Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / arch / x86 / kvm / vmx / vmx.c
blob390ec34e4b4f1a1efb084b64456ab5f7fde4b6c4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91 enable_unrestricted_guest, bool, S_IRUGO);
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
106 * If nested=1, nested virtualization is supported, i.e., guests may use
107 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108 * use VMX instructions.
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
119 #define MSR_BITMAP_MODE_X2APIC 1
120 #define MSR_BITMAP_MODE_X2APIC_APICV 2
122 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON \
134 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
135 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS \
137 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
138 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149 RTIT_STATUS_BYTECNT))
151 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
152 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
155 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
156 * ple_gap: upper bound on the amount of time between two successive
157 * executions of PAUSE in a loop. Also indicate if ple enabled.
158 * According to test, this time is usually smaller than 128 cycles.
159 * ple_window: upper bound on the amount of time a guest is allowed to execute
160 * in a PAUSE loop. Tests indicate that most spinlocks are held for
161 * less than 2^12 cycles
162 * Time is measured based on a counter that runs at the same rate as the TSC,
163 * refer SDM volume 3b section 21.6.13 & 22.1.3.
165 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
166 module_param(ple_gap, uint, 0444);
168 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, uint, 0444);
171 /* Default doubles per-vcpu window every exit. */
172 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, uint, 0444);
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, uint, 0444);
179 /* Default is to compute the maximum so we can never overflow. */
180 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 module_param(ple_window_max, uint, 0444);
183 /* Default is SYSTEM mode, 1 for host-guest mode */
184 int __read_mostly pt_mode = PT_MODE_SYSTEM;
185 module_param(pt_mode, int, S_IRUGO);
187 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
189 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
191 /* Storage for pre module init parameter parsing */
192 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
194 static const struct {
195 const char *option;
196 bool for_parse;
197 } vmentry_l1d_param[] = {
198 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
199 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
200 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
201 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
202 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
203 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
206 #define L1D_CACHE_ORDER 4
207 static void *vmx_l1d_flush_pages;
209 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
211 struct page *page;
212 unsigned int i;
214 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
215 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
216 return 0;
219 if (!enable_ept) {
220 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
221 return 0;
224 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225 u64 msr;
227 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
228 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
229 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
230 return 0;
234 /* If set to auto use the default l1tf mitigation method */
235 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
236 switch (l1tf_mitigation) {
237 case L1TF_MITIGATION_OFF:
238 l1tf = VMENTER_L1D_FLUSH_NEVER;
239 break;
240 case L1TF_MITIGATION_FLUSH_NOWARN:
241 case L1TF_MITIGATION_FLUSH:
242 case L1TF_MITIGATION_FLUSH_NOSMT:
243 l1tf = VMENTER_L1D_FLUSH_COND;
244 break;
245 case L1TF_MITIGATION_FULL:
246 case L1TF_MITIGATION_FULL_FORCE:
247 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248 break;
250 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
251 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
254 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
255 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
257 * This allocation for vmx_l1d_flush_pages is not tied to a VM
258 * lifetime and so should not be charged to a memcg.
260 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261 if (!page)
262 return -ENOMEM;
263 vmx_l1d_flush_pages = page_address(page);
266 * Initialize each page with a different pattern in
267 * order to protect against KSM in the nested
268 * virtualization case.
270 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
271 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
272 PAGE_SIZE);
276 l1tf_vmx_mitigation = l1tf;
278 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
279 static_branch_enable(&vmx_l1d_should_flush);
280 else
281 static_branch_disable(&vmx_l1d_should_flush);
283 if (l1tf == VMENTER_L1D_FLUSH_COND)
284 static_branch_enable(&vmx_l1d_flush_cond);
285 else
286 static_branch_disable(&vmx_l1d_flush_cond);
287 return 0;
290 static int vmentry_l1d_flush_parse(const char *s)
292 unsigned int i;
294 if (s) {
295 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
296 if (vmentry_l1d_param[i].for_parse &&
297 sysfs_streq(s, vmentry_l1d_param[i].option))
298 return i;
301 return -EINVAL;
304 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
306 int l1tf, ret;
308 l1tf = vmentry_l1d_flush_parse(s);
309 if (l1tf < 0)
310 return l1tf;
312 if (!boot_cpu_has(X86_BUG_L1TF))
313 return 0;
316 * Has vmx_init() run already? If not then this is the pre init
317 * parameter parsing. In that case just store the value and let
318 * vmx_init() do the proper setup after enable_ept has been
319 * established.
321 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
322 vmentry_l1d_flush_param = l1tf;
323 return 0;
326 mutex_lock(&vmx_l1d_flush_mutex);
327 ret = vmx_setup_l1d_flush(l1tf);
328 mutex_unlock(&vmx_l1d_flush_mutex);
329 return ret;
332 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
334 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
335 return sprintf(s, "???\n");
337 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
340 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
341 .set = vmentry_l1d_flush_set,
342 .get = vmentry_l1d_flush_get,
344 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
346 static bool guest_state_valid(struct kvm_vcpu *vcpu);
347 static u32 vmx_segment_access_rights(struct kvm_segment *var);
348 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349 u32 msr, int type);
351 void vmx_vmexit(void);
353 #define vmx_insn_failed(fmt...) \
354 do { \
355 WARN_ONCE(1, fmt); \
356 pr_warn_ratelimited(fmt); \
357 } while (0)
359 asmlinkage void vmread_error(unsigned long field, bool fault)
361 if (fault)
362 kvm_spurious_fault();
363 else
364 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
367 noinline void vmwrite_error(unsigned long field, unsigned long value)
369 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
370 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
373 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
375 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
378 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
380 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
383 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
385 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
386 ext, vpid, gva);
389 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
391 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
392 ext, eptp, gpa);
395 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
396 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
398 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
399 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
401 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
404 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
405 * can find which vCPU should be waken up.
407 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
408 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
410 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
411 static DEFINE_SPINLOCK(vmx_vpid_lock);
413 struct vmcs_config vmcs_config;
414 struct vmx_capability vmx_capability;
416 #define VMX_SEGMENT_FIELD(seg) \
417 [VCPU_SREG_##seg] = { \
418 .selector = GUEST_##seg##_SELECTOR, \
419 .base = GUEST_##seg##_BASE, \
420 .limit = GUEST_##seg##_LIMIT, \
421 .ar_bytes = GUEST_##seg##_AR_BYTES, \
424 static const struct kvm_vmx_segment_field {
425 unsigned selector;
426 unsigned base;
427 unsigned limit;
428 unsigned ar_bytes;
429 } kvm_vmx_segment_fields[] = {
430 VMX_SEGMENT_FIELD(CS),
431 VMX_SEGMENT_FIELD(DS),
432 VMX_SEGMENT_FIELD(ES),
433 VMX_SEGMENT_FIELD(FS),
434 VMX_SEGMENT_FIELD(GS),
435 VMX_SEGMENT_FIELD(SS),
436 VMX_SEGMENT_FIELD(TR),
437 VMX_SEGMENT_FIELD(LDTR),
440 static unsigned long host_idt_base;
443 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
444 * will emulate SYSCALL in legacy mode if the vendor string in guest
445 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
446 * support this emulation, IA32_STAR must always be included in
447 * vmx_msr_index[], even in i386 builds.
449 const u32 vmx_msr_index[] = {
450 #ifdef CONFIG_X86_64
451 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
452 #endif
453 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
454 MSR_IA32_TSX_CTRL,
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
461 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
462 static void check_ept_pointer_match(struct kvm *kvm)
464 struct kvm_vcpu *vcpu;
465 u64 tmp_eptp = INVALID_PAGE;
466 int i;
468 kvm_for_each_vcpu(i, vcpu, kvm) {
469 if (!VALID_PAGE(tmp_eptp)) {
470 tmp_eptp = to_vmx(vcpu)->ept_pointer;
471 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
472 to_kvm_vmx(kvm)->ept_pointers_match
473 = EPT_POINTERS_MISMATCH;
474 return;
478 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
481 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
482 void *data)
484 struct kvm_tlb_range *range = data;
486 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
487 range->pages);
490 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
491 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
493 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
496 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
497 * of the base of EPT PML4 table, strip off EPT configuration
498 * information.
500 if (range)
501 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
502 kvm_fill_hv_flush_list_func, (void *)range);
503 else
504 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
507 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
508 struct kvm_tlb_range *range)
510 struct kvm_vcpu *vcpu;
511 int ret = 0, i;
513 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
515 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
516 check_ept_pointer_match(kvm);
518 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
519 kvm_for_each_vcpu(i, vcpu, kvm) {
520 /* If ept_pointer is invalid pointer, bypass flush request. */
521 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
522 ret |= __hv_remote_flush_tlb_with_range(
523 kvm, vcpu, range);
525 } else {
526 ret = __hv_remote_flush_tlb_with_range(kvm,
527 kvm_get_vcpu(kvm, 0), range);
530 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
531 return ret;
533 static int hv_remote_flush_tlb(struct kvm *kvm)
535 return hv_remote_flush_tlb_with_range(kvm, NULL);
538 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
540 struct hv_enlightened_vmcs *evmcs;
541 struct hv_partition_assist_pg **p_hv_pa_pg =
542 &vcpu->kvm->arch.hyperv.hv_pa_pg;
544 * Synthetic VM-Exit is not enabled in current code and so All
545 * evmcs in singe VM shares same assist page.
547 if (!*p_hv_pa_pg)
548 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
550 if (!*p_hv_pa_pg)
551 return -ENOMEM;
553 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
555 evmcs->partition_assist_page =
556 __pa(*p_hv_pa_pg);
557 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
558 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
560 return 0;
563 #endif /* IS_ENABLED(CONFIG_HYPERV) */
566 * Comment's format: document - errata name - stepping - processor name.
567 * Refer from
568 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
570 static u32 vmx_preemption_cpu_tfms[] = {
571 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
572 0x000206E6,
573 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
574 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
575 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
576 0x00020652,
577 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
578 0x00020655,
579 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
580 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
582 * 320767.pdf - AAP86 - B1 -
583 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
585 0x000106E5,
586 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
587 0x000106A0,
588 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
589 0x000106A1,
590 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
591 0x000106A4,
592 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
593 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
594 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
595 0x000106A5,
596 /* Xeon E3-1220 V2 */
597 0x000306A8,
600 static inline bool cpu_has_broken_vmx_preemption_timer(void)
602 u32 eax = cpuid_eax(0x00000001), i;
604 /* Clear the reserved bits */
605 eax &= ~(0x3U << 14 | 0xfU << 28);
606 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
607 if (eax == vmx_preemption_cpu_tfms[i])
608 return true;
610 return false;
613 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
615 return flexpriority_enabled && lapic_in_kernel(vcpu);
618 static inline bool report_flexpriority(void)
620 return flexpriority_enabled;
623 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
625 int i;
627 for (i = 0; i < vmx->nmsrs; ++i)
628 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
629 return i;
630 return -1;
633 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
635 int i;
637 i = __find_msr_index(vmx, msr);
638 if (i >= 0)
639 return &vmx->guest_msrs[i];
640 return NULL;
643 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
645 int ret = 0;
647 u64 old_msr_data = msr->data;
648 msr->data = data;
649 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
650 preempt_disable();
651 ret = kvm_set_shared_msr(msr->index, msr->data,
652 msr->mask);
653 preempt_enable();
654 if (ret)
655 msr->data = old_msr_data;
657 return ret;
660 #ifdef CONFIG_KEXEC_CORE
661 static void crash_vmclear_local_loaded_vmcss(void)
663 int cpu = raw_smp_processor_id();
664 struct loaded_vmcs *v;
666 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
667 loaded_vmcss_on_cpu_link)
668 vmcs_clear(v->vmcs);
670 #endif /* CONFIG_KEXEC_CORE */
672 static void __loaded_vmcs_clear(void *arg)
674 struct loaded_vmcs *loaded_vmcs = arg;
675 int cpu = raw_smp_processor_id();
677 if (loaded_vmcs->cpu != cpu)
678 return; /* vcpu migration can race with cpu offline */
679 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
680 per_cpu(current_vmcs, cpu) = NULL;
682 vmcs_clear(loaded_vmcs->vmcs);
683 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
684 vmcs_clear(loaded_vmcs->shadow_vmcs);
686 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
689 * Ensure all writes to loaded_vmcs, including deleting it from its
690 * current percpu list, complete before setting loaded_vmcs->vcpu to
691 * -1, otherwise a different cpu can see vcpu == -1 first and add
692 * loaded_vmcs to its percpu list before it's deleted from this cpu's
693 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
695 smp_wmb();
697 loaded_vmcs->cpu = -1;
698 loaded_vmcs->launched = 0;
701 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
703 int cpu = loaded_vmcs->cpu;
705 if (cpu != -1)
706 smp_call_function_single(cpu,
707 __loaded_vmcs_clear, loaded_vmcs, 1);
710 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
711 unsigned field)
713 bool ret;
714 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
716 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
717 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
718 vmx->segment_cache.bitmask = 0;
720 ret = vmx->segment_cache.bitmask & mask;
721 vmx->segment_cache.bitmask |= mask;
722 return ret;
725 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
727 u16 *p = &vmx->segment_cache.seg[seg].selector;
729 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
730 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
731 return *p;
734 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
736 ulong *p = &vmx->segment_cache.seg[seg].base;
738 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
739 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
740 return *p;
743 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
745 u32 *p = &vmx->segment_cache.seg[seg].limit;
747 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
748 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
749 return *p;
752 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
754 u32 *p = &vmx->segment_cache.seg[seg].ar;
756 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
757 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
758 return *p;
761 void update_exception_bitmap(struct kvm_vcpu *vcpu)
763 u32 eb;
765 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
766 (1u << DB_VECTOR) | (1u << AC_VECTOR);
768 * Guest access to VMware backdoor ports could legitimately
769 * trigger #GP because of TSS I/O permission bitmap.
