1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
12 * Handle hardware traps and faults.
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/kdebug.h>
17 #include <linux/sched/debug.h>
18 #include <linux/nmi.h>
19 #include <linux/debugfs.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/ratelimit.h>
23 #include <linux/slab.h>
24 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <linux/sched/clock.h>
28 #if defined(CONFIG_EDAC)
29 #include <linux/edac.h>
32 #include <asm/cpu_entry_area.h>
33 #include <asm/traps.h>
34 #include <asm/mach_traps.h>
36 #include <asm/x86_init.h>
37 #include <asm/reboot.h>
38 #include <asm/cache.h>
39 #include <asm/nospec-branch.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/nmi.h>
46 struct list_head head
;
49 static struct nmi_desc nmi_desc
[NMI_MAX
] =
52 .lock
= __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc
[0].lock
),
53 .head
= LIST_HEAD_INIT(nmi_desc
[0].head
),
56 .lock
= __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc
[1].lock
),
57 .head
= LIST_HEAD_INIT(nmi_desc
[1].head
),
60 .lock
= __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc
[2].lock
),
61 .head
= LIST_HEAD_INIT(nmi_desc
[2].head
),
64 .lock
= __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc
[3].lock
),
65 .head
= LIST_HEAD_INIT(nmi_desc
[3].head
),
73 unsigned int external
;
77 static DEFINE_PER_CPU(struct nmi_stats
, nmi_stats
);
79 static int ignore_nmis __read_mostly
;
81 int unknown_nmi_panic
;
83 * Prevent NMI reason port (0x61) being accessed simultaneously, can
84 * only be used in NMI handler.
86 static DEFINE_RAW_SPINLOCK(nmi_reason_lock
);
88 static int __init
setup_unknown_nmi_panic(char *str
)
90 unknown_nmi_panic
= 1;
93 __setup("unknown_nmi_panic", setup_unknown_nmi_panic
);
95 #define nmi_to_desc(type) (&nmi_desc[type])
97 static u64 nmi_longest_ns
= 1 * NSEC_PER_MSEC
;
99 static int __init
nmi_warning_debugfs(void)
101 debugfs_create_u64("nmi_longest_ns", 0644,
102 arch_debugfs_dir
, &nmi_longest_ns
);
105 fs_initcall(nmi_warning_debugfs
);
107 static void nmi_check_duration(struct nmiaction
*action
, u64 duration
)
109 u64 whole_msecs
= READ_ONCE(action
->max_duration
);
110 int remainder_ns
, decimal_msecs
;
112 if (duration
< nmi_longest_ns
|| duration
< action
->max_duration
)
115 action
->max_duration
= duration
;
117 remainder_ns
= do_div(whole_msecs
, (1000 * 1000));
118 decimal_msecs
= remainder_ns
/ 1000;
120 printk_ratelimited(KERN_INFO
121 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
122 action
->handler
, whole_msecs
, decimal_msecs
);
125 static int nmi_handle(unsigned int type
, struct pt_regs
*regs
)
127 struct nmi_desc
*desc
= nmi_to_desc(type
);
134 * NMIs are edge-triggered, which means if you have enough
135 * of them concurrently, you can lose some because only one
136 * can be latched at any given time. Walk the whole list
137 * to handle those situations.
139 list_for_each_entry_rcu(a
, &desc
->head
, list
) {
143 delta
= sched_clock();
144 thishandled
= a
->handler(type
, regs
);
145 handled
+= thishandled
;
146 delta
= sched_clock() - delta
;
147 trace_nmi_handler(a
->handler
, (int)delta
, thishandled
);
149 nmi_check_duration(a
, delta
);
154 /* return total number of NMI events handled */
157 NOKPROBE_SYMBOL(nmi_handle
);
159 int __register_nmi_handler(unsigned int type
, struct nmiaction
*action
)
161 struct nmi_desc
*desc
= nmi_to_desc(type
);
164 if (!action
->handler
)
167 raw_spin_lock_irqsave(&desc
->lock
, flags
);
170 * Indicate if there are multiple registrations on the
171 * internal NMI handler call chains (SERR and IO_CHECK).
