1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* KVM paravirtual clock driver. A clocksource implementation
3 Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
6 #include <linux/clocksource.h>
7 #include <linux/kvm_para.h>
8 #include <asm/pvclock.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/cpuhotplug.h>
14 #include <linux/sched.h>
15 #include <linux/sched/clock.h>
17 #include <linux/slab.h>
18 #include <linux/set_memory.h>
20 #include <asm/hypervisor.h>
21 #include <asm/mem_encrypt.h>
22 #include <asm/x86_init.h>
23 #include <asm/reboot.h>
24 #include <asm/kvmclock.h>
26 static int kvmclock __initdata
= 1;
27 static int kvmclock_vsyscall __initdata
= 1;
28 static int msr_kvm_system_time __ro_after_init
= MSR_KVM_SYSTEM_TIME
;
29 static int msr_kvm_wall_clock __ro_after_init
= MSR_KVM_WALL_CLOCK
;
30 static u64 kvm_sched_clock_offset __ro_after_init
;
32 static int __init
parse_no_kvmclock(char *arg
)
37 early_param("no-kvmclock", parse_no_kvmclock
);
39 static int __init
parse_no_kvmclock_vsyscall(char *arg
)
41 kvmclock_vsyscall
= 0;
44 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall
);
46 /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
47 #define HV_CLOCK_SIZE (sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
48 #define HVC_BOOT_ARRAY_SIZE \
49 (PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
51 static struct pvclock_vsyscall_time_info
52 hv_clock_boot
[HVC_BOOT_ARRAY_SIZE
] __bss_decrypted
__aligned(PAGE_SIZE
);
53 static struct pvclock_wall_clock wall_clock __bss_decrypted
;
54 static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info
*, hv_clock_per_cpu
);
55 static struct pvclock_vsyscall_time_info
*hvclock_mem
;
57 static inline struct pvclock_vcpu_time_info
*this_cpu_pvti(void)
59 return &this_cpu_read(hv_clock_per_cpu
)->pvti
;
62 static inline struct pvclock_vsyscall_time_info
*this_cpu_hvclock(void)
64 return this_cpu_read(hv_clock_per_cpu
);
68 * The wallclock is the time of day when we booted. Since then, some time may
69 * have elapsed since the hypervisor wrote the data. So we try to account for
70 * that with system time
72 static void kvm_get_wallclock(struct timespec64
*now
)
74 wrmsrl(msr_kvm_wall_clock
, slow_virt_to_phys(&wall_clock
));
76 pvclock_read_wallclock(&wall_clock
, this_cpu_pvti(), now
);
80 static int kvm_set_wallclock(const struct timespec64
*now
)
85 static u64
kvm_clock_read(void)
89 preempt_disable_notrace();
90 ret
= pvclock_clocksource_read(this_cpu_pvti());
91 preempt_enable_notrace();
95 static u64
kvm_clock_get_cycles(struct clocksource
*cs
)
97 return kvm_clock_read();
100 static u64
kvm_sched_clock_read(void)
102 return kvm_clock_read() - kvm_sched_clock_offset
;
105 static inline void kvm_sched_clock_init(bool stable
)
108 clear_sched_clock_stable();
109 kvm_sched_clock_offset
= kvm_clock_read();
110 pv_ops
.time
.sched_clock
= kvm_sched_clock_read
;
112 pr_info("kvm-clock: using sched offset of %llu cycles",
113 kvm_sched_clock_offset
);
115 BUILD_BUG_ON(sizeof(kvm_sched_clock_offset
) >
116 sizeof(((struct pvclock_vcpu_time_info
*)NULL
)->system_time
));
120 * If we don't do that, there is the possibility that the guest
121 * will calibrate under heavy load - thus, getting a lower lpj -
122 * and execute the delays themselves without load. This is wrong,
123 * because no delay loop can finish beforehand.
124 * Any heuristics is subject to fail, because ultimately, a large
125 * poll of guests can be running and trouble each other. So we preset
128 static unsigned long kvm_get_tsc_khz(void)
130 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ
);
131 return pvclock_tsc_khz(this_cpu_pvti());
134 static void __init
kvm_get_preset_lpj(void)
139 khz
= kvm_get_tsc_khz();
141 lpj
= ((u64
)khz
* 1000);
146 bool kvm_check_and_clear_guest_paused(void)
148 struct pvclock_vsyscall_time_info
*src
= this_cpu_hvclock();
154 if ((src
->pvti
.flags
& PVCLOCK_GUEST_STOPPED
) != 0) {
155 src
->pvti
.flags
&= ~PVCLOCK_GUEST_STOPPED
;
156 pvclock_touch_watchdogs();
162 static int kvm_cs_enable(struct clocksource
*cs
)
164 vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK
);
168 struct clocksource kvm_clock
= {
170 .read
= kvm_clock_get_cycles
,
172 .mask
= CLOCKSOURCE_MASK(64),
173 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
174 .enable
= kvm_cs_enable
,
176 EXPORT_SYMBOL_GPL(kvm_clock
);
178 static void kvm_register_clock(char *txt
)
180 struct pvclock_vsyscall_time_info
*src
= this_cpu_hvclock();
186 pa
= slow_virt_to_phys(&src
->pvti
) | 0x01ULL
;
187 wrmsrl(msr_kvm_system_time
, pa
);
188 pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa
, txt
);
191 static void kvm_save_sched_clock_state(void)
195 static void kvm_restore_sched_clock_state(void)
197 kvm_register_clock("primary cpu clock, resume");
200 #ifdef CONFIG_X86_LOCAL_APIC
201 static void kvm_setup_secondary_clock(void)
203 kvm_register_clock("secondary cpu clock");
208 * After the clock is registered, the host will keep writing to the
209 * registered memory location. If the guest happens to shutdown, this memory
210 * won't be valid. In cases like kexec, in which you install a new kernel, this
211 * means a random memory location will be kept being written. So before any
212 * kind of shutdown from our side, we unregister the clock by writing anything
213 * that does not have the 'enable' bit set in the msr
215 #ifdef CONFIG_KEXEC_CORE
216 static void kvm_crash_shutdown(struct pt_regs
*regs
)
218 native_write_msr(msr_kvm_system_time
, 0, 0);
219 kvm_disable_steal_time();
220 native_machine_crash_shutdown(regs
);
224 static void kvm_shutdown(void)
226 native_write_msr(msr_kvm_system_time
, 0, 0);
227 kvm_disable_steal_time();
228 native_machine_shutdown();
231 static void __init
kvmclock_init_mem(void)
238 if (HVC_BOOT_ARRAY_SIZE
>= num_possible_cpus())
241 ncpus
= num_possible_cpus() - HVC_BOOT_ARRAY_SIZE
;
242 order
= get_order(ncpus
* sizeof(*hvclock_mem
));
244 p
= alloc_pages(GFP_KERNEL
, order
);
246 pr_warn("%s: failed to alloc %d pages", __func__
, (1U << order
));
250 hvclock_mem
= page_address(p
);
253 * hvclock is shared between the guest and the hypervisor, must
254 * be mapped decrypted.