770 * We intercept those #GP and allow access to them anyway
771 * as VMware does.
773 if (enable_vmware_backdoor)
774 eb |= (1u << GP_VECTOR);
775 if ((vcpu->guest_debug &
776 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
777 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
778 eb |= 1u << BP_VECTOR;
779 if (to_vmx(vcpu)->rmode.vm86_active)
780 eb = ~0;
781 if (enable_ept)
782 eb &= ~(1u << PF_VECTOR);
784 /* When we are running a nested L2 guest and L1 specified for it a
785 * certain exception bitmap, we must trap the same exceptions and pass
786 * them to L1. When running L2, we will only handle the exceptions
787 * specified above if L1 did not want them.
789 if (is_guest_mode(vcpu))
790 eb |= get_vmcs12(vcpu)->exception_bitmap;
792 vmcs_write32(EXCEPTION_BITMAP, eb);
796 * Check if MSR is intercepted for currently loaded MSR bitmap.
798 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
800 unsigned long *msr_bitmap;
801 int f = sizeof(unsigned long);
803 if (!cpu_has_vmx_msr_bitmap())
804 return true;
806 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
808 if (msr <= 0x1fff) {
809 return !!test_bit(msr, msr_bitmap + 0x800 / f);
810 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
811 msr &= 0x1fff;
812 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
815 return true;
818 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
819 unsigned long entry, unsigned long exit)
821 vm_entry_controls_clearbit(vmx, entry);
822 vm_exit_controls_clearbit(vmx, exit);
825 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
827 unsigned int i;
829 for (i = 0; i < m->nr; ++i) {
830 if (m->val[i].index == msr)
831 return i;
833 return -ENOENT;
836 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
838 int i;
839 struct msr_autoload *m = &vmx->msr_autoload;
841 switch (msr) {
842 case MSR_EFER:
843 if (cpu_has_load_ia32_efer()) {
844 clear_atomic_switch_msr_special(vmx,
845 VM_ENTRY_LOAD_IA32_EFER,
846 VM_EXIT_LOAD_IA32_EFER);
847 return;
849 break;
850 case MSR_CORE_PERF_GLOBAL_CTRL:
851 if (cpu_has_load_perf_global_ctrl()) {
852 clear_atomic_switch_msr_special(vmx,
853 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
854 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
855 return;
857 break;
859 i = vmx_find_msr_index(&m->guest, msr);
860 if (i < 0)
861 goto skip_guest;
862 --m->guest.nr;
863 m->guest.val[i] = m->guest.val[m->guest.nr];
864 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
866 skip_guest:
867 i = vmx_find_msr_index(&m->host, msr);
868 if (i < 0)
869 return;
871 --m->host.nr;
872 m->host.val[i] = m->host.val[m->host.nr];
873 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
876 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
877 unsigned long entry, unsigned long exit,
878 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
879 u64 guest_val, u64 host_val)
881 vmcs_write64(guest_val_vmcs, guest_val);
882 if (host_val_vmcs != HOST_IA32_EFER)
883 vmcs_write64(host_val_vmcs, host_val);
884 vm_entry_controls_setbit(vmx, entry);
885 vm_exit_controls_setbit(vmx, exit);
888 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
889 u64 guest_val, u64 host_val, bool entry_only)
891 int i, j = 0;
892 struct msr_autoload *m = &vmx->msr_autoload;
894 switch (msr) {
895 case MSR_EFER:
896 if (cpu_has_load_ia32_efer()) {
897 add_atomic_switch_msr_special(vmx,
898 VM_ENTRY_LOAD_IA32_EFER,
899 VM_EXIT_LOAD_IA32_EFER,
900 GUEST_IA32_EFER,
901 HOST_IA32_EFER,
902 guest_val, host_val);
903 return;
905 break;
906 case MSR_CORE_PERF_GLOBAL_CTRL:
907 if (cpu_has_load_perf_global_ctrl()) {
908 add_atomic_switch_msr_special(vmx,
909 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
910 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
911 GUEST_IA32_PERF_GLOBAL_CTRL,
912 HOST_IA32_PERF_GLOBAL_CTRL,
913 guest_val, host_val);
914 return;
916 break;
917 case MSR_IA32_PEBS_ENABLE:
918 /* PEBS needs a quiescent period after being disabled (to write
919 * a record). Disabling PEBS through VMX MSR swapping doesn't
920 * provide that period, so a CPU could write host's record into
921 * guest's memory.
923 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
926 i = vmx_find_msr_index(&m->guest, msr);
927 if (!entry_only)
928 j = vmx_find_msr_index(&m->host, msr);
930 if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
931 (j < 0 && m->host.nr == NR_LOADSTORE_MSRS)) {
932 printk_once(KERN_WARNING "Not enough msr switch entries. "
933 "Can't add msr %x\n", msr);
934 return;
936 if (i < 0) {
937 i = m->guest.nr++;
938 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
940 m->guest.val[i].index = msr;
941 m->guest.val[i].value = guest_val;
943 if (entry_only)
944 return;
946 if (j < 0) {
947 j = m->host.nr++;
948 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
950 m->host.val[j].index = msr;
951 m->host.val[j].value = host_val;
954 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
956 u64 guest_efer = vmx->vcpu.arch.efer;
957 u64 ignore_bits = 0;
959 /* Shadow paging assumes NX to be available. */
960 if (!enable_ept)
961 guest_efer |= EFER_NX;
964 * LMA and LME handled by hardware; SCE meaningless outside long mode.
966 ignore_bits |= EFER_SCE;
967 #ifdef CONFIG_X86_64
968 ignore_bits |= EFER_LMA | EFER_LME;
969 /* SCE is meaningful only in long mode on Intel */
970 if (guest_efer & EFER_LMA)
971 ignore_bits &= ~(u64)EFER_SCE;
972 #endif
975 * On EPT, we can't emulate NX, so we must switch EFER atomically.
976 * On CPUs that support "load IA32_EFER", always switch EFER
977 * atomically, since it's faster than switching it manually.
979 if (cpu_has_load_ia32_efer() ||
980 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
981 if (!(guest_efer & EFER_LMA))
982 guest_efer &= ~EFER_LME;
983 if (guest_efer != host_efer)
984 add_atomic_switch_msr(vmx, MSR_EFER,
985 guest_efer, host_efer, false);
986 else
987 clear_atomic_switch_msr(vmx, MSR_EFER);
988 return false;
989 } else {
990 clear_atomic_switch_msr(vmx, MSR_EFER);
992 guest_efer &= ~ignore_bits;
993 guest_efer |= host_efer & ignore_bits;
995 vmx->guest_msrs[efer_offset].data = guest_efer;
996 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
998 return true;
1002 #ifdef CONFIG_X86_32
1004 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1005 * VMCS rather than the segment table. KVM uses this helper to figure
1006 * out the current bases to poke them into the VMCS before entry.
1008 static unsigned long segment_base(u16 selector)
1010 struct desc_struct *table;
1011 unsigned long v;
1013 if (!(selector & ~SEGMENT_RPL_MASK))
1014 return 0;
1016 table = get_current_gdt_ro();
1018 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1019 u16 ldt_selector = kvm_read_ldt();
1021 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1022 return 0;
1024 table = (struct desc_struct *)segment_base(ldt_selector);
1026 v = get_desc_base(&table[selector >> 3]);
1027 return v;
1029 #endif
1031 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1033 return vmx_pt_mode_is_host_guest() &&
1034 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1037 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1039 u32 i;
1041 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1042 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1043 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1044 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1045 for (i = 0; i < addr_range; i++) {
1046 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1047 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1051 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1053 u32 i;
1055 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1056 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1057 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1058 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1059 for (i = 0; i < addr_range; i++) {
1060 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1061 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1065 static void pt_guest_enter(struct vcpu_vmx *vmx)
1067 if (vmx_pt_mode_is_system())
1068 return;
1071 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1072 * Save host state before VM entry.
1074 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1075 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1076 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1077 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1078 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1082 static void pt_guest_exit(struct vcpu_vmx *vmx)
1084 if (vmx_pt_mode_is_system())
1085 return;
1087 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1088 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1089 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1092 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1093 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1096 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1097 unsigned long fs_base, unsigned long gs_base)
1099 if (unlikely(fs_sel != host->fs_sel)) {
1100 if (!(fs_sel & 7))
1101 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1102 else
1103 vmcs_write16(HOST_FS_SELECTOR, 0);
1104 host->fs_sel = fs_sel;
1106 if (unlikely(gs_sel != host->gs_sel)) {
1107 if (!(gs_sel & 7))
1108 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1109 else
1110 vmcs_write16(HOST_GS_SELECTOR, 0);
1111 host->gs_sel = gs_sel;
1113 if (unlikely(fs_base != host->fs_base)) {
1114 vmcs_writel(HOST_FS_BASE, fs_base);
1115 host->fs_base = fs_base;
1117 if (unlikely(gs_base != host->gs_base)) {
1118 vmcs_writel(HOST_GS_BASE, gs_base);
1119 host->gs_base = gs_base;
1123 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1125 struct vcpu_vmx *vmx = to_vmx(vcpu);
1126 struct vmcs_host_state *host_state;
1127 #ifdef CONFIG_X86_64
1128 int cpu = raw_smp_processor_id();
1129 #endif
1130 unsigned long fs_base, gs_base;
1131 u16 fs_sel, gs_sel;
1132 int i;
1134 vmx->req_immediate_exit = false;
1137 * Note that guest MSRs to be saved/restored can also be changed
1138 * when guest state is loaded. This happens when guest transitions
1139 * to/from long-mode by setting MSR_EFER.LMA.
1141 if (!vmx->guest_msrs_ready) {
1142 vmx->guest_msrs_ready = true;
1143 for (i = 0; i < vmx->save_nmsrs; ++i)
1144 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1145 vmx->guest_msrs[i].data,
1146 vmx->guest_msrs[i].mask);
1150 if (vmx->nested.need_vmcs12_to_shadow_sync)
1151 nested_sync_vmcs12_to_shadow(vcpu);
1153 if (vmx->guest_state_loaded)
1154 return;
1156 host_state = &vmx->loaded_vmcs->host_state;
1159 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1160 * allow segment selectors with cpl > 0 or ti == 1.
1162 host_state->ldt_sel = kvm_read_ldt();
1164 #ifdef CONFIG_X86_64
1165 savesegment(ds, host_state->ds_sel);
1166 savesegment(es, host_state->es_sel);
1168 gs_base = cpu_kernelmode_gs_base(cpu);
1169 if (likely(is_64bit_mm(current->mm))) {
1170 save_fsgs_for_kvm();
1171 fs_sel = current->thread.fsindex;
1172 gs_sel = current->thread.gsindex;
1173 fs_base = current->thread.fsbase;
1174 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1175 } else {
1176 savesegment(fs, fs_sel);
1177 savesegment(gs, gs_sel);
1178 fs_base = read_msr(MSR_FS_BASE);
1179 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1182 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1183 #else
1184 savesegment(fs, fs_sel);
1185 savesegment(gs, gs_sel);
1186 fs_base = segment_base(fs_sel);
1187 gs_base = segment_base(gs_sel);
1188 #endif
1190 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1191 vmx->guest_state_loaded = true;
1194 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1196 struct vmcs_host_state *host_state;
1198 if (!vmx->guest_state_loaded)
1199 return;
1201 host_state = &vmx->loaded_vmcs->host_state;
1203 ++vmx->vcpu.stat.host_state_reload;
1205 #ifdef CONFIG_X86_64
1206 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1207 #endif
1208 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1209 kvm_load_ldt(host_state->ldt_sel);
1210 #ifdef CONFIG_X86_64
1211 load_gs_index(host_state->gs_sel);
1212 #else
1213 loadsegment(gs, host_state->gs_sel);
1214 #endif
1216 if (host_state->fs_sel & 7)
1217 loadsegment(fs, host_state->fs_sel);
1218 #ifdef CONFIG_X86_64
1219 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1220 loadsegment(ds, host_state->ds_sel);
1221 loadsegment(es, host_state->es_sel);
1223 #endif
1224 invalidate_tss_limit();
1225 #ifdef CONFIG_X86_64
1226 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1227 #endif
1228 load_fixmap_gdt(raw_smp_processor_id());
1229 vmx->guest_state_loaded = false;
1230 vmx->guest_msrs_ready = false;
1233 #ifdef CONFIG_X86_64
1234 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1236 preempt_disable();
1237 if (vmx->guest_state_loaded)
1238 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1239 preempt_enable();
1240 return vmx->msr_guest_kernel_gs_base;
1243 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1245 preempt_disable();
1246 if (vmx->guest_state_loaded)
1247 wrmsrl(MSR_KERNEL_GS_BASE, data);
1248 preempt_enable();
1249 vmx->msr_guest_kernel_gs_base = data;
1251 #endif
1253 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1255 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1256 struct pi_desc old, new;
1257 unsigned int dest;
1260 * In case of hot-plug or hot-unplug, we may have to undo
1261 * vmx_vcpu_pi_put even if there is no assigned device. And we
1262 * always keep PI.NDST up to date for simplicity: it makes the
1263 * code easier, and CPU migration is not a fast path.
