1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * User-space Probes (UProbes) for x86
5 * Copyright (C) IBM Corporation, 2008-2011
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/uprobes.h>
14 #include <linux/uaccess.h>
16 #include <linux/kdebug.h>
17 #include <asm/processor.h>
19 #include <asm/mmu_context.h>
21 /* Post-execution fixups. */
23 /* Adjust IP back to vicinity of actual insn */
24 #define UPROBE_FIX_IP 0x01
26 /* Adjust the return address of a call insn */
27 #define UPROBE_FIX_CALL 0x02
29 /* Instruction will modify TF, don't change it */
30 #define UPROBE_FIX_SETF 0x04
32 #define UPROBE_FIX_RIP_SI 0x08
33 #define UPROBE_FIX_RIP_DI 0x10
34 #define UPROBE_FIX_RIP_BX 0x20
35 #define UPROBE_FIX_RIP_MASK \
36 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
38 #define UPROBE_TRAP_NR UINT_MAX
40 /* Adaptations for mhiramat x86 decoder v14. */
41 #define OPCODE1(insn) ((insn)->opcode.bytes[0])
42 #define OPCODE2(insn) ((insn)->opcode.bytes[1])
43 #define OPCODE3(insn) ((insn)->opcode.bytes[2])
44 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
46 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
48 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
49 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
50 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
54 * Good-instruction tables for 32-bit apps. This is non-const and volatile
55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
56 * some versions of gcc to think only *(unsigned long*) is used.
58 * Opcodes we'll probably never support:
59 * 6c-6f - ins,outs. SEGVs if used in userspace
60 * e4-e7 - in,out imm. SEGVs if used in userspace
61 * ec-ef - in,out acc. SEGVs if used in userspace
62 * cc - int3. SIGTRAP if used in userspace
63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64 * (why we support bound (62) then? it's similar, and similarly unused...)
65 * f1 - int1. SIGTRAP if used in userspace
66 * f4 - hlt. SEGVs if used in userspace
67 * fa - cli. SEGVs if used in userspace
68 * fb - sti. SEGVs if used in userspace
70 * Opcodes which need some work to be supported:
71 * 07,17,1f - pop es/ss/ds
72 * Normally not used in userspace, but would execute if used.
73 * Can cause GP or stack exception if tries to load wrong segment descriptor.
74 * We hesitate to run them under single step since kernel's handling
75 * of userspace single-stepping (TF flag) is fragile.
76 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77 * on the same grounds that they are never used.
79 * Used by userspace for "int 80" syscall entry. (Other "int N"
80 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81 * Not supported since kernel's handling of userspace single-stepping
82 * (TF flag) is fragile.
83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
85 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
86 static volatile u32 good_insns_32
[256 / 32] = {
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
89 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
90 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
91 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
96 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
102 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
103 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
104 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
105 /* ---------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
109 #define good_insns_32 NULL
112 /* Good-instruction tables for 64-bit apps.
114 * Genuinely invalid opcodes:
115 * 06,07 - formerly push/pop es
116 * 0e - formerly push cs
117 * 16,17 - formerly push/pop ss
118 * 1e,1f - formerly push/pop ds
119 * 27,2f,37,3f - formerly daa/das/aaa/aas
120 * 60,61 - formerly pusha/popa
121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
122 * 82 - formerly redundant encoding of Group1
123 * 9a - formerly call seg:ofs
125 * d4,d5 - formerly aam/aad
126 * d6 - formerly undocumented salc
127 * ea - formerly jmp seg:ofs
129 * Opcodes we'll probably never support:
130 * 6c-6f - ins,outs. SEGVs if used in userspace
131 * e4-e7 - in,out imm. SEGVs if used in userspace
132 * ec-ef - in,out acc. SEGVs if used in userspace
133 * cc - int3. SIGTRAP if used in userspace
134 * f1 - int1. SIGTRAP if used in userspace
135 * f4 - hlt. SEGVs if used in userspace
136 * fa - cli. SEGVs if used in userspace
137 * fb - sti. SEGVs if used in userspace
139 * Opcodes which need some work to be supported:
141 * Used by userspace for "int 80" syscall entry. (Other "int N"
142 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143 * Not supported since kernel's handling of userspace single-stepping
144 * (TF flag) is fragile.
