1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1994 Linus Torvalds
5 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
6 * stack - Manfred Spraul <manfred@colorfullife.com>
8 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
9 * them correctly. Now the emulation will be in a
10 * consistent state after stackfaults - Kasper Dupont
11 * <kasperd@daimi.au.dk>
13 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
14 * <kasperd@daimi.au.dk>
16 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
17 * caused by Kasper Dupont's changes - Stas Sergeev
19 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
20 * Kasper Dupont <kasperd@daimi.au.dk>
22 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
23 * Kasper Dupont <kasperd@daimi.au.dk>
25 * 9 apr 2002 - Changed stack access macros to jump to a label
26 * instead of returning to userspace. This simplifies
27 * do_int, and is needed by handle_vm6_fault. Kasper
28 * Dupont <kasperd@daimi.au.dk>
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/capability.h>
35 #include <linux/errno.h>
36 #include <linux/interrupt.h>
37 #include <linux/syscalls.h>
38 #include <linux/sched.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/kernel.h>
41 #include <linux/signal.h>
42 #include <linux/string.h>
44 #include <linux/smp.h>
45 #include <linux/highmem.h>
46 #include <linux/ptrace.h>
47 #include <linux/audit.h>
48 #include <linux/stddef.h>
49 #include <linux/slab.h>
50 #include <linux/security.h>
52 #include <linux/uaccess.h>
54 #include <asm/tlbflush.h>
56 #include <asm/traps.h>
58 #include <asm/switch_to.h>
63 * Interrupt handling is not guaranteed:
64 * - a real x86 will disable all interrupts for one instruction
65 * after a "mov ss,xx" to make stack handling atomic even without
66 * the 'lss' instruction. We can't guarantee this in v86 mode,
67 * as the next instruction might result in a page fault or similar.
68 * - a real x86 will have interrupts disabled for one instruction
69 * past the 'sti' that enables them. We don't bother with all the
72 * Let's hope these problems do not actually matter for anything.
77 * 8- and 16-bit register defines..
79 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
80 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
81 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
82 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
85 * virtual flags (16 and 32-bit versions)
87 #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
88 #define VEFLAGS (current->thread.vm86->veflags)
90 #define set_flags(X, new, mask) \
91 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
93 #define SAFE_MASK (0xDD5)
94 #define RETURN_MASK (0xDFF)
96 void save_v86_state(struct kernel_vm86_regs
*regs
, int retval
)
98 struct task_struct
*tsk
= current
;
99 struct vm86plus_struct __user
*user
;
100 struct vm86
*vm86
= current
->thread
.vm86
;
103 * This gets called from entry.S with interrupts disabled, but
104 * from process context. Enable interrupts here, before trying
105 * to access user space.
109 if (!vm86
|| !vm86
->user_vm86
) {
110 pr_alert("no user_vm86: BAD\n");
113 set_flags(regs
->pt
.flags
, VEFLAGS
, X86_EFLAGS_VIF
| vm86
->veflags_mask
);
114 user
= vm86
->user_vm86
;
116 if (!user_access_begin(user
, vm86
->vm86plus
.is_vm86pus
?
