1 // SPDX-License-Identifier: GPL-2.0-only
3 * KVM Microsoft Hyper-V emulation
5 * derived from arch/x86/kvm/x86.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
26 #include <linux/cpu.h>
27 #include <linux/kvm_host.h>
28 #include <linux/highmem.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/eventfd.h>
32 #include <asm/apicdef.h>
33 #include <trace/events/kvm.h>
38 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
40 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer
*stimer
,
43 static inline u64
synic_read_sint(struct kvm_vcpu_hv_synic
*synic
, int sint
)
45 return atomic64_read(&synic
->sint
[sint
]);
48 static inline int synic_get_sint_vector(u64 sint_value
)
50 if (sint_value
& HV_SYNIC_SINT_MASKED
)
52 return sint_value
& HV_SYNIC_SINT_VECTOR_MASK
;
55 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic
*synic
,
60 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++) {
61 if (synic_get_sint_vector(synic_read_sint(synic
, i
)) == vector
)
67 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic
*synic
,
73 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++) {
74 sint_value
= synic_read_sint(synic
, i
);
75 if (synic_get_sint_vector(sint_value
) == vector
&&
76 sint_value
& HV_SYNIC_SINT_AUTO_EOI
)
82 static void synic_update_vector(struct kvm_vcpu_hv_synic
*synic
,
85 if (vector
< HV_SYNIC_FIRST_VALID_VECTOR
)
88 if (synic_has_vector_connected(synic
, vector
))
89 __set_bit(vector
, synic
->vec_bitmap
);
91 __clear_bit(vector
, synic
->vec_bitmap
);
93 if (synic_has_vector_auto_eoi(synic
, vector
))
94 __set_bit(vector
, synic
->auto_eoi_bitmap
);
96 __clear_bit(vector
, synic
->auto_eoi_bitmap
);
99 static int synic_set_sint(struct kvm_vcpu_hv_synic
*synic
, int sint
,
102 int vector
, old_vector
;
105 vector
= data
& HV_SYNIC_SINT_VECTOR_MASK
;
106 masked
= data
& HV_SYNIC_SINT_MASKED
;
109 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
110 * default '0x10000' value on boot and this should not #GP. We need to
111 * allow zero-initing the register from host as well.
113 if (vector
< HV_SYNIC_FIRST_VALID_VECTOR
&& !host
&& !masked
)
116 * Guest may configure multiple SINTs to use the same vector, so
117 * we maintain a bitmap of vectors handled by synic, and a
118 * bitmap of vectors with auto-eoi behavior. The bitmaps are
119 * updated here, and atomically queried on fast paths.
121 old_vector
= synic_read_sint(synic
, sint
) & HV_SYNIC_SINT_VECTOR_MASK
;
123 atomic64_set(&synic
->sint
[sint
], data
);
125 synic_update_vector(synic
, old_vector
);
127 synic_update_vector(synic
, vector
);
129 /* Load SynIC vectors into EOI exit bitmap */
130 kvm_make_request(KVM_REQ_SCAN_IOAPIC
, synic_to_vcpu(synic
));
134 static struct kvm_vcpu
*get_vcpu_by_vpidx(struct kvm
*kvm
, u32 vpidx
)
136 struct kvm_vcpu
*vcpu
= NULL
;
139 if (vpidx
>= KVM_MAX_VCPUS
)
142 vcpu
= kvm_get_vcpu(kvm
, vpidx
);
143 if (vcpu
&& vcpu_to_hv_vcpu(vcpu
)->vp_index
== vpidx
)
145 kvm_for_each_vcpu(i
, vcpu
, kvm
)
146 if (vcpu_to_hv_vcpu(vcpu
)->vp_index
== vpidx
)
151 static struct kvm_vcpu_hv_synic
*synic_get(struct kvm
*kvm
, u32 vpidx
)
153 struct kvm_vcpu
*vcpu
;
154 struct kvm_vcpu_hv_synic
*synic
;
156 vcpu
= get_vcpu_by_vpidx(kvm
, vpidx
);
159 synic
= vcpu_to_synic(vcpu
);
160 return (synic
->active
) ? synic
: NULL
;
163 static void kvm_hv_notify_acked_sint(struct kvm_vcpu
*vcpu
, u32 sint
)
165 struct kvm
*kvm
= vcpu
->kvm
;
166 struct kvm_vcpu_hv_synic
*synic
= vcpu_to_synic(vcpu
);
167 struct kvm_vcpu_hv
*hv_vcpu
= vcpu_to_hv_vcpu(vcpu
);
168 struct kvm_vcpu_hv_stimer
*stimer
;
171 trace_kvm_hv_notify_acked_sint(vcpu
->vcpu_id
, sint
);
173 /* Try to deliver pending Hyper-V SynIC timers messages */
174 for (idx
= 0; idx
< ARRAY_SIZE(hv_vcpu
->stimer
); idx
++) {
175 stimer
= &hv_vcpu
->stimer
[idx
];
176 if (stimer
->msg_pending
&& stimer
->config
.enable
&&
177 !stimer
->config
.direct_mode
&&
178 stimer
->config
.sintx
== sint
)
179 stimer_mark_pending(stimer
, false);
182 idx
= srcu_read_lock(&kvm
->irq_srcu
);
183 gsi
= atomic_read(&synic
->sint_to_gsi
[sint
]);
185 kvm_notify_acked_gsi(kvm
, gsi
);
186 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
189 static void synic_exit(struct kvm_vcpu_hv_synic
*synic
, u32 msr
)
191 struct kvm_vcpu
*vcpu
= synic_to_vcpu(synic
);
192 struct kvm_vcpu_hv
*hv_vcpu
= &vcpu
->arch
.hyperv
;
194 hv_vcpu
->exit
.type
= KVM_EXIT_HYPERV_SYNIC
;
195 hv_vcpu
->exit
.u
.synic
.msr
= msr
;
196 hv_vcpu
->exit
.u
.synic
.control
= synic
->control
;
197 hv_vcpu
->exit
.u
.synic
.evt_page
= synic
->evt_page
;
198 hv_vcpu
->exit
.u
.synic
.msg_page
= synic
->msg_page
;
200 kvm_make_request(KVM_REQ_HV_EXIT
, vcpu
);
203 static int synic_set_msr(struct kvm_vcpu_hv_synic
*synic
,
204 u32 msr
, u64 data
, bool host
)
206 struct kvm_vcpu
*vcpu
= synic_to_vcpu(synic
);
209 if (!synic
->active
&& !host
)
212 trace_kvm_hv_synic_set_msr(vcpu
->vcpu_id
, msr
, data
, host
);
216 case HV_X64_MSR_SCONTROL
:
217 synic
->control
= data
;
219 synic_exit(synic
, msr
);
221 case HV_X64_MSR_SVERSION
:
226 synic
->version
= data
;
228 case HV_X64_MSR_SIEFP
:
229 if ((data
& HV_SYNIC_SIEFP_ENABLE
) && !host
&&
230 !synic
->dont_zero_synic_pages
)
231 if (kvm_clear_guest(vcpu
->kvm
,
232 data
& PAGE_MASK
, PAGE_SIZE
)) {
236 synic
->evt_page
= data
;
238 synic_exit(synic
, msr
);
240 case HV_X64_MSR_SIMP
:
241 if ((data
& HV_SYNIC_SIMP_ENABLE
) && !host
&&
242 !synic
->dont_zero_synic_pages
)
243 if (kvm_clear_guest(vcpu
->kvm
,
244 data
& PAGE_MASK
, PAGE_SIZE
)) {
248 synic
->msg_page
= data
;
