Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / arch / x86 / kernel / process.c
blob8f4533c1a4ec27c9fce69ef0ea255e58d0a1aa3c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
46 #include "process.h"
49 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
50 * no more per-task TSS's. The TSS size is kept cacheline-aligned
51 * so they are allowed to end up in the .data..cacheline_aligned
52 * section. Since TSS's are completely CPU-local, we want them
53 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
56 .x86_tss = {
58 * .sp0 is only used when entering ring 0 from a lower
59 * privilege level. Since the init task never runs anything
60 * but ring 0 code, there is no need for a valid value here.
61 * Poison it.
63 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
66 * .sp1 is cpu_current_top_of_stack. The init task never
67 * runs user code, but cpu_current_top_of_stack should still
68 * be well defined before the first context switch.
70 .sp1 = TOP_OF_INIT_STACK,
72 #ifdef CONFIG_X86_32
73 .ss0 = __KERNEL_DS,
74 .ss1 = __KERNEL_CS,
75 #endif
76 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
79 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
81 DEFINE_PER_CPU(bool, __tss_limit_invalid);
82 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
85 * this gets called so that we can store lazy state into memory and copy the
86 * current task into the new thread.
88 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 memcpy(dst, src, arch_task_struct_size);
91 #ifdef CONFIG_VM86
92 dst->thread.vm86 = NULL;
93 #endif
95 return fpu__copy(dst, src);
99 * Free thread data structures etc..
101 void exit_thread(struct task_struct *tsk)
103 struct thread_struct *t = &tsk->thread;
104 struct fpu *fpu = &t->fpu;
106 if (test_thread_flag(TIF_IO_BITMAP))
107 io_bitmap_exit(tsk);
109 free_vm86(t);
111 fpu__drop(fpu);
114 static int set_new_tls(struct task_struct *p, unsigned long tls)
116 struct user_desc __user *utls = (struct user_desc __user *)tls;
118 if (in_ia32_syscall())
119 return do_set_thread_area(p, -1, utls, 0);
120 else
121 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
124 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
125 unsigned long arg, struct task_struct *p, unsigned long tls)
127 struct inactive_task_frame *frame;
128 struct fork_frame *fork_frame;
129 struct pt_regs *childregs;
130 int ret = 0;
132 childregs = task_pt_regs(p);
133 fork_frame = container_of(childregs, struct fork_frame, regs);
134 frame = &fork_frame->frame;
136 frame->bp = 0;
137 frame->ret_addr = (unsigned long) ret_from_fork;
138 p->thread.sp = (unsigned long) fork_frame;
139 p->thread.io_bitmap = NULL;
140 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142 #ifdef CONFIG_X86_64
143 savesegment(gs, p->thread.gsindex);
144 p->thread.gsbase = p->thread.gsindex ? 0 : current->thread.gsbase;
145 savesegment(fs, p->thread.fsindex);
146 p->thread.fsbase = p->thread.fsindex ? 0 : current->thread.fsbase;
147 savesegment(es, p->thread.es);
148 savesegment(ds, p->thread.ds);
149 #else
150 p->thread.sp0 = (unsigned long) (childregs + 1);
152 * Clear all status flags including IF and set fixed bit. 64bit
153 * does not have this initialization as the frame does not contain
154 * flags. The flags consistency (especially vs. AC) is there
155 * ensured via objtool, which lacks 32bit support.