1265 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1266 return;
1269 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1270 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1271 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1272 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1273 * correctly.
1275 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1276 pi_clear_sn(pi_desc);
1277 goto after_clear_sn;
1280 /* The full case. */
1281 do {
1282 old.control = new.control = pi_desc->control;
1284 dest = cpu_physical_id(cpu);
1286 if (x2apic_enabled())
1287 new.ndst = dest;
1288 else
1289 new.ndst = (dest << 8) & 0xFF00;
1291 new.sn = 0;
1292 } while (cmpxchg64(&pi_desc->control, old.control,
1293 new.control) != old.control);
1295 after_clear_sn:
1298 * Clear SN before reading the bitmap. The VT-d firmware
1299 * writes the bitmap and reads SN atomically (5.2.3 in the
1300 * spec), so it doesn't really have a memory barrier that
1301 * pairs with this, but we cannot do that and we need one.
1303 smp_mb__after_atomic();
1305 if (!pi_is_pir_empty(pi_desc))
1306 pi_set_on(pi_desc);
1309 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1310 struct loaded_vmcs *buddy)
1312 struct vcpu_vmx *vmx = to_vmx(vcpu);
1313 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1314 struct vmcs *prev;
1316 if (!already_loaded) {
1317 loaded_vmcs_clear(vmx->loaded_vmcs);
1318 local_irq_disable();
1321 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1322 * this cpu's percpu list, otherwise it may not yet be deleted
1323 * from its previous cpu's percpu list. Pairs with the
1324 * smb_wmb() in __loaded_vmcs_clear().
1326 smp_rmb();
1328 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1329 &per_cpu(loaded_vmcss_on_cpu, cpu));
1330 local_irq_enable();
1333 prev = per_cpu(current_vmcs, cpu);
1334 if (prev != vmx->loaded_vmcs->vmcs) {
1335 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1336 vmcs_load(vmx->loaded_vmcs->vmcs);
1339 * No indirect branch prediction barrier needed when switching
1340 * the active VMCS within a guest, e.g. on nested VM-Enter.
1341 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1343 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1344 indirect_branch_prediction_barrier();
1347 if (!already_loaded) {
1348 void *gdt = get_current_gdt_ro();
1349 unsigned long sysenter_esp;
1351 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1354 * Linux uses per-cpu TSS and GDT, so set these when switching
1355 * processors. See 22.2.4.
1357 vmcs_writel(HOST_TR_BASE,
1358 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1359 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1361 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1362 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1364 vmx->loaded_vmcs->cpu = cpu;
1367 /* Setup TSC multiplier */
1368 if (kvm_has_tsc_control &&
1369 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1370 decache_tsc_multiplier(vmx);
1374 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1375 * vcpu mutex is already taken.
1377 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1379 struct vcpu_vmx *vmx = to_vmx(vcpu);
1381 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1383 vmx_vcpu_pi_load(vcpu, cpu);
1385 vmx->host_debugctlmsr = get_debugctlmsr();
1388 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1390 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1392 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1393 !irq_remapping_cap(IRQ_POSTING_CAP) ||
1394 !kvm_vcpu_apicv_active(vcpu))
1395 return;
1397 /* Set SN when the vCPU is preempted */
1398 if (vcpu->preempted)
1399 pi_set_sn(pi_desc);
1402 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1404 vmx_vcpu_pi_put(vcpu);
1406 vmx_prepare_switch_to_host(to_vmx(vcpu));
1409 static bool emulation_required(struct kvm_vcpu *vcpu)
1411 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1414 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1416 struct vcpu_vmx *vmx = to_vmx(vcpu);
1417 unsigned long rflags, save_rflags;
1419 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1420 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1421 rflags = vmcs_readl(GUEST_RFLAGS);
1422 if (vmx->rmode.vm86_active) {
1423 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1424 save_rflags = vmx->rmode.save_rflags;
1425 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1427 vmx->rflags = rflags;
1429 return vmx->rflags;
1432 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1434 struct vcpu_vmx *vmx = to_vmx(vcpu);
1435 unsigned long old_rflags;
1437 if (enable_unrestricted_guest) {
1438 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1439 vmx->rflags = rflags;
1440 vmcs_writel(GUEST_RFLAGS, rflags);
1441 return;
1444 old_rflags = vmx_get_rflags(vcpu);
1445 vmx->rflags = rflags;
1446 if (vmx->rmode.vm86_active) {
1447 vmx->rmode.save_rflags = rflags;
1448 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1450 vmcs_writel(GUEST_RFLAGS, rflags);
1452 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1453 vmx->emulation_required = emulation_required(vcpu);
1456 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1458 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1459 int ret = 0;
1461 if (interruptibility & GUEST_INTR_STATE_STI)
1462 ret |= KVM_X86_SHADOW_INT_STI;
1463 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1464 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1466 return ret;
1469 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1471 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1472 u32 interruptibility = interruptibility_old;
1474 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1476 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1477 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1478 else if (mask & KVM_X86_SHADOW_INT_STI)
1479 interruptibility |= GUEST_INTR_STATE_STI;
1481 if ((interruptibility != interruptibility_old))
1482 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1485 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1487 struct vcpu_vmx *vmx = to_vmx(vcpu);
1488 unsigned long value;
1491 * Any MSR write that attempts to change bits marked reserved will
1492 * case a #GP fault.
1494 if (data & vmx->pt_desc.ctl_bitmask)
1495 return 1;
1498 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1499 * result in a #GP unless the same write also clears TraceEn.
1501 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1502 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1503 return 1;
1506 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1507 * and FabricEn would cause #GP, if
1508 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1510 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1511 !(data & RTIT_CTL_FABRIC_EN) &&
1512 !intel_pt_validate_cap(vmx->pt_desc.caps,
1513 PT_CAP_single_range_output))
1514 return 1;
1517 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1518 * utilize encodings marked reserved will casue a #GP fault.
1520 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1521 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1522 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1523 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1524 return 1;
1525 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1526 PT_CAP_cycle_thresholds);
1527 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1528 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1529 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1530 return 1;
1531 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1532 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1533 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1534 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1535 return 1;
1538 * If ADDRx_CFG is reserved or the encodings is >2 will
1539 * cause a #GP fault.
1541 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1542 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1543 return 1;
1544 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1545 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1546 return 1;
1547 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1548 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1549 return 1;
1550 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1551 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1552 return 1;
1554 return 0;
1557 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1559 unsigned long rip;
1562 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1563 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1564 * set when EPT misconfig occurs. In practice, real hardware updates
1565 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1566 * (namely Hyper-V) don't set it due to it being undefined behavior,
1567 * i.e. we end up advancing IP with some random value.
1569 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1570 to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1571 rip = kvm_rip_read(vcpu);
1572 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1573 kvm_rip_write(vcpu, rip);
1574 } else {
1575 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1576 return 0;
1579 /* skipping an emulated instruction also counts */
1580 vmx_set_interrupt_shadow(vcpu, 0);
1582 return 1;
1587 * Recognizes a pending MTF VM-exit and records the nested state for later
1588 * delivery.
1590 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1592 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1593 struct vcpu_vmx *vmx = to_vmx(vcpu);
1595 if (!is_guest_mode(vcpu))
1596 return;
1599 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1600 * T-bit traps. As instruction emulation is completed (i.e. at the
1601 * instruction boundary), any #DB exception pending delivery must be a
1602 * debug-trap. Record the pending MTF state to be delivered in
1603 * vmx_check_nested_events().
1605 if (nested_cpu_has_mtf(vmcs12) &&
1606 (!vcpu->arch.exception.pending ||
1607 vcpu->arch.exception.nr == DB_VECTOR))
1608 vmx->nested.mtf_pending = true;
1609 else
1610 vmx->nested.mtf_pending = false;
1613 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1615 vmx_update_emulated_instruction(vcpu);
1616 return skip_emulated_instruction(vcpu);
1619 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1622 * Ensure that we clear the HLT state in the VMCS. We don't need to
1623 * explicitly skip the instruction because if the HLT state is set,
1624 * then the instruction is already executing and RIP has already been
1625 * advanced.
1627 if (kvm_hlt_in_guest(vcpu->kvm) &&
1628 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1629 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1632 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1634 struct vcpu_vmx *vmx = to_vmx(vcpu);
1635 unsigned nr = vcpu->arch.exception.nr;
1636 bool has_error_code = vcpu->arch.exception.has_error_code;
1637 u32 error_code = vcpu->arch.exception.error_code;
1638 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1640 kvm_deliver_exception_payload(vcpu);
1642 if (has_error_code) {
1643 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1644 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1647 if (vmx->rmode.vm86_active) {
1648 int inc_eip = 0;
1649 if (kvm_exception_is_soft(nr))
1650 inc_eip = vcpu->arch.event_exit_inst_len;
1651 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1652 return;
1655 WARN_ON_ONCE(vmx->emulation_required);
1657 if (kvm_exception_is_soft(nr)) {
1658 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1659 vmx->vcpu.arch.event_exit_inst_len);
1660 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1661 } else
1662 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1664 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1666 vmx_clear_hlt(vcpu);
1670 * Swap MSR entry in host/guest MSR entry array.
1672 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1674 struct shared_msr_entry tmp;
1676 tmp = vmx->guest_msrs[to];
1677 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1678 vmx->guest_msrs[from] = tmp;
1682 * Set up the vmcs to automatically save and restore system
1683 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1684 * mode, as fiddling with msrs is very expensive.
1686 static void setup_msrs(struct vcpu_vmx *vmx)
1688 int save_nmsrs, index;
1690 save_nmsrs = 0;
1691 #ifdef CONFIG_X86_64
1693 * The SYSCALL MSRs are only needed on long mode guests, and only
1694 * when EFER.SCE is set.
1696 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1697 index = __find_msr_index(vmx, MSR_STAR);
1698 if (index >= 0)
1699 move_msr_up(vmx, index, save_nmsrs++);
1700 index = __find_msr_index(vmx, MSR_LSTAR);
1701 if (index >= 0)
1702 move_msr_up(vmx, index, save_nmsrs++);
1703 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1704 if (index >= 0)
1705 move_msr_up(vmx, index, save_nmsrs++);
1707 #endif
1708 index = __find_msr_index(vmx, MSR_EFER);
1709 if (index >= 0 && update_transition_efer(vmx, index))
1710 move_msr_up(vmx, index, save_nmsrs++);
1711 index = __find_msr_index(vmx, MSR_TSC_AUX);
1712 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1713 move_msr_up(vmx, index, save_nmsrs++);
1714 index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1715 if (index >= 0)
1716 move_msr_up(vmx, index, save_nmsrs++);
1718 vmx->save_nmsrs = save_nmsrs;
1719 vmx->guest_msrs_ready = false;
1721 if (cpu_has_vmx_msr_bitmap())
1722 vmx_update_msr_bitmap(&vmx->vcpu);
1725 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1727 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1729 if (is_guest_mode(vcpu) &&
1730 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1731 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1733 return vcpu->arch.tsc_offset;
1736 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1738 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1739 u64 g_tsc_offset = 0;
1742 * We're here if L1 chose not to trap WRMSR to TSC. According
1743 * to the spec, this should set L1's TSC; The offset that L1
1744 * set for L2 remains unchanged, and still needs to be added
1745 * to the newly set TSC to get L2's TSC.
1747 if (is_guest_mode(vcpu) &&
1748 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1749 g_tsc_offset = vmcs12->tsc_offset;
1751 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1752 vcpu->arch.tsc_offset - g_tsc_offset,
1753 offset);
1754 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1755 return offset + g_tsc_offset;
1759 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1760 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1761 * all guests if the "nested" module option is off, and can also be disabled
1762 * for a single guest by disabling its VMX cpuid bit.
1764 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1766 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1769 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1770 uint64_t val)
1772 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1774 return !(val & ~valid_bits);
1777 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1779 switch (msr->index) {
1780 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1781 if (!nested)
1782 return 1;
1783 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1784 default:
1785 return 1;
1790 * Reads an msr value (of 'msr_index') into 'pdata'.
1791 * Returns 0 on success, non-0 otherwise.
1792 * Assumes vcpu_load() was already called.