173 WARN_ON_ONCE(type
== NMI_SERR
&& !list_empty(&desc
->head
));
174 WARN_ON_ONCE(type
== NMI_IO_CHECK
&& !list_empty(&desc
->head
));
177 * some handlers need to be executed first otherwise a fake
178 * event confuses some handlers (kdump uses this flag)
180 if (action
->flags
& NMI_FLAG_FIRST
)
181 list_add_rcu(&action
->list
, &desc
->head
);
183 list_add_tail_rcu(&action
->list
, &desc
->head
);
185 raw_spin_unlock_irqrestore(&desc
->lock
, flags
);
188 EXPORT_SYMBOL(__register_nmi_handler
);
190 void unregister_nmi_handler(unsigned int type
, const char *name
)
192 struct nmi_desc
*desc
= nmi_to_desc(type
);
196 raw_spin_lock_irqsave(&desc
->lock
, flags
);
198 list_for_each_entry_rcu(n
, &desc
->head
, list
) {
200 * the name passed in to describe the nmi handler
201 * is used as the lookup key
203 if (!strcmp(n
->name
, name
)) {
205 "Trying to free NMI (%s) from NMI context!\n", n
->name
);
206 list_del_rcu(&n
->list
);
211 raw_spin_unlock_irqrestore(&desc
->lock
, flags
);
214 EXPORT_SYMBOL_GPL(unregister_nmi_handler
);
217 pci_serr_error(unsigned char reason
, struct pt_regs
*regs
)
219 /* check to see if anyone registered against these types of errors */
220 if (nmi_handle(NMI_SERR
, regs
))
223 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
224 reason
, smp_processor_id());
226 if (panic_on_unrecovered_nmi
)
227 nmi_panic(regs
, "NMI: Not continuing");
229 pr_emerg("Dazed and confused, but trying to continue\n");
231 /* Clear and disable the PCI SERR error line. */
232 reason
= (reason
& NMI_REASON_CLEAR_MASK
) | NMI_REASON_CLEAR_SERR
;
233 outb(reason
, NMI_REASON_PORT
);
235 NOKPROBE_SYMBOL(pci_serr_error
);
238 io_check_error(unsigned char reason
, struct pt_regs
*regs
)
242 /* check to see if anyone registered against these types of errors */
243 if (nmi_handle(NMI_IO_CHECK
, regs
))
247 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
248 reason
, smp_processor_id());
251 if (panic_on_io_nmi
) {
252 nmi_panic(regs
, "NMI IOCK error: Not continuing");
255 * If we end up here, it means we have received an NMI while
256 * processing panic(). Simply return without delaying and
262 /* Re-enable the IOCK line, wait for a few seconds */
263 reason
= (reason
& NMI_REASON_CLEAR_MASK
) | NMI_REASON_CLEAR_IOCHK
;
264 outb(reason
, NMI_REASON_PORT
);
268 touch_nmi_watchdog();
272 reason
&= ~NMI_REASON_CLEAR_IOCHK
;
273 outb(reason
, NMI_REASON_PORT
);
275 NOKPROBE_SYMBOL(io_check_error
);
278 unknown_nmi_error(unsigned char reason
, struct pt_regs
*regs
)
283 * Use 'false' as back-to-back NMIs are dealt with one level up.
284 * Of course this makes having multiple 'unknown' handlers useless
285 * as only the first one is ever run (unless it can actually determine
286 * if it caused the NMI)
288 handled
= nmi_handle(NMI_UNKNOWN
, regs
);
290 __this_cpu_add(nmi_stats
.unknown
, handled
);
294 __this_cpu_add(nmi_stats
.unknown
, 1);
296 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
297 reason
, smp_processor_id());
299 pr_emerg("Do you have a strange power saving mode enabled?\n");
300 if (unknown_nmi_panic
|| panic_on_unrecovered_nmi
)
301 nmi_panic(regs
, "NMI: Not continuing");
303 pr_emerg("Dazed and confused, but trying to continue\n");
305 NOKPROBE_SYMBOL(unknown_nmi_error
);
307 static DEFINE_PER_CPU(bool, swallow_nmi
);
308 static DEFINE_PER_CPU(unsigned long, last_nmi_rip
);
310 static void default_do_nmi(struct pt_regs
*regs
)
312 unsigned char reason
= 0;
317 * CPU-specific NMI must be processed before non-CPU-specific
318 * NMI, otherwise we may lose it, because the CPU-specific
319 * NMI can not be detected/processed on other CPUs.