157 frame->flags = X86_EFLAGS_FIXED;
158 #endif
160 /* Kernel thread ? */
161 if (unlikely(p->flags & PF_KTHREAD)) {
162 memset(childregs, 0, sizeof(struct pt_regs));
163 kthread_frame_init(frame, sp, arg);
164 return 0;
167 frame->bx = 0;
168 *childregs = *current_pt_regs();
169 childregs->ax = 0;
170 if (sp)
171 childregs->sp = sp;
173 #ifdef CONFIG_X86_32
174 task_user_gs(p) = get_user_gs(current_pt_regs());
175 #endif
177 /* Set a new TLS for the child thread? */
178 if (clone_flags & CLONE_SETTLS)
179 ret = set_new_tls(p, tls);
181 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
182 io_bitmap_share(p);
184 return ret;
187 void flush_thread(void)
189 struct task_struct *tsk = current;
191 flush_ptrace_hw_breakpoint(tsk);
192 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
194 fpu__clear(&tsk->thread.fpu);
197 void disable_TSC(void)
199 preempt_disable();
200 if (!test_and_set_thread_flag(TIF_NOTSC))
202 * Must flip the CPU state synchronously with
203 * TIF_NOTSC in the current running context.
205 cr4_set_bits(X86_CR4_TSD);
206 preempt_enable();
209 static void enable_TSC(void)
211 preempt_disable();
212 if (test_and_clear_thread_flag(TIF_NOTSC))
214 * Must flip the CPU state synchronously with
215 * TIF_NOTSC in the current running context.
217 cr4_clear_bits(X86_CR4_TSD);
218 preempt_enable();
221 int get_tsc_mode(unsigned long adr)
223 unsigned int val;
225 if (test_thread_flag(TIF_NOTSC))
226 val = PR_TSC_SIGSEGV;
227 else
228 val = PR_TSC_ENABLE;
230 return put_user(val, (unsigned int __user *)adr);
233 int set_tsc_mode(unsigned int val)
235 if (val == PR_TSC_SIGSEGV)
236 disable_TSC();
237 else if (val == PR_TSC_ENABLE)
238 enable_TSC();
239 else
240 return -EINVAL;
242 return 0;
245 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
247 static void set_cpuid_faulting(bool on)
249 u64 msrval;
251 msrval = this_cpu_read(msr_misc_features_shadow);
252 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
253 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
254 this_cpu_write(msr_misc_features_shadow, msrval);
255 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
258 static void disable_cpuid(void)
260 preempt_disable();
261 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
263 * Must flip the CPU state synchronously with
264 * TIF_NOCPUID in the current running context.
266 set_cpuid_faulting(true);
268 preempt_enable();
271 static void enable_cpuid(void)
273 preempt_disable();
274 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
276 * Must flip the CPU state synchronously with
277 * TIF_NOCPUID in the current running context.
279 set_cpuid_faulting(false);
281 preempt_enable();
284 static int get_cpuid_mode(void)
286 return !test_thread_flag(TIF_NOCPUID);
289 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
291 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
292 return -ENODEV;
294 if (cpuid_enabled)
295 enable_cpuid();
296 else
297 disable_cpuid();
299 return 0;
303 * Called immediately after a successful exec.
305 void arch_setup_new_exec(void)
307 /* If cpuid was previously disabled for this task, re-enable it. */
308 if (test_thread_flag(TIF_NOCPUID))
309 enable_cpuid();
312 * Don't inherit TIF_SSBD across exec boundary when
313 * PR_SPEC_DISABLE_NOEXEC is used.
315 if (test_thread_flag(TIF_SSBD) &&
316 task_spec_ssb_noexec(current)) {
317 clear_thread_flag(TIF_SSBD);
318 task_clear_spec_ssb_disable(current);
319 task_clear_spec_ssb_noexec(current);
320 speculation_ctrl_update(task_thread_info(current)->flags);
324 #ifdef CONFIG_X86_IOPL_IOPERM
325 static inline void tss_invalidate_io_bitmap(struct tss_struct *tss)
328 * Invalidate the I/O bitmap by moving io_bitmap_base outside the
329 * TSS limit so any subsequent I/O access from user space will
330 * trigger a #GP.
332 * This is correct even when VMEXIT rewrites the TSS limit
333 * to 0x67 as the only requirement is that the base points
334 * outside the limit.
336 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
339 static inline void switch_to_bitmap(unsigned long tifp)
342 * Invalidate I/O bitmap if the previous task used it. This prevents
343 * any possible leakage of an active I/O bitmap.