145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
147 #if defined(CONFIG_X86_64)
148 static volatile u32 good_insns_64
[256 / 32] = {
149 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
150 /* ---------------------------------------------- */
151 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
152 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
153 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
156 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
157 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
158 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
160 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
161 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
163 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
164 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
165 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
167 /* ---------------------------------------------- */
168 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
171 #define good_insns_64 NULL
174 /* Using this for both 64-bit and 32-bit apps.
175 * Opcodes we don't support:
176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178 * Also encodes tons of other system insns if mod=11.
179 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
181 * 0f 06 - clts (CPL0 insn)
183 * 0f 08 - invd (CPL0 insn)
184 * 0f 09 - wbinvd (CPL0 insn)
186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192 * Note: with prefixes, these two opcodes are
193 * extrq/insertq/AVX512 convert vector ops.
194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195 * {rd,wr}{fs,gs}base,{s,l,m}fence.
196 * Why? They are all user-executable.
198 static volatile u32 good_2byte_insns
[256 / 32] = {
199 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
200 /* ---------------------------------------------- */
201 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
205 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
208 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
209 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
211 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
213 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
214 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
215 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
216 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
217 /* ---------------------------------------------- */
218 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
223 * opcodes we may need to refine support for:
225 * 0f - 2-byte instructions: For many of these instructions, the validity
226 * depends on the prefix and/or the reg field. On such instructions, we
227 * just consider the opcode combination valid if it corresponds to any
230 * 8f - Group 1 - only reg = 0 is OK
231 * c6-c7 - Group 11 - only reg = 0 is OK
232 * d9-df - fpu insns with some illegal encodings
233 * f2, f3 - repnz, repz prefixes. These are also the first byte for
234 * certain floating-point instructions, such as addsd.
236 * fe - Group 4 - only reg = 0 or 1 is OK
237 * ff - Group 5 - only reg = 0-6 is OK
239 * others -- Do we need to support these?
241 * 0f - (floating-point?) prefetch instructions
242 * 07, 17, 1f - pop es, pop ss, pop ds
243 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
244 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
252 * - Where necessary, examine the modrm byte and allow only valid instructions
253 * in the different Groups and fpu instructions.
256 static bool is_prefix_bad(struct insn
*insn
)
260 for (i
= 0; i
< insn
->prefixes
.nbytes
; i
++) {
263 attr
= inat_get_opcode_attribute(insn
->prefixes
.bytes
[i
]);
265 case INAT_MAKE_PREFIX(INAT_PFX_ES
):
266 case INAT_MAKE_PREFIX(INAT_PFX_CS
):
267 case INAT_MAKE_PREFIX(INAT_PFX_DS
):
268 case INAT_MAKE_PREFIX(INAT_PFX_SS
):
269 case INAT_MAKE_PREFIX(INAT_PFX_LOCK
):
276 static int uprobe_init_insn(struct arch_uprobe
*auprobe
, struct insn
*insn
, bool x86_64
)
278 u32
volatile *good_insns
;
280 insn_init(insn
, auprobe
->insn
, sizeof(auprobe
->insn
), x86_64
);
281 /* has the side-effect of processing the entire instruction */
282 insn_get_length(insn
);
283 if (!insn_complete(insn
))
286 if (is_prefix_bad(insn
))
289 /* We should not singlestep on the exception masking instructions */
290 if (insn_masking_exception(insn
))
294 good_insns
= good_insns_64
;
296 good_insns
= good_insns_32
;
298 if (test_bit(OPCODE1(insn
), (unsigned long *)good_insns
))
301 if (insn
->opcode
.nbytes
== 2) {
302 if (test_bit(OPCODE2(insn
), (unsigned long *)good_2byte_insns
))
311 * If arch_uprobe->insn doesn't use rip-relative addressing, return
312 * immediately. Otherwise, rewrite the instruction so that it accesses
313 * its memory operand indirectly through a scratch register. Set
314 * defparam->fixups accordingly. (The contents of the scratch register
315 * will be saved before we single-step the modified instruction,
316 * and restored afterward).
318 * We do this because a rip-relative instruction can access only a
319 * relatively small area (+/- 2 GB from the instruction), and the XOL
320 * area typically lies beyond that area. At least for instructions
321 * that store to memory, we can't execute the original instruction
322 * and "fix things up" later, because the misdirected store could be
325 * Some useful facts about rip-relative instructions:
327 * - There's always a modrm byte with bit layout "00 reg 101".