250 synic_exit(synic
, msr
);
252 case HV_X64_MSR_EOM
: {
255 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++)
256 kvm_hv_notify_acked_sint(vcpu
, i
);
259 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
260 ret
= synic_set_sint(synic
, msr
- HV_X64_MSR_SINT0
, data
, host
);
269 static int synic_get_msr(struct kvm_vcpu_hv_synic
*synic
, u32 msr
, u64
*pdata
,
274 if (!synic
->active
&& !host
)
279 case HV_X64_MSR_SCONTROL
:
280 *pdata
= synic
->control
;
282 case HV_X64_MSR_SVERSION
:
283 *pdata
= synic
->version
;
285 case HV_X64_MSR_SIEFP
:
286 *pdata
= synic
->evt_page
;
288 case HV_X64_MSR_SIMP
:
289 *pdata
= synic
->msg_page
;
294 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
295 *pdata
= atomic64_read(&synic
->sint
[msr
- HV_X64_MSR_SINT0
]);
304 static int synic_set_irq(struct kvm_vcpu_hv_synic
*synic
, u32 sint
)
306 struct kvm_vcpu
*vcpu
= synic_to_vcpu(synic
);
307 struct kvm_lapic_irq irq
;
310 if (sint
>= ARRAY_SIZE(synic
->sint
))
313 vector
= synic_get_sint_vector(synic_read_sint(synic
, sint
));
317 memset(&irq
, 0, sizeof(irq
));
318 irq
.shorthand
= APIC_DEST_SELF
;
319 irq
.dest_mode
= APIC_DEST_PHYSICAL
;
320 irq
.delivery_mode
= APIC_DM_FIXED
;
324 ret
= kvm_irq_delivery_to_apic(vcpu
->kvm
, vcpu
->arch
.apic
, &irq
, NULL
);
325 trace_kvm_hv_synic_set_irq(vcpu
->vcpu_id
, sint
, irq
.vector
, ret
);
329 int kvm_hv_synic_set_irq(struct kvm
*kvm
, u32 vpidx
, u32 sint
)
331 struct kvm_vcpu_hv_synic
*synic
;
333 synic
= synic_get(kvm
, vpidx
);
337 return synic_set_irq(synic
, sint
);
340 void kvm_hv_synic_send_eoi(struct kvm_vcpu
*vcpu
, int vector
)
342 struct kvm_vcpu_hv_synic
*synic
= vcpu_to_synic(vcpu
);
345 trace_kvm_hv_synic_send_eoi(vcpu
->vcpu_id
, vector
);
347 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++)
348 if (synic_get_sint_vector(synic_read_sint(synic
, i
)) == vector
)
349 kvm_hv_notify_acked_sint(vcpu
, i
);
352 static int kvm_hv_set_sint_gsi(struct kvm
*kvm
, u32 vpidx
, u32 sint
, int gsi
)
354 struct kvm_vcpu_hv_synic
*synic
;
356 synic
= synic_get(kvm
, vpidx
);
360 if (sint
>= ARRAY_SIZE(synic
->sint_to_gsi
))
363 atomic_set(&synic
->sint_to_gsi
[sint
], gsi
);
367 void kvm_hv_irq_routing_update(struct kvm
*kvm
)
369 struct kvm_irq_routing_table
*irq_rt
;
370 struct kvm_kernel_irq_routing_entry
*e
;
373 irq_rt
= srcu_dereference_check(kvm
->irq_routing
, &kvm
->irq_srcu
,
374 lockdep_is_held(&kvm
->irq_lock
));
376 for (gsi
= 0; gsi
< irq_rt
->nr_rt_entries
; gsi
++) {
377 hlist_for_each_entry(e
, &irq_rt
->map
[gsi
], link
) {
378 if (e
->type
== KVM_IRQ_ROUTING_HV_SINT
)
379 kvm_hv_set_sint_gsi(kvm
, e
->hv_sint
.vcpu
,
380 e
->hv_sint
.sint
, gsi
);
385 static void synic_init(struct kvm_vcpu_hv_synic
*synic
)
389 memset(synic
, 0, sizeof(*synic
));
390 synic
->version
= HV_SYNIC_VERSION_1
;
391 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++) {
392 atomic64_set(&synic
->sint
[i
], HV_SYNIC_SINT_MASKED
);
393 atomic_set(&synic
->sint_to_gsi
[i
], -1);
397 static u64
get_time_ref_counter(struct kvm
*kvm
)
399 struct kvm_hv
*hv
= &kvm
->arch
.hyperv
;
400 struct kvm_vcpu
*vcpu
;
404 * The guest has not set up the TSC page or the clock isn't
405 * stable, fall back to get_kvmclock_ns.
407 if (!hv
->tsc_ref
.tsc_sequence
)
408 return div_u64(get_kvmclock_ns(kvm
), 100);
410 vcpu
= kvm_get_vcpu(kvm
, 0);
411 tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
412 return mul_u64_u64_shr(tsc
, hv
->tsc_ref
.tsc_scale
, 64)
413 + hv
->tsc_ref
.tsc_offset
;
416 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer
*stimer
,
419 struct kvm_vcpu
*vcpu
= stimer_to_vcpu(stimer
);
421 set_bit(stimer
->index
,
422 vcpu_to_hv_vcpu(vcpu
)->stimer_pending_bitmap
);
423 kvm_make_request(KVM_REQ_HV_STIMER
, vcpu
);
428 static void stimer_cleanup(struct kvm_vcpu_hv_stimer
*stimer
)
430 struct kvm_vcpu
*vcpu
= stimer_to_vcpu(stimer
);
432 trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer
)->vcpu_id
,
435 hrtimer_cancel(&stimer
->timer
);
436 clear_bit(stimer
->index
,
437 vcpu_to_hv_vcpu(vcpu
)->stimer_pending_bitmap
);
438 stimer
->msg_pending
= false;
439 stimer
->exp_time
= 0;
442 static enum hrtimer_restart
stimer_timer_callback(struct hrtimer
*timer
)
444 struct kvm_vcpu_hv_stimer
*stimer
;
446 stimer
= container_of(timer
, struct kvm_vcpu_hv_stimer
, timer
);
447 trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer
)->vcpu_id
,
449 stimer_mark_pending(stimer
, true);
451 return HRTIMER_NORESTART
;
455 * stimer_start() assumptions:
456 * a) stimer->count is not equal to 0
457 * b) stimer->config has HV_STIMER_ENABLE flag
459 static int stimer_start(struct kvm_vcpu_hv_stimer
*stimer
)
464 time_now
= get_time_ref_counter(stimer_to_vcpu(stimer
)->kvm
);
465 ktime_now
= ktime_get();
467 if (stimer
->config
.periodic
) {
468 if (stimer
->exp_time
) {
469 if (time_now
>= stimer
->exp_time
) {
472 div64_u64_rem(time_now
- stimer
->exp_time
,
473 stimer
->count
, &remainder
);
475 time_now
+ (stimer
->count
- remainder
);
478 stimer
->exp_time
= time_now
+ stimer
->count
;
480 trace_kvm_hv_stimer_start_periodic(
481 stimer_to_vcpu(stimer
)->vcpu_id
,
483 time_now
, stimer
->exp_time
);
485 hrtimer_start(&stimer
->timer
,
486 ktime_add_ns(ktime_now
,
487 100 * (stimer
->exp_time
- time_now
)),
491 stimer
->exp_time
= stimer
->count
;
492 if (time_now
>= stimer
->count
) {
494 * Expire timer according to Hypervisor Top-Level Functional
495 * specification v4(15.3.1):
496 * "If a one shot is enabled and the specified count is in
497 * the past, it will expire immediately."