345 * If the next task has an I/O bitmap it will handle it on exit to
346 * user mode.
348 if (tifp & _TIF_IO_BITMAP)
349 tss_invalidate_io_bitmap(this_cpu_ptr(&cpu_tss_rw));
352 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
355 * Copy at least the byte range of the incoming tasks bitmap which
356 * covers the permitted I/O ports.
358 * If the previous task which used an I/O bitmap had more bits
359 * permitted, then the copy needs to cover those as well so they
360 * get turned off.
362 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
363 max(tss->io_bitmap.prev_max, iobm->max));
366 * Store the new max and the sequence number of this bitmap
367 * and a pointer to the bitmap itself.
369 tss->io_bitmap.prev_max = iobm->max;
370 tss->io_bitmap.prev_sequence = iobm->sequence;
374 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
376 void native_tss_update_io_bitmap(void)
378 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
379 struct thread_struct *t = &current->thread;
380 u16 *base = &tss->x86_tss.io_bitmap_base;
382 if (!test_thread_flag(TIF_IO_BITMAP)) {
383 tss_invalidate_io_bitmap(tss);
384 return;
387 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
388 *base = IO_BITMAP_OFFSET_VALID_ALL;
389 } else {
390 struct io_bitmap *iobm = t->io_bitmap;
393 * Only copy bitmap data when the sequence number differs. The
394 * update time is accounted to the incoming task.
396 if (tss->io_bitmap.prev_sequence != iobm->sequence)
397 tss_copy_io_bitmap(tss, iobm);
399 /* Enable the bitmap */
400 *base = IO_BITMAP_OFFSET_VALID_MAP;
404 * Make sure that the TSS limit is covering the IO bitmap. It might have
405 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
406 * access from user space to trigger a #GP because tbe bitmap is outside
407 * the TSS limit.
409 refresh_tss_limit();
411 #else /* CONFIG_X86_IOPL_IOPERM */
412 static inline void switch_to_bitmap(unsigned long tifp) { }
413 #endif
415 #ifdef CONFIG_SMP
417 struct ssb_state {
418 struct ssb_state *shared_state;
419 raw_spinlock_t lock;
420 unsigned int disable_state;
421 unsigned long local_state;
424 #define LSTATE_SSB 0
426 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
428 void speculative_store_bypass_ht_init(void)
430 struct ssb_state *st = this_cpu_ptr(&ssb_state);
431 unsigned int this_cpu = smp_processor_id();
432 unsigned int cpu;
434 st->local_state = 0;
437 * Shared state setup happens once on the first bringup
438 * of the CPU. It's not destroyed on CPU hotunplug.
440 if (st->shared_state)
441 return;
443 raw_spin_lock_init(&st->lock);
446 * Go over HT siblings and check whether one of them has set up the
447 * shared state pointer already.
449 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
450 if (cpu == this_cpu)
451 continue;
453 if (!per_cpu(ssb_state, cpu).shared_state)
454 continue;
456 /* Link it to the state of the sibling: */
457 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
458 return;
462 * First HT sibling to come up on the core. Link shared state of
463 * the first HT sibling to itself. The siblings on the same core
464 * which come up later will see the shared state pointer and link
465 * themself to the state of this CPU.
467 st->shared_state = st;
471 * Logic is: First HT sibling enables SSBD for both siblings in the core
472 * and last sibling to disable it, disables it for the whole core. This how
473 * MSR_SPEC_CTRL works in "hardware":
475 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
477 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
479 struct ssb_state *st = this_cpu_ptr(&ssb_state);
480 u64 msr = x86_amd_ls_cfg_base;
482 if (!static_cpu_has(X86_FEATURE_ZEN)) {
483 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
484 wrmsrl(MSR_AMD64_LS_CFG, msr);
485 return;
488 if (tifn & _TIF_SSBD) {
490 * Since this can race with prctl(), block reentry on the
491 * same CPU.
