Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / arch / x86 / kernel / apb_timer.c
blobfe698f96617ca7ee9bbdde5107af1abc58fc17e2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * apb_timer.c: Driver for Langwell APB timers
5 * (C) Copyright 2009 Intel Corporation
6 * Author: Jacob Pan (jacob.jun.pan@intel.com)
8 * Note:
9 * Langwell is the south complex of Intel Moorestown MID platform. There are
10 * eight external timers in total that can be used by the operating system.
11 * The timer information, such as frequency and addresses, is provided to the
12 * OS via SFI tables.
13 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
14 * individual redirection table entries (RTE).
15 * Unlike HPET, there is no master counter, therefore one of the timers are
16 * used as clocksource. The overall allocation looks like:
17 * - timer 0 - NR_CPUs for per cpu timer
18 * - one timer for clocksource
19 * - one timer for watchdog driver.
20 * It is also worth notice that APB timer does not support true one-shot mode,
21 * free-running mode will be used here to emulate one-shot mode.
22 * APB timer can also be used as broadcast timer along with per cpu local APIC
23 * timer, but by default APB timer has higher rating than local APIC timers.
26 #include <linux/delay.h>
27 #include <linux/dw_apb_timer.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/pm.h>
32 #include <linux/sfi.h>
33 #include <linux/interrupt.h>
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
37 #include <asm/fixmap.h>
38 #include <asm/apb_timer.h>
39 #include <asm/intel-mid.h>
40 #include <asm/time.h>
42 #define APBT_CLOCKEVENT_RATING 110
43 #define APBT_CLOCKSOURCE_RATING 250
45 #define APBT_CLOCKEVENT0_NUM (0)
46 #define APBT_CLOCKSOURCE_NUM (2)
48 static phys_addr_t apbt_address;
49 static int apb_timer_block_enabled;
50 static void __iomem *apbt_virt_address;
53 * Common DW APB timer info
55 static unsigned long apbt_freq;
57 struct apbt_dev {
58 struct dw_apb_clock_event_device *timer;
59 unsigned int num;
60 int cpu;
61 unsigned int irq;
62 char name[10];
65 static struct dw_apb_clocksource *clocksource_apbt;
67 static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
69 return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
72 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
74 #ifdef CONFIG_SMP
75 static unsigned int apbt_num_timers_used;
76 #endif
78 static inline void apbt_set_mapping(void)
80 struct sfi_timer_table_entry *mtmr;
81 int phy_cs_timer_id = 0;
83 if (apbt_virt_address) {
84 pr_debug("APBT base already mapped\n");
85 return;
87 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
88 if (mtmr == NULL) {
89 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
90 APBT_CLOCKEVENT0_NUM);
91 return;
93 apbt_address = (phys_addr_t)mtmr->phys_addr;
94 if (!apbt_address) {
95 printk(KERN_WARNING "No timer base from SFI, use default\n");
96 apbt_address = APBT_DEFAULT_BASE;
98 apbt_virt_address = ioremap(apbt_address, APBT_MMAP_SIZE);
99 if (!apbt_virt_address) {
100 pr_debug("Failed mapping APBT phy address at %lu\n",\
101 (unsigned long)apbt_address);
102 goto panic_noapbt;
104 apbt_freq = mtmr->freq_hz;
105 sfi_free_mtmr(mtmr);
107 /* Now figure out the physical timer id for clocksource device */
108 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
109 if (mtmr == NULL)
110 goto panic_noapbt;
112 /* Now figure out the physical timer id */
113 pr_debug("Use timer %d for clocksource\n",
114 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
115 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
116 APBTMRS_REG_SIZE;
118 clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING,
119 "apbt0", apbt_virt_address + phy_cs_timer_id *
120 APBTMRS_REG_SIZE, apbt_freq);
121 return;
123 panic_noapbt:
124 panic("Failed to setup APB system timer\n");
128 static inline void apbt_clear_mapping(void)
130 iounmap(apbt_virt_address);
131 apbt_virt_address = NULL;
134 static int __init apbt_clockevent_register(void)
136 struct sfi_timer_table_entry *mtmr;
137 struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev);
139 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
140 if (mtmr == NULL) {
141 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
142 APBT_CLOCKEVENT0_NUM);
143 return -ENODEV;
146 adev->num = smp_processor_id();
147 adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
148 intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ?
149 APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING,
150 adev_virt_addr(adev), 0, apbt_freq);
151 /* Firmware does EOI handling for us. */
152 adev->timer->eoi = NULL;
154 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
155 global_clock_event = &adev->timer->ced;
156 printk(KERN_DEBUG "%s clockevent registered as global\n",
157 global_clock_event->name);
160 dw_apb_clockevent_register(adev->timer);
162 sfi_free_mtmr(mtmr);
163 return 0;
166 #ifdef CONFIG_SMP
168 static void apbt_setup_irq(struct apbt_dev *adev)
170 irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
171 irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
174 /* Should be called with per cpu */
175 void apbt_setup_secondary_clock(void)
177 struct apbt_dev *adev;
178 int cpu;
180 /* Don't register boot CPU clockevent */
181 cpu = smp_processor_id();
182 if (!cpu)
183 return;
185 adev = this_cpu_ptr(&cpu_apbt_dev);
186 if (!adev->timer) {
187 adev->timer = dw_apb_clockevent_init(cpu, adev->name,
188 APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
189 adev->irq, apbt_freq);
190 adev->timer->eoi = NULL;
191 } else {
192 dw_apb_clockevent_resume(adev->timer);
195 printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
196 cpu, adev->name, adev->cpu);
198 apbt_setup_irq(adev);
199 dw_apb_clockevent_register(adev->timer);
201 return;
205 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
206 * cpus are disabled/enabled frequently, for performance reasons, we keep the
207 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
209 * TODO: it might be more reliable to directly disable percpu clockevent device
210 * without the notifier chain. currently, cpu 0 may get interrupts from other
211 * cpu timers during the offline process due to the ordering of notification.