328 * - There's never a SIB byte.
329 * - The displacement is always 4 bytes.
330 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
331 * has no effect on rip-relative mode. It doesn't make modrm byte
332 * with r/m=101 refer to register 1101 = R13.
334 static void riprel_analyze(struct arch_uprobe
*auprobe
, struct insn
*insn
)
340 if (!insn_rip_relative(insn
))
344 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
345 * Clear REX.b bit (extension of MODRM.rm field):
346 * we want to encode low numbered reg, not r8+.
348 if (insn
->rex_prefix
.nbytes
) {
349 cursor
= auprobe
->insn
+ insn_offset_rex_prefix(insn
);
350 /* REX byte has 0100wrxb layout, clearing REX.b bit */
354 * Similar treatment for VEX3/EVEX prefix.
355 * TODO: add XOP treatment when insn decoder supports them
357 if (insn
->vex_prefix
.nbytes
>= 3) {
359 * vex2: c5 rvvvvLpp (has no b bit)
360 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
361 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
362 * Setting VEX3.b (setting because it has inverted meaning).
363 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
364 * is the 4th bit of MODRM.rm, and needs the same treatment.
365 * For VEX3-encoded insns, VEX3.x value has no effect in
366 * non-SIB encoding, the change is superfluous but harmless.
368 cursor
= auprobe
->insn
+ insn_offset_vex_prefix(insn
) + 1;
373 * Convert from rip-relative addressing to register-relative addressing
374 * via a scratch register.
376 * This is tricky since there are insns with modrm byte
377 * which also use registers not encoded in modrm byte:
378 * [i]div/[i]mul: implicitly use dx:ax
379 * shift ops: implicitly use cx
380 * cmpxchg: implicitly uses ax
381 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
382 * Encoding: 0f c7/1 modrm
383 * The code below thinks that reg=1 (cx), chooses si as scratch.
384 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
385 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
386 * Example where none of bx,cx,dx can be used as scratch reg:
387 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
388 * [v]pcmpistri: implicitly uses cx, xmm0
389 * [v]pcmpistrm: implicitly uses xmm0
390 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
391 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
392 * Evil SSE4.2 string comparison ops from hell.
393 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
394 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
395 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
396 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
397 * and that it can have only register operands, not mem
398 * (its modrm byte must have mode=11).
399 * If these restrictions will ever be lifted,
400 * we'll need code to prevent selection of di as scratch reg!
402 * Summary: I don't know any insns with modrm byte which
403 * use SI register implicitly. DI register is used only
404 * by one insn (maskmovq) and BX register is used
405 * only by one too (cmpxchg8b).
406 * BP is stack-segment based (may be a problem?).
407 * AX, DX, CX are off-limits (many implicit users).
408 * SP is unusable (it's stack pointer - think about "pop mem";
409 * also, rsp+disp32 needs sib encoding -> insn length change).
412 reg
= MODRM_REG(insn
); /* Fetch modrm.reg */
413 reg2
= 0xff; /* Fetch vex.vvvv */
414 if (insn
->vex_prefix
.nbytes
)
415 reg2
= insn
->vex_prefix
.bytes
[2];
417 * TODO: add XOP vvvv reading.
419 * vex.vvvv field is in bits 6-3, bits are inverted.
420 * But in 32-bit mode, high-order bit may be ignored.
421 * Therefore, let's consider only 3 low-order bits.
423 reg2
= ((reg2
>> 3) & 0x7) ^ 0x7;
425 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
427 * Choose scratch reg. Order is important: must not select bx
428 * if we can use si (cmpxchg8b case!)
430 if (reg
!= 6 && reg2
!= 6) {
432 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_SI
;
433 } else if (reg
!= 7 && reg2
!= 7) {
435 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_DI
;
436 /* TODO (paranoia): force maskmovq to not use di */
439 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_BX
;
442 * Point cursor at the modrm byte. The next 4 bytes are the
443 * displacement. Beyond the displacement, for some instructions,
444 * is the immediate operand.
