Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / arch / x86 / kvm / cpuid.c
blob901cd1fdecd9a4f4d196f2ff1a626656e0b48955
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
6 * derived from arch/x86/kvm/x86.c
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
28 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
36 int feature_bit = 0;
37 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
39 xstate_bv &= XFEATURE_MASK_EXTEND;
40 while (xstate_bv) {
41 if (xstate_bv & 0x1) {
42 u32 eax, ebx, ecx, edx, offset;
43 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44 offset = compacted ? ret : ebx;
45 ret = max(ret, offset + eax);
48 xstate_bv >>= 1;
49 feature_bit++;
52 return ret;
55 #define F feature_bit
57 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
59 struct kvm_cpuid_entry2 *best;
60 struct kvm_lapic *apic = vcpu->arch.apic;
62 best = kvm_find_cpuid_entry(vcpu, 1, 0);
63 if (!best)
64 return 0;
66 /* Update OSXSAVE bit */
67 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1)
68 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
69 kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
71 cpuid_entry_change(best, X86_FEATURE_APIC,
72 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
74 if (apic) {
75 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
76 apic->lapic_timer.timer_mode_mask = 3 << 17;
77 else
78 apic->lapic_timer.timer_mode_mask = 1 << 17;
81 best = kvm_find_cpuid_entry(vcpu, 7, 0);
82 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
83 cpuid_entry_change(best, X86_FEATURE_OSPKE,
84 kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
86 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
87 if (!best) {
88 vcpu->arch.guest_supported_xcr0 = 0;
89 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
90 } else {
91 vcpu->arch.guest_supported_xcr0 =
92 (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
93 vcpu->arch.guest_xstate_size = best->ebx =
94 xstate_required_size(vcpu->arch.xcr0, false);
97 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
98 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
99 cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
100 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
103 * The existing code assumes virtual address is 48-bit or 57-bit in the
104 * canonical address checks; exit if it is ever changed.
106 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
107 if (best) {
108 int vaddr_bits = (best->eax & 0xff00) >> 8;
110 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
111 return -EINVAL;
114 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
115 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
116 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
117 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
119 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
120 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
121 if (best)
122 cpuid_entry_change(best, X86_FEATURE_MWAIT,
123 vcpu->arch.ia32_misc_enable_msr &
124 MSR_IA32_MISC_ENABLE_MWAIT);
127 /* Update physical-address width */
128 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
129 kvm_mmu_reset_context(vcpu);
131 kvm_pmu_refresh(vcpu);
132 return 0;
135 static int is_efer_nx(void)
137 return host_efer & EFER_NX;
140 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
142 int i;
143 struct kvm_cpuid_entry2 *e, *entry;
145 entry = NULL;
146 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
147 e = &vcpu->arch.cpuid_entries[i];
148 if (e->function == 0x80000001) {
149 entry = e;
150 break;
153 if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
154 cpuid_entry_clear(entry, X86_FEATURE_NX);
155 printk(KERN_INFO "kvm: guest NX capability removed\n");
159 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
161 struct kvm_cpuid_entry2 *best;
163 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
164 if (!best || best->eax < 0x80000008)
165 goto not_found;
166 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
167 if (best)
168 return best->eax & 0xff;
169 not_found:
170 return 36;
172 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
174 /* when an old userspace process fills a new kernel module */
175 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
176 struct kvm_cpuid *cpuid,
177 struct kvm_cpuid_entry __user *entries)
179 int r, i;
180 struct kvm_cpuid_entry *cpuid_entries = NULL;
182 r = -E2BIG;
183 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
184 goto out;
185 r = -ENOMEM;
186 if (cpuid->nent) {
187 cpuid_entries =
188 vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
189 cpuid->nent));
190 if (!cpuid_entries)
191 goto out;
192 r = -EFAULT;
193 if (copy_from_user(cpuid_entries, entries,
194 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
195 goto out;
197 for (i = 0; i < cpuid->nent; i++) {
198 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
199 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
200 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
201 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
202 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
203 vcpu->arch.cpuid_entries[i].index = 0;
204 vcpu->arch.cpuid_entries[i].flags = 0;
205 vcpu->arch.cpuid_entries[i].padding[0] = 0;
206 vcpu->arch.cpuid_entries[i].padding[1] = 0;
207 vcpu->arch.cpuid_entries[i].padding[2] = 0;
209 vcpu->arch.cpuid_nent = cpuid->nent;
210 cpuid_fix_nx_cap(vcpu);
211 kvm_apic_set_version(vcpu);
212 kvm_x86_ops.cpuid_update(vcpu);
213 r = kvm_update_cpuid(vcpu);
215 out:
216 vfree(cpuid_entries);
217 return r;
220 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
221 struct kvm_cpuid2 *cpuid,