323 * Back-to-back NMIs are interesting because they can either
324 * be two NMI or more than two NMIs (any thing over two is dropped
325 * due to NMI being edge-triggered). If this is the second half
326 * of the back-to-back NMI, assume we dropped things and process
327 * more handlers. Otherwise reset the 'swallow' NMI behaviour
329 if (regs
->ip
== __this_cpu_read(last_nmi_rip
))
332 __this_cpu_write(swallow_nmi
, false);
334 __this_cpu_write(last_nmi_rip
, regs
->ip
);
336 handled
= nmi_handle(NMI_LOCAL
, regs
);
337 __this_cpu_add(nmi_stats
.normal
, handled
);
340 * There are cases when a NMI handler handles multiple
341 * events in the current NMI. One of these events may
342 * be queued for in the next NMI. Because the event is
343 * already handled, the next NMI will result in an unknown
344 * NMI. Instead lets flag this for a potential NMI to
348 __this_cpu_write(swallow_nmi
, true);
353 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
355 * Another CPU may be processing panic routines while holding
356 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
357 * and if so, call its callback directly. If there is no CPU preparing
358 * crash dump, we simply loop here.
360 while (!raw_spin_trylock(&nmi_reason_lock
)) {
361 run_crash_ipi_callback(regs
);
365 reason
= x86_platform
.get_nmi_reason();
367 if (reason
& NMI_REASON_MASK
) {
368 if (reason
& NMI_REASON_SERR
)
369 pci_serr_error(reason
, regs
);
370 else if (reason
& NMI_REASON_IOCHK
)
371 io_check_error(reason
, regs
);
374 * Reassert NMI in case it became active
375 * meanwhile as it's edge-triggered:
379 __this_cpu_add(nmi_stats
.external
, 1);
380 raw_spin_unlock(&nmi_reason_lock
);
383 raw_spin_unlock(&nmi_reason_lock
);
386 * Only one NMI can be latched at a time. To handle
387 * this we may process multiple nmi handlers at once to
388 * cover the case where an NMI is dropped. The downside
389 * to this approach is we may process an NMI prematurely,
390 * while its real NMI is sitting latched. This will cause
391 * an unknown NMI on the next run of the NMI processing.
393 * We tried to flag that condition above, by setting the
394 * swallow_nmi flag when we process more than one event.
395 * This condition is also only present on the second half
396 * of a back-to-back NMI, so we flag that condition too.
398 * If both are true, we assume we already processed this
399 * NMI previously and we swallow it. Otherwise we reset
402 * There are scenarios where we may accidentally swallow
403 * a 'real' unknown NMI. For example, while processing
404 * a perf NMI another perf NMI comes in along with a
405 * 'real' unknown NMI. These two NMIs get combined into
406 * one (as described above). When the next NMI gets
407 * processed, it will be flagged by perf as handled, but
408 * no one will know that there was a 'real' unknown NMI sent
409 * also. As a result it gets swallowed. Or if the first
410 * perf NMI returns two events handled then the second
411 * NMI will get eaten by the logic below, again losing a
412 * 'real' unknown NMI. But this is the best we can do
415 if (b2b
&& __this_cpu_read(swallow_nmi
))
416 __this_cpu_add(nmi_stats
.swallow
, 1);
418 unknown_nmi_error(reason
, regs
);
420 NOKPROBE_SYMBOL(default_do_nmi
);
423 * NMIs can page fault or hit breakpoints which will cause it to lose
424 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
426 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
427 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
428 * if the outer NMI came from kernel mode, but we can still nest if the
429 * outer NMI came from user mode.
431 * To handle these nested NMIs, we have three states:
437 * When no NMI is in progress, it is in the "not running" state.
438 * When an NMI comes in, it goes into the "executing" state.
439 * Normally, if another NMI is triggered, it does not interrupt
440 * the running NMI and the HW will simply latch it so that when
441 * the first NMI finishes, it will restart the second NMI.