446 cursor
= auprobe
->insn
+ insn_offset_modrm(insn
);
448 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
449 * 89 05 disp32 mov %eax,disp32(%rip) becomes
450 * 89 86 disp32 mov %eax,disp32(%rsi)
452 *cursor
= 0x80 | (reg
<< 3) | reg2
;
455 static inline unsigned long *
456 scratch_reg(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
458 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_SI
)
460 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_DI
)
466 * If we're emulating a rip-relative instruction, save the contents
467 * of the scratch register and store the target address in that register.
469 static void riprel_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
471 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_MASK
) {
472 struct uprobe_task
*utask
= current
->utask
;
473 unsigned long *sr
= scratch_reg(auprobe
, regs
);
475 utask
->autask
.saved_scratch_register
= *sr
;
476 *sr
= utask
->vaddr
+ auprobe
->defparam
.ilen
;
480 static void riprel_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
482 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_MASK
) {
483 struct uprobe_task
*utask
= current
->utask
;
484 unsigned long *sr
= scratch_reg(auprobe
, regs
);
486 *sr
= utask
->autask
.saved_scratch_register
;
491 * No RIP-relative addressing on 32-bit
493 static void riprel_analyze(struct arch_uprobe
*auprobe
, struct insn
*insn
)
496 static void riprel_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
499 static void riprel_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
502 #endif /* CONFIG_X86_64 */
504 struct uprobe_xol_ops
{
505 bool (*emulate
)(struct arch_uprobe
*, struct pt_regs
*);
506 int (*pre_xol
)(struct arch_uprobe
*, struct pt_regs
*);
507 int (*post_xol
)(struct arch_uprobe
*, struct pt_regs
*);
508 void (*abort
)(struct arch_uprobe
*, struct pt_regs
*);
511 static inline int sizeof_long(struct pt_regs
*regs
)
514 * Check registers for mode as in_xxx_syscall() does not apply here.
516 return user_64bit_mode(regs
) ? 8 : 4;
519 static int default_pre_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
521 riprel_pre_xol(auprobe
, regs
);
525 static int emulate_push_stack(struct pt_regs
*regs
, unsigned long val
)
527 unsigned long new_sp
= regs
->sp
- sizeof_long(regs
);
529 if (copy_to_user((void __user
*)new_sp
, &val
, sizeof_long(regs
)))
537 * We have to fix things up as follows:
539 * Typically, the new ip is relative to the copied instruction. We need
540 * to make it relative to the original instruction (FIX_IP). Exceptions
541 * are return instructions and absolute or indirect jump or call instructions.
543 * If the single-stepped instruction was a call, the return address that
544 * is atop the stack is the address following the copied instruction. We
545 * need to make it the address following the original instruction (FIX_CALL).
547 * If the original instruction was a rip-relative instruction such as
548 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
549 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
550 * We need to restore the contents of the scratch register
553 static int default_post_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
555 struct uprobe_task
*utask
= current
->utask
;
557 riprel_post_xol(auprobe
, regs
);
558 if (auprobe
->defparam
.fixups
& UPROBE_FIX_IP
) {
559 long correction
= utask
->vaddr
- utask
->xol_vaddr
;
560 regs
->ip
+= correction
;
561 } else if (auprobe
->defparam
.fixups
& UPROBE_FIX_CALL
) {
562 regs
->sp
+= sizeof_long(regs
); /* Pop incorrect return address */
563 if (emulate_push_stack(regs
, utask
->vaddr
+ auprobe
->defparam
.ilen
))
566 /* popf; tell the caller to not touch TF */
567 if (auprobe
->defparam
.fixups
& UPROBE_FIX_SETF
)
568 utask
->autask
.saved_tf
= true;
573 static void default_abort_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
575 riprel_post_xol(auprobe
, regs
);
578 static const struct uprobe_xol_ops default_xol_ops
= {
579 .pre_xol
= default_pre_xol_op
,
580 .post_xol
= default_post_xol_op
,
581 .abort
= default_abort_op
,
584 static bool branch_is_call(struct arch_uprobe
*auprobe
)
586 return auprobe
->branch
.opc1
== 0xe8;
590 COND(70, 71, XF(OF)) \
591 COND(72, 73, XF(CF)) \
592 COND(74, 75, XF(ZF)) \
593 COND(78, 79, XF(SF)) \
594 COND(7a, 7b, XF(PF)) \
595 COND(76, 77, XF(CF) || XF(ZF)) \
596 COND(7c, 7d, XF(SF) != XF(OF)) \
597 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
599 #define COND(op_y, op_n, expr) \
600 case 0x ## op_y: DO((expr) != 0) \
601 case 0x ## op_n: DO((expr) == 0)
603 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
605 static bool is_cond_jmp_opcode(u8 opcode
)
618 static bool check_jmp_cond(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
620 unsigned long flags
= regs
->flags
;
622 switch (auprobe
->branch
.opc1
) {
628 default: /* not a conditional jmp */
637 static bool branch_emulate_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
639 unsigned long new_ip
= regs
->ip
+= auprobe
->branch
.ilen
;
640 unsigned long offs
= (long)auprobe
->branch
.offs
;
642 if (branch_is_call(auprobe
)) {
644 * If it fails we execute this (mangled, see the comment in
645 * branch_clear_offset) insn out-of-line. In the likely case
646 * this should trigger the trap, and the probed application
647 * should die or restart the same insn after it handles the
648 * signal, arch_uprobe_post_xol() won't be even called.