222 struct kvm_cpuid_entry2 __user *entries)
224 int r;
226 r = -E2BIG;
227 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
228 goto out;
229 r = -EFAULT;
230 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
231 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
232 goto out;
233 vcpu->arch.cpuid_nent = cpuid->nent;
234 kvm_apic_set_version(vcpu);
235 kvm_x86_ops.cpuid_update(vcpu);
236 r = kvm_update_cpuid(vcpu);
237 out:
238 return r;
241 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
242 struct kvm_cpuid2 *cpuid,
243 struct kvm_cpuid_entry2 __user *entries)
245 int r;
247 r = -E2BIG;
248 if (cpuid->nent < vcpu->arch.cpuid_nent)
249 goto out;
250 r = -EFAULT;
251 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
252 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
253 goto out;
254 return 0;
256 out:
257 cpuid->nent = vcpu->arch.cpuid_nent;
258 return r;
261 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
263 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
264 struct kvm_cpuid_entry2 entry;
266 reverse_cpuid_check(leaf);
267 kvm_cpu_caps[leaf] &= mask;
269 cpuid_count(cpuid.function, cpuid.index,
270 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
272 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
275 void kvm_set_cpu_caps(void)
277 unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
278 #ifdef CONFIG_X86_64
279 unsigned int f_gbpages = F(GBPAGES);
280 unsigned int f_lm = F(LM);
281 #else
282 unsigned int f_gbpages = 0;
283 unsigned int f_lm = 0;
284 #endif
286 BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
287 sizeof(boot_cpu_data.x86_capability));
289 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
290 sizeof(kvm_cpu_caps));
292 kvm_cpu_cap_mask(CPUID_1_ECX,
294 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
295 * advertised to guests via CPUID!
297 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
298 0 /* DS-CPL, VMX, SMX, EST */ |
299 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
300 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
301 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
302 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
303 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
304 F(F16C) | F(RDRAND)
306 /* KVM emulates x2apic in software irrespective of host support. */
307 kvm_cpu_cap_set(X86_FEATURE_X2APIC);
309 kvm_cpu_cap_mask(CPUID_1_EDX,
310 F(FPU) | F(VME) | F(DE) | F(PSE) |
311 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
312 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
313 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
314 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
315 0 /* Reserved, DS, ACPI */ | F(MMX) |
316 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
317 0 /* HTT, TM, Reserved, PBE */
320 kvm_cpu_cap_mask(CPUID_7_0_EBX,
321 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
322 F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
323 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
324 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
325 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
328 kvm_cpu_cap_mask(CPUID_7_ECX,
329 F(AVX512VBMI) | F(LA57) | 0 /*PKU*/ | 0 /*OSPKE*/ | F(RDPID) |
330 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
331 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
332 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
334 /* Set LA57 based on hardware capability. */
335 if (cpuid_ecx(7) & F(LA57))
336 kvm_cpu_cap_set(X86_FEATURE_LA57);
338 kvm_cpu_cap_mask(CPUID_7_EDX,
339 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
340 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
341 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM)
344 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
345 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
346 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
348 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
349 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
350 if (boot_cpu_has(X86_FEATURE_STIBP))
351 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
352 if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
353 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
355 kvm_cpu_cap_mask(CPUID_7_1_EAX,
356 F(AVX512_BF16)
359 kvm_cpu_cap_mask(CPUID_D_1_EAX,
360 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
363 kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
364 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
365 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
366 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
367 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
368 F(TOPOEXT) | F(PERFCTR_CORE)
371 kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
372 F(FPU) | F(VME) | F(DE) | F(PSE) |
373 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
374 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
375 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
376 F(PAT) | F(PSE36) | 0 /* Reserved */ |
377 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
378 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
379 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
382 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
383 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
385 kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
386 F(CLZERO) | F(XSAVEERPTR) |
387 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
388 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
392 * AMD has separate bits for each SPEC_CTRL bit.
393 * arch/x86/kernel/cpu/bugs.c is kind enough to
394 * record that in cpufeatures so use them.
