1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
5 #include <asm/processor-flags.h>
7 /* Forward declaration, a strange C thing */
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
20 #include <asm/pgtable_types.h>
21 #include <asm/percpu.h>
23 #include <asm/desc_defs.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 #include <asm/vdso/processor.h>
31 #include <linux/personality.h>
32 #include <linux/cache.h>
33 #include <linux/threads.h>
34 #include <linux/math64.h>
35 #include <linux/err.h>
36 #include <linux/irqflags.h>
37 #include <linux/mem_encrypt.h>
40 * We handle most unaligned accesses in hardware. On the other hand
41 * unaligned DMA can be quite expensive on some Nehalem processors.
43 * Based on this we disable the IP header alignment in network drivers.
45 #define NET_IP_ALIGN 0
50 * These alignment constraints are for performance in the vSMP case,
51 * but in the task_struct case we must also meet hardware imposed
52 * alignment requirements of the FPU state:
54 #ifdef CONFIG_X86_VSMP
55 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
56 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
58 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
59 # define ARCH_MIN_MMSTRUCT_ALIGN 0
67 extern u16 __read_mostly tlb_lli_4k
[NR_INFO
];
68 extern u16 __read_mostly tlb_lli_2m
[NR_INFO
];
69 extern u16 __read_mostly tlb_lli_4m
[NR_INFO
];
70 extern u16 __read_mostly tlb_lld_4k
[NR_INFO
];
71 extern u16 __read_mostly tlb_lld_2m
[NR_INFO
];
72 extern u16 __read_mostly tlb_lld_4m
[NR_INFO
];
73 extern u16 __read_mostly tlb_lld_1g
[NR_INFO
];
76 * CPU type and hardware bug flags. Kept separately for each CPU.
77 * Members of this structure are referenced in head_32.S, so think twice
78 * before touching them. [mj]
82 __u8 x86
; /* CPU family */
83 __u8 x86_vendor
; /* CPU vendor */
87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
90 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
91 __u32 vmx_capability
[NVMXINTS
];
95 /* CPUID returned core id bits: */
98 /* Max extended CPUID function supported: */
99 __u32 extended_cpuid_level
;
100 /* Maximum supported CPUID level, -1=no CPUID: */
103 * Align to size of unsigned long because the x86_capability array
104 * is passed to bitops which require the alignment. Use unnamed
105 * union to enforce the array is aligned to size of unsigned long.
108 __u32 x86_capability
[NCAPINTS
+ NBUGINTS
];
109 unsigned long x86_capability_alignment
;
111 char x86_vendor_id
[16];
112 char x86_model_id
[64];
113 /* in KB - valid for CPUS which support this call: */
114 unsigned int x86_cache_size
;
115 int x86_cache_alignment
; /* In bytes */
116 /* Cache QoS architectural values, valid only on the BSP: */
117 int x86_cache_max_rmid
; /* max index */
118 int x86_cache_occ_scale
; /* scale to bytes */
119 int x86_cache_mbm_width_offset
;
121 unsigned long loops_per_jiffy
;
122 /* cpuid returned max cores value: */
126 u16 x86_clflush_size
;
127 /* number of cores as seen by the OS: */
129 /* Physical processor id: */
131 /* Logical processor id: */
137 /* Index into per_cpu list: */
140 /* Address space bits used by the cache internally */
142 unsigned initialized
: 1;
143 } __randomize_layout
;
146 u32 eax
, ebx
, ecx
, edx
;
149 enum cpuid_regs_idx
{
156 #define X86_VENDOR_INTEL 0
157 #define X86_VENDOR_CYRIX 1
158 #define X86_VENDOR_AMD 2
159 #define X86_VENDOR_UMC 3
160 #define X86_VENDOR_CENTAUR 5
161 #define X86_VENDOR_TRANSMETA 7
162 #define X86_VENDOR_NSC 8
163 #define X86_VENDOR_HYGON 9
164 #define X86_VENDOR_ZHAOXIN 10
165 #define X86_VENDOR_NUM 11
167 #define X86_VENDOR_UNKNOWN 0xff
170 * capabilities of CPUs
172 extern struct cpuinfo_x86 boot_cpu_data
;
173 extern struct cpuinfo_x86 new_cpu_data
;
175 extern __u32 cpu_caps_cleared
[NCAPINTS
+ NBUGINTS
];
176 extern __u32 cpu_caps_set