650 * But there is corner case, see the comment in ->post_xol().
652 if (emulate_push_stack(regs
, new_ip
))
654 } else if (!check_jmp_cond(auprobe
, regs
)) {
658 regs
->ip
= new_ip
+ offs
;
662 static bool push_emulate_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
664 unsigned long *src_ptr
= (void *)regs
+ auprobe
->push
.reg_offset
;
666 if (emulate_push_stack(regs
, *src_ptr
))
668 regs
->ip
+= auprobe
->push
.ilen
;
672 static int branch_post_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
674 BUG_ON(!branch_is_call(auprobe
));
676 * We can only get here if branch_emulate_op() failed to push the ret
677 * address _and_ another thread expanded our stack before the (mangled)
678 * "call" insn was executed out-of-line. Just restore ->sp and restart.
679 * We could also restore ->ip and try to call branch_emulate_op() again.
681 regs
->sp
+= sizeof_long(regs
);
685 static void branch_clear_offset(struct arch_uprobe
*auprobe
, struct insn
*insn
)
688 * Turn this insn into "call 1f; 1:", this is what we will execute
689 * out-of-line if ->emulate() fails. We only need this to generate
690 * a trap, so that the probed task receives the correct signal with
691 * the properly filled siginfo.
693 * But see the comment in ->post_xol(), in the unlikely case it can
694 * succeed. So we need to ensure that the new ->ip can not fall into
695 * the non-canonical area and trigger #GP.
697 * We could turn it into (say) "pushf", but then we would need to
698 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
699 * of ->insn[] for set_orig_insn().
701 memset(auprobe
->insn
+ insn_offset_immediate(insn
),
702 0, insn
->immediate
.nbytes
);
705 static const struct uprobe_xol_ops branch_xol_ops
= {
706 .emulate
= branch_emulate_op
,
707 .post_xol
= branch_post_xol_op
,
710 static const struct uprobe_xol_ops push_xol_ops
= {
711 .emulate
= push_emulate_op
,
714 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
715 static int branch_setup_xol_ops(struct arch_uprobe
*auprobe
, struct insn
*insn
)
717 u8 opc1
= OPCODE1(insn
);
721 case 0xeb: /* jmp 8 */
722 case 0xe9: /* jmp 32 */
723 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
726 case 0xe8: /* call relative */
727 branch_clear_offset(auprobe
, insn
);
731 if (insn
->opcode
.nbytes
!= 2)
734 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
735 * OPCODE1() of the "short" jmp which checks the same condition.
737 opc1
= OPCODE2(insn
) - 0x10;
740 if (!is_cond_jmp_opcode(opc1
))
745 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
746 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
747 * No one uses these insns, reject any branch insns with such prefix.
