Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / arch / x86 / kernel / tsc_msr.c
blob4fec6f3a1858b2cc8d440716a230cb6cca3e9890
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * TSC frequency enumeration via MSR
5 * Copyright (C) 2013, 2018 Intel Corporation
6 * Author: Bin Gao <bin.gao@intel.com>
7 */
9 #include <linux/kernel.h>
11 #include <asm/apic.h>
12 #include <asm/cpu_device_id.h>
13 #include <asm/intel-family.h>
14 #include <asm/msr.h>
15 #include <asm/param.h>
16 #include <asm/tsc.h>
18 #define MAX_NUM_FREQS 16 /* 4 bits to select the frequency */
21 * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
22 * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
23 * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
24 * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
25 * unclear if the root PLL outputs are used directly by the CPU clock PLL or
26 * if there is another PLL in between.
27 * This does not matter though, we can model the chain of PLLs as a single PLL
28 * with a quotient equal to the quotients of all PLLs in the chain multiplied.
29 * So we can create a simplified model of the CPU clock setup using a reference
30 * clock of 100 MHz plus a quotient which gets us as close to the frequency
31 * from the SDM as possible.
32 * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
33 * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
35 #define TSC_REFERENCE_KHZ 100000
37 struct muldiv {
38 u32 multiplier;
39 u32 divider;
43 * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
44 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
45 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
46 * so we need manually differentiate SoC families. This is what the
47 * field use_msr_plat does.
49 struct freq_desc {
50 bool use_msr_plat;
51 struct muldiv muldiv[MAX_NUM_FREQS];
53 * Some CPU frequencies in the SDM do not map to known PLL freqs, in
54 * that case the muldiv array is empty and the freqs array is used.
56 u32 freqs[MAX_NUM_FREQS];
57 u32 mask;
61 * Penwell and Clovertrail use spread spectrum clock,
62 * so the freq number is not exactly the same as reported
63 * by MSR based on SDM.
65 static const struct freq_desc freq_desc_pnw = {
66 .use_msr_plat = false,
67 .freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
68 .mask = 0x07,
71 static const struct freq_desc freq_desc_clv = {
72 .use_msr_plat = false,
73 .freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
74 .mask = 0x07,
78 * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
79 * 000: 100 * 5 / 6 = 83.3333 MHz
80 * 001: 100 * 1 / 1 = 100.0000 MHz
81 * 010: 100 * 4 / 3 = 133.3333 MHz
82 * 011: 100 * 7 / 6 = 116.6667 MHz
83 * 100: 100 * 4 / 5 = 80.0000 MHz
85 static const struct freq_desc freq_desc_byt = {
86 .use_msr_plat = true,
87 .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
88 { 4, 5 } },
89 .mask = 0x07,
93 * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
94 * 0000: 100 * 5 / 6 = 83.3333 MHz
95 * 0001: 100 * 1 / 1 = 100.0000 MHz
96 * 0010: 100 * 4 / 3 = 133.3333 MHz
97 * 0011: 100 * 7 / 6 = 116.6667 MHz
98 * 0100: 100 * 4 / 5 = 80.0000 MHz
99 * 0101: 100 * 14 / 15 = 93.3333 MHz
100 * 0110: 100 * 9 / 10 = 90.0000 MHz
101 * 0111: 100 * 8 / 9 = 88.8889 MHz
102 * 1000: 100 * 7 / 8 = 87.5000 MHz
104 static const struct freq_desc freq_desc_cht = {
105 .use_msr_plat = true,
106 .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
107 { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
108 { 7, 8 } },
109 .mask = 0x0f,
113 * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
114 * 0001: 100 * 1 / 1 = 100.0000 MHz
115 * 0010: 100 * 4 / 3 = 133.3333 MHz
117 static const struct freq_desc freq_desc_tng = {
118 .use_msr_plat = true,
119 .muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
120 .mask = 0x07,
124 * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
125 * 0000: 100 * 5 / 6 = 83.3333 MHz
126 * 0001: 100 * 1 / 1 = 100.0000 MHz
127 * 0010: 100 * 4 / 3 = 133.3333 MHz
128 * 0011: 100 * 1 / 1 = 100.0000 MHz
130 static const struct freq_desc freq_desc_ann = {
131 .use_msr_plat = true,
132 .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
133 .mask = 0x0f,
136 /* 24 MHz crystal? : 24 * 13 / 4 = 78 MHz */
137 static const struct freq_desc freq_desc_lgm = {
138 .use_msr_plat = true,
139 .freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
140 .mask = 0x0f,
143 static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
144 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_MID, &freq_desc_pnw),
145 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_TABLET,&freq_desc_clv),
146 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &freq_desc_byt),
147 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &freq_desc_tng),
148 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &freq_desc_cht),
149 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &freq_desc_ann),
150 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_NP, &freq_desc_lgm),
155 * MSR-based CPU/TSC frequency discovery for certain CPUs.
157 * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
158 * Return processor base frequency in KHz, or 0 on failure.
160 unsigned long cpu_khz_from_msr(void)
162 u32 lo, hi, ratio, freq, tscref;
163 const struct freq_desc *freq_desc;
164 const struct x86_cpu_id *id;
165 const struct muldiv *md;
166 unsigned long res;
167 int index;
169 id = x86_match_cpu(tsc_msr_cpu_ids);
170 if (!id)
171 return 0;
173 freq_desc = (struct freq_desc *)id->driver_data;
174 if (freq_desc->use_msr_plat) {
175 rdmsr(MSR_PLATFORM_INFO, lo, hi);
176 ratio = (lo >> 8) & 0xff;
177 } else {
178 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
179 ratio = (hi >> 8) & 0x1f;
182 /* Get FSB FREQ ID */
183 rdmsr(MSR_FSB_FREQ, lo, hi);
184 index = lo & freq_desc->mask;
185 md = &freq_desc->muldiv[index];
188 * Note this also catches cases where the index points to an unpopulated
189 * part of muldiv, in that case the else will set freq and res to 0.
191 if (md->divider) {
192 tscref = TSC_REFERENCE_KHZ * md->multiplier;
193 freq = DIV_ROUND_CLOSEST(tscref, md->divider);
195 * Multiplying by ratio before the division has better
196 * accuracy than just calculating freq * ratio.
198 res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
199 } else {
200 freq = freq_desc->freqs[index];
201 res = freq * ratio;
204 if (freq == 0)
205 pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
207 #ifdef CONFIG_X86_LOCAL_APIC
208 lapic_timer_period = (freq * 1000) / HZ;
209 #endif
212 * TSC frequency determined by MSR is always considered "known"
213 * because it is reported by HW.
214 * Another fact is that on MSR capable platforms, PIT/HPET is
215 * generally not available so calibration won't work at all.
217 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
220 * Unfortunately there is no way for hardware to tell whether the
221 * TSC is reliable. We were told by silicon design team that TSC
222 * on Atom SoCs are always "reliable". TSC is also the only
223 * reliable clocksource on these SoCs (HPET is either not present
224 * or not functional) so mark TSC reliable which removes the
225 * requirement for a watchdog clocksource.
227 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
229 return res;