Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / arch / arm64 / mm / fault.c
blobc9cedc0432d25df86f250dffad57679f77930620
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
27 #include <asm/acpi.h>
28 #include <asm/bug.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/esr.h>
35 #include <asm/kprobes.h>
36 #include <asm/processor.h>
37 #include <asm/sysreg.h>
38 #include <asm/system_misc.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/traps.h>
43 struct fault_info {
44 int (*fn)(unsigned long addr, unsigned int esr,
45 struct pt_regs *regs);
46 int sig;
47 int code;
48 const char *name;
51 static const struct fault_info fault_info[];
52 static struct fault_info debug_fault_info[];
54 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
56 return fault_info + (esr & ESR_ELx_FSC);
59 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
61 return debug_fault_info + DBG_ESR_EVT(esr);
64 static void data_abort_decode(unsigned int esr)
66 pr_alert("Data abort info:\n");
68 if (esr & ESR_ELx_ISV) {
69 pr_alert(" Access size = %u byte(s)\n",
70 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
71 pr_alert(" SSE = %lu, SRT = %lu\n",
72 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
73 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
74 pr_alert(" SF = %lu, AR = %lu\n",
75 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
76 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
77 } else {
78 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
81 pr_alert(" CM = %lu, WnR = %lu\n",
82 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
83 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
86 static void mem_abort_decode(unsigned int esr)
88 pr_alert("Mem abort info:\n");
90 pr_alert(" ESR = 0x%08x\n", esr);
91 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
92 ESR_ELx_EC(esr), esr_get_class_string(esr),
93 (esr & ESR_ELx_IL) ? 32 : 16);
94 pr_alert(" SET = %lu, FnV = %lu\n",
95 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
96 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
97 pr_alert(" EA = %lu, S1PTW = %lu\n",
98 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
99 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
101 if (esr_is_data_abort(esr))
102 data_abort_decode(esr);
105 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
107 /* Either init_pg_dir or swapper_pg_dir */
108 if (mm == &init_mm)
109 return __pa_symbol(mm->pgd);
111 return (unsigned long)virt_to_phys(mm->pgd);
115 * Dump out the page tables associated with 'addr' in the currently active mm.
117 static void show_pte(unsigned long addr)
119 struct mm_struct *mm;
120 pgd_t *pgdp;
121 pgd_t pgd;
123 if (is_ttbr0_addr(addr)) {
124 /* TTBR0 */
125 mm = current->active_mm;
126 if (mm == &init_mm) {
127 pr_alert("[%016lx] user address but active_mm is swapper\n",
128 addr);
129 return;
131 } else if (is_ttbr1_addr(addr)) {
132 /* TTBR1 */
133 mm = &init_mm;
134 } else {
135 pr_alert("[%016lx] address between user and kernel address ranges\n",
136 addr);
137 return;
140 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
141 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
142 vabits_actual, mm_to_pgd_phys(mm));
143 pgdp = pgd_offset(mm, addr);
144 pgd = READ_ONCE(*pgdp);
145 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
147 do {
148 pud_t *pudp, pud;
149 pmd_t *pmdp, pmd;
150 pte_t *ptep, pte;
152 if (pgd_none(pgd) || pgd_bad(pgd))
153 break;
155 pudp = pud_offset(pgdp, addr);
156 pud = READ_ONCE(*pudp);
157 pr_cont(", pud=%016llx", pud_val(pud));
158 if (pud_none(pud) || pud_bad(pud))
159 break;
161 pmdp = pmd_offset(pudp, addr);
162 pmd = READ_ONCE(*pmdp);
163 pr_cont(", pmd=%016llx", pmd_val(pmd));
164 if (pmd_none(pmd) || pmd_bad(pmd))
165 break;
167 ptep = pte_offset_map(pmdp, addr);
168 pte = READ_ONCE(*ptep);
169 pr_cont(", pte=%016llx", pte_val(pte));
170 pte_unmap(ptep);
171 } while(0);
173 pr_cont("\n");
177 * This function sets the access flags (dirty, accessed), as well as write
178 * permission, and only to a more permissive setting.
