)
5659 * For a memcg cache, this may be called during
5660 * deactivation and again on shutdown. Remove only once.
5661 * A cache is never shut down before deactivation is
5662 * complete, so no need to worry about synchronization.
5664 goto out;
5666 #ifdef CONFIG_MEMCG
5667 kset_unregister(s->memcg_kset);
5668 #endif
5669 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5670 kobject_del(&s->kobj);
5671 out:
5672 kobject_put(&s->kobj);
5675 static int sysfs_slab_add(struct kmem_cache *s)
5677 int err;
5678 const char *name;
5679 struct kset *kset = cache_kset(s);
5680 int unmergeable = slab_unmergeable(s);
5682 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5684 if (!kset) {
5685 kobject_init(&s->kobj, &slab_ktype);
5686 return 0;
5689 if (!unmergeable && disable_higher_order_debug &&
5690 (slub_debug & DEBUG_METADATA_FLAGS))
5691 unmergeable = 1;
5693 if (unmergeable) {
5695 * Slabcache can never be merged so we can use the name proper.
5696 * This is typically the case for debug situations. In that
5697 * case we can catch duplicate names easily.
5699 sysfs_remove_link(&slab_kset->kobj, s->name);
5700 name = s->name;
5701 } else {
5703 * Create a unique name for the slab as a target
5704 * for the symlinks.
5706 name = create_unique_id(s);
5709 s->kobj.kset = kset;
5710 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5711 if (err)
5712 goto out;
5714 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5715 if (err)
5716 goto out_del_kobj;
5718 #ifdef CONFIG_MEMCG
5719 if (is_root_cache(s) && memcg_sysfs_enabled) {
5720 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5721 if (!s->memcg_kset) {
5722 err = -ENOMEM;
5723 goto out_del_kobj;
5726 #endif
5728 kobject_uevent(&s->kobj, KOBJ_ADD);
5729 if (!unmergeable) {
5730 /* Setup first alias */
5731 sysfs_slab_alias(s, s->name);
5733 out:
5734 if (!unmergeable)
5735 kfree(name);
5736 return err;
5737 out_del_kobj:
5738 kobject_del(&s->kobj);
5739 goto out;
5742 static void sysfs_slab_remove(struct kmem_cache *s)
5744 if (slab_state < FULL)
5746 * Sysfs has not been setup yet so no need to remove the
5747 * cache from sysfs.
5749 return;
5751 kobject_get(&s->kobj);
5752 schedule_work(&s->kobj_remove_work);
5755 void sysfs_slab_release(struct kmem_cache *s)
5757 if (slab_state >= FULL)
5758 kobject_put(&s->kobj);
5762 * Need to buffer aliases during bootup until sysfs becomes
5763 * available lest we lose that information.
5765 struct saved_alias {
5766 struct kmem_cache *s;
5767 const char *name;
5768 struct saved_alias *next;
5771 static struct saved_alias *alias_list;
5773 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5775 struct saved_alias *al;
5777 if (slab_state == FULL) {
5779 * If we have a leftover link then remove it.
5781 sysfs_remove_link(&slab_kset->kobj, name);
5782 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5785 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5786 if (!al)
5787 return -ENOMEM;
5789 al->s = s;
5790 al->name = name;
5791 al->next = alias_list;
5792 alias_list = al;
5793 return 0;
5796 static int __init slab_sysfs_init(void)
5798 struct kmem_cache *s;
5799 int err;
5801 mutex_lock(&slab_mutex);
5803 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5804 if (!slab_kset) {
5805 mutex_unlock(&slab_mutex);
5806 pr_err("Cannot register slab subsystem.\n");
5807 return -ENOSYS;
5810 slab_state = FULL;
5812 list_for_each_entry(s, &slab_caches, list) {
5813 err = sysfs_slab_add(s);
5814 if (err)
5815 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5816 s->name);
5819 while (alias_list) {
5820 struct saved_alias *al = alias_list;
5822 alias_list = alias_list->next;
5823 err = sysfs_slab_alias(al->s, al->name);
5824 if (err)
5825 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5826 al->name);
5827 kfree(al);
5830 mutex_unlock(&slab_mutex);
5831 resiliency_test();
5832 return 0;
5835 __initcall(slab_sysfs_init);
5836 #endif /* CONFIG_SYSFS */
5839 * The /proc/slabinfo ABI
5841 #ifdef CONFIG_SLUB_DEBUG
5842 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5844 unsigned long nr_slabs = 0;
5845 unsigned long nr_objs = 0;
5846 unsigned long nr_free = 0;
5847 int node;
5848 struct kmem_cache_node *n;
5850 for_each_kmem_cache_node(s, node, n) {
5851 nr_slabs += node_nr_slabs(n);
5852 nr_objs += node_nr_objs(n);
5853 nr_free += count_partial(n, count_free);
5856 sinfo->active_objs = nr_objs - nr_free;
5857 sinfo->num_objs = nr_objs;
5858 sinfo->active_slabs = nr_slabs;
5859 sinfo->num_slabs = nr_slabs;
5860 sinfo->objects_per_slab = oo_objects(s->oo);
5861 sinfo->cache_order = oo_order(s->oo);
5864 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5868 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5869 size_t count, loff_t *ppos)
5871 return -EIO;
5873 #endif /* CONFIG_SLUB_DEBUG */