[NCAPINTS
+ NBUGINTS
];
179 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86
, cpu_info
);
180 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
182 #define cpu_info boot_cpu_data
183 #define cpu_data(cpu) boot_cpu_data
186 extern const struct seq_operations cpuinfo_op
;
188 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
190 extern void cpu_detect(struct cpuinfo_x86
*c
);
192 static inline unsigned long long l1tf_pfn_limit(void)
194 return BIT_ULL(boot_cpu_data
.x86_cache_bits
- 1 - PAGE_SHIFT
);
197 extern void early_cpu_init(void);
198 extern void identify_boot_cpu(void);
199 extern void identify_secondary_cpu(struct cpuinfo_x86
*);
200 extern void print_cpu_info(struct cpuinfo_x86
*);
201 void print_cpu_msr(struct cpuinfo_x86
*);
204 extern int have_cpuid_p(void);
206 static inline int have_cpuid_p(void)
211 static inline void native_cpuid(unsigned int *eax
, unsigned int *ebx
,
212 unsigned int *ecx
, unsigned int *edx
)
214 /* ecx is often an input as well as an output. */
220 : "0" (*eax
), "2" (*ecx
)
224 #define native_cpuid_reg(reg) \
225 static inline unsigned int native_cpuid_##reg(unsigned int op) \
227 unsigned int eax = op, ebx, ecx = 0, edx; \
229 native_cpuid(&eax, &ebx, &ecx, &edx); \
235 * Native CPUID functions returning a single datum.
237 native_cpuid_reg(eax
)
238 native_cpuid_reg(ebx
)
239 native_cpuid_reg(ecx
)
240 native_cpuid_reg(edx
)
243 * Friendlier CR3 helpers.
245 static inline unsigned long read_cr3_pa(void)
247 return __read_cr3() & CR3_ADDR_MASK
;
250 static inline unsigned long native_read_cr3_pa(void)
252 return __native_read_cr3() & CR3_ADDR_MASK
;
255 static inline void load_cr3(pgd_t
*pgdir
)
257 write_cr3(__sme_pa(pgdir
));
261 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
263 * unrelated to the task-switch mechanism:
266 /* This is the TSS defined by the hardware. */
268 unsigned short back_link
, __blh
;
270 unsigned short ss0
, __ss0h
;
274 * We don't use ring 1, so ss1 is a convenient scratch space in
275 * the same cacheline as sp0. We use ss1 to cache the value in
276 * MSR_IA32_SYSENTER_CS. When we context switch
277 * MSR_IA32_SYSENTER_CS, we first check if the new value being
278 * written matches ss1, and, if it's not, then we wrmsr the new
279 * value and update ss1.
281 * The only reason we context switch MSR_IA32_SYSENTER_CS is
282 * that we set it to zero in vm86 tasks to avoid corrupting the
283 * stack if we were to go through the sysenter path from vm86
286 unsigned short ss1
; /* MSR_IA32_SYSENTER_CS */
288 unsigned short __ss1h
;
290 unsigned short ss2
, __ss2h
;
302 unsigned short es
, __esh
;
303 unsigned short cs
, __csh
;
304 unsigned short ss
, __ssh
;
305 unsigned short ds
, __dsh
;
306 unsigned short fs
, __fsh
;
307 unsigned short gs
, __gsh
;
308 unsigned short ldt
, __ldth
;
309 unsigned short trace
;
310 unsigned short io_bitmap_base
;
312 } __attribute__((packed
));
319 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
320 * Linux does not use ring 1, so sp1 is not otherwise needed.
325 * Since Linux does not use ring 2, the 'sp2' slot is unused by
326 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
327 * the user RSP value.
338 } __attribute__((packed
));
344 #define IO_BITMAP_BITS 65536
345 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
346 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
348 #define IO_BITMAP_OFFSET_VALID_MAP \
349 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
350 offsetof(struct tss_struct, x86_tss))
352 #define IO_BITMAP_OFFSET_VALID_ALL \
353 (offsetof(struct tss_struct, io_bitmap.mapall) - \
354 offsetof(struct tss_struct, x86_tss))
356 #ifdef CONFIG_X86_IOPL_IOPERM
358 * sizeof(unsigned long) coming from an extra "long" at the end of the
359 * iobitmap. The limit is inclusive, i.e. the last valid byte.