180 * It needs to cope with hardware update of the accessed/dirty state by other
181 * agents in the system and can safely skip the __sync_icache_dcache() call as,
182 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
184 * Returns whether or not the PTE actually changed.
186 int ptep_set_access_flags(struct vm_area_struct *vma,
187 unsigned long address, pte_t *ptep,
188 pte_t entry, int dirty)
190 pteval_t old_pteval, pteval;
191 pte_t pte = READ_ONCE(*ptep);
193 if (pte_same(pte, entry))
194 return 0;
196 /* only preserve the access flags and write permission */
197 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
200 * Setting the flags must be done atomically to avoid racing with the
201 * hardware update of the access/dirty state. The PTE_RDONLY bit must
202 * be set to the most permissive (lowest value) of *ptep and entry
203 * (calculated as: a & b == ~(~a | ~b)).
205 pte_val(entry) ^= PTE_RDONLY;
206 pteval = pte_val(pte);
207 do {
208 old_pteval = pteval;
209 pteval ^= PTE_RDONLY;
210 pteval |= pte_val(entry);
211 pteval ^= PTE_RDONLY;
212 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
213 } while (pteval != old_pteval);
215 flush_tlb_fix_spurious_fault(vma, address);
216 return 1;
219 static bool is_el1_instruction_abort(unsigned int esr)
221 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
224 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
225 struct pt_regs *regs)
227 unsigned int ec = ESR_ELx_EC(esr);
228 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
230 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
231 return false;
233 if (fsc_type == ESR_ELx_FSC_PERM)
234 return true;
236 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
237 return fsc_type == ESR_ELx_FSC_FAULT &&
238 (regs->pstate & PSR_PAN_BIT);
240 return false;
243 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
244 unsigned int esr,
245 struct pt_regs *regs)
247 unsigned long flags;
248 u64 par, dfsc;
250 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
251 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
252 return false;
254 local_irq_save(flags);
255 asm volatile("at s1e1r, %0" :: "r" (addr));
256 isb();
257 par = read_sysreg(par_el1);
258 local_irq_restore(flags);
261 * If we now have a valid translation, treat the translation fault as
262 * spurious.
264 if (!(par & SYS_PAR_EL1_F))
265 return true;
268 * If we got a different type of fault from the AT instruction,
269 * treat the translation fault as spurious.
271 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
272 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
275 static void die_kernel_fault(const char *msg, unsigned long addr,
276 unsigned int esr, struct pt_regs *regs)
278 bust_spinlocks(1);
280 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
281 addr);
283 mem_abort_decode(esr);
285 show_pte(addr);
286 die("Oops", regs, esr);
287 bust_spinlocks(0);
288 do_exit(SIGKILL);
291 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
292 struct pt_regs *regs)
294 const char *msg;
297 * Are we prepared to handle this kernel fault?
298 * We are almost certainly not prepared to handle instruction faults.
300 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
301 return;
303 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
304 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
305 return;
307 if (is_el1_permission_fault(addr, esr, regs)) {
308 if (esr & ESR_ELx_WNR)
309 msg = "write to read-only memory";
310 else if (is_el1_instruction_abort(esr))
311 msg = "execute from non-executable memory";
312 else
313 msg = "read from unreadable memory";
314 } else if (addr < PAGE_SIZE) {
315 msg = "NULL pointer dereference";
316 } else {
317 msg = "paging request";
320 die_kernel_fault(msg, addr, esr, regs);
323 static void set_thread_esr(unsigned long address, unsigned int esr)
325 current->thread.fault_address = address;
328 * If the faulting address is in the kernel, we must sanitize the ESR.
329 * From userspace's point of view, kernel-only mappings don't exist
330 * at all, so we report them as level 0 translation faults.
331 * (This is not quite the way that "no mapping there at all" behaves:
332 * an alignment fault not caused by the memory type would take
333 * precedence over translation fault for a real access to empty
334 * space. Unfortunately we can't easily distinguish "alignment fault
335 * not caused by memory type" from "alignment fault caused by memory
336 * type", so we ignore this wrinkle and just return the translation
337 * fault.)