117 sizeof(struct vm86plus_struct
) :
118 sizeof(struct vm86_struct
)))
121 unsafe_put_user(regs
->pt
.bx
, &user
->regs
.ebx
, Efault_end
);
122 unsafe_put_user(regs
->pt
.cx
, &user
->regs
.ecx
, Efault_end
);
123 unsafe_put_user(regs
->pt
.dx
, &user
->regs
.edx
, Efault_end
);
124 unsafe_put_user(regs
->pt
.si
, &user
->regs
.esi
, Efault_end
);
125 unsafe_put_user(regs
->pt
.di
, &user
->regs
.edi
, Efault_end
);
126 unsafe_put_user(regs
->pt
.bp
, &user
->regs
.ebp
, Efault_end
);
127 unsafe_put_user(regs
->pt
.ax
, &user
->regs
.eax
, Efault_end
);
128 unsafe_put_user(regs
->pt
.ip
, &user
->regs
.eip
, Efault_end
);
129 unsafe_put_user(regs
->pt
.cs
, &user
->regs
.cs
, Efault_end
);
130 unsafe_put_user(regs
->pt
.flags
, &user
->regs
.eflags
, Efault_end
);
131 unsafe_put_user(regs
->pt
.sp
, &user
->regs
.esp
, Efault_end
);
132 unsafe_put_user(regs
->pt
.ss
, &user
->regs
.ss
, Efault_end
);
133 unsafe_put_user(regs
->es
, &user
->regs
.es
, Efault_end
);
134 unsafe_put_user(regs
->ds
, &user
->regs
.ds
, Efault_end
);
135 unsafe_put_user(regs
->fs
, &user
->regs
.fs
, Efault_end
);
136 unsafe_put_user(regs
->gs
, &user
->regs
.gs
, Efault_end
);
137 unsafe_put_user(vm86
->screen_bitmap
, &user
->screen_bitmap
, Efault_end
);
142 tsk
->thread
.sp0
= vm86
->saved_sp0
;
143 tsk
->thread
.sysenter_cs
= __KERNEL_CS
;
144 update_task_stack(tsk
);
145 refresh_sysenter_cs(&tsk
->thread
);
149 memcpy(®s
->pt
, &vm86
->regs32
, sizeof(struct pt_regs
));
151 lazy_load_gs(vm86
->regs32
.gs
);
153 regs
->pt
.ax
= retval
;
159 pr_alert("could not access userspace vm86 info\n");
163 static void mark_screen_rdonly(struct mm_struct
*mm
)
165 struct vm_area_struct
*vma
;
174 down_write(&mm
->mmap_sem
);
175 pgd
= pgd_offset(mm
, 0xA0000);
176 if (pgd_none_or_clear_bad(pgd
))
178 p4d
= p4d_offset(pgd
, 0xA0000);
179 if (p4d_none_or_clear_bad(p4d
))
181 pud
= pud_offset(p4d
, 0xA0000);
182 if (pud_none_or_clear_bad(pud
))
184 pmd
= pmd_offset(pud
, 0xA0000);
186 if (pmd_trans_huge(*pmd
)) {
187 vma
= find_vma(mm
, 0xA0000);
188 split_huge_pmd(vma
, pmd
, 0xA0000);
190 if (pmd_none_or_clear_bad(pmd
))
192 pte
= pte_offset_map_lock(mm
, pmd
, 0xA0000, &ptl
);
193 for (i
= 0; i
< 32; i
++) {
194 if (pte_present(*pte
))
195 set_pte(pte
, pte_wrprotect(*pte
));
198 pte_unmap_unlock(pte
, ptl
);
200 up_write(&mm
->mmap_sem
);
201 flush_tlb_mm_range(mm
, 0xA0000, 0xA0000 + 32*PAGE_SIZE
, PAGE_SHIFT
, false);
206 static int do_vm86_irq_handling(int subfunction
, int irqnumber
);
207 static long do_sys_vm86(struct vm86plus_struct __user
*user_vm86
, bool plus
);
209 SYSCALL_DEFINE1(vm86old
, struct vm86_struct __user
*, user_vm86
)
211 return do_sys_vm86((struct vm86plus_struct __user
*) user_vm86
, false);
215 SYSCALL_DEFINE2(vm86
, unsigned long, cmd
, unsigned long, arg
)
218 case VM86_REQUEST_IRQ
:
220 case VM86_GET_IRQ_BITS
:
221 case VM86_GET_AND_RESET_IRQ
:
222 return do_vm86_irq_handling(cmd
, (int)arg
);
223 case VM86_PLUS_INSTALL_CHECK
:
225 * NOTE: on old vm86 stuff this will return the error
226 * from access_ok(), because the subfunction is
227 * interpreted as (invalid) address to vm86_struct.
228 * So the installation check works.
233 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
234 return do_sys_vm86((struct vm86plus_struct __user
*) arg
, true);
238 static long do_sys_vm86(struct vm86plus_struct __user
*user_vm86
, bool plus
)
240 struct task_struct
*tsk
= current
;
241 struct vm86
*vm86
= tsk
->thread
.vm86
;
242 struct kernel_vm86_regs vm86regs
;
243 struct pt_regs
*regs
= current_pt_regs();
244 unsigned long err
= 0;
245 struct vm86_struct v
;
247 err
= security_mmap_addr(0);
250 * vm86 cannot virtualize the address space, so vm86 users
251 * need to manage the low 1MB themselves using mmap. Given
252 * that BIOS places important data in the first page, vm86
253 * is essentially useless if mmap_min_addr != 0. DOSEMU,
254 * for example, won't even bother trying to use vm86 if it
255 * can't map a page at virtual address 0.