396 if (boot_cpu_has(X86_FEATURE_IBPB))
397 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
398 if (boot_cpu_has(X86_FEATURE_IBRS))
399 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
400 if (boot_cpu_has(X86_FEATURE_STIBP))
401 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
402 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
403 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
404 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
405 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
407 * The preference is to use SPEC CTRL MSR instead of the
408 * VIRT_SPEC MSR.
410 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
411 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
412 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
415 * Hide all SVM features by default, SVM will set the cap bits for
416 * features it emulates and/or exposes for L1.
418 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
420 kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
421 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
422 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
423 F(PMM) | F(PMM_EN)
426 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
428 struct kvm_cpuid_array {
429 struct kvm_cpuid_entry2 *entries;
430 const int maxnent;
431 int nent;
434 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
435 u32 function, u32 index)
437 struct kvm_cpuid_entry2 *entry;
439 if (array->nent >= array->maxnent)
440 return NULL;
442 entry = &array->entries[array->nent++];
444 entry->function = function;
445 entry->index = index;
446 entry->flags = 0;
448 cpuid_count(entry->function, entry->index,
449 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
451 switch (function) {
452 case 4:
453 case 7:
454 case 0xb:
455 case 0xd:
456 case 0xf:
457 case 0x10:
458 case 0x12:
459 case 0x14:
460 case 0x17:
461 case 0x18:
462 case 0x1f:
463 case 0x8000001d:
464 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
465 break;
468 return entry;
471 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
473 struct kvm_cpuid_entry2 *entry;
475 if (array->nent >= array->maxnent)
476 return -E2BIG;
478 entry = &array->entries[array->nent];
479 entry->function = func;
480 entry->index = 0;
481 entry->flags = 0;
483 switch (func) {
484 case 0:
485 entry->eax = 7;
486 ++array->nent;
487 break;
488 case 1:
489 entry->ecx = F(MOVBE);
490 ++array->nent;
491 break;
492 case 7:
493 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
494 entry->eax = 0;
495 entry->ecx = F(RDPID);
496 ++array->nent;
497 default:
498 break;
501 return 0;
504 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
506 struct kvm_cpuid_entry2 *entry;
507 int r, i, max_idx;
509 /* all calls to cpuid_count() should be made on the same cpu */
510 get_cpu();
512 r = -E2BIG;
514 entry = do_host_cpuid(array, function, 0);
515 if (!entry)
516 goto out;
518 switch (function) {
519 case 0:
520 /* Limited to the highest leaf implemented in KVM. */
521 entry->eax = min(entry->eax, 0x1fU);
522 break;
523 case 1:
524 cpuid_entry_override(entry, CPUID_1_EDX);
525 cpuid_entry_override(entry, CPUID_1_ECX);
526 break;
527 case 2:
529 * On ancient CPUs, function 2 entries are STATEFUL. That is,
530 * CPUID(function=2, index=0) may return different results each
531 * time, with the least-significant byte in EAX enumerating the
532 * number of times software should do CPUID(2, 0).
534 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
535 * idiotic. Intel's SDM states that EAX & 0xff "will always
536 * return 01H. Software should ignore this value and not
537 * interpret it as an informational descriptor", while AMD's
538 * APM states that CPUID(2) is reserved.
540 * WARN if a frankenstein CPU that supports virtualization and
541 * a stateful CPUID.0x2 is encountered.
543 WARN_ON_ONCE((entry->eax & 0xff) > 1);
544 break;
545 /* functions 4 and 0x8000001d have additional index. */
546 case 4:
547 case 0x8000001d:
549 * Read entries until the cache type in the previous entry is
550 * zero, i.e. indicates an invalid entry.
552 for (i = 1; entry->eax & 0x1f; ++i) {
553 entry = do_host_cpuid(array, function, i);
554 if (!entry)
555 goto out;
557 break;
558 case 6: /* Thermal management */
559 entry->eax = 0x4; /* allow ARAT */
560 entry->ebx = 0;
561 entry->ecx = 0;
562 entry->edx = 0;
563 break;
564 /* function 7 has additional index. */
565 case 7:
566 entry->eax = min(entry->eax, 1u);
567 cpuid_entry_override(entry, CPUID_7_0_EBX);
568 cpuid_entry_override(entry, CPUID_7_ECX);
569 cpuid_entry_override(entry, CPUID_7_EDX);
571 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
572 if (entry->eax == 1) {
573 entry = do_host_cpuid(array, function, 1);
574 if (!entry)
575 goto out;
577 cpuid_entry_override(entry, CPUID_7_1_EAX);
578 entry->ebx = 0;
579 entry->ecx = 0;
580 entry->edx = 0;
582 break;
583 case 9:
584 break;
585 case 0xa: { /* Architectural Performance Monitoring */
586 struct x86_pmu_capability cap;
587 union cpuid10_eax eax;
588 union cpuid10_edx edx;
590 perf_get_x86_pmu_capability(&cap);
593 * Only support guest architectural pmu on a host
594 * with architectural pmu.