499 stimer_mark_pending(stimer
, false);
503 trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer
)->vcpu_id
,
505 time_now
, stimer
->count
);
507 hrtimer_start(&stimer
->timer
,
508 ktime_add_ns(ktime_now
, 100 * (stimer
->count
- time_now
)),
513 static int stimer_set_config(struct kvm_vcpu_hv_stimer
*stimer
, u64 config
,
516 union hv_stimer_config new_config
= {.as_uint64
= config
},
517 old_config
= {.as_uint64
= stimer
->config
.as_uint64
};
519 trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer
)->vcpu_id
,
520 stimer
->index
, config
, host
);
522 stimer_cleanup(stimer
);
523 if (old_config
.enable
&&
524 !new_config
.direct_mode
&& new_config
.sintx
== 0)
525 new_config
.enable
= 0;
526 stimer
->config
.as_uint64
= new_config
.as_uint64
;
528 if (stimer
->config
.enable
)
529 stimer_mark_pending(stimer
, false);
534 static int stimer_set_count(struct kvm_vcpu_hv_stimer
*stimer
, u64 count
,
537 trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer
)->vcpu_id
,
538 stimer
->index
, count
, host
);
540 stimer_cleanup(stimer
);
541 stimer
->count
= count
;
542 if (stimer
->count
== 0)
543 stimer
->config
.enable
= 0;
544 else if (stimer
->config
.auto_enable
)
545 stimer
->config
.enable
= 1;
547 if (stimer
->config
.enable
)
548 stimer_mark_pending(stimer
, false);
553 static int stimer_get_config(struct kvm_vcpu_hv_stimer
*stimer
, u64
*pconfig
)
555 *pconfig
= stimer
->config
.as_uint64
;
559 static int stimer_get_count(struct kvm_vcpu_hv_stimer
*stimer
, u64
*pcount
)
561 *pcount
= stimer
->count
;
565 static int synic_deliver_msg(struct kvm_vcpu_hv_synic
*synic
, u32 sint
,
566 struct hv_message
*src_msg
, bool no_retry
)
568 struct kvm_vcpu
*vcpu
= synic_to_vcpu(synic
);
569 int msg_off
= offsetof(struct hv_message_page
, sint_message
[sint
]);
571 struct hv_message_header hv_hdr
;
574 if (!(synic
->msg_page
& HV_SYNIC_SIMP_ENABLE
))
577 msg_page_gfn
= synic
->msg_page
>> PAGE_SHIFT
;
580 * Strictly following the spec-mandated ordering would assume setting
581 * .msg_pending before checking .message_type. However, this function
582 * is only called in vcpu context so the entire update is atomic from
583 * guest POV and thus the exact order here doesn't matter.
585 r
= kvm_vcpu_read_guest_page(vcpu
, msg_page_gfn
, &hv_hdr
.message_type
,
586 msg_off
+ offsetof(struct hv_message
,
587 header
.message_type
),
588 sizeof(hv_hdr
.message_type
));
592 if (hv_hdr
.message_type
!= HVMSG_NONE
) {
596 hv_hdr
.message_flags
.msg_pending
= 1;
597 r
= kvm_vcpu_write_guest_page(vcpu
, msg_page_gfn
,
598 &hv_hdr
.message_flags
,
600 offsetof(struct hv_message
,
601 header
.message_flags
),
602 sizeof(hv_hdr
.message_flags
));
608 r
= kvm_vcpu_write_guest_page(vcpu
, msg_page_gfn
, src_msg
, msg_off
,
609 sizeof(src_msg
->header
) +
610 src_msg
->header
.payload_size
);
614 r
= synic_set_irq(synic
, sint
);
622 static int stimer_send_msg(struct kvm_vcpu_hv_stimer
*stimer
)
624 struct kvm_vcpu
*vcpu
= stimer_to_vcpu(stimer
);
625 struct hv_message
*msg
= &stimer
->msg
;
626 struct hv_timer_message_payload
*payload
=
627 (struct hv_timer_message_payload
*)&msg
->u
.payload
;
630 * To avoid piling up periodic ticks, don't retry message
631 * delivery for them (within "lazy" lost ticks policy).
633 bool no_retry
= stimer
->config
.periodic
;
635 payload
->expiration_time
= stimer
->exp_time
;
636 payload
->delivery_time
= get_time_ref_counter(vcpu
->kvm
);
637 return synic_deliver_msg(vcpu_to_synic(vcpu
),
638 stimer
->config
.sintx
, msg
,
642 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer
*stimer
)
644 struct kvm_vcpu
*vcpu
= stimer_to_vcpu(stimer
);
645 struct kvm_lapic_irq irq
= {
646 .delivery_mode
= APIC_DM_FIXED
,
647 .vector
= stimer
->config
.apic_vector
650 if (lapic_in_kernel(vcpu
))
651 return !kvm_apic_set_irq(vcpu
, &irq
, NULL
);
655 static void stimer_expiration(struct kvm_vcpu_hv_stimer
*stimer
)
657 int r
, direct
= stimer
->config
.direct_mode
;
659 stimer
->msg_pending
= true;
661 r
= stimer_send_msg(stimer
);
663 r
= stimer_notify_direct(stimer
);
664 trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer
)->vcpu_id
,
665 stimer
->index
, direct
, r
);
667 stimer
->msg_pending
= false;
668 if (!(stimer
->config
.periodic
))
669 stimer
->config
.enable
= 0;
673 void kvm_hv_process_stimers(struct kvm_vcpu
*vcpu
)
675 struct kvm_vcpu_hv
*hv_vcpu
= vcpu_to_hv_vcpu(vcpu
);
676 struct kvm_vcpu_hv_stimer
*stimer
;
677 u64 time_now
, exp_time
;
680 for (i
= 0; i
< ARRAY_SIZE(hv_vcpu
->stimer
); i
++)
681 if (test_and_clear_bit(i
, hv_vcpu
->stimer_pending_bitmap
)) {
682 stimer
= &hv_vcpu
->stimer
[i
];
683 if (stimer
->config
.enable
) {
684 exp_time
= stimer
->exp_time
;
688 get_time_ref_counter(vcpu
->kvm
);
689 if (time_now
>= exp_time
)
690 stimer_expiration(stimer
);
693 if ((stimer
->config
.enable
) &&
695 if (!stimer
->msg_pending
)
696 stimer_start(stimer
);
698 stimer_cleanup(stimer
);
703 void kvm_hv_vcpu_uninit(struct kvm_vcpu
*vcpu
)
705 struct kvm_vcpu_hv
*hv_vcpu
= vcpu_to_hv_vcpu(vcpu
);
708 for (i
= 0; i
< ARRAY_SIZE(hv_vcpu
->stimer
); i
++)
709 stimer_cleanup(&hv_vcpu
->stimer
[i
]);
712 bool kvm_hv_assist_page_enabled(struct kvm_vcpu
*vcpu
)
714 if (!(vcpu
->arch
.hyperv
.hv_vapic
& HV_X64_MSR_VP_ASSIST_PAGE_ENABLE
))
716 return vcpu
->arch
.pv_eoi
.msr_val
& KVM_MSR_ENABLED
;
718 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled
);
720 bool kvm_hv_get_assist_page(struct kvm_vcpu
*vcpu
,
721 struct hv_vp_assist_page
*assist_page
)
723 if (!kvm_hv_assist_page_enabled(vcpu
))
725 return !kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.pv_eoi
.data
,
726 assist_page
, sizeof(*assist_page
));
728 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page
);
730 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer
*stimer
)
732 struct hv_message
*msg
= &stimer
->msg
;
733 struct hv_timer_message_payload
*payload
=
734 (struct hv_timer_message_payload
*)&msg
->u
.payload
;
736 memset(&msg
->header
, 0, sizeof(msg
->header
));
737 msg
->header
.message_type
= HVMSG_TIMER_EXPIRED
;
738 msg
->header
.payload_size
= sizeof(*payload
);
740 payload
->timer_index
= stimer
->index
;
741 payload
->expiration_time
= 0;
742 payload
->delivery_time
= 0;
745 static void stimer_init(struct kvm_vcpu_hv_stimer
*stimer
, int timer_index
)
747 memset(stimer
, 0, sizeof(*stimer
));
748 stimer
->index
= timer_index
;
749 hrtimer_init(&stimer
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
750 stimer
->timer
.function
= stimer_timer_callback
;
751 stimer_prepare_msg(stimer
);
754 void kvm_hv_vcpu_init(struct kvm_vcpu
*vcpu
)
756 struct kvm_vcpu_hv
*hv_vcpu
= vcpu_to_hv_vcpu(vcpu
);
759 synic_init(&hv_vcpu
->synic
);
761 bitmap_zero(hv_vcpu
->stimer_pending_bitmap
, HV_SYNIC_STIMER_COUNT
);
762 for (i
= 0; i
< ARRAY_SIZE(hv_vcpu
->stimer
); i
++)
763 stimer_init(&hv_vcpu
->stimer
[i
], i
);
766 void kvm_hv_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
768 struct kvm_vcpu_hv
*hv_vcpu
= vcpu_to_hv_vcpu(vcpu
);
770 hv_vcpu
->vp_index
= kvm_vcpu_get_idx(vcpu
);
773 int kvm_hv_activate_synic(struct kvm_vcpu
*vcpu
, bool dont_zero_synic_pages
)
775 struct kvm_vcpu_hv_synic
*synic
= vcpu_to_synic(vcpu
);
778 * Hyper-V SynIC auto EOI SINT's are
779 * not compatible with APICV, so request
780 * to deactivate APICV permanently.