339 if (!is_ttbr0_addr(current->thread.fault_address)) {
340 switch (ESR_ELx_EC(esr)) {
341 case ESR_ELx_EC_DABT_LOW:
343 * These bits provide only information about the
344 * faulting instruction, which userspace knows already.
345 * We explicitly clear bits which are architecturally
346 * RES0 in case they are given meanings in future.
347 * We always report the ESR as if the fault was taken
348 * to EL1 and so ISV and the bits in ISS[23:14] are
349 * clear. (In fact it always will be a fault to EL1.)
351 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
352 ESR_ELx_CM | ESR_ELx_WNR;
353 esr |= ESR_ELx_FSC_FAULT;
354 break;
355 case ESR_ELx_EC_IABT_LOW:
357 * Claim a level 0 translation fault.
358 * All other bits are architecturally RES0 for faults
359 * reported with that DFSC value, so we clear them.
361 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
362 esr |= ESR_ELx_FSC_FAULT;
363 break;
364 default:
366 * This should never happen (entry.S only brings us
367 * into this code for insn and data aborts from a lower
368 * exception level). Fail safe by not providing an ESR
369 * context record at all.
371 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
372 esr = 0;
373 break;
377 current->thread.fault_code = esr;
380 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
383 * If we are in kernel mode at this point, we have no context to
384 * handle this fault with.
386 if (user_mode(regs)) {
387 const struct fault_info *inf = esr_to_fault_info(esr);
389 set_thread_esr(addr, esr);
390 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
391 inf->name);
392 } else {
393 __do_kernel_fault(addr, esr, regs);
397 #define VM_FAULT_BADMAP 0x010000
398 #define VM_FAULT_BADACCESS 0x020000
400 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
401 unsigned int mm_flags, unsigned long vm_flags)
403 struct vm_area_struct *vma = find_vma(mm, addr);
405 if (unlikely(!vma))
406 return VM_FAULT_BADMAP;
409 * Ok, we have a good vm_area for this memory access, so we can handle
410 * it.
412 if (unlikely(vma->vm_start > addr)) {
413 if (!(vma->vm_flags & VM_GROWSDOWN))
414 return VM_FAULT_BADMAP;
415 if (expand_stack(vma, addr))
416 return VM_FAULT_BADMAP;
420 * Check that the permissions on the VMA allow for the fault which
421 * occurred.
423 if (!(vma->vm_flags & vm_flags))
424 return VM_FAULT_BADACCESS;
425 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
428 static bool is_el0_instruction_abort(unsigned int esr)
430 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
434 * Note: not valid for EL1 DC IVAC, but we never use that such that it
435 * should fault. EL0 cannot issue DC IVAC (undef).
437 static bool is_write_abort(unsigned int esr)
439 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
442 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
443 struct pt_regs *regs)
445 const struct fault_info *inf;
446 struct mm_struct *mm = current->mm;
447 vm_fault_t fault, major = 0;
448 unsigned long vm_flags = VM_ACCESS_FLAGS;
449 unsigned int mm_flags = FAULT_FLAG_DEFAULT;
451 if (kprobe_page_fault(regs, esr))
452 return 0;
455 * If we're in an interrupt or have no user context, we must not take
456 * the fault.
458 if (faulthandler_disabled() || !mm)
459 goto no_context;
461 if (user_mode(regs))
462 mm_flags |= FAULT_FLAG_USER;
464 if (is_el0_instruction_abort(esr)) {
465 vm_flags = VM_EXEC;
466 mm_flags |= FAULT_FLAG_INSTRUCTION;
467 } else if (is_write_abort(esr)) {
468 vm_flags = VM_WRITE;
469 mm_flags |= FAULT_FLAG_WRITE;
472 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
473 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
474 if (regs->orig_addr_limit == KERNEL_DS)
475 die_kernel_fault("access to user memory with fs=KERNEL_DS",
476 addr, esr, regs);
478 if (is_el1_instruction_abort(esr))
479 die_kernel_fault("execution of user memory",
480 addr, esr, regs);
482 if (!search_exception_tables(regs->pc))
483 die_kernel_fault("access to user memory outside uaccess routines",
484 addr, esr, regs);
487 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
490 * As per x86, we may deadlock here. However, since the kernel only
491 * validly references user space from well defined areas of the code,
492 * we can bug out early if this is from code which shouldn't.