257 r
= set_memory_decrypted((unsigned long) hvclock_mem
,
260 __free_pages(p
, order
);
262 pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
267 memset(hvclock_mem
, 0, PAGE_SIZE
<< order
);
270 static int __init
kvm_setup_vsyscall_timeinfo(void)
275 if (!per_cpu(hv_clock_per_cpu
, 0) || !kvmclock_vsyscall
)
278 flags
= pvclock_read_flags(&hv_clock_boot
[0].pvti
);
279 if (!(flags
& PVCLOCK_TSC_STABLE_BIT
))
282 kvm_clock
.vdso_clock_mode
= VDSO_CLOCKMODE_PVCLOCK
;
289 early_initcall(kvm_setup_vsyscall_timeinfo
);
291 static int kvmclock_setup_percpu(unsigned int cpu
)
293 struct pvclock_vsyscall_time_info
*p
= per_cpu(hv_clock_per_cpu
, cpu
);
296 * The per cpu area setup replicates CPU0 data to all cpu
297 * pointers. So carefully check. CPU0 has been set up in init
300 if (!cpu
|| (p
&& p
!= per_cpu(hv_clock_per_cpu
, 0)))
303 /* Use the static page for the first CPUs, allocate otherwise */
304 if (cpu
< HVC_BOOT_ARRAY_SIZE
)
305 p
= &hv_clock_boot
[cpu
];
306 else if (hvclock_mem
)
307 p
= hvclock_mem
+ cpu
- HVC_BOOT_ARRAY_SIZE
;
311 per_cpu(hv_clock_per_cpu
, cpu
) = p
;
312 return p
? 0 : -ENOMEM
;
315 void __init
kvmclock_init(void)
319 if (!kvm_para_available() || !kvmclock
)
322 if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2
)) {
323 msr_kvm_system_time
= MSR_KVM_SYSTEM_TIME_NEW
;
324 msr_kvm_wall_clock
= MSR_KVM_WALL_CLOCK_NEW
;
325 } else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE
)) {
329 if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN
, "kvmclock:setup_percpu",
330 kvmclock_setup_percpu
, NULL
) < 0) {
334 pr_info("kvm-clock: Using msrs %x and %x",
335 msr_kvm_system_time
, msr_kvm_wall_clock
);
337 this_cpu_write(hv_clock_per_cpu
, &hv_clock_boot
[0]);
338 kvm_register_clock("primary cpu clock");
339 pvclock_set_pvti_cpu0_va(hv_clock_boot
);
341 if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
))
342 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT
);
344 flags
= pvclock_read_flags(&hv_clock_boot
[0].pvti
);
345 kvm_sched_clock_init(flags
& PVCLOCK_TSC_STABLE_BIT
);
347 x86_platform
.calibrate_tsc
= kvm_get_tsc_khz
;
348 x86_platform
.calibrate_cpu
= kvm_get_tsc_khz
;
349 x86_platform
.get_wallclock
= kvm_get_wallclock
;
350 x86_platform
.set_wallclock
= kvm_set_wallclock
;
351 #ifdef CONFIG_X86_LOCAL_APIC
352 x86_cpuinit
.early_percpu_clock_init
= kvm_setup_secondary_clock
;
354 x86_platform
.save_sched_clock_state
= kvm_save_sched_clock_state
;
355 x86_platform
.restore_sched_clock_state
= kvm_restore_sched_clock_state
;
356 machine_ops
.shutdown
= kvm_shutdown
;
357 #ifdef CONFIG_KEXEC_CORE
358 machine_ops
.crash_shutdown
= kvm_crash_shutdown
;
360 kvm_get_preset_lpj();
363 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
364 * with P/T states and does not stop in deep C-states.
366 * Invariant TSC exposed by host means kvmclock is not necessary:
367 * can use TSC as clocksource.
370 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
) &&
371 boot_cpu_has(X86_FEATURE_NONSTOP_TSC
) &&
372 !check_tsc_unstable())
373 kvm_clock
.rating
= 299;
375 clocksource_register_hz(&kvm_clock
, NSEC_PER_SEC
);
376 pv_info
.name
= "KVM";