782 kvm_request_apicv_update(vcpu
->kvm
, false, APICV_INHIBIT_REASON_HYPERV
);
783 synic
->active
= true;
784 synic
->dont_zero_synic_pages
= dont_zero_synic_pages
;
788 static bool kvm_hv_msr_partition_wide(u32 msr
)
793 case HV_X64_MSR_GUEST_OS_ID
:
794 case HV_X64_MSR_HYPERCALL
:
795 case HV_X64_MSR_REFERENCE_TSC
:
796 case HV_X64_MSR_TIME_REF_COUNT
:
797 case HV_X64_MSR_CRASH_CTL
:
798 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
799 case HV_X64_MSR_RESET
:
800 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
801 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
802 case HV_X64_MSR_TSC_EMULATION_STATUS
:
810 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu
*vcpu
,
811 u32 index
, u64
*pdata
)
813 struct kvm_hv
*hv
= &vcpu
->kvm
->arch
.hyperv
;
814 size_t size
= ARRAY_SIZE(hv
->hv_crash_param
);
816 if (WARN_ON_ONCE(index
>= size
))
819 *pdata
= hv
->hv_crash_param
[array_index_nospec(index
, size
)];
823 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu
*vcpu
, u64
*pdata
)
825 struct kvm_hv
*hv
= &vcpu
->kvm
->arch
.hyperv
;
827 *pdata
= hv
->hv_crash_ctl
;
831 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu
*vcpu
, u64 data
, bool host
)
833 struct kvm_hv
*hv
= &vcpu
->kvm
->arch
.hyperv
;
836 hv
->hv_crash_ctl
= data
& HV_CRASH_CTL_CRASH_NOTIFY
;
838 if (!host
&& (data
& HV_CRASH_CTL_CRASH_NOTIFY
)) {
840 vcpu_debug(vcpu
, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
841 hv
->hv_crash_param
[0],
842 hv
->hv_crash_param
[1],
843 hv
->hv_crash_param
[2],
844 hv
->hv_crash_param
[3],
845 hv
->hv_crash_param
[4]);
847 /* Send notification about crash to user space */
848 kvm_make_request(KVM_REQ_HV_CRASH
, vcpu
);
854 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu
*vcpu
,
857 struct kvm_hv
*hv
= &vcpu
->kvm
->arch
.hyperv
;
858 size_t size
= ARRAY_SIZE(hv
->hv_crash_param
);
860 if (WARN_ON_ONCE(index
>= size
))
863 hv
->hv_crash_param
[array_index_nospec(index
, size
)] = data
;
868 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
869 * between them is possible:
872 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
876 * nsec/100 = ticks * scale / 2^64 + offset
878 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
879 * By dividing the kvmclock formula by 100 and equating what's left we get:
880 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
881 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
882 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
884 * Now expand the kvmclock formula and divide by 100:
885 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
886 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
888 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
889 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
890 * + system_time / 100
892 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
893 * nsec/100 = ticks * scale / 2^64
894 * - tsc_timestamp * scale / 2^64
895 * + system_time / 100
897 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
898 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
900 * These two equivalencies are implemented in this function.
902 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info
*hv_clock
,
903 HV_REFERENCE_TSC_PAGE
*tsc_ref
)
907 if (!(hv_clock
->flags
& PVCLOCK_TSC_STABLE_BIT
))
911 * check if scale would overflow, if so we use the time ref counter
912 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
913 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
914 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
916 max_mul
= 100ull << (32 - hv_clock
->tsc_shift
);
917 if (hv_clock
->tsc_to_system_mul
>= max_mul
)
921 * Otherwise compute the scale and offset according to the formulas
925 mul_u64_u32_div(1ULL << (32 + hv_clock
->tsc_shift
),
926 hv_clock
->tsc_to_system_mul
,
929 tsc_ref
->tsc_offset
= hv_clock
->system_time
;
930 do_div(tsc_ref
->tsc_offset
, 100);
931 tsc_ref
->tsc_offset
-=
932 mul_u64_u64_shr(hv_clock
->tsc_timestamp
, tsc_ref
->tsc_scale
, 64);
936 void kvm_hv_setup_tsc_page(struct kvm
*kvm
,
937 struct pvclock_vcpu_time_info
*hv_clock
)
939 struct kvm_hv
*hv
= &kvm
->arch
.hyperv
;
943 BUILD_BUG_ON(sizeof(tsc_seq
) != sizeof(hv
->tsc_ref
.tsc_sequence
));
944 BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE
, tsc_sequence
) != 0);
946 if (!(hv
->hv_tsc_page
& HV_X64_MSR_TSC_REFERENCE_ENABLE
))
949 mutex_lock(&kvm
->arch
.hyperv
.hv_lock
);
950 if (!(hv
->hv_tsc_page
& HV_X64_MSR_TSC_REFERENCE_ENABLE
))
953 gfn
= hv
->hv_tsc_page
>> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT
;
955 * Because the TSC parameters only vary when there is a
956 * change in the master clock, do not bother with caching.
958 if (unlikely(kvm_read_guest(kvm
, gfn_to_gpa(gfn
),
959 &tsc_seq
, sizeof(tsc_seq
))))
963 * While we're computing and writing the parameters, force the
964 * guest to use the time reference count MSR.
966 hv
->tsc_ref
.tsc_sequence
= 0;
967 if (kvm_write_guest(kvm
, gfn_to_gpa(gfn
),
968 &hv
->tsc_ref
, sizeof(hv
->tsc_ref
.tsc_sequence
)))
971 if (!compute_tsc_page_parameters(hv_clock
, &hv
->tsc_ref
))
974 /* Ensure sequence is zero before writing the rest of the struct. */
976 if (kvm_write_guest(kvm
, gfn_to_gpa(gfn
), &hv
->tsc_ref
, sizeof(hv
->tsc_ref
)))
980 * Now switch to the TSC page mechanism by writing the sequence.