596 if (!cap.version)
597 memset(&cap, 0, sizeof(cap));
599 eax.split.version_id = min(cap.version, 2);
600 eax.split.num_counters = cap.num_counters_gp;
601 eax.split.bit_width = cap.bit_width_gp;
602 eax.split.mask_length = cap.events_mask_len;
604 edx.split.num_counters_fixed = cap.num_counters_fixed;
605 edx.split.bit_width_fixed = cap.bit_width_fixed;
606 edx.split.reserved = 0;
608 entry->eax = eax.full;
609 entry->ebx = cap.events_mask;
610 entry->ecx = 0;
611 entry->edx = edx.full;
612 break;
615 * Per Intel's SDM, the 0x1f is a superset of 0xb,
616 * thus they can be handled by common code.
618 case 0x1f:
619 case 0xb:
621 * Populate entries until the level type (ECX[15:8]) of the
622 * previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is
623 * the starting entry, filled by the primary do_host_cpuid().
625 for (i = 1; entry->ecx & 0xff00; ++i) {
626 entry = do_host_cpuid(array, function, i);
627 if (!entry)
628 goto out;
630 break;
631 case 0xd:
632 entry->eax &= supported_xcr0;
633 entry->ebx = xstate_required_size(supported_xcr0, false);
634 entry->ecx = entry->ebx;
635 entry->edx &= supported_xcr0 >> 32;
636 if (!supported_xcr0)
637 break;
639 entry = do_host_cpuid(array, function, 1);
640 if (!entry)
641 goto out;
643 cpuid_entry_override(entry, CPUID_D_1_EAX);
644 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
645 entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
646 true);
647 else {
648 WARN_ON_ONCE(supported_xss != 0);
649 entry->ebx = 0;
651 entry->ecx &= supported_xss;
652 entry->edx &= supported_xss >> 32;
654 for (i = 2; i < 64; ++i) {
655 bool s_state;
656 if (supported_xcr0 & BIT_ULL(i))
657 s_state = false;
658 else if (supported_xss & BIT_ULL(i))
659 s_state = true;
660 else
661 continue;
663 entry = do_host_cpuid(array, function, i);
664 if (!entry)
665 goto out;
668 * The supported check above should have filtered out
669 * invalid sub-leafs. Only valid sub-leafs should
670 * reach this point, and they should have a non-zero
671 * save state size. Furthermore, check whether the
672 * processor agrees with supported_xcr0/supported_xss
673 * on whether this is an XCR0- or IA32_XSS-managed area.