493 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
494 return;
496 msr |= x86_amd_ls_cfg_ssbd_mask;
498 raw_spin_lock(&st->shared_state->lock);
499 /* First sibling enables SSBD: */
500 if (!st->shared_state->disable_state)
501 wrmsrl(MSR_AMD64_LS_CFG, msr);
502 st->shared_state->disable_state++;
503 raw_spin_unlock(&st->shared_state->lock);
504 } else {
505 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
506 return;
508 raw_spin_lock(&st->shared_state->lock);
509 st->shared_state->disable_state--;
510 if (!st->shared_state->disable_state)
511 wrmsrl(MSR_AMD64_LS_CFG, msr);
512 raw_spin_unlock(&st->shared_state->lock);
515 #else
516 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
518 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
520 wrmsrl(MSR_AMD64_LS_CFG, msr);
522 #endif
524 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
527 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
528 * so ssbd_tif_to_spec_ctrl() just works.
530 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
534 * Update the MSRs managing speculation control, during context switch.
536 * tifp: Previous task's thread flags
537 * tifn: Next task's thread flags
539 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
540 unsigned long tifn)
542 unsigned long tif_diff = tifp ^ tifn;
543 u64 msr = x86_spec_ctrl_base;
544 bool updmsr = false;
546 lockdep_assert_irqs_disabled();
548 /* Handle change of TIF_SSBD depending on the mitigation method. */
549 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
550 if (tif_diff & _TIF_SSBD)
551 amd_set_ssb_virt_state(tifn);
552 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
553 if (tif_diff & _TIF_SSBD)
554 amd_set_core_ssb_state(tifn);
555 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
556 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
557 updmsr |= !!(tif_diff & _TIF_SSBD);
558 msr |= ssbd_tif_to_spec_ctrl(tifn);
561 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
562 if (IS_ENABLED(CONFIG_SMP) &&
563 static_branch_unlikely(&switch_to_cond_stibp)) {
564 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
565 msr |= stibp_tif_to_spec_ctrl(tifn);
568 if (updmsr)
569 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
572 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
574 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
575 if (task_spec_ssb_disable(tsk))
576 set_tsk_thread_flag(tsk, TIF_SSBD);
577 else
578 clear_tsk_thread_flag(tsk, TIF_SSBD);
580 if (task_spec_ib_disable(tsk))
581 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
582 else
583 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
585 /* Return the updated threadinfo flags*/
586 return task_thread_info(tsk)->flags;
589 void speculation_ctrl_update(unsigned long tif)
591 unsigned long flags;
593 /* Forced update. Make sure all relevant TIF flags are different */
594 local_irq_save(flags);
595 __speculation_ctrl_update(~tif, tif);
596 local_irq_restore(flags);
599 /* Called from seccomp/prctl update */
600 void speculation_ctrl_update_current(void)
602 preempt_disable();
603 speculation_ctrl_update(speculation_ctrl_update_tif(current));
604 preempt_enable();
607 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
609 unsigned long tifp, tifn;
611 tifn = READ_ONCE(task_thread_info(next_p)->flags);
612 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
614 switch_to_bitmap(tifp);
616 propagate_user_return_notify(prev_p, next_p);
618 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
619 arch_has_block_step()) {
620 unsigned long debugctl, msk;
622 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
623 debugctl &= ~DEBUGCTLMSR_BTF;
624 msk = tifn & _TIF_BLOCKSTEP;
625 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
626 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
629 if ((tifp ^ tifn) & _TIF_NOTSC)
630 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
632 if ((tifp ^ tifn) & _TIF_NOCPUID)
633 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
635 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
636 __speculation_ctrl_update(tifp, tifn);
637 } else {
638 speculation_ctrl_update_tif(prev_p);
639 tifn = speculation_ctrl_update_tif(next_p);
641 /* Enforce MSR update to ensure consistent state */
642 __speculation_ctrl_update(~tifn, tifn);
645 if ((tifp ^ tifn) & _TIF_SLD)
646 switch_to_sld(tifn);
650 * Idle related variables and functions
652 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
653 EXPORT_SYMBOL(boot_option_idle_override);
655 static void (*x86_idle)(void);
657 #ifndef CONFIG_SMP
658 static inline void play_dead(void)
660 BUG();
662 #endif
664 void arch_cpu_idle_enter(void)
666 tsc_verify_tsc_adjust(false);
667 local_touch_nmi();
670 void arch_cpu_idle_dead(void)
672 play_dead();
676 * Called from the generic idle code.