983 if (tsc_seq
== 0xFFFFFFFF || tsc_seq
== 0)
986 /* Write the struct entirely before the non-zero sequence. */
989 hv
->tsc_ref
.tsc_sequence
= tsc_seq
;
990 kvm_write_guest(kvm
, gfn_to_gpa(gfn
),
991 &hv
->tsc_ref
, sizeof(hv
->tsc_ref
.tsc_sequence
));
993 mutex_unlock(&kvm
->arch
.hyperv
.hv_lock
);
996 static int kvm_hv_set_msr_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
,
999 struct kvm
*kvm
= vcpu
->kvm
;
1000 struct kvm_hv
*hv
= &kvm
->arch
.hyperv
;
1003 case HV_X64_MSR_GUEST_OS_ID
:
1004 hv
->hv_guest_os_id
= data
;
1005 /* setting guest os id to zero disables hypercall page */
1006 if (!hv
->hv_guest_os_id
)
1007 hv
->hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1009 case HV_X64_MSR_HYPERCALL
: {
1014 /* if guest os id is not set hypercall should remain disabled */
1015 if (!hv
->hv_guest_os_id
)
1017 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1018 hv
->hv_hypercall
= data
;
1021 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1022 addr
= gfn_to_hva(kvm
, gfn
);
1023 if (kvm_is_error_hva(addr
))
1025 kvm_x86_ops
.patch_hypercall(vcpu
, instructions
);
1026 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1027 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1029 hv
->hv_hypercall
= data
;
1030 mark_page_dirty(kvm
, gfn
);
1033 case HV_X64_MSR_REFERENCE_TSC
:
1034 hv
->hv_tsc_page
= data
;
1035 if (hv
->hv_tsc_page
& HV_X64_MSR_TSC_REFERENCE_ENABLE
)
1036 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1038 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
1039 return kvm_hv_msr_set_crash_data(vcpu
,
1040 msr
- HV_X64_MSR_CRASH_P0
,
1042 case HV_X64_MSR_CRASH_CTL
:
1043 return kvm_hv_msr_set_crash_ctl(vcpu
, data
, host
);
1044 case HV_X64_MSR_RESET
:
1046 vcpu_debug(vcpu
, "hyper-v reset requested\n");
1047 kvm_make_request(KVM_REQ_HV_RESET
, vcpu
);
1050 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
1051 hv
->hv_reenlightenment_control
= data
;
1053 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
1054 hv
->hv_tsc_emulation_control
= data
;
1056 case HV_X64_MSR_TSC_EMULATION_STATUS
:
1057 hv
->hv_tsc_emulation_status
= data
;
1059 case HV_X64_MSR_TIME_REF_COUNT
:
1060 /* read-only, but still ignore it if host-initiated */
1065 vcpu_unimpl(vcpu
, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1072 /* Calculate cpu time spent by current task in 100ns units */
1073 static u64
current_task_runtime_100ns(void)
1077 task_cputime_adjusted(current
, &utime
, &stime
);
1079 return div_u64(utime
+ stime
, 100);
1082 static int kvm_hv_set_msr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
, bool host
)
1084 struct kvm_vcpu_hv
*hv_vcpu
= &vcpu
->arch
.hyperv
;
1087 case HV_X64_MSR_VP_INDEX
: {
1088 struct kvm_hv
*hv
= &vcpu
->kvm
->arch
.hyperv
;
1089 int vcpu_idx
= kvm_vcpu_get_idx(vcpu
);
1090 u32 new_vp_index
= (u32
)data
;
1092 if (!host
|| new_vp_index
>= KVM_MAX_VCPUS
)
1095 if (new_vp_index
== hv_vcpu
->vp_index
)
1099 * The VP index is initialized to vcpu_index by
1100 * kvm_hv_vcpu_postcreate so they initially match. Now the
1101 * VP index is changing, adjust num_mismatched_vp_indexes if
1102 * it now matches or no longer matches vcpu_idx.
1104 if (hv_vcpu
->vp_index
== vcpu_idx
)
1105 atomic_inc(&hv
->num_mismatched_vp_indexes
);
1106 else if (new_vp_index
== vcpu_idx
)
1107 atomic_dec(&hv
->num_mismatched_vp_indexes
);
1109 hv_vcpu
->vp_index
= new_vp_index
;
1112 case HV_X64_MSR_VP_ASSIST_PAGE
: {
1116 if (!(data
& HV_X64_MSR_VP_ASSIST_PAGE_ENABLE
)) {
1117 hv_vcpu
->hv_vapic
= data
;
1118 if (kvm_lapic_enable_pv_eoi(vcpu
, 0, 0))
1122 gfn
= data
>> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT
;
1123 addr
= kvm_vcpu_gfn_to_hva(vcpu
, gfn
);
1124 if (kvm_is_error_hva(addr
))
1128 * Clear apic_assist portion of struct hv_vp_assist_page
1129 * only, there can be valuable data in the rest which needs
1130 * to be preserved e.g. on migration.
1132 if (__clear_user((void __user
*)addr
, sizeof(u32
)))
1134 hv_vcpu
->hv_vapic
= data
;
1135 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
1136 if (kvm_lapic_enable_pv_eoi(vcpu
,
1137 gfn_to_gpa(gfn
) | KVM_MSR_ENABLED
,
1138 sizeof(struct hv_vp_assist_page
)))
1142 case HV_X64_MSR_EOI
:
1143 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1144 case HV_X64_MSR_ICR
:
1145 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1146 case HV_X64_MSR_TPR
:
1147 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1148 case HV_X64_MSR_VP_RUNTIME
:
1151 hv_vcpu
->runtime_offset
= data
- current_task_runtime_100ns();
1153 case HV_X64_MSR_SCONTROL
:
1154 case HV_X64_MSR_SVERSION
:
1155 case HV_X64_MSR_SIEFP
:
1156 case HV_X64_MSR_SIMP
:
1157 case HV_X64_MSR_EOM
:
1158 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
1159 return synic_set_msr(vcpu_to_synic(vcpu
), msr
, data
, host
);
1160 case HV_X64_MSR_STIMER0_CONFIG
:
1161 case HV_X64_MSR_STIMER1_CONFIG
:
1162 case HV_X64_MSR_STIMER2_CONFIG
:
1163 case HV_X64_MSR_STIMER3_CONFIG
: {
1164 int timer_index
= (msr
- HV_X64_MSR_STIMER0_CONFIG
)/2;
1166 return stimer_set_config(vcpu_to_stimer(vcpu
, timer_index
),
1169 case HV_X64_MSR_STIMER0_COUNT
:
1170 case HV_X64_MSR_STIMER1_COUNT
:
1171 case HV_X64_MSR_STIMER2_COUNT
:
1172 case HV_X64_MSR_STIMER3_COUNT
: {
1173 int timer_index
= (msr
- HV_X64_MSR_STIMER0_COUNT
)/2;
1175 return stimer_set_count(vcpu_to_stimer(vcpu
, timer_index
),
1178 case HV_X64_MSR_TSC_FREQUENCY
:
1179 case HV_X64_MSR_APIC_FREQUENCY
:
1180 /* read-only, but still ignore it if host-initiated */
1185 vcpu_unimpl(vcpu
, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1193 static int kvm_hv_get_msr_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1196 struct kvm
*kvm
= vcpu
->kvm
;
1197 struct kvm_hv
*hv
= &kvm
->arch
.hyperv
;
1200 case HV_X64_MSR_GUEST_OS_ID
:
1201 data
= hv
->hv_guest_os_id
;
1203 case HV_X64_MSR_HYPERCALL
:
1204 data
= hv
->hv_hypercall
;
1206 case HV_X64_MSR_TIME_REF_COUNT
:
1207 data
= get_time_ref_counter(kvm
);
1209 case HV_X64_MSR_REFERENCE_TSC
:
1210 data
= hv
->hv_tsc_page
;