494 if (!down_read_trylock(&mm->mmap_sem)) {
495 if (!user_mode(regs) && !search_exception_tables(regs->pc))
496 goto no_context;
497 retry:
498 down_read(&mm->mmap_sem);
499 } else {
501 * The above down_read_trylock() might have succeeded in which
502 * case, we'll have missed the might_sleep() from down_read().
504 might_sleep();
505 #ifdef CONFIG_DEBUG_VM
506 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
507 up_read(&mm->mmap_sem);
508 goto no_context;
510 #endif
513 fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
514 major |= fault & VM_FAULT_MAJOR;
516 /* Quick path to respond to signals */
517 if (fault_signal_pending(fault, regs)) {
518 if (!user_mode(regs))
519 goto no_context;
520 return 0;
523 if (fault & VM_FAULT_RETRY) {
524 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
525 mm_flags |= FAULT_FLAG_TRIED;
526 goto retry;
529 up_read(&mm->mmap_sem);
532 * Handle the "normal" (no error) case first.
534 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
535 VM_FAULT_BADACCESS)))) {
537 * Major/minor page fault accounting is only done
538 * once. If we go through a retry, it is extremely
539 * likely that the page will be found in page cache at
540 * that point.
542 if (major) {
543 current->maj_flt++;
544 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
545 addr);
546 } else {
547 current->min_flt++;
548 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
549 addr);
552 return 0;
556 * If we are in kernel mode at this point, we have no context to
557 * handle this fault with.
559 if (!user_mode(regs))
560 goto no_context;
562 if (fault & VM_FAULT_OOM) {
564 * We ran out of memory, call the OOM killer, and return to
565 * userspace (which will retry the fault, or kill us if we got
566 * oom-killed).
568 pagefault_out_of_memory();
569 return 0;
572 inf = esr_to_fault_info(esr);
573 set_thread_esr(addr, esr);
574 if (fault & VM_FAULT_SIGBUS) {
576 * We had some memory, but were unable to successfully fix up
577 * this page fault.
579 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
580 inf->name);
581 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
582 unsigned int lsb;
584 lsb = PAGE_SHIFT;
585 if (fault & VM_FAULT_HWPOISON_LARGE)
586 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
588 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
589 inf->name);
590 } else {
592 * Something tried to access memory that isn't in our memory
593 * map.
595 arm64_force_sig_fault(SIGSEGV,
596 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
597 (void __user *)addr,
598 inf->name);
601 return 0;
603 no_context:
604 __do_kernel_fault(addr, esr, regs);
605 return 0;
608 static int __kprobes do_translation_fault(unsigned long addr,
609 unsigned int esr,
610 struct pt_regs *regs)
612 if (is_ttbr0_addr(addr))
613 return do_page_fault(addr, esr, regs);
615 do_bad_area(addr, esr, regs);
616 return 0;
619 static int do_alignment_fault(unsigned long addr, unsigned int esr,
620 struct pt_regs *regs)
622 do_bad_area(addr, esr, regs);
623 return 0;
626 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
628 return 1; /* "fault" */
631 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
633 const struct fault_info *inf;
634 void __user *siaddr;
636 inf = esr_to_fault_info(esr);
639 * Return value ignored as we rely on signal merging.
640 * Future patches will make this more robust.