257 * To reduce the available kernel attack surface, simply
258 * disallow vm86(old) for users who cannot mmap at va 0.
260 * The implementation of security_mmap_addr will allow
261 * suitably privileged users to map va 0 even if
262 * vm.mmap_min_addr is set above 0, and we want this
263 * behavior for vm86 as well, as it ensures that legacy
264 * tools like vbetool will not fail just because of
267 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
268 current
->comm
, task_pid_nr(current
),
269 from_kuid_munged(&init_user_ns
, current_uid()));
274 if (!(vm86
= kzalloc(sizeof(*vm86
), GFP_KERNEL
)))
276 tsk
->thread
.vm86
= vm86
;
281 if (copy_from_user(&v
, user_vm86
,
282 offsetof(struct vm86_struct
, int_revectored
)))
285 memset(&vm86regs
, 0, sizeof(vm86regs
));
287 vm86regs
.pt
.bx
= v
.regs
.ebx
;
288 vm86regs
.pt
.cx
= v
.regs
.ecx
;
289 vm86regs
.pt
.dx
= v
.regs
.edx
;
290 vm86regs
.pt
.si
= v
.regs
.esi
;
291 vm86regs
.pt
.di
= v
.regs
.edi
;
292 vm86regs
.pt
.bp
= v
.regs
.ebp
;
293 vm86regs
.pt
.ax
= v
.regs
.eax
;
294 vm86regs
.pt
.ip
= v
.regs
.eip
;
295 vm86regs
.pt
.cs
= v
.regs
.cs
;
296 vm86regs
.pt
.flags
= v
.regs
.eflags
;
297 vm86regs
.pt
.sp
= v
.regs
.esp
;
298 vm86regs
.pt
.ss
= v
.regs
.ss
;
299 vm86regs
.es
= v
.regs
.es
;
300 vm86regs
.ds
= v
.regs
.ds
;
301 vm86regs
.fs
= v
.regs
.fs
;
302 vm86regs
.gs
= v
.regs
.gs
;
304 vm86
->flags
= v
.flags
;
305 vm86
->screen_bitmap
= v
.screen_bitmap
;
306 vm86
->cpu_type
= v
.cpu_type
;
308 if (copy_from_user(&vm86
->int_revectored
,
309 &user_vm86
->int_revectored
,
310 sizeof(struct revectored_struct
)))
312 if (copy_from_user(&vm86
->int21_revectored
,
313 &user_vm86
->int21_revectored
,
314 sizeof(struct revectored_struct
)))
317 if (copy_from_user(&vm86
->vm86plus
, &user_vm86
->vm86plus
,
318 sizeof(struct vm86plus_info_struct
)))
320 vm86
->vm86plus
.is_vm86pus
= 1;
322 memset(&vm86
->vm86plus
, 0,
323 sizeof(struct vm86plus_info_struct
));
325 memcpy(&vm86
->regs32
, regs
, sizeof(struct pt_regs
));
326 vm86
->user_vm86
= user_vm86
;
329 * The flags register is also special: we cannot trust that the user
330 * has set it up safely, so this makes sure interrupt etc flags are
331 * inherited from protected mode.
333 VEFLAGS
= vm86regs
.pt
.flags
;
334 vm86regs
.pt
.flags
&= SAFE_MASK
;
335 vm86regs
.pt
.flags
|= regs
->flags
& ~SAFE_MASK
;
336 vm86regs
.pt
.flags
|= X86_VM_MASK
;
338 vm86regs
.pt
.orig_ax
= regs
->orig_ax
;
340 switch (vm86
->cpu_type
) {
342 vm86
->veflags_mask
= 0;
345 vm86
->veflags_mask
= X86_EFLAGS_NT
| X86_EFLAGS_IOPL
;
348 vm86
->veflags_mask
= X86_EFLAGS_AC
| X86_EFLAGS_NT
| X86_EFLAGS_IOPL
;
351 vm86
->veflags_mask
= X86_EFLAGS_ID
| X86_EFLAGS_AC
| X86_EFLAGS_NT
| X86_EFLAGS_IOPL
;
358 vm86
->saved_sp0
= tsk
->thread
.sp0
;
359 lazy_save_gs(vm86
->regs32
.gs
);
361 /* make room for real-mode segments */
363 tsk
->thread
.sp0
+= 16;
365 if (boot_cpu_has(X86_FEATURE_SEP
)) {
366 tsk
->thread
.sysenter_cs
= 0;
367 refresh_sysenter_cs(&tsk
->thread
);
370 update_task_stack(tsk
);
373 if (vm86
->flags
& VM86_SCREEN_BITMAP
)
374 mark_screen_rdonly(tsk
->mm
);
376 memcpy((struct kernel_vm86_regs
*)regs
, &vm86regs
, sizeof(vm86regs
));
380 static inline void set_IF(struct kernel_vm86_regs
*regs
)
382 VEFLAGS
|= X86_EFLAGS_VIF
;
385 static inline void clear_IF(struct kernel_vm86_regs
*regs
)
387 VEFLAGS
&= ~X86_EFLAGS_VIF
;
390 static inline void clear_TF(struct kernel_vm86_regs
*regs
)
392 regs
->pt
.flags
&= ~X86_EFLAGS_TF
;
395 static inline void clear_AC(struct kernel_vm86_regs
*regs
)
397 regs
->pt
.flags
&= ~X86_EFLAGS_AC
;
401 * It is correct to call set_IF(regs) from the set_vflags_*
402 * functions. However someone forgot to call clear_IF(regs)
403 * in the opposite case.