1794 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1796 struct vcpu_vmx *vmx = to_vmx(vcpu);
1797 struct shared_msr_entry *msr;
1798 u32 index;
1800 switch (msr_info->index) {
1801 #ifdef CONFIG_X86_64
1802 case MSR_FS_BASE:
1803 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1804 break;
1805 case MSR_GS_BASE:
1806 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1807 break;
1808 case MSR_KERNEL_GS_BASE:
1809 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1810 break;
1811 #endif
1812 case MSR_EFER:
1813 return kvm_get_msr_common(vcpu, msr_info);
1814 case MSR_IA32_TSX_CTRL:
1815 if (!msr_info->host_initiated &&
1816 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1817 return 1;
1818 goto find_shared_msr;
1819 case MSR_IA32_UMWAIT_CONTROL:
1820 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1821 return 1;
1823 msr_info->data = vmx->msr_ia32_umwait_control;
1824 break;
1825 case MSR_IA32_SPEC_CTRL:
1826 if (!msr_info->host_initiated &&
1827 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1828 return 1;
1830 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1831 break;
1832 case MSR_IA32_SYSENTER_CS:
1833 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1834 break;
1835 case MSR_IA32_SYSENTER_EIP:
1836 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1837 break;
1838 case MSR_IA32_SYSENTER_ESP:
1839 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1840 break;
1841 case MSR_IA32_BNDCFGS:
1842 if (!kvm_mpx_supported() ||
1843 (!msr_info->host_initiated &&
1844 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1845 return 1;
1846 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1847 break;
1848 case MSR_IA32_MCG_EXT_CTL:
1849 if (!msr_info->host_initiated &&
1850 !(vmx->msr_ia32_feature_control &
1851 FEAT_CTL_LMCE_ENABLED))
1852 return 1;
1853 msr_info->data = vcpu->arch.mcg_ext_ctl;
1854 break;
1855 case MSR_IA32_FEAT_CTL:
1856 msr_info->data = vmx->msr_ia32_feature_control;
1857 break;
1858 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1859 if (!nested_vmx_allowed(vcpu))
1860 return 1;
1861 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1862 &msr_info->data))
1863 return 1;
1865 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1866 * Hyper-V versions are still trying to use corresponding
1867 * features when they are exposed. Filter out the essential
1868 * minimum.
1870 if (!msr_info->host_initiated &&
1871 vmx->nested.enlightened_vmcs_enabled)
1872 nested_evmcs_filter_control_msr(msr_info->index,
1873 &msr_info->data);
1874 break;
1875 case MSR_IA32_RTIT_CTL:
1876 if (!vmx_pt_mode_is_host_guest())
1877 return 1;
1878 msr_info->data = vmx->pt_desc.guest.ctl;
1879 break;
1880 case MSR_IA32_RTIT_STATUS:
1881 if (!vmx_pt_mode_is_host_guest())
1882 return 1;
1883 msr_info->data = vmx->pt_desc.guest.status;
1884 break;
1885 case MSR_IA32_RTIT_CR3_MATCH:
1886 if (!vmx_pt_mode_is_host_guest() ||
1887 !intel_pt_validate_cap(vmx->pt_desc.caps,
1888 PT_CAP_cr3_filtering))
1889 return 1;
1890 msr_info->data = vmx->pt_desc.guest.cr3_match;
1891 break;
1892 case MSR_IA32_RTIT_OUTPUT_BASE:
1893 if (!vmx_pt_mode_is_host_guest() ||
1894 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1895 PT_CAP_topa_output) &&
1896 !intel_pt_validate_cap(vmx->pt_desc.caps,
1897 PT_CAP_single_range_output)))
1898 return 1;
1899 msr_info->data = vmx->pt_desc.guest.output_base;
1900 break;
1901 case MSR_IA32_RTIT_OUTPUT_MASK:
1902 if (!vmx_pt_mode_is_host_guest() ||
1903 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1904 PT_CAP_topa_output) &&
1905 !intel_pt_validate_cap(vmx->pt_desc.caps,
1906 PT_CAP_single_range_output)))
1907 return 1;
1908 msr_info->data = vmx->pt_desc.guest.output_mask;
1909 break;
1910 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1911 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1912 if (!vmx_pt_mode_is_host_guest() ||
1913 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1914 PT_CAP_num_address_ranges)))
1915 return 1;
1916 if (index % 2)
1917 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1918 else
1919 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1920 break;
1921 case MSR_TSC_AUX:
1922 if (!msr_info->host_initiated &&
1923 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1924 return 1;
1925 goto find_shared_msr;
1926 default:
1927 find_shared_msr:
1928 msr = find_msr_entry(vmx, msr_info->index);
1929 if (msr) {
1930 msr_info->data = msr->data;
1931 break;
1933 return kvm_get_msr_common(vcpu, msr_info);
1936 return 0;
1940 * Writes msr value into the appropriate "register".
1941 * Returns 0 on success, non-0 otherwise.
1942 * Assumes vcpu_load() was already called.
1944 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1946 struct vcpu_vmx *vmx = to_vmx(vcpu);
1947 struct shared_msr_entry *msr;
1948 int ret = 0;
1949 u32 msr_index = msr_info->index;
1950 u64 data = msr_info->data;
1951 u32 index;
1953 switch (msr_index) {
1954 case MSR_EFER:
1955 ret = kvm_set_msr_common(vcpu, msr_info);
1956 break;
1957 #ifdef CONFIG_X86_64
1958 case MSR_FS_BASE:
1959 vmx_segment_cache_clear(vmx);
1960 vmcs_writel(GUEST_FS_BASE, data);
1961 break;
1962 case MSR_GS_BASE:
1963 vmx_segment_cache_clear(vmx);
1964 vmcs_writel(GUEST_GS_BASE, data);
1965 break;
1966 case MSR_KERNEL_GS_BASE:
1967 vmx_write_guest_kernel_gs_base(vmx, data);
1968 break;
1969 #endif
1970 case MSR_IA32_SYSENTER_CS:
1971 if (is_guest_mode(vcpu))
1972 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1973 vmcs_write32(GUEST_SYSENTER_CS, data);
1974 break;
1975 case MSR_IA32_SYSENTER_EIP:
1976 if (is_guest_mode(vcpu))
1977 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1978 vmcs_writel(GUEST_SYSENTER_EIP, data);
1979 break;
1980 case MSR_IA32_SYSENTER_ESP:
1981 if (is_guest_mode(vcpu))
1982 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1983 vmcs_writel(GUEST_SYSENTER_ESP, data);
1984 break;
1985 case MSR_IA32_DEBUGCTLMSR:
1986 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1987 VM_EXIT_SAVE_DEBUG_CONTROLS)
1988 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1990 ret = kvm_set_msr_common(vcpu, msr_info);
1991 break;
1993 case MSR_IA32_BNDCFGS:
1994 if (!kvm_mpx_supported() ||
1995 (!msr_info->host_initiated &&
1996 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1997 return 1;
1998 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1999 (data & MSR_IA32_BNDCFGS_RSVD))
2000 return 1;
2001 vmcs_write64(GUEST_BNDCFGS, data);
2002 break;
2003 case MSR_IA32_UMWAIT_CONTROL:
2004 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2005 return 1;
2007 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2008 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2009 return 1;
2011 vmx->msr_ia32_umwait_control = data;
2012 break;
2013 case MSR_IA32_SPEC_CTRL:
2014 if (!msr_info->host_initiated &&
2015 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2016 return 1;
2018 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2019 return 1;
2021 vmx->spec_ctrl = data;
2022 if (!data)
2023 break;
2026 * For non-nested:
2027 * When it's written (to non-zero) for the first time, pass
2028 * it through.
2030 * For nested:
2031 * The handling of the MSR bitmap for L2 guests is done in
2032 * nested_vmx_prepare_msr_bitmap. We should not touch the
2033 * vmcs02.msr_bitmap here since it gets completely overwritten
2034 * in the merging. We update the vmcs01 here for L1 as well
2035 * since it will end up touching the MSR anyway now.
2037 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2038 MSR_IA32_SPEC_CTRL,
2039 MSR_TYPE_RW);
2040 break;
2041 case MSR_IA32_TSX_CTRL:
2042 if (!msr_info->host_initiated &&
2043 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2044 return 1;
2045 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2046 return 1;
2047 goto find_shared_msr;
2048 case MSR_IA32_PRED_CMD:
2049 if (!msr_info->host_initiated &&
2050 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2051 return 1;
2053 if (data & ~PRED_CMD_IBPB)
2054 return 1;
2055 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2056 return 1;
2057 if (!data)
2058 break;
2060 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2063 * For non-nested:
2064 * When it's written (to non-zero) for the first time, pass
2065 * it through.
2067 * For nested:
2068 * The handling of the MSR bitmap for L2 guests is done in
2069 * nested_vmx_prepare_msr_bitmap. We should not touch the
2070 * vmcs02.msr_bitmap here since it gets completely overwritten
2071 * in the merging.
2073 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2074 MSR_TYPE_W);
2075 break;
2076 case MSR_IA32_CR_PAT:
2077 if (!kvm_pat_valid(data))
2078 return 1;
2080 if (is_guest_mode(vcpu) &&
2081 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2082 get_vmcs12(vcpu)->guest_ia32_pat = data;
2084 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2085 vmcs_write64(GUEST_IA32_PAT, data);
2086 vcpu->arch.pat = data;
2087 break;
2089 ret = kvm_set_msr_common(vcpu, msr_info);
2090 break;
2091 case MSR_IA32_TSC_ADJUST:
2092 ret = kvm_set_msr_common(vcpu, msr_info);
2093 break;
2094 case MSR_IA32_MCG_EXT_CTL:
2095 if ((!msr_info->host_initiated &&
2096 !(to_vmx(vcpu)->msr_ia32_feature_control &
2097 FEAT_CTL_LMCE_ENABLED)) ||
2098 (data & ~MCG_EXT_CTL_LMCE_EN))
2099 return 1;
2100 vcpu->arch.mcg_ext_ctl = data;
2101 break;
2102 case MSR_IA32_FEAT_CTL:
2103 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2104 (to_vmx(vcpu)->msr_ia32_feature_control &
2105 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2106 return 1;
2107 vmx->msr_ia32_feature_control = data;
2108 if (msr_info->host_initiated && data == 0)
2109 vmx_leave_nested(vcpu);
2110 break;
2111 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2112 if (!msr_info->host_initiated)
2113 return 1; /* they are read-only */
2114 if (!nested_vmx_allowed(vcpu))
2115 return 1;
2116 return vmx_set_vmx_msr(vcpu, msr_index, data);
2117 case MSR_IA32_RTIT_CTL:
2118 if (!vmx_pt_mode_is_host_guest() ||
2119 vmx_rtit_ctl_check(vcpu, data) ||
2120 vmx->nested.vmxon)
2121 return 1;
2122 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2123 vmx->pt_desc.guest.ctl = data;
2124 pt_update_intercept_for_msr(vmx);
2125 break;
2126 case MSR_IA32_RTIT_STATUS:
2127 if (!pt_can_write_msr(vmx))
2128 return 1;
2129 if (data & MSR_IA32_RTIT_STATUS_MASK)
2130 return 1;
2131 vmx->pt_desc.guest.status = data;
2132 break;
2133 case MSR_IA32_RTIT_CR3_MATCH:
2134 if (!pt_can_write_msr(vmx))
2135 return 1;
2136 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2137 PT_CAP_cr3_filtering))
2138 return 1;
2139 vmx->pt_desc.guest.cr3_match = data;
2140 break;
2141 case MSR_IA32_RTIT_OUTPUT_BASE:
2142 if (!pt_can_write_msr(vmx))
2143 return 1;
2144 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2145 PT_CAP_topa_output) &&
2146 !intel_pt_validate_cap(vmx->pt_desc.caps,
2147 PT_CAP_single_range_output))
2148 return 1;
2149 if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2150 return 1;
2151 vmx->pt_desc.guest.output_base = data;
2152 break;
2153 case MSR_IA32_RTIT_OUTPUT_MASK:
2154 if (!pt_can_write_msr(vmx))
2155 return 1;
2156 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2157 PT_CAP_topa_output) &&
2158 !intel_pt_validate_cap(vmx->pt_desc.caps,
2159 PT_CAP_single_range_output))
2160 return 1;
2161 vmx->pt_desc.guest.output_mask = data;
2162 break;
2163 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2164 if (!pt_can_write_msr(vmx))
2165 return 1;
2166 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2167 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2168 PT_CAP_num_address_ranges))
2169 return 1;
2170 if (is_noncanonical_address(data, vcpu))
2171 return 1;
2172 if (index % 2)
2173 vmx->pt_desc.guest.addr_b[index / 2] = data;
2174 else
2175 vmx->pt_desc.guest.addr_a[index / 2] = data;
2176 break;
2177 case MSR_TSC_AUX:
2178 if (!msr_info->host_initiated &&
2179 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2180 return 1;
2181 /* Check reserved bit, higher 32 bits should be zero */
2182 if ((data >> 32) != 0)
2183 return 1;
2184 goto find_shared_msr;
2186 default:
2187 find_shared_msr:
2188 msr = find_msr_entry(vmx, msr_index);
2189 if (msr)
2190 ret = vmx_set_guest_msr(vmx, msr, data);
2191 else
2192 ret = kvm_set_msr_common(vcpu, msr_info);
2195 return ret;
2198 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2200 kvm_register_mark_available(vcpu, reg);
2202 switch (reg) {
2203 case VCPU_REGS_RSP:
2204 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2205 break;
2206 case VCPU_REGS_RIP:
2207 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2208 break;
2209 case VCPU_EXREG_PDPTR:
2210 if (enable_ept)
2211 ept_save_pdptrs(vcpu);
2212 break;
2213 case VCPU_EXREG_CR3:
2214 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2215 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2216 break;
2217 default:
2218 WARN_ON_ONCE(1);
2219 break;
2223 static __init int cpu_has_kvm_support(void)
2225 return cpu_has_vmx();
2228 static __init int vmx_disabled_by_bios(void)
2230 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2231 !boot_cpu_has(X86_FEATURE_VMX);
2234 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2236 u64 msr;
2238 cr4_set_bits(X86_CR4_VMXE);
2239 intel_pt_handle_vmx(1);
2241 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2242 _ASM_EXTABLE(1b, %l[fault])
2243 : : [vmxon_pointer] "m"(vmxon_pointer)
2244 : : fault);
2245 return 0;
2247 fault:
2248 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2249 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2250 intel_pt_handle_vmx(0);
2251 cr4_clear_bits(X86_CR4_VMXE);
2253 return -EFAULT;
2256 static int hardware_enable(void)
2258 int cpu = raw_smp_processor_id();
2259 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2260 int r;
2262 if (cr4_read_shadow() & X86_CR4_VMXE)
2263 return -EBUSY;
2266 * This can happen if we hot-added a CPU but failed to allocate
2267 * VP assist page for it.