1212 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
1213 return kvm_hv_msr_get_crash_data(vcpu
,
1214 msr
- HV_X64_MSR_CRASH_P0
,
1216 case HV_X64_MSR_CRASH_CTL
:
1217 return kvm_hv_msr_get_crash_ctl(vcpu
, pdata
);
1218 case HV_X64_MSR_RESET
:
1221 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
1222 data
= hv
->hv_reenlightenment_control
;
1224 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
1225 data
= hv
->hv_tsc_emulation_control
;
1227 case HV_X64_MSR_TSC_EMULATION_STATUS
:
1228 data
= hv
->hv_tsc_emulation_status
;
1231 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1239 static int kvm_hv_get_msr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
,
1243 struct kvm_vcpu_hv
*hv_vcpu
= &vcpu
->arch
.hyperv
;
1246 case HV_X64_MSR_VP_INDEX
:
1247 data
= hv_vcpu
->vp_index
;
1249 case HV_X64_MSR_EOI
:
1250 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1251 case HV_X64_MSR_ICR
:
1252 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1253 case HV_X64_MSR_TPR
:
1254 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1255 case HV_X64_MSR_VP_ASSIST_PAGE
:
1256 data
= hv_vcpu
->hv_vapic
;
1258 case HV_X64_MSR_VP_RUNTIME
:
1259 data
= current_task_runtime_100ns() + hv_vcpu
->runtime_offset
;
1261 case HV_X64_MSR_SCONTROL
:
1262 case HV_X64_MSR_SVERSION
:
1263 case HV_X64_MSR_SIEFP
:
1264 case HV_X64_MSR_SIMP
:
1265 case HV_X64_MSR_EOM
:
1266 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
1267 return synic_get_msr(vcpu_to_synic(vcpu
), msr
, pdata
, host
);
1268 case HV_X64_MSR_STIMER0_CONFIG
:
1269 case HV_X64_MSR_STIMER1_CONFIG
:
1270 case HV_X64_MSR_STIMER2_CONFIG
:
1271 case HV_X64_MSR_STIMER3_CONFIG
: {
1272 int timer_index
= (msr
- HV_X64_MSR_STIMER0_CONFIG
)/2;
1274 return stimer_get_config(vcpu_to_stimer(vcpu
, timer_index
),
1277 case HV_X64_MSR_STIMER0_COUNT
:
1278 case HV_X64_MSR_STIMER1_COUNT
:
1279 case HV_X64_MSR_STIMER2_COUNT
:
1280 case HV_X64_MSR_STIMER3_COUNT
: {
1281 int timer_index
= (msr
- HV_X64_MSR_STIMER0_COUNT
)/2;
1283 return stimer_get_count(vcpu_to_stimer(vcpu
, timer_index
),
1286 case HV_X64_MSR_TSC_FREQUENCY
:
1287 data
= (u64
)vcpu
->arch
.virtual_tsc_khz
* 1000;
1289 case HV_X64_MSR_APIC_FREQUENCY
:
1290 data
= APIC_BUS_FREQUENCY
;
1293 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1300 int kvm_hv_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
, bool host
)
1302 if (kvm_hv_msr_partition_wide(msr
)) {
1305 mutex_lock(&vcpu
->kvm
->arch
.hyperv
.hv_lock
);
1306 r
= kvm_hv_set_msr_pw(vcpu
, msr
, data
, host
);
1307 mutex_unlock(&vcpu
->kvm
->arch
.hyperv
.hv_lock
);
1310 return kvm_hv_set_msr(vcpu
, msr
, data
, host
);
1313 int kvm_hv_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
, bool host
)
1315 if (kvm_hv_msr_partition_wide(msr
)) {
1318 mutex_lock(&vcpu
->kvm
->arch
.hyperv
.hv_lock
);
1319 r
= kvm_hv_get_msr_pw(vcpu
, msr
, pdata
);
1320 mutex_unlock(&vcpu
->kvm
->arch
.hyperv
.hv_lock
);
1323 return kvm_hv_get_msr(vcpu
, msr
, pdata
, host
);
1326 static __always_inline
unsigned long *sparse_set_to_vcpu_mask(
1327 struct kvm
*kvm
, u64
*sparse_banks
, u64 valid_bank_mask
,
1328 u64
*vp_bitmap
, unsigned long *vcpu_bitmap
)
1330 struct kvm_hv
*hv
= &kvm
->arch
.hyperv
;
1331 struct kvm_vcpu
*vcpu
;
1332 int i
, bank
, sbank
= 0;
1334 memset(vp_bitmap
, 0,
1335 KVM_HV_MAX_SPARSE_VCPU_SET_BITS
* sizeof(*vp_bitmap
));
1336 for_each_set_bit(bank
, (unsigned long *)&valid_bank_mask
,
1337 KVM_HV_MAX_SPARSE_VCPU_SET_BITS
)
1338 vp_bitmap
[bank
] = sparse_banks
[sbank
++];
1340 if (likely(!atomic_read(&hv
->num_mismatched_vp_indexes
))) {
1341 /* for all vcpus vp_index == vcpu_idx */
1342 return (unsigned long *)vp_bitmap
;
1345 bitmap_zero(vcpu_bitmap
, KVM_MAX_VCPUS
);
1346 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1347 if (test_bit(vcpu_to_hv_vcpu(vcpu
)->vp_index
,
1348 (unsigned long *)vp_bitmap
))
1349 __set_bit(i
, vcpu_bitmap
);
1354 static u64
kvm_hv_flush_tlb(struct kvm_vcpu
*current_vcpu
, u64 ingpa
,
1355 u16 rep_cnt
, bool ex
)
1357 struct kvm
*kvm
= current_vcpu
->kvm
;
1358 struct kvm_vcpu_hv
*hv_vcpu
= ¤t_vcpu
->arch
.hyperv
;
1359 struct hv_tlb_flush_ex flush_ex
;
1360 struct hv_tlb_flush flush
;
1361 u64 vp_bitmap
[KVM_HV_MAX_SPARSE_VCPU_SET_BITS
];
1362 DECLARE_BITMAP(vcpu_bitmap
, KVM_MAX_VCPUS
);
1363 unsigned long *vcpu_mask
;
1364 u64 valid_bank_mask
;
1365 u64 sparse_banks
[64];
1366 int sparse_banks_len
;
1370 if (unlikely(kvm_read_guest(kvm
, ingpa
, &flush
, sizeof(flush
))))
1371 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1373 trace_kvm_hv_flush_tlb(flush
.processor_mask
,
1374 flush
.address_space
, flush
.flags
);
1376 valid_bank_mask
= BIT_ULL(0);
1377 sparse_banks
[0] = flush
.processor_mask
;
1380 * Work around possible WS2012 bug: it sends hypercalls
1381 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1382 * while also expecting us to flush something and crashing if
1383 * we don't. Let's treat processor_mask == 0 same as
1384 * HV_FLUSH_ALL_PROCESSORS.
1386 all_cpus
= (flush
.flags
& HV_FLUSH_ALL_PROCESSORS
) ||
1387 flush
.processor_mask
== 0;
1389 if (unlikely(kvm_read_guest(kvm
, ingpa
, &flush_ex
,
1391 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1393 trace_kvm_hv_flush_tlb_ex(flush_ex
.hv_vp_set
.valid_bank_mask
,
1394 flush_ex
.hv_vp_set
.format
,
1395 flush_ex
.address_space
,
1398 valid_bank_mask
= flush_ex
.hv_vp_set
.valid_bank_mask
;
1399 all_cpus
= flush_ex
.hv_vp_set
.format
!=
1400 HV_GENERIC_SET_SPARSE_4K
;
1403 bitmap_weight((unsigned long *)&valid_bank_mask
, 64) *
1404 sizeof(sparse_banks
[0]);
1406 if (!sparse_banks_len
&& !all_cpus
)
1411 ingpa
+ offsetof(struct hv_tlb_flush_ex
,
1412 hv_vp_set
.bank_contents
),
1415 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1418 cpumask_clear(&hv_vcpu
->tlb_flush
);
1420 vcpu_mask
= all_cpus
? NULL
:
1421 sparse_set_to_vcpu_mask(kvm
, sparse_banks
, valid_bank_mask
,
1422 vp_bitmap
, vcpu_bitmap
);
1425 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1426 * analyze it here, flush TLB regardless of the specified address space.