442 * (Note, the latch is binary, thus multiple NMIs triggering,
443 * when one is running, are ignored. Only one NMI is restarted.)
445 * If an NMI executes an iret, another NMI can preempt it. We do not
446 * want to allow this new NMI to run, but we want to execute it when the
447 * first one finishes. We set the state to "latched", and the exit of
448 * the first NMI will perform a dec_return, if the result is zero
449 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
450 * dec_return would have set the state to NMI_EXECUTING (what we want it
451 * to be when we are running). In this case, we simply jump back to
452 * rerun the NMI handler again, and restart the 'latched' NMI.
454 * No trap (breakpoint or page fault) should be hit before nmi_restart,
455 * thus there is no race between the first check of state for NOT_RUNNING
456 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
459 * In case the NMI takes a page fault, we need to save off the CR2
460 * because the NMI could have preempted another page fault and corrupt
461 * the CR2 that is about to be read. As nested NMIs must be restarted
462 * and they can not take breakpoints or page faults, the update of the
463 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
464 * Otherwise, there would be a race of another nested NMI coming in
465 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
472 static DEFINE_PER_CPU(enum nmi_states
, nmi_state
);
473 static DEFINE_PER_CPU(unsigned long, nmi_cr2
);
477 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
478 * some care, the inner breakpoint will clobber the outer breakpoint's
481 * If a breakpoint is being processed, and the debug stack is being
482 * used, if an NMI comes in and also hits a breakpoint, the stack
483 * pointer will be set to the same fixed address as the breakpoint that
484 * was interrupted, causing that stack to be corrupted. To handle this
485 * case, check if the stack that was interrupted is the debug stack, and
486 * if so, change the IDT so that new breakpoints will use the current
487 * stack and not switch to the fixed address. On return of the NMI,
488 * switch back to the original IDT.
490 static DEFINE_PER_CPU(int, update_debug_stack
);
492 static bool notrace
is_debug_stack(unsigned long addr
)
494 struct cea_exception_stacks
*cs
= __this_cpu_read(cea_exception_stacks
);
495 unsigned long top
= CEA_ESTACK_TOP(cs
, DB
);
496 unsigned long bot
= CEA_ESTACK_BOT(cs
, DB1
);
498 if (__this_cpu_read(debug_stack_usage
))
501 * Note, this covers the guard page between DB and DB1 as well to
502 * avoid two checks. But by all means @addr can never point into
505 return addr
>= bot
&& addr
< top
;
507 NOKPROBE_SYMBOL(is_debug_stack
);
510 dotraplinkage notrace
void
511 do_nmi(struct pt_regs
*regs
, long error_code
)
513 if (IS_ENABLED(CONFIG_SMP
) && cpu_is_offline(smp_processor_id()))
516 if (this_cpu_read(nmi_state
) != NMI_NOT_RUNNING
) {
517 this_cpu_write(nmi_state
, NMI_LATCHED
);
520 this_cpu_write(nmi_state
, NMI_EXECUTING
);
521 this_cpu_write(nmi_cr2
, read_cr2());
526 * If we interrupted a breakpoint, it is possible that
527 * the nmi handler will have breakpoints too. We need to
528 * change the IDT such that breakpoints that happen here
529 * continue to use the NMI stack.
531 if (unlikely(is_debug_stack(regs
->sp
))) {
532 debug_stack_set_zero();
533 this_cpu_write(update_debug_stack
, 1);
539 inc_irq_stat(__nmi_count
);
542 default_do_nmi(regs
);
547 if (unlikely(this_cpu_read(update_debug_stack
))) {
549 this_cpu_write(update_debug_stack
, 0);
553 if (unlikely(this_cpu_read(nmi_cr2
) != read_cr2()))
554 write_cr2(this_cpu_read(nmi_cr2
));
555 if (this_cpu_dec_return(nmi_state
))
559 mds_user_clear_cpu_buffers();
561 NOKPROBE_SYMBOL(do_nmi
);
568 void restart_nmi(void)
573 /* reset the back-to-back NMI logic */
574 void local_touch_nmi(void)
576 __this_cpu_write(last_nmi_rip
, 0);
578 EXPORT_SYMBOL_GPL(local_touch_nmi
);