361 # define __KERNEL_TSS_LIMIT \
362 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
363 sizeof(unsigned long) - 1)
365 # define __KERNEL_TSS_LIMIT \
366 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
369 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
370 #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
373 unsigned long words
[64];
376 struct entry_stack_page
{
377 struct entry_stack stack
;
378 } __aligned(PAGE_SIZE
);
381 * All IO bitmap related data stored in the TSS:
383 struct x86_io_bitmap
{
384 /* The sequence number of the last active bitmap. */
388 * Store the dirty size of the last io bitmap offender. The next
389 * one will have to do the cleanup as the switch out to a non io
390 * bitmap user will just set x86_tss.io_bitmap_base to a value
391 * outside of the TSS limit. So for sane tasks there is no need to
392 * actually touch the io_bitmap at all.
394 unsigned int prev_max
;
397 * The extra 1 is there because the CPU will access an
398 * additional byte beyond the end of the IO permission
399 * bitmap. The extra byte must be all 1 bits, and must
400 * be within the limit.
402 unsigned long bitmap
[IO_BITMAP_LONGS
+ 1];
405 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
406 * except the additional byte at the end.
408 unsigned long mapall
[IO_BITMAP_LONGS
+ 1];
413 * The fixed hardware portion. This must not cross a page boundary
414 * at risk of violating the SDM's advice and potentially triggering
417 struct x86_hw_tss x86_tss
;
419 struct x86_io_bitmap io_bitmap
;
420 } __aligned(PAGE_SIZE
);
422 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct
, cpu_tss_rw
);
424 /* Per CPU interrupt stacks */
426 char stack
[IRQ_STACK_SIZE
];
427 } __aligned(IRQ_STACK_SIZE
);
429 DECLARE_PER_CPU(struct irq_stack
*, hardirq_stack_ptr
);
432 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack
);
434 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
435 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
439 struct fixed_percpu_data
{
441 * GCC hardcodes the stack canary as %gs:40. Since the
442 * irq_stack is the object at %gs:0, we reserve the bottom
443 * 48 bytes of the irq stack for the canary.
446 unsigned long stack_canary
;
449 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data
, fixed_percpu_data
) __visible
;
450 DECLARE_INIT_PER_CPU(fixed_percpu_data
);
452 static inline unsigned long cpu_kernelmode_gs_base(int cpu
)
454 return (unsigned long)per_cpu(fixed_percpu_data
.gs_base
, cpu
);
457 DECLARE_PER_CPU(unsigned int, irq_count
);
458 extern asmlinkage
void ignore_sysret(void);
460 #if IS_ENABLED(CONFIG_KVM)
461 /* Save actual FS/GS selectors and bases to current->thread */
462 void save_fsgs_for_kvm(void);
465 #ifdef CONFIG_STACKPROTECTOR
467 * Make sure stack canary segment base is cached-aligned:
468 * "For Intel Atom processors, avoid non zero segment base address
469 * that is not aligned to cache line boundary at all cost."
470 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
472 struct stack_canary
{
473 char __pad
[20]; /* canary at %gs:20 */
474 unsigned long canary
;
476 DECLARE_PER_CPU_ALIGNED(struct stack_canary
, stack_canary
);
478 /* Per CPU softirq stack pointer */
479 DECLARE_PER_CPU(struct irq_stack
*, softirq_stack_ptr
);
482 extern unsigned int fpu_kernel_xstate_size
;
483 extern unsigned int fpu_user_xstate_size
;
491 struct thread_struct
{
492 /* Cached TLS descriptors: */
493 struct desc_struct tls_array
[GDT_ENTRY_TLS_ENTRIES
];
499 unsigned long sysenter_cs
;
503 unsigned short fsindex
;
504 unsigned short gsindex
;
508 unsigned long fsbase
;
509 unsigned long gsbase
;
512 * XXX: this could presumably be unsigned short. Alternatively,
513 * 32-bit kernels could be taught to use fsindex instead.