749 for (i
= 0; i
< insn
->prefixes
.nbytes
; i
++) {
750 if (insn
->prefixes
.bytes
[i
] == 0x66)
754 auprobe
->branch
.opc1
= opc1
;
755 auprobe
->branch
.ilen
= insn
->length
;
756 auprobe
->branch
.offs
= insn
->immediate
.value
;
758 auprobe
->ops
= &branch_xol_ops
;
762 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
763 static int push_setup_xol_ops(struct arch_uprobe
*auprobe
, struct insn
*insn
)
765 u8 opc1
= OPCODE1(insn
), reg_offset
= 0;
767 if (opc1
< 0x50 || opc1
> 0x57)
770 if (insn
->length
> 2)
772 if (insn
->length
== 2) {
773 /* only support rex_prefix 0x41 (x64 only) */
775 if (insn
->rex_prefix
.nbytes
!= 1 ||
776 insn
->rex_prefix
.bytes
[0] != 0x41)
781 reg_offset
= offsetof(struct pt_regs
, r8
);
784 reg_offset
= offsetof(struct pt_regs
, r9
);
787 reg_offset
= offsetof(struct pt_regs
, r10
);
790 reg_offset
= offsetof(struct pt_regs
, r11
);
793 reg_offset
= offsetof(struct pt_regs
, r12
);
796 reg_offset
= offsetof(struct pt_regs
, r13
);
799 reg_offset
= offsetof(struct pt_regs
, r14
);
802 reg_offset
= offsetof(struct pt_regs
, r15
);
811 reg_offset
= offsetof(struct pt_regs
, ax
);
814 reg_offset
= offsetof(struct pt_regs
, cx
);
817 reg_offset
= offsetof(struct pt_regs
, dx
);
820 reg_offset
= offsetof(struct pt_regs
, bx
);
823 reg_offset
= offsetof(struct pt_regs
, sp
);
826 reg_offset
= offsetof(struct pt_regs
, bp
);
829 reg_offset
= offsetof(struct pt_regs
, si
);
832 reg_offset
= offsetof(struct pt_regs
, di
);
837 auprobe
->push
.reg_offset
= reg_offset
;
838 auprobe
->push
.ilen
= insn
->length
;
839 auprobe
->ops
= &push_xol_ops
;
844 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
845 * @auprobe: the probepoint information.
846 * @mm: the probed address space.
847 * @addr: virtual address at which to install the probepoint
848 * Return 0 on success or a -ve number on error.
850 int arch_uprobe_analyze_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long addr
)
853 u8 fix_ip_or_call
= UPROBE_FIX_IP
;
856 ret
= uprobe_init_insn(auprobe
, &insn
, is_64bit_mm(mm
));
860 ret
= branch_setup_xol_ops(auprobe
, &insn
);
864 ret
= push_setup_xol_ops(auprobe
, &insn
);
869 * Figure out which fixups default_post_xol_op() will need to perform,
870 * and annotate defparam->fixups accordingly.
872 switch (OPCODE1(&insn
)) {
873 case 0x9d: /* popf */
874 auprobe
->defparam
.fixups
|= UPROBE_FIX_SETF
;
876 case 0xc3: /* ret or lret -- ip is correct */
880 case 0xea: /* jmp absolute -- ip is correct */
883 case 0x9a: /* call absolute - Fix return addr, not ip */
884 fix_ip_or_call
= UPROBE_FIX_CALL
;
887 switch (MODRM_REG(&insn
)) {
888 case 2: case 3: /* call or lcall, indirect */
889 fix_ip_or_call
= UPROBE_FIX_CALL
;
891 case 4: case 5: /* jmp or ljmp, indirect */
897 riprel_analyze(auprobe
, &insn
);
900 auprobe
->defparam
.ilen
= insn
.length
;
901 auprobe
->defparam
.fixups
|= fix_ip_or_call
;
903 auprobe
->ops
= &default_xol_ops
;
908 * arch_uprobe_pre_xol - prepare to execute out of line.
909 * @auprobe: the probepoint information.
910 * @regs: reflects the saved user state of current task.
912 int arch_uprobe_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
914 struct uprobe_task
*utask
= current
->utask
;
916 if (auprobe
->ops
->pre_xol
) {
917 int err
= auprobe
->ops
->pre_xol(auprobe
, regs
);
922 regs
->ip
= utask
->xol_vaddr
;
923 utask
->autask
.saved_trap_nr
= current
->thread
.trap_nr
;
924 current
->thread
.trap_nr
= UPROBE_TRAP_NR
;
926 utask
->autask
.saved_tf
= !!(regs
->flags
& X86_EFLAGS_TF
);
927 regs
->flags
|= X86_EFLAGS_TF
;
928 if (test_tsk_thread_flag(current
, TIF_BLOCKSTEP
))
929 set_task_blockstep(current
, false);
935 * If xol insn itself traps and generates a signal(Say,
936 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
937 * instruction jumps back to its own address. It is assumed that anything
938 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
940 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
941 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
942 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
944 bool arch_uprobe_xol_was_trapped(struct task_struct
*t
)
946 if (t
->thread
.trap_nr
!= UPROBE_TRAP_NR
)
953 * Called after single-stepping. To avoid the SMP problems that can
954 * occur when we temporarily put back the original opcode to
955 * single-step, we single-stepped a copy of the instruction.