642 apei_claim_sea(regs);
644 if (esr & ESR_ELx_FnV)
645 siaddr = NULL;
646 else
647 siaddr = (void __user *)addr;
648 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
650 return 0;
653 static const struct fault_info fault_info[] = {
654 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
655 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
656 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
657 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
658 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
659 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
660 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
661 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
662 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
663 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
664 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
665 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
666 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
667 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
668 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
669 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
670 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
671 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
672 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
673 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
674 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
675 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
676 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
677 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
678 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
679 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
680 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
681 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
682 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
683 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
684 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
685 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
686 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
687 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
690 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
691 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
692 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
693 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
694 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
695 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
698 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
699 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
702 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
703 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
706 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
707 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
709 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
710 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
711 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
712 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
713 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
714 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
715 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
716 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
717 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
720 void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
722 const struct fault_info *inf = esr_to_fault_info(esr);
724 if (!inf->fn(addr, esr, regs))
725 return;
727 if (!user_mode(regs)) {
728 pr_alert("Unhandled fault at 0x%016lx\n", addr);
729 mem_abort_decode(esr);
730 show_pte(addr);
733 arm64_notify_die(inf->name, regs,
734 inf->sig, inf->code, (void __user *)addr, esr);
736 NOKPROBE_SYMBOL(do_mem_abort);
738 void do_el0_irq_bp_hardening(void)
740 /* PC has already been checked in entry.S */
741 arm64_apply_bp_hardening();
743 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
745 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
747 arm64_notify_die("SP/PC alignment exception", regs,
748 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
750 NOKPROBE_SYMBOL(do_sp_pc_abort);
752 int __init early_brk64(unsigned long addr, unsigned int esr,
753 struct pt_regs *regs);
756 * __refdata because early_brk64 is __init, but the reference to it is
757 * clobbered at arch_initcall time.
758 * See traps.c and debug-monitors.c:debug_traps_init().
760 static struct fault_info __refdata debug_fault_info[] = {
761 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
762 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
763 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
764 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
765 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
766 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
767 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
768 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
771 void __init hook_debug_fault_code(int nr,
772 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
773 int sig, int code, const char *name)
775 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
777 debug_fault_info[nr].fn = fn;
778 debug_fault_info[nr].sig = sig;
779 debug_fault_info[nr].code = code;
780 debug_fault_info[nr].name = name;
784 * In debug exception context, we explicitly disable preemption despite
785 * having interrupts disabled.
786 * This serves two purposes: it makes it much less likely that we would
787 * accidentally schedule in exception context and it will force a warning
788 * if we somehow manage to schedule by accident.
790 static void debug_exception_enter(struct pt_regs *regs)
793 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
794 * already disabled to preserve the last enabled/disabled addresses.
796 if (interrupts_enabled(regs))
797 trace_hardirqs_off();
799 if (user_mode(regs)) {
800 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
801 } else {
803 * We might have interrupted pretty much anything. In
804 * fact, if we're a debug exception, we can even interrupt
805 * NMI processing. We don't want this code makes in_nmi()
806 * to return true, but we need to notify RCU.
808 rcu_nmi_enter();
811 preempt_disable();
813 /* This code is a bit fragile. Test it. */
814 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
816 NOKPROBE_SYMBOL(debug_exception_enter);
818 static void debug_exception_exit(struct pt_regs *regs)
820 preempt_enable_no_resched();
822 if (!user_mode(regs))
823 rcu_nmi_exit();
825 if (interrupts_enabled(regs))
826 trace_hardirqs_on();
828 NOKPROBE_SYMBOL(debug_exception_exit);
830 #ifdef CONFIG_ARM64_ERRATUM_1463225
831 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
833 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
835 if (user_mode(regs))
836 return 0;
838 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
839 return 0;
842 * We've taken a dummy step exception from the kernel to ensure
843 * that interrupts are re-enabled on the syscall path. Return back
844 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
845 * masked so that we can safely restore the mdscr and get on with
846 * handling the syscall.
848 regs->pstate |= PSR_D_BIT;
849 return 1;
851 #else
852 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
854 return 0;
856 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
857 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
859 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
860 struct pt_regs *regs)
862 const struct fault_info *inf = esr_to_debug_fault_info(esr);
863 unsigned long pc = instruction_pointer(regs);
865 if (cortex_a76_erratum_1463225_debug_handler(regs))
866 return;
868 debug_exception_enter(regs);
870 if (user_mode(regs) && !is_ttbr0_addr(pc))
871 arm64_apply_bp_hardening();
873 if (inf->fn(addr_if_watchpoint, esr, regs)) {
874 arm64_notify_die(inf->name, regs,
875 inf->sig, inf->code, (void __user *)pc, esr);
878 debug_exception_exit(regs);
880 NOKPROBE_SYMBOL(do_debug_exception);