2269 if (static_branch_unlikely(&enable_evmcs) &&
2270 !hv_get_vp_assist_page(cpu))
2271 return -EFAULT;
2273 r = kvm_cpu_vmxon(phys_addr);
2274 if (r)
2275 return r;
2277 if (enable_ept)
2278 ept_sync_global();
2280 return 0;
2283 static void vmclear_local_loaded_vmcss(void)
2285 int cpu = raw_smp_processor_id();
2286 struct loaded_vmcs *v, *n;
2288 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2289 loaded_vmcss_on_cpu_link)
2290 __loaded_vmcs_clear(v);
2294 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2295 * tricks.
2297 static void kvm_cpu_vmxoff(void)
2299 asm volatile (__ex("vmxoff"));
2301 intel_pt_handle_vmx(0);
2302 cr4_clear_bits(X86_CR4_VMXE);
2305 static void hardware_disable(void)
2307 vmclear_local_loaded_vmcss();
2308 kvm_cpu_vmxoff();
2312 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2313 * directly instead of going through cpu_has(), to ensure KVM is trapping
2314 * ENCLS whenever it's supported in hardware. It does not matter whether
2315 * the host OS supports or has enabled SGX.
2317 static bool cpu_has_sgx(void)
2319 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2322 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2323 u32 msr, u32 *result)
2325 u32 vmx_msr_low, vmx_msr_high;
2326 u32 ctl = ctl_min | ctl_opt;
2328 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2330 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2331 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2333 /* Ensure minimum (required) set of control bits are supported. */
2334 if (ctl_min & ~ctl)
2335 return -EIO;
2337 *result = ctl;
2338 return 0;
2341 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2342 struct vmx_capability *vmx_cap)
2344 u32 vmx_msr_low, vmx_msr_high;
2345 u32 min, opt, min2, opt2;
2346 u32 _pin_based_exec_control = 0;
2347 u32 _cpu_based_exec_control = 0;
2348 u32 _cpu_based_2nd_exec_control = 0;
2349 u32 _vmexit_control = 0;
2350 u32 _vmentry_control = 0;
2352 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2353 min = CPU_BASED_HLT_EXITING |
2354 #ifdef CONFIG_X86_64
2355 CPU_BASED_CR8_LOAD_EXITING |
2356 CPU_BASED_CR8_STORE_EXITING |
2357 #endif
2358 CPU_BASED_CR3_LOAD_EXITING |
2359 CPU_BASED_CR3_STORE_EXITING |
2360 CPU_BASED_UNCOND_IO_EXITING |
2361 CPU_BASED_MOV_DR_EXITING |
2362 CPU_BASED_USE_TSC_OFFSETTING |
2363 CPU_BASED_MWAIT_EXITING |
2364 CPU_BASED_MONITOR_EXITING |
2365 CPU_BASED_INVLPG_EXITING |
2366 CPU_BASED_RDPMC_EXITING;
2368 opt = CPU_BASED_TPR_SHADOW |
2369 CPU_BASED_USE_MSR_BITMAPS |
2370 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2371 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2372 &_cpu_based_exec_control) < 0)
2373 return -EIO;
2374 #ifdef CONFIG_X86_64
2375 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2376 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2377 ~CPU_BASED_CR8_STORE_EXITING;
2378 #endif
2379 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2380 min2 = 0;
2381 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2382 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2383 SECONDARY_EXEC_WBINVD_EXITING |
2384 SECONDARY_EXEC_ENABLE_VPID |
2385 SECONDARY_EXEC_ENABLE_EPT |
2386 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2387 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2388 SECONDARY_EXEC_DESC |
2389 SECONDARY_EXEC_RDTSCP |
2390 SECONDARY_EXEC_ENABLE_INVPCID |
2391 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2392 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2393 SECONDARY_EXEC_SHADOW_VMCS |
2394 SECONDARY_EXEC_XSAVES |
2395 SECONDARY_EXEC_RDSEED_EXITING |
2396 SECONDARY_EXEC_RDRAND_EXITING |
2397 SECONDARY_EXEC_ENABLE_PML |
2398 SECONDARY_EXEC_TSC_SCALING |
2399 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2400 SECONDARY_EXEC_PT_USE_GPA |
2401 SECONDARY_EXEC_PT_CONCEAL_VMX |
2402 SECONDARY_EXEC_ENABLE_VMFUNC;
2403 if (cpu_has_sgx())
2404 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2405 if (adjust_vmx_controls(min2, opt2,
2406 MSR_IA32_VMX_PROCBASED_CTLS2,
2407 &_cpu_based_2nd_exec_control) < 0)
2408 return -EIO;
2410 #ifndef CONFIG_X86_64
2411 if (!(_cpu_based_2nd_exec_control &
2412 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2413 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2414 #endif
2416 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2417 _cpu_based_2nd_exec_control &= ~(
2418 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2419 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2420 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2422 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2423 &vmx_cap->ept, &vmx_cap->vpid);
2425 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2426 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2427 enabled */
2428 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2429 CPU_BASED_CR3_STORE_EXITING |
2430 CPU_BASED_INVLPG_EXITING);
2431 } else if (vmx_cap->ept) {
2432 vmx_cap->ept = 0;
2433 pr_warn_once("EPT CAP should not exist if not support "
2434 "1-setting enable EPT VM-execution control\n");
2436 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2437 vmx_cap->vpid) {
2438 vmx_cap->vpid = 0;
2439 pr_warn_once("VPID CAP should not exist if not support "
2440 "1-setting enable VPID VM-execution control\n");
2443 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2444 #ifdef CONFIG_X86_64
2445 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2446 #endif
2447 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2448 VM_EXIT_LOAD_IA32_PAT |
2449 VM_EXIT_LOAD_IA32_EFER |
2450 VM_EXIT_CLEAR_BNDCFGS |
2451 VM_EXIT_PT_CONCEAL_PIP |
2452 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2453 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2454 &_vmexit_control) < 0)
2455 return -EIO;
2457 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2458 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2459 PIN_BASED_VMX_PREEMPTION_TIMER;
2460 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2461 &_pin_based_exec_control) < 0)
2462 return -EIO;
2464 if (cpu_has_broken_vmx_preemption_timer())
2465 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2466 if (!(_cpu_based_2nd_exec_control &
2467 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2468 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2470 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2471 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2472 VM_ENTRY_LOAD_IA32_PAT |
2473 VM_ENTRY_LOAD_IA32_EFER |
2474 VM_ENTRY_LOAD_BNDCFGS |
2475 VM_ENTRY_PT_CONCEAL_PIP |
2476 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2477 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2478 &_vmentry_control) < 0)
2479 return -EIO;
2482 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2483 * can't be used due to an errata where VM Exit may incorrectly clear
2484 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2485 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2487 if (boot_cpu_data.x86 == 0x6) {
2488 switch (boot_cpu_data.x86_model) {
2489 case 26: /* AAK155 */
2490 case 30: /* AAP115 */
2491 case 37: /* AAT100 */
2492 case 44: /* BC86,AAY89,BD102 */
2493 case 46: /* BA97 */
2494 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2495 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2496 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2497 "does not work properly. Using workaround\n");
2498 break;
2499 default:
2500 break;
2505 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2507 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2508 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2509 return -EIO;
2511 #ifdef CONFIG_X86_64
2512 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2513 if (vmx_msr_high & (1u<<16))
2514 return -EIO;
2515 #endif
2517 /* Require Write-Back (WB) memory type for VMCS accesses. */
2518 if (((vmx_msr_high >> 18) & 15) != 6)
2519 return -EIO;
2521 vmcs_conf->size = vmx_msr_high & 0x1fff;
2522 vmcs_conf->order = get_order(vmcs_conf->size);
2523 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2525 vmcs_conf->revision_id = vmx_msr_low;
2527 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2528 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2529 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2530 vmcs_conf->vmexit_ctrl = _vmexit_control;
2531 vmcs_conf->vmentry_ctrl = _vmentry_control;
2533 if (static_branch_unlikely(&enable_evmcs))
2534 evmcs_sanitize_exec_ctrls(vmcs_conf);
2536 return 0;
2539 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2541 int node = cpu_to_node(cpu);
2542 struct page *pages;
2543 struct vmcs *vmcs;
2545 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2546 if (!pages)
2547 return NULL;
2548 vmcs = page_address(pages);
2549 memset(vmcs, 0, vmcs_config.size);
2551 /* KVM supports Enlightened VMCS v1 only */
2552 if (static_branch_unlikely(&enable_evmcs))
2553 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2554 else
2555 vmcs->hdr.revision_id = vmcs_config.revision_id;
2557 if (shadow)
2558 vmcs->hdr.shadow_vmcs = 1;
2559 return vmcs;
2562 void free_vmcs(struct vmcs *vmcs)
2564 free_pages((unsigned long)vmcs, vmcs_config.order);
2568 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2570 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2572 if (!loaded_vmcs->vmcs)
2573 return;
2574 loaded_vmcs_clear(loaded_vmcs);
2575 free_vmcs(loaded_vmcs->vmcs);
2576 loaded_vmcs->vmcs = NULL;
2577 if (loaded_vmcs->msr_bitmap)
2578 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2579 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2582 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2584 loaded_vmcs->vmcs = alloc_vmcs(false);
2585 if (!loaded_vmcs->vmcs)
2586 return -ENOMEM;
2588 vmcs_clear(loaded_vmcs->vmcs);
2590 loaded_vmcs->shadow_vmcs = NULL;
2591 loaded_vmcs->hv_timer_soft_disabled = false;
2592 loaded_vmcs->cpu = -1;
2593 loaded_vmcs->launched = 0;
2595 if (cpu_has_vmx_msr_bitmap()) {
2596 loaded_vmcs->msr_bitmap = (unsigned long *)
2597 __get_free_page(GFP_KERNEL_ACCOUNT);
2598 if (!loaded_vmcs->msr_bitmap)
2599 goto out_vmcs;
2600 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2602 if (IS_ENABLED(CONFIG_HYPERV) &&
2603 static_branch_unlikely(&enable_evmcs) &&
2604 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2605 struct hv_enlightened_vmcs *evmcs =
2606 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2608 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2612 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2613 memset(&loaded_vmcs->controls_shadow, 0,
2614 sizeof(struct vmcs_controls_shadow));
2616 return 0;
2618 out_vmcs:
2619 free_loaded_vmcs(loaded_vmcs);
2620 return -ENOMEM;
2623 static void free_kvm_area(void)
2625 int cpu;
2627 for_each_possible_cpu(cpu) {
2628 free_vmcs(per_cpu(vmxarea, cpu));
2629 per_cpu(vmxarea, cpu) = NULL;
2633 static __init int alloc_kvm_area(void)
2635 int cpu;
2637 for_each_possible_cpu(cpu) {
2638 struct vmcs *vmcs;
2640 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2641 if (!vmcs) {
2642 free_kvm_area();
2643 return -ENOMEM;
2647 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2648 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2649 * revision_id reported by MSR_IA32_VMX_BASIC.
2651 * However, even though not explicitly documented by
2652 * TLFS, VMXArea passed as VMXON argument should
2653 * still be marked with revision_id reported by
2654 * physical CPU.
2656 if (static_branch_unlikely(&enable_evmcs))
2657 vmcs->hdr.revision_id = vmcs_config.revision_id;
2659 per_cpu(vmxarea, cpu) = vmcs;
2661 return 0;
2664 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2665 struct kvm_segment *save)
2667 if (!emulate_invalid_guest_state) {
2669 * CS and SS RPL should be equal during guest entry according
2670 * to VMX spec, but in reality it is not always so. Since vcpu
2671 * is in the middle of the transition from real mode to
2672 * protected mode it is safe to assume that RPL 0 is a good
2673 * default value.
2675 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2676 save->selector &= ~SEGMENT_RPL_MASK;
2677 save->dpl = save->selector & SEGMENT_RPL_MASK;
2678 save->s = 1;
2680 vmx_set_segment(vcpu, save, seg);
2683 static void enter_pmode(struct kvm_vcpu *vcpu)
2685 unsigned long flags;
2686 struct vcpu_vmx *vmx = to_vmx(vcpu);
2689 * Update real mode segment cache. It may be not up-to-date if sement
2690 * register was written while vcpu was in a guest mode.