519 /* Save middle states of ptrace breakpoints */
520 struct perf_event
*ptrace_bps
[HBP_NUM
];
521 /* Debug status used for traps, single steps, etc... */
522 unsigned long debugreg6
;
523 /* Keep track of the exact dr7 value set by the user */
524 unsigned long ptrace_dr7
;
527 unsigned long trap_nr
;
528 unsigned long error_code
;
530 /* Virtual 86 mode info */
533 /* IO permissions: */
534 struct io_bitmap
*io_bitmap
;
537 * IOPL. Priviledge level dependent I/O permission which is
538 * emulated via the I/O bitmap to prevent user space from disabling
541 unsigned long iopl_emul
;
543 mm_segment_t addr_limit
;
545 unsigned int sig_on_uaccess_err
:1;
547 /* Floating point and extended processor state */
550 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
555 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
556 static inline void arch_thread_struct_whitelist(unsigned long *offset
,
559 *offset
= offsetof(struct thread_struct
, fpu
.state
);
560 *size
= fpu_kernel_xstate_size
;
564 * Thread-synchronous status.
566 * This is different from the flags in that nobody else
567 * ever touches our thread-synchronous status, so we don't
568 * have to worry about atomic accesses.
570 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
573 native_load_sp0(unsigned long sp0
)
575 this_cpu_write(cpu_tss_rw
.x86_tss
.sp0
, sp0
);
578 static inline void native_swapgs(void)
581 asm volatile("swapgs" ::: "memory");
585 static inline unsigned long current_top_of_stack(void)
588 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
589 * and around vm86 mode and sp0 on x86_64 is special because of the
592 return this_cpu_read_stable(cpu_current_top_of_stack
);
595 static inline bool on_thread_stack(void)
597 return (unsigned long)(current_top_of_stack() -
598 current_stack_pointer
) < THREAD_SIZE
;
601 #ifdef CONFIG_PARAVIRT_XXL
602 #include <asm/paravirt.h>
604 #define __cpuid native_cpuid
606 static inline void load_sp0(unsigned long sp0
)
608 native_load_sp0(sp0
);
611 #endif /* CONFIG_PARAVIRT_XXL */
613 /* Free all resources held by a thread. */
614 extern void release_thread(struct task_struct
*);
616 unsigned long get_wchan(struct task_struct
*p
);
619 * Generic CPUID function
620 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
621 * resulting in stale register contents being returned.
623 static inline void cpuid(unsigned int op
,
624 unsigned int *eax
, unsigned int *ebx
,
625 unsigned int *ecx
, unsigned int *edx
)
629 __cpuid(eax
, ebx
, ecx
, edx
);
632 /* Some CPUID calls want 'count' to be placed in ecx */
633 static inline void cpuid_count(unsigned int op
, int count
,
634 unsigned int *eax
, unsigned int *ebx
,
635 unsigned int *ecx
, unsigned int *edx
)
639 __cpuid(eax
, ebx
, ecx
, edx
);
643 * CPUID functions returning a single datum
645 static inline unsigned int cpuid_eax(unsigned int op
)
647 unsigned int eax
, ebx
, ecx
, edx
;
649 cpuid(op
, &eax
, &ebx
, &ecx
, &edx
);
654 static inline unsigned int cpuid_ebx(unsigned int op
)
656 unsigned int eax
, ebx
, ecx
, edx
;
658 cpuid(op
, &eax
, &ebx
, &ecx
, &edx
);
663 static inline unsigned int cpuid_ecx(unsigned int op
)
665 unsigned int eax
, ebx
, ecx
, edx
;
667 cpuid(op
, &eax
, &ebx
, &ecx
, &edx
);
672 static inline unsigned int cpuid_edx(unsigned int op
)
674 unsigned int eax
, ebx
, ecx
, edx
;
676 cpuid(op
, &eax
, &ebx
, &ecx
, &edx
);
682 * This function forces the icache and prefetched instruction stream to
683 * catch up with reality in two very specific cases:
685 * a) Text was modified using one virtual address and is about to be executed
686 * from the same physical page at a different virtual address.
688 * b) Text was modified on a different CPU, may subsequently be
689 * executed on this CPU, and you want to make sure the new version
690 * gets executed. This generally means you're calling this in a IPI.