1428 kvm_make_vcpus_request_mask(kvm
,
1429 KVM_REQ_TLB_FLUSH
| KVM_REQUEST_NO_WAKEUP
,
1430 NULL
, vcpu_mask
, &hv_vcpu
->tlb_flush
);
1433 /* We always do full TLB flush, set rep_done = rep_cnt. */
1434 return (u64
)HV_STATUS_SUCCESS
|
1435 ((u64
)rep_cnt
<< HV_HYPERCALL_REP_COMP_OFFSET
);
1438 static void kvm_send_ipi_to_many(struct kvm
*kvm
, u32 vector
,
1439 unsigned long *vcpu_bitmap
)
1441 struct kvm_lapic_irq irq
= {
1442 .delivery_mode
= APIC_DM_FIXED
,
1445 struct kvm_vcpu
*vcpu
;
1448 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1449 if (vcpu_bitmap
&& !test_bit(i
, vcpu_bitmap
))
1452 /* We fail only when APIC is disabled */
1453 kvm_apic_set_irq(vcpu
, &irq
, NULL
);
1457 static u64
kvm_hv_send_ipi(struct kvm_vcpu
*current_vcpu
, u64 ingpa
, u64 outgpa
,
1460 struct kvm
*kvm
= current_vcpu
->kvm
;
1461 struct hv_send_ipi_ex send_ipi_ex
;
1462 struct hv_send_ipi send_ipi
;
1463 u64 vp_bitmap
[KVM_HV_MAX_SPARSE_VCPU_SET_BITS
];
1464 DECLARE_BITMAP(vcpu_bitmap
, KVM_MAX_VCPUS
);
1465 unsigned long *vcpu_mask
;
1466 unsigned long valid_bank_mask
;
1467 u64 sparse_banks
[64];
1468 int sparse_banks_len
;
1474 if (unlikely(kvm_read_guest(kvm
, ingpa
, &send_ipi
,
1476 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1477 sparse_banks
[0] = send_ipi
.cpu_mask
;
1478 vector
= send_ipi
.vector
;
1480 /* 'reserved' part of hv_send_ipi should be 0 */
1481 if (unlikely(ingpa
>> 32 != 0))
1482 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1483 sparse_banks
[0] = outgpa
;
1484 vector
= (u32
)ingpa
;
1487 valid_bank_mask
= BIT_ULL(0);
1489 trace_kvm_hv_send_ipi(vector
, sparse_banks
[0]);
1491 if (unlikely(kvm_read_guest(kvm
, ingpa
, &send_ipi_ex
,
1492 sizeof(send_ipi_ex
))))
1493 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1495 trace_kvm_hv_send_ipi_ex(send_ipi_ex
.vector
,
1496 send_ipi_ex
.vp_set
.format
,
1497 send_ipi_ex
.vp_set
.valid_bank_mask
);
1499 vector
= send_ipi_ex
.vector
;
1500 valid_bank_mask
= send_ipi_ex
.vp_set
.valid_bank_mask
;
1501 sparse_banks_len
= bitmap_weight(&valid_bank_mask
, 64) *
1502 sizeof(sparse_banks
[0]);
1504 all_cpus
= send_ipi_ex
.vp_set
.format
== HV_GENERIC_SET_ALL
;
1506 if (!sparse_banks_len
)
1511 ingpa
+ offsetof(struct hv_send_ipi_ex
,
1512 vp_set
.bank_contents
),
1515 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1518 if ((vector
< HV_IPI_LOW_VECTOR
) || (vector
> HV_IPI_HIGH_VECTOR
))
1519 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1521 vcpu_mask
= all_cpus
? NULL
:
1522 sparse_set_to_vcpu_mask(kvm
, sparse_banks
, valid_bank_mask
,
1523 vp_bitmap
, vcpu_bitmap
);
1525 kvm_send_ipi_to_many(kvm
, vector
, vcpu_mask
);
1528 return HV_STATUS_SUCCESS
;
1531 bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1533 return READ_ONCE(kvm
->arch
.hyperv
.hv_hypercall
) & HV_X64_MSR_HYPERCALL_ENABLE
;
1536 static void kvm_hv_hypercall_set_result(struct kvm_vcpu
*vcpu
, u64 result
)
1540 longmode
= is_64_bit_mode(vcpu
);
1542 kvm_rax_write(vcpu
, result
);
1544 kvm_rdx_write(vcpu
, result
>> 32);
1545 kvm_rax_write(vcpu
, result
& 0xffffffff);
1549 static int kvm_hv_hypercall_complete(struct kvm_vcpu
*vcpu
, u64 result
)
1551 kvm_hv_hypercall_set_result(vcpu
, result
);
1552 ++vcpu
->stat
.hypercalls
;
1553 return kvm_skip_emulated_instruction(vcpu
);
1556 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu
*vcpu
)
1558 return kvm_hv_hypercall_complete(vcpu
, vcpu
->run
->hyperv
.u
.hcall
.result
);
1561 static u16
kvm_hvcall_signal_event(struct kvm_vcpu
*vcpu
, bool fast
, u64 param
)
1563 struct eventfd_ctx
*eventfd
;
1565 if (unlikely(!fast
)) {
1569 if ((gpa
& (__alignof__(param
) - 1)) ||
1570 offset_in_page(gpa
) + sizeof(param
) > PAGE_SIZE
)
1571 return HV_STATUS_INVALID_ALIGNMENT
;
1573 ret
= kvm_vcpu_read_guest(vcpu
, gpa
, ¶m
, sizeof(param
));
1575 return HV_STATUS_INVALID_ALIGNMENT
;
1579 * Per spec, bits 32-47 contain the extra "flag number". However, we
1580 * have no use for it, and in all known usecases it is zero, so just
1581 * report lookup failure if it isn't.
1583 if (param
& 0xffff00000000ULL
)
1584 return HV_STATUS_INVALID_PORT_ID
;
1585 /* remaining bits are reserved-zero */
1586 if (param
& ~KVM_HYPERV_CONN_ID_MASK
)
1587 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1589 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1591 eventfd
= idr_find(&vcpu
->kvm
->arch
.hyperv
.conn_to_evt
, param
);
1594 return HV_STATUS_INVALID_PORT_ID
;
1596 eventfd_signal(eventfd
, 1);
1597 return HV_STATUS_SUCCESS
;
1600 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
1602 u64 param
, ingpa
, outgpa
, ret
= HV_STATUS_SUCCESS
;
1603 uint16_t code
, rep_idx
, rep_cnt
;
1607 * hypercall generates UD from non zero cpl and real mode
1610 if (kvm_x86_ops
.get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
1611 kvm_queue_exception(vcpu
, UD_VECTOR
);
1615 #ifdef CONFIG_X86_64
1616 if (is_64_bit_mode(vcpu
)) {
1617 param
= kvm_rcx_read(vcpu
);
1618 ingpa
= kvm_rdx_read(vcpu
);
1619 outgpa
= kvm_r8_read(vcpu
);
1623 param
= ((u64
)kvm_rdx_read(vcpu
) << 32) |
1624 (kvm_rax_read(vcpu
) & 0xffffffff);
1625 ingpa
= ((u64
)kvm_rbx_read(vcpu
) << 32) |
1626 (kvm_rcx_read(vcpu
) & 0xffffffff);
1627 outgpa
= ((u64
)kvm_rdi_read(vcpu
) << 32) |
1628 (kvm_rsi_read(vcpu
) & 0xffffffff);
1631 code
= param
& 0xffff;
1632 fast
= !!(param
& HV_HYPERCALL_FAST_BIT
);
1633 rep_cnt
= (param
>> HV_HYPERCALL_REP_COMP_OFFSET
) & 0xfff;
1634 rep_idx
= (param
>> HV_HYPERCALL_REP_START_OFFSET
) & 0xfff;
1635 rep
= !!(rep_cnt
|| rep_idx
);
1637 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
1640 case HVCALL_NOTIFY_LONG_SPIN_WAIT
:
1641 if (unlikely(rep
)) {
1642 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
1645 kvm_vcpu_on_spin(vcpu
, true);
1647 case HVCALL_SIGNAL_EVENT
:
1648 if (unlikely(rep
)) {
1649 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
1652 ret
= kvm_hvcall_signal_event(vcpu
, fast
, ingpa
);
1653 if (ret
!= HV_STATUS_INVALID_PORT_ID
)
1655 /* fall through - maybe userspace knows this conn_id. */
1656 case HVCALL_POST_MESSAGE
:
1657 /* don't bother userspace if it has no way to handle it */
1658 if (unlikely(rep
|| !vcpu_to_synic(vcpu
)->active
)) {
1659 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
1662 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
1663 vcpu
->run
->hyperv
.type
= KVM_EXIT_HYPERV_HCALL
;
1664 vcpu
->run
->hyperv
.u
.hcall
.input
= param
;
1665 vcpu
->run
->hyperv
.u
.hcall
.params
[0] = ingpa
;
1666 vcpu
->run
->hyperv