404 * After the command sequence CLI PUSHF STI POPF you should
405 * end up with interrupts disabled, but you ended up with
406 * interrupts enabled.
407 * ( I was testing my own changes, but the only bug I
408 * could find was in a function I had not changed. )
412 static inline void set_vflags_long(unsigned long flags
, struct kernel_vm86_regs
*regs
)
414 set_flags(VEFLAGS
, flags
, current
->thread
.vm86
->veflags_mask
);
415 set_flags(regs
->pt
.flags
, flags
, SAFE_MASK
);
416 if (flags
& X86_EFLAGS_IF
)
422 static inline void set_vflags_short(unsigned short flags
, struct kernel_vm86_regs
*regs
)
424 set_flags(VFLAGS
, flags
, current
->thread
.vm86
->veflags_mask
);
425 set_flags(regs
->pt
.flags
, flags
, SAFE_MASK
);
426 if (flags
& X86_EFLAGS_IF
)
432 static inline unsigned long get_vflags(struct kernel_vm86_regs
*regs
)
434 unsigned long flags
= regs
->pt
.flags
& RETURN_MASK
;
436 if (VEFLAGS
& X86_EFLAGS_VIF
)
437 flags
|= X86_EFLAGS_IF
;
438 flags
|= X86_EFLAGS_IOPL
;
439 return flags
| (VEFLAGS
& current
->thread
.vm86
->veflags_mask
);
442 static inline int is_revectored(int nr
, struct revectored_struct
*bitmap
)
444 return test_bit(nr
, bitmap
->__map
);
447 #define val_byte(val, n) (((__u8 *)&val)[n])
449 #define pushb(base, ptr, val, err_label) \
453 if (put_user(__val, base + ptr) < 0) \
457 #define pushw(base, ptr, val, err_label) \
461 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
464 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
468 #define pushl(base, ptr, val, err_label) \
472 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
475 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
478 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
481 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
485 #define popb(base, ptr, err_label) \
488 if (get_user(__res, base + ptr) < 0) \
494 #define popw(base, ptr, err_label) \
497 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
500 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
506 #define popl(base, ptr, err_label) \
509 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
512 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
515 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
518 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
524 /* There are so many possible reasons for this function to return
525 * VM86_INTx, so adding another doesn't bother me. We can expect
526 * userspace programs to be able to handle it. (Getting a problem
527 * in userspace is always better than an Oops anyway.) [KD]
529 static void do_int(struct kernel_vm86_regs
*regs
, int i
,
530 unsigned char __user
*ssp
, unsigned short sp
)
532 unsigned long __user
*intr_ptr
;
533 unsigned long segoffs
;
534 struct vm86
*vm86
= current
->thread
.vm86
;
536 if (regs
->pt
.cs
== BIOSSEG
)
538 if (is_revectored(i
, &vm86
->int_revectored
))
540 if (i
== 0x21 && is_revectored(AH(regs
), &vm86
->int21_revectored
))
542 intr_ptr
= (unsigned long __user
*) (i
<< 2);
543 if (get_user(segoffs
, intr_ptr
))
545 if ((segoffs
>> 16) == BIOSSEG
)