692 * If you're calling this for a different reason, you're probably doing
695 static inline void sync_core(void)
698 * There are quite a few ways to do this. IRET-to-self is nice
699 * because it works on every CPU, at any CPL (so it's compatible
700 * with paravirtualization), and it never exits to a hypervisor.
701 * The only down sides are that it's a bit slow (it seems to be
702 * a bit more than 2x slower than the fastest options) and that
703 * it unmasks NMIs. The "push %cs" is needed because, in
704 * paravirtual environments, __KERNEL_CS may not be a valid CS
705 * value when we do IRET directly.
707 * In case NMI unmasking or performance ever becomes a problem,
708 * the next best option appears to be MOV-to-CR2 and an
709 * unconditional jump. That sequence also works on all CPUs,
710 * but it will fault at CPL3 (i.e. Xen PV).
712 * CPUID is the conventional way, but it's nasty: it doesn't
713 * exist on some 486-like CPUs, and it usually exits to a
716 * Like all of Linux's memory ordering operations, this is a
717 * compiler barrier as well.
726 : ASM_CALL_CONSTRAINT
: : "memory");
735 "addq $8, (%%rsp)\n\t"
743 : "=&r" (tmp
), ASM_CALL_CONSTRAINT
: : "cc", "memory");
747 extern void select_idle_routine(const struct cpuinfo_x86
*c
);
748 extern void amd_e400_c1e_apic_setup(void);
750 extern unsigned long boot_option_idle_override
;
752 enum idle_boot_override
{IDLE_NO_OVERRIDE
=0, IDLE_HALT
, IDLE_NOMWAIT
,
755 extern void enable_sep_cpu(void);
756 extern int sysenter_setup(void);
759 /* Defined in head.S */
760 extern struct desc_ptr early_gdt_descr
;
762 extern void switch_to_new_gdt(int);
763 extern void load_direct_gdt(int);
764 extern void load_fixmap_gdt(int);
765 extern void load_percpu_segment(int);
766 extern void cpu_init(void);
767 extern void cr4_init(void);
769 static inline unsigned long get_debugctlmsr(void)
771 unsigned long debugctlmsr
= 0;
773 #ifndef CONFIG_X86_DEBUGCTLMSR
774 if (boot_cpu_data
.x86
< 6)
777 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctlmsr
);
782 static inline void update_debugctlmsr(unsigned long debugctlmsr
)
784 #ifndef CONFIG_X86_DEBUGCTLMSR
785 if (boot_cpu_data
.x86
< 6)
788 wrmsrl(MSR_IA32_DEBUGCTLMSR
, debugctlmsr
);
791 extern void set_task_blockstep(struct task_struct
*task
, bool on
);
793 /* Boot loader type from the setup header: */
794 extern int bootloader_type
;
795 extern int bootloader_version
;
797 extern char ignore_fpu_irq
;
799 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
800 #define ARCH_HAS_PREFETCHW
801 #define ARCH_HAS_SPINLOCK_PREFETCH
804 # define BASE_PREFETCH ""
805 # define ARCH_HAS_PREFETCH
807 # define BASE_PREFETCH "prefetcht0 %P1"
811 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
813 * It's not worth to care about 3dnow prefetches for the K6
814 * because they are microcoded there and very slow.
816 static inline void prefetch(const void *x
)
818 alternative_input(BASE_PREFETCH
, "prefetchnta %P1",
820 "m" (*(const char *)x
));
824 * 3dnow prefetch to get an exclusive cache line.
825 * Useful for spinlocks to avoid one state transition in the
826 * cache coherency protocol:
828 static inline void prefetchw(const void *x
)
830 alternative_input(BASE_PREFETCH
, "prefetchw %P1",
831 X86_FEATURE_3DNOWPREFETCH
,
832 "m" (*(const char *)x
));
835 static inline void spin_lock_prefetch(const void *x
)
840 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
841 TOP_OF_KERNEL_STACK_PADDING)
843 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
845 #define task_pt_regs(task) \
847 unsigned long __ptr = (unsigned long)task_stack_page(task); \
848 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
849 ((struct pt_regs *)__ptr) - 1; \
854 * User space process size: 3GB (default).