675 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
676 --array->nent;
677 continue;
679 entry->edx = 0;
681 break;
682 /* Intel PT */
683 case 0x14:
684 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
685 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
686 break;
689 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
690 if (!do_host_cpuid(array, function, i))
691 goto out;
693 break;
694 case KVM_CPUID_SIGNATURE: {
695 static const char signature[12] = "KVMKVMKVM\0\0";
696 const u32 *sigptr = (const u32 *)signature;
697 entry->eax = KVM_CPUID_FEATURES;
698 entry->ebx = sigptr[0];
699 entry->ecx = sigptr[1];
700 entry->edx = sigptr[2];
701 break;
703 case KVM_CPUID_FEATURES:
704 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
705 (1 << KVM_FEATURE_NOP_IO_DELAY) |
706 (1 << KVM_FEATURE_CLOCKSOURCE2) |
707 (1 << KVM_FEATURE_ASYNC_PF) |
708 (1 << KVM_FEATURE_PV_EOI) |
709 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
710 (1 << KVM_FEATURE_PV_UNHALT) |
711 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
712 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
713 (1 << KVM_FEATURE_PV_SEND_IPI) |
714 (1 << KVM_FEATURE_POLL_CONTROL) |
715 (1 << KVM_FEATURE_PV_SCHED_YIELD);
717 if (sched_info_on())
718 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
720 entry->ebx = 0;
721 entry->ecx = 0;
722 entry->edx = 0;
723 break;
724 case 0x80000000:
725 entry->eax = min(entry->eax, 0x8000001f);
726 break;
727 case 0x80000001:
728 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
729 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
730 break;
731 case 0x80000007: /* Advanced power management */
732 /* invariant TSC is CPUID.80000007H:EDX[8] */
733 entry->edx &= (1 << 8);
734 /* mask against host */
735 entry->edx &= boot_cpu_data.x86_power;
736 entry->eax = entry->ebx = entry->ecx = 0;
737 break;
738 case 0x80000008: {
739 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
740 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
741 unsigned phys_as = entry->eax & 0xff;
743 if (!g_phys_as)
744 g_phys_as = phys_as;
745 entry->eax = g_phys_as | (virt_as << 8);
746 entry->edx = 0;
747 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
748 break;
750 case 0x8000000A:
751 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
752 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
753 break;
755 entry->eax = 1; /* SVM revision 1 */
756 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
757 ASID emulation to nested SVM */
758 entry->ecx = 0; /* Reserved */
759 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
760 break;
761 case 0x80000019:
762 entry->ecx = entry->edx = 0;
763 break;
764 case 0x8000001a:
765 case 0x8000001e:
766 break;
767 /* Support memory encryption cpuid if host supports it */
768 case 0x8000001F:
769 if (!boot_cpu_has(X86_FEATURE_SEV))
770 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
771 break;
772 /*Add support for Centaur's CPUID instruction*/
773 case 0xC0000000:
774 /*Just support up to 0xC0000004 now*/
775 entry->eax = min(entry->eax, 0xC0000004);
776 break;
777 case 0xC0000001:
778 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
779 break;
780 case 3: /* Processor serial number */
781 case 5: /* MONITOR/MWAIT */
782 case 0xC0000002:
783 case 0xC0000003:
784 case 0xC0000004:
785 default:
786 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
787 break;
790 r = 0;
792 out:
793 put_cpu();
795 return r;
798 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
799 unsigned int type)
801 if (type == KVM_GET_EMULATED_CPUID)
802 return __do_cpuid_func_emulated(array, func);
804 return __do_cpuid_func(array, func);
807 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
809 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
810 unsigned int type)
812 u32 limit;
813 int r;
815 if (func == CENTAUR_CPUID_SIGNATURE &&
816 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
817 return 0;
819 r = do_cpuid_func(array, func, type);
820 if (r)
821 return r;
823 limit = array->entries[array->nent - 1].eax;
824 for (func = func + 1; func <= limit; ++func) {
825 r = do_cpuid_func(array, func, type);
826 if (r)
827 break;
830 return r;
833 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
834 __u32 num_entries, unsigned int ioctl_type)
836 int i;
837 __u32 pad[3];
839 if (ioctl_type != KVM_GET_EMULATED_CPUID)
840 return false;
843 * We want to make sure that ->padding is being passed clean from
844 * userspace in case we want to use it for something in the future.
846 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
847 * have to give ourselves satisfied only with the emulated side. /me
848 * sheds a tear.
850 for (i = 0; i < num_entries; i++) {
851 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
852 return true;
854 if (pad[0] || pad[1] || pad[2])
855 return true;
857 return false;
860 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
861 struct kvm_cpuid_entry2 __user *entries,
862 unsigned int type)
864 static const u32 funcs[] = {
865 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
868 struct kvm_cpuid_array array = {
869 .nent = 0,
870 .maxnent = cpuid->nent,
872 int r, i;
874 if (cpuid->nent < 1)
875 return -E2BIG;
876 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
877 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
879 if (sanity_check_entries(entries, cpuid->nent, type))
880 return -EINVAL;
882 array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
883 cpuid->nent));
884 if (!array.entries)
885 return -ENOMEM;
887 for (i = 0; i < ARRAY_SIZE(funcs); i++) {
888 r = get_cpuid_func(&array, funcs[i], type);
889 if (r)
890 goto out_free;
892 cpuid->nent = array.nent;
894 if (copy_to_user(entries, array.entries,
895 array.nent * sizeof(struct kvm_cpuid_entry2)))
896 r = -EFAULT;
898 out_free:
899 vfree(array.entries);
900 return r;
903 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
904 u32 function, u32 index)
906 struct kvm_cpuid_entry2 *e;
907 int i;
909 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
910 e = &vcpu->arch.cpuid_entries[i];
912 if (e->function == function && (e->index == index ||
913 !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
914 return e;
916 return NULL;
918 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
921 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
922 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
923 * returns all zeroes for any undefined leaf, whether or not the leaf is in
924 * range. Centaur/VIA follows Intel semantics.