547 pushw(ssp
, sp
, get_vflags(regs
), cannot_handle
);
548 pushw(ssp
, sp
, regs
->pt
.cs
, cannot_handle
);
549 pushw(ssp
, sp
, IP(regs
), cannot_handle
);
550 regs
->pt
.cs
= segoffs
>> 16;
552 IP(regs
) = segoffs
& 0xffff;
559 save_v86_state(regs
, VM86_INTx
+ (i
<< 8));
562 int handle_vm86_trap(struct kernel_vm86_regs
*regs
, long error_code
, int trapno
)
564 struct vm86
*vm86
= current
->thread
.vm86
;
566 if (vm86
->vm86plus
.is_vm86pus
) {
567 if ((trapno
== 3) || (trapno
== 1)) {
568 save_v86_state(regs
, VM86_TRAP
+ (trapno
<< 8));
571 do_int(regs
, trapno
, (unsigned char __user
*) (regs
->pt
.ss
<< 4), SP(regs
));
575 return 1; /* we let this handle by the calling routine */
576 current
->thread
.trap_nr
= trapno
;
577 current
->thread
.error_code
= error_code
;
582 void handle_vm86_fault(struct kernel_vm86_regs
*regs
, long error_code
)
584 unsigned char opcode
;
585 unsigned char __user
*csp
;
586 unsigned char __user
*ssp
;
587 unsigned short ip
, sp
, orig_flags
;
588 int data32
, pref_done
;
589 struct vm86plus_info_struct
*vmpi
= ¤t
->thread
.vm86
->vm86plus
;
591 #define CHECK_IF_IN_TRAP \
592 if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
593 newflags |= X86_EFLAGS_TF
595 orig_flags
= *(unsigned short *)®s
->pt
.flags
;
597 csp
= (unsigned char __user
*) (regs
->pt
.cs
<< 4);
598 ssp
= (unsigned char __user
*) (regs
->pt
.ss
<< 4);
605 switch (opcode
= popb(csp
, ip
, simulate_sigsegv
)) {
606 case 0x66: /* 32-bit data */ data32
= 1; break;
607 case 0x67: /* 32-bit address */ break;
608 case 0x2e: /* CS */ break;
609 case 0x3e: /* DS */ break;
610 case 0x26: /* ES */ break;
611 case 0x36: /* SS */ break;
612 case 0x65: /* GS */ break;
613 case 0x64: /* FS */ break;
614 case 0xf2: /* repnz */ break;
615 case 0xf3: /* rep */ break;
616 default: pref_done
= 1;
618 } while (!pref_done
);
625 pushl(ssp
, sp
, get_vflags(regs
), simulate_sigsegv
);
628 pushw(ssp
, sp
, get_vflags(regs
), simulate_sigsegv
);
632 goto vm86_fault_return
;
637 unsigned long newflags
;
639 newflags
= popl(ssp
, sp
, simulate_sigsegv
);
642 newflags
= popw(ssp
, sp
, simulate_sigsegv
);
648 set_vflags_long(newflags
, regs
);
650 set_vflags_short(newflags
, regs
);
657 int intno
= popb(csp
, ip
, simulate_sigsegv
);
659 if (vmpi
->vm86dbg_active
) {
660 if ((1 << (intno
& 7)) & vmpi
->vm86dbg_intxxtab
[intno
>> 3]) {
661 save_v86_state(regs
, VM86_INTx
+ (intno
<< 8));
665 do_int(regs
, intno
, ssp
, sp
);
674 unsigned long newflags
;
676 newip
= popl(ssp
, sp
, simulate_sigsegv
);
677 newcs
= popl(ssp
, sp
, simulate_sigsegv
);
678 newflags
= popl(ssp
, sp
, simulate_sigsegv
);
681 newip
= popw(ssp
, sp
, simulate_sigsegv
);
682 newcs
= popw(ssp
, sp
, simulate_sigsegv
);
683 newflags
= popw(ssp
, sp
, simulate_sigsegv
);
690 set_vflags_long(newflags
, regs
);
692 set_vflags_short(newflags
, regs
);
701 goto vm86_fault_return
;
705 * Damn. This is incorrect: the 'sti' instruction should actually
706 * enable interrupts after the /next/ instruction. Not good.
708 * Probably needs some horsing around with the TF flag. Aiee..