2692 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2693 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2694 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2695 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2696 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2697 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2699 vmx->rmode.vm86_active = 0;
2701 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2703 flags = vmcs_readl(GUEST_RFLAGS);
2704 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2705 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2706 vmcs_writel(GUEST_RFLAGS, flags);
2708 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2709 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2711 update_exception_bitmap(vcpu);
2713 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2714 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2715 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2716 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2717 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2718 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2721 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2723 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2724 struct kvm_segment var = *save;
2726 var.dpl = 0x3;
2727 if (seg == VCPU_SREG_CS)
2728 var.type = 0x3;
2730 if (!emulate_invalid_guest_state) {
2731 var.selector = var.base >> 4;
2732 var.base = var.base & 0xffff0;
2733 var.limit = 0xffff;
2734 var.g = 0;
2735 var.db = 0;
2736 var.present = 1;
2737 var.s = 1;
2738 var.l = 0;
2739 var.unusable = 0;
2740 var.type = 0x3;
2741 var.avl = 0;
2742 if (save->base & 0xf)
2743 printk_once(KERN_WARNING "kvm: segment base is not "
2744 "paragraph aligned when entering "
2745 "protected mode (seg=%d)", seg);
2748 vmcs_write16(sf->selector, var.selector);
2749 vmcs_writel(sf->base, var.base);
2750 vmcs_write32(sf->limit, var.limit);
2751 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2754 static void enter_rmode(struct kvm_vcpu *vcpu)
2756 unsigned long flags;
2757 struct vcpu_vmx *vmx = to_vmx(vcpu);
2758 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2760 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2761 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2762 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2763 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2764 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2765 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2766 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2768 vmx->rmode.vm86_active = 1;
2771 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2772 * vcpu. Warn the user that an update is overdue.
2774 if (!kvm_vmx->tss_addr)
2775 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2776 "called before entering vcpu\n");
2778 vmx_segment_cache_clear(vmx);
2780 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2781 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2782 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2784 flags = vmcs_readl(GUEST_RFLAGS);
2785 vmx->rmode.save_rflags = flags;
2787 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2789 vmcs_writel(GUEST_RFLAGS, flags);
2790 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2791 update_exception_bitmap(vcpu);
2793 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2794 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2795 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2796 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2797 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2798 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2800 kvm_mmu_reset_context(vcpu);
2803 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2805 struct vcpu_vmx *vmx = to_vmx(vcpu);
2806 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2808 if (!msr)
2809 return;
2811 vcpu->arch.efer = efer;
2812 if (efer & EFER_LMA) {
2813 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2814 msr->data = efer;
2815 } else {
2816 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2818 msr->data = efer & ~EFER_LME;
2820 setup_msrs(vmx);
2823 #ifdef CONFIG_X86_64
2825 static void enter_lmode(struct kvm_vcpu *vcpu)
2827 u32 guest_tr_ar;
2829 vmx_segment_cache_clear(to_vmx(vcpu));
2831 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2832 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2833 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2834 __func__);
2835 vmcs_write32(GUEST_TR_AR_BYTES,
2836 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2837 | VMX_AR_TYPE_BUSY_64_TSS);
2839 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2842 static void exit_lmode(struct kvm_vcpu *vcpu)
2844 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2845 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2848 #endif
2850 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2852 int vpid = to_vmx(vcpu)->vpid;
2854 if (!vpid_sync_vcpu_addr(vpid, addr))
2855 vpid_sync_context(vpid);
2858 * If VPIDs are not supported or enabled, then the above is a no-op.
2859 * But we don't really need a TLB flush in that case anyway, because
2860 * each VM entry/exit includes an implicit flush when VPID is 0.
2864 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2866 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2868 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2869 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2872 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2874 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2876 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2877 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2880 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2882 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2884 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2885 return;
2887 if (is_pae_paging(vcpu)) {
2888 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2889 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2890 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2891 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2895 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2897 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2899 if (is_pae_paging(vcpu)) {
2900 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2901 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2902 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2903 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2906 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2909 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2910 unsigned long cr0,
2911 struct kvm_vcpu *vcpu)
2913 struct vcpu_vmx *vmx = to_vmx(vcpu);
2915 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2916 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2917 if (!(cr0 & X86_CR0_PG)) {
2918 /* From paging/starting to nonpaging */
2919 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2920 CPU_BASED_CR3_STORE_EXITING);
2921 vcpu->arch.cr0 = cr0;
2922 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2923 } else if (!is_paging(vcpu)) {
2924 /* From nonpaging to paging */
2925 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2926 CPU_BASED_CR3_STORE_EXITING);
2927 vcpu->arch.cr0 = cr0;
2928 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2931 if (!(cr0 & X86_CR0_WP))
2932 *hw_cr0 &= ~X86_CR0_WP;
2935 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2937 struct vcpu_vmx *vmx = to_vmx(vcpu);
2938 unsigned long hw_cr0;
2940 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2941 if (enable_unrestricted_guest)
2942 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2943 else {
2944 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2946 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2947 enter_pmode(vcpu);
2949 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2950 enter_rmode(vcpu);
2953 #ifdef CONFIG_X86_64
2954 if (vcpu->arch.efer & EFER_LME) {
2955 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2956 enter_lmode(vcpu);
2957 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2958 exit_lmode(vcpu);
2960 #endif
2962 if (enable_ept && !enable_unrestricted_guest)
2963 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2965 vmcs_writel(CR0_READ_SHADOW, cr0);
2966 vmcs_writel(GUEST_CR0, hw_cr0);
2967 vcpu->arch.cr0 = cr0;
2969 /* depends on vcpu->arch.cr0 to be set to a new value */
2970 vmx->emulation_required = emulation_required(vcpu);
2973 static int get_ept_level(struct kvm_vcpu *vcpu)
2975 if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
2976 return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
2977 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2978 return 5;
2979 return 4;
2982 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2984 u64 eptp = VMX_EPTP_MT_WB;
2986 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2988 if (enable_ept_ad_bits &&
2989 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2990 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2991 eptp |= (root_hpa & PAGE_MASK);
2993 return eptp;
2996 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long cr3)
2998 struct kvm *kvm = vcpu->kvm;
2999 bool update_guest_cr3 = true;
3000 unsigned long guest_cr3;
3001 u64 eptp;
3003 guest_cr3 = cr3;
3004 if (enable_ept) {
3005 eptp = construct_eptp(vcpu, cr3);
3006 vmcs_write64(EPT_POINTER, eptp);
3008 if (kvm_x86_ops.tlb_remote_flush) {
3009 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3010 to_vmx(vcpu)->ept_pointer = eptp;
3011 to_kvm_vmx(kvm)->ept_pointers_match
3012 = EPT_POINTERS_CHECK;
3013 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3016 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3017 if (is_guest_mode(vcpu))
3018 update_guest_cr3 = false;
3019 else if (!enable_unrestricted_guest && !is_paging(vcpu))
3020 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3021 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3022 guest_cr3 = vcpu->arch.cr3;
3023 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3024 update_guest_cr3 = false;
3025 ept_load_pdptrs(vcpu);
3028 if (update_guest_cr3)
3029 vmcs_writel(GUEST_CR3, guest_cr3);
3032 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3034 struct vcpu_vmx *vmx = to_vmx(vcpu);
3036 * Pass through host's Machine Check Enable value to hw_cr4, which
3037 * is in force while we are in guest mode. Do not let guests control
3038 * this bit, even if host CR4.MCE == 0.
3040 unsigned long hw_cr4;
3042 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3043 if (enable_unrestricted_guest)
3044 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3045 else if (vmx->rmode.vm86_active)
3046 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3047 else
3048 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3050 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3051 if (cr4 & X86_CR4_UMIP) {
3052 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3053 hw_cr4 &= ~X86_CR4_UMIP;
3054 } else if (!is_guest_mode(vcpu) ||
3055 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3056 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3060 if (cr4 & X86_CR4_VMXE) {
3062 * To use VMXON (and later other VMX instructions), a guest
3063 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3064 * So basically the check on whether to allow nested VMX
3065 * is here. We operate under the default treatment of SMM,
3066 * so VMX cannot be enabled under SMM.
3068 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3069 return 1;
3072 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3073 return 1;
3075 vcpu->arch.cr4 = cr4;
3077 if (!enable_unrestricted_guest) {
3078 if (enable_ept) {
3079 if (!is_paging(vcpu)) {
3080 hw_cr4 &= ~X86_CR4_PAE;
3081 hw_cr4 |= X86_CR4_PSE;
3082 } else if (!(cr4 & X86_CR4_PAE)) {
3083 hw_cr4 &= ~X86_CR4_PAE;
3088 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3089 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3090 * to be manually disabled when guest switches to non-paging
3091 * mode.
3093 * If !enable_unrestricted_guest, the CPU is always running
3094 * with CR0.PG=1 and CR4 needs to be modified.
3095 * If enable_unrestricted_guest, the CPU automatically
3096 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3098 if (!is_paging(vcpu))
3099 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3102 vmcs_writel(CR4_READ_SHADOW, cr4);
3103 vmcs_writel(GUEST_CR4, hw_cr4);
3104 return 0;
3107 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3109 struct vcpu_vmx *vmx = to_vmx(vcpu);
3110 u32 ar;
3112 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3113 *var = vmx->rmode.segs[seg];
3114 if (seg == VCPU_SREG_TR
3115 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3116 return;
3117 var->base = vmx_read_guest_seg_base(vmx, seg);
3118 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3119 return;
3121 var->base = vmx_read_guest_seg_base(vmx, seg);
3122 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3123 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3124 ar = vmx_read_guest_seg_ar(vmx, seg);
3125 var->unusable = (ar >> 16) & 1;
3126 var->type = ar & 15;
3127 var->s = (ar >> 4) & 1;
3128 var->dpl = (ar >> 5) & 3;
3130 * Some userspaces do not preserve unusable property. Since usable
3131 * segment has to be present according to VMX spec we can use present
3132 * property to amend userspace bug by making unusable segment always
3133 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3134 * segment as unusable.
3136 var->present = !var->unusable;
3137 var->avl = (ar >> 12) & 1;
3138 var->l = (ar >> 13) & 1;
3139 var->db = (ar >> 14) & 1;
3140 var->g = (ar >> 15) & 1;
3143 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3145 struct kvm_segment s;
3147 if (to_vmx(vcpu)->rmode.vm86_active) {
3148 vmx_get_segment(vcpu, &s, seg);
3149 return s.base;
3151 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3154 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3156 struct vcpu_vmx *vmx = to_vmx(vcpu);
3158 if (unlikely(vmx->rmode.vm86_active))
3159 return 0;
3160 else {
3161 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3162 return VMX_AR_DPL(ar);
3166 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3168 u32 ar;
3170 if (var->unusable || !var->present)
3171 ar = 1 << 16;
3172 else {
3173 ar = var->type & 15;
3174 ar |= (var->s & 1) << 4;
3175 ar |= (var->dpl & 3) << 5;
3176 ar |= (var->present & 1) << 7;
3177 ar |= (var->avl & 1) << 12;
3178 ar |= (var->l & 1) << 13;
3179 ar |= (var->db & 1) << 14;
3180 ar |= (var->g & 1) << 15;
3183 return ar;
3186 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3188 struct vcpu_vmx *vmx = to_vmx(vcpu);
3189 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3191 vmx_segment_cache_clear(vmx);
3193 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3194 vmx->rmode.segs[seg] = *var;
3195 if (seg == VCPU_SREG_TR)
3196 vmcs_write16(sf->selector, var->selector);
3197 else if (var->s)
3198 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3199 goto out;
3202 vmcs_writel(sf->base, var->base);
3203 vmcs_write32(sf->limit, var->limit);
3204 vmcs_write16(sf->selector, var->selector);
3207 * Fix the "Accessed" bit in AR field of segment registers for older
3208 * qemu binaries.
3209 * IA32 arch specifies that at the time of processor reset the
3210 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3211 * is setting it to 0 in the userland code. This causes invalid guest
3212 * state vmexit when "unrestricted guest" mode is turned on.
3213 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3214 * tree. Newer qemu binaries with that qemu fix would not need this
3215 * kvm hack.