957 * This function prepares to resume execution after the single-step.
959 int arch_uprobe_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
961 struct uprobe_task
*utask
= current
->utask
;
962 bool send_sigtrap
= utask
->autask
.saved_tf
;
965 WARN_ON_ONCE(current
->thread
.trap_nr
!= UPROBE_TRAP_NR
);
966 current
->thread
.trap_nr
= utask
->autask
.saved_trap_nr
;
968 if (auprobe
->ops
->post_xol
) {
969 err
= auprobe
->ops
->post_xol(auprobe
, regs
);
972 * Restore ->ip for restart or post mortem analysis.
973 * ->post_xol() must not return -ERESTART unless this
974 * is really possible.
976 regs
->ip
= utask
->vaddr
;
977 if (err
== -ERESTART
)
979 send_sigtrap
= false;
983 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
984 * so we can get an extra SIGTRAP if we do not clear TF. We need
985 * to examine the opcode to make it right.
988 send_sig(SIGTRAP
, current
, 0);
990 if (!utask
->autask
.saved_tf
)
991 regs
->flags
&= ~X86_EFLAGS_TF
;
996 /* callback routine for handling exceptions. */
997 int arch_uprobe_exception_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
999 struct die_args
*args
= data
;
1000 struct pt_regs
*regs
= args
->regs
;
1001 int ret
= NOTIFY_DONE
;
1003 /* We are only interested in userspace traps */
1004 if (regs
&& !user_mode(regs
))
1009 if (uprobe_pre_sstep_notifier(regs
))
1015 if (uprobe_post_sstep_notifier(regs
))
1026 * This function gets called when XOL instruction either gets trapped or
1027 * the thread has a fatal signal. Reset the instruction pointer to its
1028 * probed address for the potential restart or for post mortem analysis.
1030 void arch_uprobe_abort_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1032 struct uprobe_task
*utask
= current
->utask
;
1034 if (auprobe
->ops
->abort
)
1035 auprobe
->ops
->abort(auprobe
, regs
);
1037 current
->thread
.trap_nr
= utask
->autask
.saved_trap_nr
;
1038 regs
->ip
= utask
->vaddr
;
1039 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1040 if (!utask
->autask
.saved_tf
)
1041 regs
->flags
&= ~X86_EFLAGS_TF
;
1044 static bool __skip_sstep(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1046 if (auprobe
->ops
->emulate
)
1047 return auprobe
->ops
->emulate(auprobe
, regs
);
1051 bool arch_uprobe_skip_sstep(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1053 bool ret
= __skip_sstep(auprobe
, regs
);
1054 if (ret
&& (regs
->flags
& X86_EFLAGS_TF
))
1055 send_sig(SIGTRAP
, current
, 0);
1060 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr
, struct pt_regs
*regs
)
1062 int rasize
= sizeof_long(regs
), nleft
;
1063 unsigned long orig_ret_vaddr
= 0; /* clear high bits for 32-bit apps */
1065 if (copy_from_user(&orig_ret_vaddr
, (void __user
*)regs
->sp
, rasize
))
1068 /* check whether address has been already hijacked */
1069 if (orig_ret_vaddr
== trampoline_vaddr
)
1070 return orig_ret_vaddr
;
1072 nleft
= copy_to_user((void __user
*)regs
->sp
, &trampoline_vaddr
, rasize
);
1074 return orig_ret_vaddr
;
1076 if (nleft
!= rasize
) {
1077 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1078 current
->pid
, regs
->sp
, regs
->ip
);
1086 bool arch_uretprobe_is_alive(struct return_instance
*ret
, enum rp_check ctx
,
1087 struct pt_regs
*regs
)
1089 if (ctx
== RP_CHECK_CALL
) /* sp was just decremented by "call" insn */
1090 return regs
->sp
< ret
->stack
;
1092 return regs
->sp
<= ret
->stack
;