926 * A leaf is considered out-of-range if its function is higher than the maximum
927 * supported leaf of its associated class or if its associated class does not
928 * exist.
930 * There are three primary classes to be considered, with their respective
931 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
932 * class exists if a guest CPUID entry for its <base> leaf exists. For a given
933 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
935 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
936 * - Hypervisor: 0x40000000 - 0x4fffffff
937 * - Extended: 0x80000000 - 0xbfffffff
938 * - Centaur: 0xc0000000 - 0xcfffffff
940 * The Hypervisor class is further subdivided into sub-classes that each act as
941 * their own indepdent class associated with a 0x100 byte range. E.g. if Qemu
942 * is advertising support for both HyperV and KVM, the resulting Hypervisor
943 * CPUID sub-classes are:
945 * - HyperV: 0x40000000 - 0x400000ff
946 * - KVM: 0x40000100 - 0x400001ff
948 static struct kvm_cpuid_entry2 *
949 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
951 struct kvm_cpuid_entry2 *basic, *class;
952 u32 function = *fn_ptr;
954 basic = kvm_find_cpuid_entry(vcpu, 0, 0);
955 if (!basic)
956 return NULL;
958 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
959 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
960 return NULL;
962 if (function >= 0x40000000 && function <= 0x4fffffff)
963 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
964 else if (function >= 0xc0000000)
965 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
966 else
967 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
969 if (class && function <= class->eax)
970 return NULL;
973 * Leaf specific adjustments are also applied when redirecting to the
974 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
975 * entry for CPUID.0xb.index (see below), then the output value for EDX
976 * needs to be pulled from CPUID.0xb.1.
978 *fn_ptr = basic->eax;
981 * The class does not exist or the requested function is out of range;
982 * the effective CPUID entry is the max basic leaf. Note, the index of
983 * the original requested leaf is observed!
985 return kvm_find_cpuid_entry(vcpu, basic->eax, index);
988 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
989 u32 *ecx, u32 *edx, bool exact_only)
991 u32 orig_function = *eax, function = *eax, index = *ecx;
992 struct kvm_cpuid_entry2 *entry;
993 bool exact, used_max_basic = false;
995 entry = kvm_find_cpuid_entry(vcpu, function, index);
996 exact = !!entry;
998 if (!entry && !exact_only) {
999 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1000 used_max_basic = !!entry;
1003 if (entry) {
1004 *eax = entry->eax;
1005 *ebx = entry->ebx;
1006 *ecx = entry->ecx;
1007 *edx = entry->edx;
1008 if (function == 7 && index == 0) {
1009 u64 data;
1010 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1011 (data & TSX_CTRL_CPUID_CLEAR))
1012 *ebx &= ~(F(RTM) | F(HLE));
1014 } else {
1015 *eax = *ebx = *ecx = *edx = 0;
1017 * When leaf 0BH or 1FH is defined, CL is pass-through
1018 * and EDX is always the x2APIC ID, even for undefined
1019 * subleaves. Index 1 will exist iff the leaf is
1020 * implemented, so we pass through CL iff leaf 1
1021 * exists. EDX can be copied from any existing index.
1023 if (function == 0xb || function == 0x1f) {
1024 entry = kvm_find_cpuid_entry(vcpu, function, 1);
1025 if (entry) {
1026 *ecx = index & 0xff;
1027 *edx = entry->edx;
1031 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1032 used_max_basic);
1033 return exact;
1035 EXPORT_SYMBOL_GPL(kvm_cpuid);
1037 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1039 u32 eax, ebx, ecx, edx;
1041 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1042 return 1;
1044 eax = kvm_rax_read(vcpu);
1045 ecx = kvm_rcx_read(vcpu);
1046 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1047 kvm_rax_write(vcpu, eax);
1048 kvm_rbx_write(vcpu, ebx);
1049 kvm_rcx_write(vcpu, ecx);
1050 kvm_rdx_write(vcpu, edx);
1051 return kvm_skip_emulated_instruction(vcpu);
1053 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);