716 save_v86_state(regs
, VM86_UNKNOWN
);
722 if ((VEFLAGS
& (X86_EFLAGS_VIP
| X86_EFLAGS_VIF
)) ==
723 (X86_EFLAGS_VIP
| X86_EFLAGS_VIF
)) {
724 save_v86_state(regs
, VM86_STI
);
729 if (vmpi
->force_return_for_pic
&& (VEFLAGS
& (X86_EFLAGS_IF
| X86_EFLAGS_VIF
))) {
730 save_v86_state(regs
, VM86_PICRETURN
);
733 if (orig_flags
& X86_EFLAGS_TF
)
734 handle_vm86_trap(regs
, 0, X86_TRAP_DB
);
738 /* FIXME: After a long discussion with Stas we finally
739 * agreed, that this is wrong. Here we should
740 * really send a SIGSEGV to the user program.
741 * But how do we create the correct context? We
742 * are inside a general protection fault handler
743 * and has just returned from a page fault handler.
744 * The correct context for the signal handler
745 * should be a mixture of the two, but how do we
746 * get the information? [KD]
748 save_v86_state(regs
, VM86_UNKNOWN
);
751 /* ---------------- vm86 special IRQ passing stuff ----------------- */
753 #define VM86_IRQNAME "vm86irq"
755 static struct vm86_irqs
{
756 struct task_struct
*tsk
;
760 static DEFINE_SPINLOCK(irqbits_lock
);
763 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
764 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
767 static irqreturn_t
irq_handler(int intno
, void *dev_id
)
772 spin_lock_irqsave(&irqbits_lock
, flags
);
773 irq_bit
= 1 << intno
;
774 if ((irqbits
& irq_bit
) || !vm86_irqs
[intno
].tsk
)
777 if (vm86_irqs
[intno
].sig
)
778 send_sig(vm86_irqs
[intno
].sig
, vm86_irqs
[intno
].tsk
, 1);
780 * IRQ will be re-enabled when user asks for the irq (whether
781 * polling or as a result of the signal)
783 disable_irq_nosync(intno
);
784 spin_unlock_irqrestore(&irqbits_lock
, flags
);
788 spin_unlock_irqrestore(&irqbits_lock
, flags
);
792 static inline void free_vm86_irq(int irqnumber
)
796 free_irq(irqnumber
, NULL
);
797 vm86_irqs
[irqnumber
].tsk
= NULL
;
799 spin_lock_irqsave(&irqbits_lock
, flags
);
800 irqbits
&= ~(1 << irqnumber
);
801 spin_unlock_irqrestore(&irqbits_lock
, flags
);
804 void release_vm86_irqs(struct task_struct
*task
)
807 for (i
= FIRST_VM86_IRQ
; i
<= LAST_VM86_IRQ
; i
++)
808 if (vm86_irqs
[i
].tsk
== task
)
812 static inline int get_and_reset_irq(int irqnumber
)
818 if (invalid_vm86_irq(irqnumber
)) return 0;
819 if (vm86_irqs
[irqnumber
].tsk
!= current
) return 0;
820 spin_lock_irqsave(&irqbits_lock
, flags
);
821 bit
= irqbits
& (1 << irqnumber
);
824 enable_irq(irqnumber
);
828 spin_unlock_irqrestore(&irqbits_lock
, flags
);
833 static int do_vm86_irq_handling(int subfunction
, int irqnumber
)
836 switch (subfunction
) {
837 case VM86_GET_AND_RESET_IRQ
: {
838 return get_and_reset_irq(irqnumber
);
840 case VM86_GET_IRQ_BITS
: {
843 case VM86_REQUEST_IRQ
: {
844 int sig
= irqnumber
>> 8;
845 int irq
= irqnumber
& 255;
846 if (!capable(CAP_SYS_ADMIN
)) return -EPERM
;
847 if (!((1 << sig
) & ALLOWED_SIGS
)) return -EPERM
;
848 if (invalid_vm86_irq(irq
)) return -EPERM
;
849 if (vm86_irqs
[irq
].tsk
) return -EPERM
;
850 ret
= request_irq(irq
, &irq_handler
, 0, VM86_IRQNAME
, NULL
);
852 vm86_irqs
[irq
].sig
= sig
;
853 vm86_irqs
[irq
].tsk
= current
;
856 case VM86_FREE_IRQ
: {
857 if (invalid_vm86_irq(irqnumber
)) return -EPERM
;
858 if (!vm86_irqs
[irqnumber
].tsk
) return 0;
859 if (vm86_irqs
[irqnumber
].tsk
!= current
) return -EPERM
;
860 free_vm86_irq(irqnumber
);