856 #define IA32_PAGE_OFFSET PAGE_OFFSET
857 #define TASK_SIZE PAGE_OFFSET
858 #define TASK_SIZE_LOW TASK_SIZE
859 #define TASK_SIZE_MAX TASK_SIZE
860 #define DEFAULT_MAP_WINDOW TASK_SIZE
861 #define STACK_TOP TASK_SIZE
862 #define STACK_TOP_MAX STACK_TOP
864 #define INIT_THREAD { \
865 .sp0 = TOP_OF_INIT_STACK, \
866 .sysenter_cs = __KERNEL_CS, \
867 .addr_limit = KERNEL_DS, \
870 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
874 * User space process size. This is the first address outside the user range.
875 * There are a few constraints that determine this:
877 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
878 * address, then that syscall will enter the kernel with a
879 * non-canonical return address, and SYSRET will explode dangerously.
880 * We avoid this particular problem by preventing anything executable
881 * from being mapped at the maximum canonical address.
883 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
884 * CPUs malfunction if they execute code from the highest canonical page.
885 * They'll speculate right off the end of the canonical space, and
886 * bad things happen. This is worked around in the same way as the
889 * With page table isolation enabled, we map the LDT in ... [stay tuned]
891 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
893 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
895 /* This decides where the kernel will search for a free chunk of vm
896 * space during mmap's.
898 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
899 0xc0000000 : 0xFFFFe000)
901 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
902 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
903 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
904 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
905 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
906 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
908 #define STACK_TOP TASK_SIZE_LOW
909 #define STACK_TOP_MAX TASK_SIZE_MAX
911 #define INIT_THREAD { \
912 .addr_limit = KERNEL_DS, \
915 extern unsigned long KSTK_ESP(struct task_struct
*task
);
917 #endif /* CONFIG_X86_64 */
919 extern void start_thread(struct pt_regs
*regs
, unsigned long new_ip
,
920 unsigned long new_sp
);
923 * This decides where the kernel will search for a free chunk of vm
924 * space during mmap's.
926 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
927 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
929 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
931 /* Get/set a process' ability to use the timestamp counter instruction */
932 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
933 #define SET_TSC_CTL(val) set_tsc_mode((val))
935 extern int get_tsc_mode(unsigned long adr
);
936 extern int set_tsc_mode(unsigned int val
);
938 DECLARE_PER_CPU(u64
, msr_misc_features_shadow
);
940 #ifdef CONFIG_CPU_SUP_AMD
941 extern u16
amd_get_nb_id(int cpu
);
942 extern u32
amd_get_nodes_per_socket(void);
944 static inline u16
amd_get_nb_id(int cpu
) { return 0; }
945 static inline u32
amd_get_nodes_per_socket(void) { return 0; }
948 static inline uint32_t hypervisor_cpuid_base(const char *sig
, uint32_t leaves
)
950 uint32_t base
, eax
, signature
[3];
952 for (base
= 0x40000000; base
< 0x40010000; base
+= 0x100) {
953 cpuid(base
, &eax
, &signature
[0], &signature
[1], &signature
[2]);
955 if (!memcmp(sig
, signature
, 12) &&
956 (leaves
== 0 || ((eax
- base
) >= leaves
)))
963 extern unsigned long arch_align_stack(unsigned long sp
);
964 void free_init_pages(const char *what
, unsigned long begin
, unsigned long end
);
965 extern void free_kernel_image_pages(const char *what
, void *begin
, void *end
);
967 void default_idle(void);
969 bool xen_set_default_idle(void);
971 #define xen_set_default_idle 0
974 void stop_this_cpu(void *dummy
);
975 void microcode_check(void);
977 enum l1tf_mitigations
{
979 L1TF_MITIGATION_FLUSH_NOWARN
,
980 L1TF_MITIGATION_FLUSH
,
981 L1TF_MITIGATION_FLUSH_NOSMT
,
982 L1TF_MITIGATION_FULL
,
983 L1TF_MITIGATION_FULL_FORCE
986 extern enum l1tf_mitigations l1tf_mitigation
;
988 enum mds_mitigations
{
991 MDS_MITIGATION_VMWERV
,
994 #endif /* _ASM_X86_PROCESSOR_H */