.u
.hcall
.params
[1] = outgpa
;
1667 vcpu
->arch
.complete_userspace_io
=
1668 kvm_hv_hypercall_complete_userspace
;
1670 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST
:
1671 if (unlikely(fast
|| !rep_cnt
|| rep_idx
)) {
1672 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
1675 ret
= kvm_hv_flush_tlb(vcpu
, ingpa
, rep_cnt
, false);
1677 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE
:
1678 if (unlikely(fast
|| rep
)) {
1679 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
1682 ret
= kvm_hv_flush_tlb(vcpu
, ingpa
, rep_cnt
, false);
1684 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX
:
1685 if (unlikely(fast
|| !rep_cnt
|| rep_idx
)) {
1686 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
1689 ret
= kvm_hv_flush_tlb(vcpu
, ingpa
, rep_cnt
, true);
1691 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX
:
1692 if (unlikely(fast
|| rep
)) {
1693 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
1696 ret
= kvm_hv_flush_tlb(vcpu
, ingpa
, rep_cnt
, true);
1698 case HVCALL_SEND_IPI
:
1699 if (unlikely(rep
)) {
1700 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
1703 ret
= kvm_hv_send_ipi(vcpu
, ingpa
, outgpa
, false, fast
);
1705 case HVCALL_SEND_IPI_EX
:
1706 if (unlikely(fast
|| rep
)) {
1707 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
1710 ret
= kvm_hv_send_ipi(vcpu
, ingpa
, outgpa
, true, false);
1713 ret
= HV_STATUS_INVALID_HYPERCALL_CODE
;
1717 return kvm_hv_hypercall_complete(vcpu
, ret
);
1720 void kvm_hv_init_vm(struct kvm
*kvm
)
1722 mutex_init(&kvm
->arch
.hyperv
.hv_lock
);
1723 idr_init(&kvm
->arch
.hyperv
.conn_to_evt
);
1726 void kvm_hv_destroy_vm(struct kvm
*kvm
)
1728 struct eventfd_ctx
*eventfd
;
1731 idr_for_each_entry(&kvm
->arch
.hyperv
.conn_to_evt
, eventfd
, i
)
1732 eventfd_ctx_put(eventfd
);
1733 idr_destroy(&kvm
->arch
.hyperv
.conn_to_evt
);
1736 static int kvm_hv_eventfd_assign(struct kvm
*kvm
, u32 conn_id
, int fd
)
1738 struct kvm_hv
*hv
= &kvm
->arch
.hyperv
;
1739 struct eventfd_ctx
*eventfd
;
1742 eventfd
= eventfd_ctx_fdget(fd
);
1743 if (IS_ERR(eventfd
))
1744 return PTR_ERR(eventfd
);
1746 mutex_lock(&hv
->hv_lock
);
1747 ret
= idr_alloc(&hv
->conn_to_evt
, eventfd
, conn_id
, conn_id
+ 1,
1748 GFP_KERNEL_ACCOUNT
);
1749 mutex_unlock(&hv
->hv_lock
);
1756 eventfd_ctx_put(eventfd
);
1760 static int kvm_hv_eventfd_deassign(struct kvm
*kvm
, u32 conn_id
)
1762 struct kvm_hv
*hv
= &kvm
->arch
.hyperv
;
1763 struct eventfd_ctx
*eventfd
;
1765 mutex_lock(&hv
->hv_lock
);
1766 eventfd
= idr_remove(&hv
->conn_to_evt
, conn_id
);
1767 mutex_unlock(&hv
->hv_lock
);
1772 synchronize_srcu(&kvm
->srcu
);
1773 eventfd_ctx_put(eventfd
);
1777 int kvm_vm_ioctl_hv_eventfd(struct kvm
*kvm
, struct kvm_hyperv_eventfd
*args
)
1779 if ((args
->flags
& ~KVM_HYPERV_EVENTFD_DEASSIGN
) ||
1780 (args
->conn_id
& ~KVM_HYPERV_CONN_ID_MASK
))
1783 if (args
->flags
== KVM_HYPERV_EVENTFD_DEASSIGN
)
1784 return kvm_hv_eventfd_deassign(kvm
, args
->conn_id
);
1785 return kvm_hv_eventfd_assign(kvm
, args
->conn_id
, args
->fd
);
1788 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_cpuid2
*cpuid
,
1789 struct kvm_cpuid_entry2 __user
*entries
)
1791 uint16_t evmcs_ver
= 0;
1792 struct kvm_cpuid_entry2 cpuid_entries
[] = {
1793 { .function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
},
1794 { .function
= HYPERV_CPUID_INTERFACE
},
1795 { .function
= HYPERV_CPUID_VERSION
},
1796 { .function
= HYPERV_CPUID_FEATURES
},
1797 { .function
= HYPERV_CPUID_ENLIGHTMENT_INFO
},
1798 { .function
= HYPERV_CPUID_IMPLEMENT_LIMITS
},
1799 { .function
= HYPERV_CPUID_NESTED_FEATURES
},
1801 int i
, nent
= ARRAY_SIZE(cpuid_entries
);
1803 if (kvm_x86_ops
.nested_get_evmcs_version
)
1804 evmcs_ver
= kvm_x86_ops
.nested_get_evmcs_version(vcpu
);
1806 /* Skip NESTED_FEATURES if eVMCS is not supported */
1810 if (cpuid
->nent
< nent
)
1813 if (cpuid
->nent
> nent
)
1816 for (i
= 0; i
< nent
; i
++) {
1817 struct kvm_cpuid_entry2
*ent
= &cpuid_entries
[i
];
1820 switch (ent
->function
) {
1821 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
:
1822 memcpy(signature
, "Linux KVM Hv", 12);
1824 ent
->eax
= HYPERV_CPUID_NESTED_FEATURES
;
1825 ent
->ebx
= signature
[0];
1826 ent
->ecx
= signature
[1];
1827 ent
->edx
= signature
[2];
1830 case HYPERV_CPUID_INTERFACE
:
1831 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
1832 ent
->eax
= signature
[0];
1835 case HYPERV_CPUID_VERSION
:
1837 * We implement some Hyper-V 2016 functions so let's use
1840 ent
->eax
= 0x00003839;
1841 ent
->ebx
= 0x000A0000;
1844 case HYPERV_CPUID_FEATURES
:
1845 ent
->eax
|= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
1846 ent
->eax
|= HV_MSR_TIME_REF_COUNT_AVAILABLE
;
1847 ent
->eax
|= HV_X64_MSR_SYNIC_AVAILABLE
;
1848 ent
->eax
|= HV_MSR_SYNTIMER_AVAILABLE
;
1849 ent
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
1850 ent
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
1851 ent
->eax
|= HV_X64_MSR_VP_INDEX_AVAILABLE
;
1852 ent
->eax
|= HV_X64_MSR_RESET_AVAILABLE
;
1853 ent
->eax
|= HV_MSR_REFERENCE_TSC_AVAILABLE
;
1854 ent
->eax
|= HV_X64_ACCESS_FREQUENCY_MSRS
;
1855 ent
->eax
|= HV_X64_ACCESS_REENLIGHTENMENT
;
1857 ent
->ebx
|= HV_X64_POST_MESSAGES
;
1858 ent
->ebx
|= HV_X64_SIGNAL_EVENTS
;
1860 ent
->edx
|= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE
;
1861 ent
->edx
|= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
;
1864 * Direct Synthetic timers only make sense with in-kernel
1867 if (lapic_in_kernel(vcpu
))
1868 ent
->edx
|= HV_STIMER_DIRECT_MODE_AVAILABLE
;
1872 case HYPERV_CPUID_ENLIGHTMENT_INFO
:
1873 ent
->eax
|= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED
;
1874 ent
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
1875 ent
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
1876 ent
->eax
|= HV_X64_CLUSTER_IPI_RECOMMENDED
;
1877 ent
->eax
|= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
;
1879 ent
->eax
|= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED
;
1880 if (!cpu_smt_possible())
1881 ent
->eax
|= HV_X64_NO_NONARCH_CORESHARING
;
1883 * Default number of spinlock retry attempts, matches
1886 ent
->ebx
= 0x00000FFF;
1890 case HYPERV_CPUID_IMPLEMENT_LIMITS
:
1891 /* Maximum number of virtual processors */
1892 ent
->eax
= KVM_MAX_VCPUS
;
1894 * Maximum number of logical processors, matches
1901 case HYPERV_CPUID_NESTED_FEATURES
:
1902 ent
->eax
= evmcs_ver
;
1911 if (copy_to_user(entries
, cpuid_entries
,
1912 nent
* sizeof(struct kvm_cpuid_entry2
)))