678 void arch_cpu_idle(void)
680 x86_idle();
684 * We use this if we don't have any better idle routine..
686 void __cpuidle default_idle(void)
688 trace_cpu_idle_rcuidle(1, smp_processor_id());
689 safe_halt();
690 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
692 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
693 EXPORT_SYMBOL(default_idle);
694 #endif
696 #ifdef CONFIG_XEN
697 bool xen_set_default_idle(void)
699 bool ret = !!x86_idle;
701 x86_idle = default_idle;
703 return ret;
705 #endif
707 void stop_this_cpu(void *dummy)
709 local_irq_disable();
711 * Remove this CPU:
713 set_cpu_online(smp_processor_id(), false);
714 disable_local_APIC();
715 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
718 * Use wbinvd on processors that support SME. This provides support
719 * for performing a successful kexec when going from SME inactive
720 * to SME active (or vice-versa). The cache must be cleared so that
721 * if there are entries with the same physical address, both with and
722 * without the encryption bit, they don't race each other when flushed
723 * and potentially end up with the wrong entry being committed to
724 * memory.
726 if (boot_cpu_has(X86_FEATURE_SME))
727 native_wbinvd();
728 for (;;) {
730 * Use native_halt() so that memory contents don't change
731 * (stack usage and variables) after possibly issuing the
732 * native_wbinvd() above.
734 native_halt();
739 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
740 * states (local apic timer and TSC stop).
742 static void amd_e400_idle(void)
745 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
746 * gets set after static_cpu_has() places have been converted via
747 * alternatives.
749 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
750 default_idle();
751 return;
754 tick_broadcast_enter();
756 default_idle();
759 * The switch back from broadcast mode needs to be called with
760 * interrupts disabled.
762 local_irq_disable();
763 tick_broadcast_exit();
764 local_irq_enable();
768 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
769 * We can't rely on cpuidle installing MWAIT, because it will not load
770 * on systems that support only C1 -- so the boot default must be MWAIT.
772 * Some AMD machines are the opposite, they depend on using HALT.
774 * So for default C1, which is used during boot until cpuidle loads,
775 * use MWAIT-C1 on Intel HW that has it, else use HALT.
777 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
779 if (c->x86_vendor != X86_VENDOR_INTEL)
780 return 0;
782 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
783 return 0;
785 return 1;
789 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
790 * with interrupts enabled and no flags, which is backwards compatible with the
791 * original MWAIT implementation.
793 static __cpuidle void mwait_idle(void)
795 if (!current_set_polling_and_test()) {
796 trace_cpu_idle_rcuidle(1, smp_processor_id());
797 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
798 mb(); /* quirk */
799 clflush((void *)&current_thread_info()->flags);
800 mb(); /* quirk */
803 __monitor((void *)&current_thread_info()->flags, 0, 0);
804 if (!need_resched())
805 __sti_mwait(0, 0);
806 else
807 local_irq_enable();
808 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
809 } else {
810 local_irq_enable();
812 __current_clr_polling();
815 void select_idle_routine(const struct cpuinfo_x86 *c)
817 #ifdef CONFIG_SMP
818 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
819 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
820 #endif
821 if (x86_idle || boot_option_idle_override == IDLE_POLL)
822 return;
824 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
825 pr_info("using AMD E400 aware idle routine\n");
826 x86_idle = amd_e400_idle;
827 } else if (prefer_mwait_c1_over_halt(c)) {
828 pr_info("using mwait in idle threads\n");
829 x86_idle = mwait_idle;
830 } else
831 x86_idle = default_idle;
834 void amd_e400_c1e_apic_setup(void)
836 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
837 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
838 local_irq_disable();
839 tick_broadcast_force();
840 local_irq_enable();
844 void __init arch_post_acpi_subsys_init(void)
846 u32 lo, hi;
848 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
849 return;
852 * AMD E400 detection needs to happen after ACPI has been enabled. If
853 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
854 * MSR_K8_INT_PENDING_MSG.