212 * the extra interrupt is harmless.
214 static int apbt_cpu_dead(unsigned int cpu)
216 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
218 dw_apb_clockevent_pause(adev->timer);
219 if (system_state == SYSTEM_RUNNING) {
220 pr_debug("skipping APBT CPU %u offline\n", cpu);
221 } else {
222 pr_debug("APBT clockevent for cpu %u offline\n", cpu);
223 dw_apb_clockevent_stop(adev->timer);
225 return 0;
228 static __init int apbt_late_init(void)
230 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ||
231 !apb_timer_block_enabled)
232 return 0;
233 return cpuhp_setup_state(CPUHP_X86_APB_DEAD, "x86/apb:dead", NULL,
234 apbt_cpu_dead);
236 fs_initcall(apbt_late_init);
237 #else
239 void apbt_setup_secondary_clock(void) {}
241 #endif /* CONFIG_SMP */
243 static int apbt_clocksource_register(void)
245 u64 start, now;
246 u64 t1;
248 /* Start the counter, use timer 2 as source, timer 0/1 for event */
249 dw_apb_clocksource_start(clocksource_apbt);
251 /* Verify whether apbt counter works */
252 t1 = dw_apb_clocksource_read(clocksource_apbt);
253 start = rdtsc();
256 * We don't know the TSC frequency yet, but waiting for
257 * 200000 TSC cycles is safe:
258 * 4 GHz == 50us
259 * 1 GHz == 200us
261 do {
262 rep_nop();
263 now = rdtsc();
264 } while ((now - start) < 200000UL);
266 /* APBT is the only always on clocksource, it has to work! */
267 if (t1 == dw_apb_clocksource_read(clocksource_apbt))
268 panic("APBT counter not counting. APBT disabled\n");
270 dw_apb_clocksource_register(clocksource_apbt);
272 return 0;
276 * Early setup the APBT timer, only use timer 0 for booting then switch to
277 * per CPU timer if possible.
278 * returns 1 if per cpu apbt is setup
279 * returns 0 if no per cpu apbt is chosen
280 * panic if set up failed, this is the only platform timer on Moorestown.
282 void __init apbt_time_init(void)
284 #ifdef CONFIG_SMP
285 int i;
286 struct sfi_timer_table_entry *p_mtmr;
287 struct apbt_dev *adev;
288 #endif
290 if (apb_timer_block_enabled)
291 return;
292 apbt_set_mapping();
293 if (!apbt_virt_address)
294 goto out_noapbt;
296 * Read the frequency and check for a sane value, for ESL model
297 * we extend the possible clock range to allow time scaling.
300 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
301 pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
302 goto out_noapbt;
304 if (apbt_clocksource_register()) {
305 pr_debug("APBT has failed to register clocksource\n");
306 goto out_noapbt;
308 if (!apbt_clockevent_register())
309 apb_timer_block_enabled = 1;
310 else {
311 pr_debug("APBT has failed to register clockevent\n");
312 goto out_noapbt;
314 #ifdef CONFIG_SMP
315 /* kernel cmdline disable apb timer, so we will use lapic timers */
316 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
317 printk(KERN_INFO "apbt: disabled per cpu timer\n");
318 return;
320 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
321 if (num_possible_cpus() <= sfi_mtimer_num)
322 apbt_num_timers_used = num_possible_cpus();
323 else
324 apbt_num_timers_used = 1;
325 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
327 /* here we set up per CPU timer data structure */
328 for (i = 0; i < apbt_num_timers_used; i++) {
329 adev = &per_cpu(cpu_apbt_dev, i);
330 adev->num = i;
331 adev->cpu = i;
332 p_mtmr = sfi_get_mtmr(i);
333 if (p_mtmr)
334 adev->irq = p_mtmr->irq;
335 else
336 printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
337 snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
339 #endif
341 return;
343 out_noapbt:
344 apbt_clear_mapping();
345 apb_timer_block_enabled = 0;
346 panic("failed to enable APB timer\n");
349 /* called before apb_timer_enable, use early map */
350 unsigned long apbt_quick_calibrate(void)
352 int i, scale;
353 u64 old, new;
354 u64 t1, t2;
355 unsigned long khz = 0;
356 u32 loop, shift;
358 apbt_set_mapping();
359 dw_apb_clocksource_start(clocksource_apbt);
361 /* check if the timer can count down, otherwise return */
362 old = dw_apb_clocksource_read(clocksource_apbt);
363 i = 10000;
364 while (--i) {
365 if (old != dw_apb_clocksource_read(clocksource_apbt))
366 break;
368 if (!i)
369 goto failed;
371 /* count 16 ms */
372 loop = (apbt_freq / 1000) << 4;
374 /* restart the timer to ensure it won't get to 0 in the calibration */
375 dw_apb_clocksource_start(clocksource_apbt);
377 old = dw_apb_clocksource_read(clocksource_apbt);
378 old += loop;
380 t1 = rdtsc();
382 do {
383 new = dw_apb_clocksource_read(clocksource_apbt);
384 } while (new < old);
386 t2 = rdtsc();
388 shift = 5;
389 if (unlikely(loop >> shift == 0)) {
390 printk(KERN_INFO
391 "APBT TSC calibration failed, not enough resolution\n");
392 return 0;
394 scale = (int)div_u64((t2 - t1), loop >> shift);
395 khz = (scale * (apbt_freq / 1000)) >> shift;
396 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
397 return khz;
398 failed:
399 return 0;