3217 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3218 var->type |= 0x1; /* Accessed */
3220 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3222 out:
3223 vmx->emulation_required = emulation_required(vcpu);
3226 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3228 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3230 *db = (ar >> 14) & 1;
3231 *l = (ar >> 13) & 1;
3234 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3236 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3237 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3240 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3242 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3243 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3246 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3248 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3249 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3252 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3254 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3255 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3258 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3260 struct kvm_segment var;
3261 u32 ar;
3263 vmx_get_segment(vcpu, &var, seg);
3264 var.dpl = 0x3;
3265 if (seg == VCPU_SREG_CS)
3266 var.type = 0x3;
3267 ar = vmx_segment_access_rights(&var);
3269 if (var.base != (var.selector << 4))
3270 return false;
3271 if (var.limit != 0xffff)
3272 return false;
3273 if (ar != 0xf3)
3274 return false;
3276 return true;
3279 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3281 struct kvm_segment cs;
3282 unsigned int cs_rpl;
3284 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3285 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3287 if (cs.unusable)
3288 return false;
3289 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3290 return false;
3291 if (!cs.s)
3292 return false;
3293 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3294 if (cs.dpl > cs_rpl)
3295 return false;
3296 } else {
3297 if (cs.dpl != cs_rpl)
3298 return false;
3300 if (!cs.present)
3301 return false;
3303 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3304 return true;
3307 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3309 struct kvm_segment ss;
3310 unsigned int ss_rpl;
3312 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3313 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3315 if (ss.unusable)
3316 return true;
3317 if (ss.type != 3 && ss.type != 7)
3318 return false;
3319 if (!ss.s)
3320 return false;
3321 if (ss.dpl != ss_rpl) /* DPL != RPL */
3322 return false;
3323 if (!ss.present)
3324 return false;
3326 return true;
3329 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3331 struct kvm_segment var;
3332 unsigned int rpl;
3334 vmx_get_segment(vcpu, &var, seg);
3335 rpl = var.selector & SEGMENT_RPL_MASK;
3337 if (var.unusable)
3338 return true;
3339 if (!var.s)
3340 return false;
3341 if (!var.present)
3342 return false;
3343 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3344 if (var.dpl < rpl) /* DPL < RPL */
3345 return false;
3348 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3349 * rights flags
3351 return true;
3354 static bool tr_valid(struct kvm_vcpu *vcpu)
3356 struct kvm_segment tr;
3358 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3360 if (tr.unusable)
3361 return false;
3362 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3363 return false;
3364 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3365 return false;
3366 if (!tr.present)
3367 return false;
3369 return true;
3372 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3374 struct kvm_segment ldtr;
3376 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3378 if (ldtr.unusable)
3379 return true;
3380 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3381 return false;
3382 if (ldtr.type != 2)
3383 return false;
3384 if (!ldtr.present)
3385 return false;
3387 return true;
3390 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3392 struct kvm_segment cs, ss;
3394 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3395 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3397 return ((cs.selector & SEGMENT_RPL_MASK) ==
3398 (ss.selector & SEGMENT_RPL_MASK));
3402 * Check if guest state is valid. Returns true if valid, false if
3403 * not.
3404 * We assume that registers are always usable
3406 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3408 if (enable_unrestricted_guest)
3409 return true;
3411 /* real mode guest state checks */
3412 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3413 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3414 return false;
3415 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3416 return false;
3417 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3418 return false;
3419 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3420 return false;
3421 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3422 return false;
3423 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3424 return false;
3425 } else {
3426 /* protected mode guest state checks */
3427 if (!cs_ss_rpl_check(vcpu))
3428 return false;
3429 if (!code_segment_valid(vcpu))
3430 return false;
3431 if (!stack_segment_valid(vcpu))
3432 return false;
3433 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3434 return false;
3435 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3436 return false;
3437 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3438 return false;
3439 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3440 return false;
3441 if (!tr_valid(vcpu))
3442 return false;
3443 if (!ldtr_valid(vcpu))
3444 return false;
3446 /* TODO:
3447 * - Add checks on RIP
3448 * - Add checks on RFLAGS
3451 return true;
3454 static int init_rmode_tss(struct kvm *kvm)
3456 gfn_t fn;
3457 u16 data = 0;
3458 int idx, r;
3460 idx = srcu_read_lock(&kvm->srcu);
3461 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3462 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3463 if (r < 0)
3464 goto out;
3465 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3466 r = kvm_write_guest_page(kvm, fn++, &data,
3467 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3468 if (r < 0)
3469 goto out;
3470 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3471 if (r < 0)
3472 goto out;
3473 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3474 if (r < 0)
3475 goto out;
3476 data = ~0;
3477 r = kvm_write_guest_page(kvm, fn, &data,
3478 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3479 sizeof(u8));
3480 out:
3481 srcu_read_unlock(&kvm->srcu, idx);
3482 return r;
3485 static int init_rmode_identity_map(struct kvm *kvm)
3487 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3488 int i, r = 0;
3489 kvm_pfn_t identity_map_pfn;
3490 u32 tmp;
3492 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3493 mutex_lock(&kvm->slots_lock);
3495 if (likely(kvm_vmx->ept_identity_pagetable_done))
3496 goto out;
3498 if (!kvm_vmx->ept_identity_map_addr)
3499 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3500 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3502 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3503 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3504 if (r < 0)
3505 goto out;
3507 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3508 if (r < 0)
3509 goto out;
3510 /* Set up identity-mapping pagetable for EPT in real mode */
3511 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3512 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3513 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3514 r = kvm_write_guest_page(kvm, identity_map_pfn,
3515 &tmp, i * sizeof(tmp), sizeof(tmp));
3516 if (r < 0)
3517 goto out;
3519 kvm_vmx->ept_identity_pagetable_done = true;
3521 out:
3522 mutex_unlock(&kvm->slots_lock);
3523 return r;
3526 static void seg_setup(int seg)
3528 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3529 unsigned int ar;
3531 vmcs_write16(sf->selector, 0);
3532 vmcs_writel(sf->base, 0);
3533 vmcs_write32(sf->limit, 0xffff);
3534 ar = 0x93;
3535 if (seg == VCPU_SREG_CS)
3536 ar |= 0x08; /* code segment */
3538 vmcs_write32(sf->ar_bytes, ar);
3541 static int alloc_apic_access_page(struct kvm *kvm)
3543 struct page *page;
3544 int r = 0;
3546 mutex_lock(&kvm->slots_lock);
3547 if (kvm->arch.apic_access_page_done)
3548 goto out;
3549 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3550 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3551 if (r)
3552 goto out;
3554 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3555 if (is_error_page(page)) {
3556 r = -EFAULT;
3557 goto out;
3561 * Do not pin the page in memory, so that memory hot-unplug
3562 * is able to migrate it.
3564 put_page(page);
3565 kvm->arch.apic_access_page_done = true;
3566 out:
3567 mutex_unlock(&kvm->slots_lock);
3568 return r;
3571 int allocate_vpid(void)
3573 int vpid;
3575 if (!enable_vpid)
3576 return 0;
3577 spin_lock(&vmx_vpid_lock);
3578 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3579 if (vpid < VMX_NR_VPIDS)
3580 __set_bit(vpid, vmx_vpid_bitmap);
3581 else
3582 vpid = 0;
3583 spin_unlock(&vmx_vpid_lock);
3584 return vpid;
3587 void free_vpid(int vpid)
3589 if (!enable_vpid || vpid == 0)
3590 return;
3591 spin_lock(&vmx_vpid_lock);
3592 __clear_bit(vpid, vmx_vpid_bitmap);
3593 spin_unlock(&vmx_vpid_lock);
3596 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3597 u32 msr, int type)
3599 int f = sizeof(unsigned long);
3601 if (!cpu_has_vmx_msr_bitmap())
3602 return;
3604 if (static_branch_unlikely(&enable_evmcs))
3605 evmcs_touch_msr_bitmap();
3608 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3609 * have the write-low and read-high bitmap offsets the wrong way round.
3610 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3612 if (msr <= 0x1fff) {
3613 if (type & MSR_TYPE_R)
3614 /* read-low */
3615 __clear_bit(msr, msr_bitmap + 0x000 / f);
3617 if (type & MSR_TYPE_W)
3618 /* write-low */
3619 __clear_bit(msr, msr_bitmap + 0x800 / f);
3621 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3622 msr &= 0x1fff;
3623 if (type & MSR_TYPE_R)
3624 /* read-high */
3625 __clear_bit(msr, msr_bitmap + 0x400 / f);
3627 if (type & MSR_TYPE_W)
3628 /* write-high */
3629 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3634 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3635 u32 msr, int type)
3637 int f = sizeof(unsigned long);
3639 if (!cpu_has_vmx_msr_bitmap())
3640 return;
3642 if (static_branch_unlikely(&enable_evmcs))
3643 evmcs_touch_msr_bitmap();
3646 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3647 * have the write-low and read-high bitmap offsets the wrong way round.
3648 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3650 if (msr <= 0x1fff) {
3651 if (type & MSR_TYPE_R)
3652 /* read-low */
3653 __set_bit(msr, msr_bitmap + 0x000 / f);
3655 if (type & MSR_TYPE_W)
3656 /* write-low */
3657 __set_bit(msr, msr_bitmap + 0x800 / f);
3659 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3660 msr &= 0x1fff;
3661 if (type & MSR_TYPE_R)
3662 /* read-high */
3663 __set_bit(msr, msr_bitmap + 0x400 / f);
3665 if (type & MSR_TYPE_W)
3666 /* write-high */
3667 __set_bit(msr, msr_bitmap + 0xc00 / f);
3672 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3673 u32 msr, int type, bool value)
3675 if (value)
3676 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3677 else
3678 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3681 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3683 u8 mode = 0;
3685 if (cpu_has_secondary_exec_ctrls() &&
3686 (secondary_exec_controls_get(to_vmx(vcpu)) &
3687 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3688 mode |= MSR_BITMAP_MODE_X2APIC;
3689 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3690 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3693 return mode;
3696 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3697 u8 mode)
3699 int msr;
3701 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3702 unsigned word = msr / BITS_PER_LONG;
3703 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3704 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3707 if (mode & MSR_BITMAP_MODE_X2APIC) {
3709 * TPR reads and writes can be virtualized even if virtual interrupt
3710 * delivery is not in use.
3712 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3713 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3714 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3715 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3716 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3721 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3723 struct vcpu_vmx *vmx = to_vmx(vcpu);
3724 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3725 u8 mode = vmx_msr_bitmap_mode(vcpu);
3726 u8 changed = mode ^ vmx->msr_bitmap_mode;
3728 if (!changed)
3729 return;
3731 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3732 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3734 vmx->msr_bitmap_mode = mode;
3737 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3739 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3740 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3741 u32 i;
3743 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3744 MSR_TYPE_RW, flag);
3745 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3746 MSR_TYPE_RW, flag);
3747 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3748 MSR_TYPE_RW, flag);
3749 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3750 MSR_TYPE_RW, flag);
3751 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3752 vmx_set_intercept_for_msr(msr_bitmap,
3753 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3754 vmx_set_intercept_for_msr(msr_bitmap,
3755 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3759 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3761 struct vcpu_vmx *vmx = to_vmx(vcpu);
3762 void *vapic_page;
3763 u32 vppr;
3764 int rvi;
3766 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3767 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3768 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3769 return false;
3771 rvi = vmx_get_rvi();
3773 vapic_page = vmx->nested.virtual_apic_map.hva;
3774 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3776 return ((rvi & 0xf0) > (vppr & 0xf0));
3779 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3780 bool nested)
3782 #ifdef CONFIG_SMP
3783 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3785 if (vcpu->mode == IN_GUEST_MODE) {
3787 * The vector of interrupt to be delivered to vcpu had
3788 * been set in PIR before this function.
3790 * Following cases will be reached in this block, and
3791 * we always send a notification event in all cases as
3792 * explained below.
3794 * Case 1: vcpu keeps in non-root mode. Sending a
3795 * notification event posts the interrupt to vcpu.
3797 * Case 2: vcpu exits to root mode and is still
3798 * runnable. PIR will be synced to vIRR before the
3799 * next vcpu entry. Sending a notification event in
3800 * this case has no effect, as vcpu is not in root
3801 * mode.
3803 * Case 3: vcpu exits to root mode and is blocked.
3804 * vcpu_block() has already synced PIR to vIRR and
3805 * never blocks vcpu if vIRR is not cleared. Therefore,
3806 * a blocked vcpu here does not wait for any requested
3807 * interrupts in PIR, and sending a notification event
3808 * which has no effect is safe here.
3811 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3812 return true;
3814 #endif
3815 return false;
3818 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3819 int vector)
3821 struct vcpu_vmx *vmx = to_vmx(vcpu);
3823 if (is_guest_mode(vcpu) &&
3824 vector == vmx->nested.posted_intr_nv) {
3826 * If a posted intr is not recognized by hardware,
3827 * we will accomplish it in the next vmentry.
3829 vmx->nested.pi_pending = true;
3830 kvm_make_request(KVM_REQ_EVENT, vcpu);
3831 /* the PIR and ON have been set by L1. */
3832 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3833 kvm_vcpu_kick(vcpu);
3834 return 0;
3836 return -1;
3839 * Send interrupt to vcpu via posted interrupt way.
3840 * 1. If target vcpu is running(non-root mode), send posted interrupt
3841 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3842 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3843 * interrupt from PIR in next vmentry.
3845 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3847 struct vcpu_vmx *vmx = to_vmx(vcpu);
3848 int r;
3850 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3851 if (!r)
3852 return 0;
3854 if (!vcpu->arch.apicv_active)
3855 return -1;
3857 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3858 return 0;
3860 /* If a previous notification has sent the IPI, nothing to do. */
3861 if (pi_test_and_set_on(&vmx->pi_desc))
3862 return 0;
3864 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3865 kvm_vcpu_kick(vcpu);
3867 return 0;
3871 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3872 * will not change in the lifetime of the guest.
3873 * Note that host-state that does change is set elsewhere. E.g., host-state
3874 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3876 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3878 u32 low32, high32;
3879 unsigned long tmpl;
3880 unsigned long cr0, cr3, cr4;
3882 cr0 = read_cr0();
3883 WARN_ON(cr0 & X86_CR0_TS);
3884 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
3887 * Save the most likely value for this task's CR3 in the VMCS.
3888 * We can't use __get_current_cr3_fast() because we're not atomic.