856 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
857 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
858 return;
860 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
862 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
863 mark_tsc_unstable("TSC halt in AMD C1E");
864 pr_info("System has AMD C1E enabled\n");
867 static int __init idle_setup(char *str)
869 if (!str)
870 return -EINVAL;
872 if (!strcmp(str, "poll")) {
873 pr_info("using polling idle threads\n");
874 boot_option_idle_override = IDLE_POLL;
875 cpu_idle_poll_ctrl(true);
876 } else if (!strcmp(str, "halt")) {
878 * When the boot option of idle=halt is added, halt is
879 * forced to be used for CPU idle. In such case CPU C2/C3
880 * won't be used again.
881 * To continue to load the CPU idle driver, don't touch
882 * the boot_option_idle_override.
884 x86_idle = default_idle;
885 boot_option_idle_override = IDLE_HALT;
886 } else if (!strcmp(str, "nomwait")) {
888 * If the boot option of "idle=nomwait" is added,
889 * it means that mwait will be disabled for CPU C2/C3
890 * states. In such case it won't touch the variable
891 * of boot_option_idle_override.
893 boot_option_idle_override = IDLE_NOMWAIT;
894 } else
895 return -1;
897 return 0;
899 early_param("idle", idle_setup);
901 unsigned long arch_align_stack(unsigned long sp)
903 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
904 sp -= get_random_int() % 8192;
905 return sp & ~0xf;
908 unsigned long arch_randomize_brk(struct mm_struct *mm)
910 return randomize_page(mm->brk, 0x02000000);
914 * Called from fs/proc with a reference on @p to find the function
915 * which called into schedule(). This needs to be done carefully
916 * because the task might wake up and we might look at a stack
917 * changing under us.
919 unsigned long get_wchan(struct task_struct *p)
921 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
922 int count = 0;
924 if (p == current || p->state == TASK_RUNNING)
925 return 0;
927 if (!try_get_task_stack(p))
928 return 0;
930 start = (unsigned long)task_stack_page(p);
931 if (!start)
932 goto out;
935 * Layout of the stack page:
937 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
938 * PADDING
939 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
940 * stack
941 * ----------- bottom = start
943 * The tasks stack pointer points at the location where the
944 * framepointer is stored. The data on the stack is:
945 * ... IP FP ... IP FP
947 * We need to read FP and IP, so we need to adjust the upper
948 * bound by another unsigned long.
950 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
951 top -= 2 * sizeof(unsigned long);
952 bottom = start;
954 sp = READ_ONCE(p->thread.sp);
955 if (sp < bottom || sp > top)
956 goto out;
958 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
959 do {
960 if (fp < bottom || fp > top)
961 goto out;
962 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
963 if (!in_sched_functions(ip)) {
964 ret = ip;
965 goto out;
967 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
968 } while (count++ < 16 && p->state != TASK_RUNNING);
970 out:
971 put_task_stack(p);
972 return ret;
975 long do_arch_prctl_common(struct task_struct *task, int option,
976 unsigned long cpuid_enabled)
978 switch (option) {
979 case ARCH_GET_CPUID:
980 return get_cpuid_mode();
981 case ARCH_SET_CPUID:
982 return set_cpuid_mode(task, cpuid_enabled);
985 return -EINVAL;