3890 cr3 = __read_cr3();
3891 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
3892 vmx->loaded_vmcs->host_state.cr3 = cr3;
3894 /* Save the most likely value for this task's CR4 in the VMCS. */
3895 cr4 = cr4_read_shadow();
3896 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
3897 vmx->loaded_vmcs->host_state.cr4 = cr4;
3899 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3900 #ifdef CONFIG_X86_64
3902 * Load null selectors, so we can avoid reloading them in
3903 * vmx_prepare_switch_to_host(), in case userspace uses
3904 * the null selectors too (the expected case).
3906 vmcs_write16(HOST_DS_SELECTOR, 0);
3907 vmcs_write16(HOST_ES_SELECTOR, 0);
3908 #else
3909 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3910 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3911 #endif
3912 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3913 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3915 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
3917 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3919 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3920 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3921 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3922 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3924 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3925 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3926 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3929 if (cpu_has_load_ia32_efer())
3930 vmcs_write64(HOST_IA32_EFER, host_efer);
3933 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3935 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3936 if (enable_ept)
3937 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3938 if (is_guest_mode(&vmx->vcpu))
3939 vmx->vcpu.arch.cr4_guest_owned_bits &=
3940 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3941 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3944 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3946 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3948 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3949 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3951 if (!enable_vnmi)
3952 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3954 if (!enable_preemption_timer)
3955 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3957 return pin_based_exec_ctrl;
3960 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3962 struct vcpu_vmx *vmx = to_vmx(vcpu);
3964 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3965 if (cpu_has_secondary_exec_ctrls()) {
3966 if (kvm_vcpu_apicv_active(vcpu))
3967 secondary_exec_controls_setbit(vmx,
3968 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3969 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3970 else
3971 secondary_exec_controls_clearbit(vmx,
3972 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3973 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3976 if (cpu_has_vmx_msr_bitmap())
3977 vmx_update_msr_bitmap(vcpu);
3980 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3982 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3984 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3985 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3987 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3988 exec_control &= ~CPU_BASED_TPR_SHADOW;
3989 #ifdef CONFIG_X86_64
3990 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3991 CPU_BASED_CR8_LOAD_EXITING;
3992 #endif
3994 if (!enable_ept)
3995 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3996 CPU_BASED_CR3_LOAD_EXITING |
3997 CPU_BASED_INVLPG_EXITING;
3998 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3999 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4000 CPU_BASED_MONITOR_EXITING);
4001 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4002 exec_control &= ~CPU_BASED_HLT_EXITING;
4003 return exec_control;
4007 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4009 struct kvm_vcpu *vcpu = &vmx->vcpu;
4011 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4013 if (vmx_pt_mode_is_system())
4014 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4015 if (!cpu_need_virtualize_apic_accesses(vcpu))
4016 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4017 if (vmx->vpid == 0)
4018 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4019 if (!enable_ept) {
4020 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4021 enable_unrestricted_guest = 0;
4023 if (!enable_unrestricted_guest)
4024 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4025 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4026 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4027 if (!kvm_vcpu_apicv_active(vcpu))
4028 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4029 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4030 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4032 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4033 * in vmx_set_cr4. */
4034 exec_control &= ~SECONDARY_EXEC_DESC;
4036 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4037 (handle_vmptrld).
4038 We can NOT enable shadow_vmcs here because we don't have yet
4039 a current VMCS12
4041 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4043 if (!enable_pml)
4044 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4046 if (vmx_xsaves_supported()) {
4047 /* Exposing XSAVES only when XSAVE is exposed */
4048 bool xsaves_enabled =
4049 boot_cpu_has(X86_FEATURE_XSAVE) &&
4050 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4051 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4053 vcpu->arch.xsaves_enabled = xsaves_enabled;
4055 if (!xsaves_enabled)
4056 exec_control &= ~SECONDARY_EXEC_XSAVES;
4058 if (nested) {
4059 if (xsaves_enabled)
4060 vmx->nested.msrs.secondary_ctls_high |=
4061 SECONDARY_EXEC_XSAVES;
4062 else
4063 vmx->nested.msrs.secondary_ctls_high &=
4064 ~SECONDARY_EXEC_XSAVES;
4068 if (cpu_has_vmx_rdtscp()) {
4069 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4070 if (!rdtscp_enabled)
4071 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4073 if (nested) {
4074 if (rdtscp_enabled)
4075 vmx->nested.msrs.secondary_ctls_high |=
4076 SECONDARY_EXEC_RDTSCP;
4077 else
4078 vmx->nested.msrs.secondary_ctls_high &=
4079 ~SECONDARY_EXEC_RDTSCP;
4083 if (cpu_has_vmx_invpcid()) {
4084 /* Exposing INVPCID only when PCID is exposed */
4085 bool invpcid_enabled =
4086 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4087 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4089 if (!invpcid_enabled) {
4090 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4091 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4094 if (nested) {
4095 if (invpcid_enabled)
4096 vmx->nested.msrs.secondary_ctls_high |=
4097 SECONDARY_EXEC_ENABLE_INVPCID;
4098 else
4099 vmx->nested.msrs.secondary_ctls_high &=
4100 ~SECONDARY_EXEC_ENABLE_INVPCID;
4104 if (vmx_rdrand_supported()) {
4105 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4106 if (rdrand_enabled)
4107 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4109 if (nested) {
4110 if (rdrand_enabled)
4111 vmx->nested.msrs.secondary_ctls_high |=
4112 SECONDARY_EXEC_RDRAND_EXITING;
4113 else
4114 vmx->nested.msrs.secondary_ctls_high &=
4115 ~SECONDARY_EXEC_RDRAND_EXITING;
4119 if (vmx_rdseed_supported()) {
4120 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4121 if (rdseed_enabled)
4122 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4124 if (nested) {
4125 if (rdseed_enabled)
4126 vmx->nested.msrs.secondary_ctls_high |=
4127 SECONDARY_EXEC_RDSEED_EXITING;
4128 else
4129 vmx->nested.msrs.secondary_ctls_high &=
4130 ~SECONDARY_EXEC_RDSEED_EXITING;
4134 if (vmx_waitpkg_supported()) {
4135 bool waitpkg_enabled =
4136 guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4138 if (!waitpkg_enabled)
4139 exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4141 if (nested) {
4142 if (waitpkg_enabled)
4143 vmx->nested.msrs.secondary_ctls_high |=
4144 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4145 else
4146 vmx->nested.msrs.secondary_ctls_high &=
4147 ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4151 vmx->secondary_exec_control = exec_control;
4154 static void ept_set_mmio_spte_mask(void)
4157 * EPT Misconfigurations can be generated if the value of bits 2:0
4158 * of an EPT paging-structure entry is 110b (write/execute).
4160 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4161 VMX_EPT_MISCONFIG_WX_VALUE, 0);
4164 #define VMX_XSS_EXIT_BITMAP 0
4167 * Noting that the initialization of Guest-state Area of VMCS is in
4168 * vmx_vcpu_reset().
4170 static void init_vmcs(struct vcpu_vmx *vmx)
4172 if (nested)
4173 nested_vmx_set_vmcs_shadowing_bitmap();
4175 if (cpu_has_vmx_msr_bitmap())
4176 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4178 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4180 /* Control */
4181 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4183 exec_controls_set(vmx, vmx_exec_control(vmx));
4185 if (cpu_has_secondary_exec_ctrls()) {
4186 vmx_compute_secondary_exec_control(vmx);
4187 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4190 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4191 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4192 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4193 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4194 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4196 vmcs_write16(GUEST_INTR_STATUS, 0);
4198 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4199 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4202 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4203 vmcs_write32(PLE_GAP, ple_gap);
4204 vmx->ple_window = ple_window;
4205 vmx->ple_window_dirty = true;
4208 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4209 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4210 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4212 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4213 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4214 vmx_set_constant_host_state(vmx);
4215 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4216 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4218 if (cpu_has_vmx_vmfunc())
4219 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4221 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4222 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4223 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4224 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4225 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4227 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4228 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4230 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4232 /* 22.2.1, 20.8.1 */
4233 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4235 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4236 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4238 set_cr4_guest_host_mask(vmx);
4240 if (vmx->vpid != 0)
4241 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4243 if (vmx_xsaves_supported())
4244 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4246 if (enable_pml) {
4247 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4248 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4251 if (cpu_has_vmx_encls_vmexit())
4252 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4254 if (vmx_pt_mode_is_host_guest()) {
4255 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4256 /* Bit[6~0] are forced to 1, writes are ignored. */
4257 vmx->pt_desc.guest.output_mask = 0x7F;
4258 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4262 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4264 struct vcpu_vmx *vmx = to_vmx(vcpu);
4265 struct msr_data apic_base_msr;
4266 u64 cr0;
4268 vmx->rmode.vm86_active = 0;
4269 vmx->spec_ctrl = 0;
4271 vmx->msr_ia32_umwait_control = 0;
4273 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4274 vmx->hv_deadline_tsc = -1;
4275 kvm_set_cr8(vcpu, 0);
4277 if (!init_event) {
4278 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4279 MSR_IA32_APICBASE_ENABLE;
4280 if (kvm_vcpu_is_reset_bsp(vcpu))
4281 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4282 apic_base_msr.host_initiated = true;
4283 kvm_set_apic_base(vcpu, &apic_base_msr);
4286 vmx_segment_cache_clear(vmx);
4288 seg_setup(VCPU_SREG_CS);
4289 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4290 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4292 seg_setup(VCPU_SREG_DS);
4293 seg_setup(VCPU_SREG_ES);
4294 seg_setup(VCPU_SREG_FS);
4295 seg_setup(VCPU_SREG_GS);
4296 seg_setup(VCPU_SREG_SS);
4298 vmcs_write16(GUEST_TR_SELECTOR, 0);
4299 vmcs_writel(GUEST_TR_BASE, 0);
4300 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4301 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4303 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4304 vmcs_writel(GUEST_LDTR_BASE, 0);
4305 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4306 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4308 if (!init_event) {
4309 vmcs_write32(GUEST_SYSENTER_CS, 0);
4310 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4311 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4312 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4315 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4316 kvm_rip_write(vcpu, 0xfff0);
4318 vmcs_writel(GUEST_GDTR_BASE, 0);
4319 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4321 vmcs_writel(GUEST_IDTR_BASE, 0);
4322 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4324 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4325 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4326 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4327 if (kvm_mpx_supported())
4328 vmcs_write64(GUEST_BNDCFGS, 0);
4330 setup_msrs(vmx);
4332 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4334 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4335 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4336 if (cpu_need_tpr_shadow(vcpu))
4337 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4338 __pa(vcpu->arch.apic->regs));
4339 vmcs_write32(TPR_THRESHOLD, 0);
4342 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4344 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4345 vmx->vcpu.arch.cr0 = cr0;
4346 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4347 vmx_set_cr4(vcpu, 0);
4348 vmx_set_efer(vcpu, 0);
4350 update_exception_bitmap(vcpu);
4352 vpid_sync_context(vmx->vpid);
4353 if (init_event)
4354 vmx_clear_hlt(vcpu);
4357 static void enable_irq_window(struct kvm_vcpu *vcpu)
4359 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4362 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4364 if (!enable_vnmi ||
4365 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4366 enable_irq_window(vcpu);
4367 return;
4370 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4373 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4375 struct vcpu_vmx *vmx = to_vmx(vcpu);
4376 uint32_t intr;
4377 int irq = vcpu->arch.interrupt.nr;
4379 trace_kvm_inj_virq(irq);
4381 ++vcpu->stat.irq_injections;
4382 if (vmx->rmode.vm86_active) {
4383 int inc_eip = 0;
4384 if (vcpu->arch.interrupt.soft)
4385 inc_eip = vcpu->arch.event_exit_inst_len;
4386 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4387 return;
4389 intr = irq | INTR_INFO_VALID_MASK;
4390 if (vcpu->arch.interrupt.soft) {
4391 intr |= INTR_TYPE_SOFT_INTR;
4392 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4393 vmx->vcpu.arch.event_exit_inst_len);
4394 } else
4395 intr |= INTR_TYPE_EXT_INTR;
4396 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4398 vmx_clear_hlt(vcpu);
4401 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4403 struct vcpu_vmx *vmx = to_vmx(vcpu);
4405 if (!enable_vnmi) {
4407 * Tracking the NMI-blocked state in software is built upon
4408 * finding the next open IRQ window. This, in turn, depends on
4409 * well-behaving guests: They have to keep IRQs disabled at
4410 * least as long as the NMI handler runs. Otherwise we may
4411 * cause NMI nesting, maybe breaking the guest. But as this is
4412 * highly unlikely, we can live with the residual risk.
4414 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4415 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4418 ++vcpu->stat.nmi_injections;
4419 vmx->loaded_vmcs->nmi_known_unmasked = false;
4421 if (vmx->rmode.vm86_active) {
4422 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4423 return;
4426 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4427 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4429 vmx_clear_hlt(vcpu);
4432 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4434 struct vcpu_vmx *vmx = to_vmx(vcpu);
4435 bool masked;
4437 if (!enable_vnmi)
4438 return vmx->loaded_vmcs->soft_vnmi_blocked;
4439 if (vmx->loaded_vmcs->nmi_known_unmasked)
4440 return false;
4441 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4442 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4443 return masked;
4446 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4448 struct vcpu_vmx *vmx = to_vmx(vcpu);
4450 if (!enable_vnmi) {
4451 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4452 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4453 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4455 } else {
4456 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4457 if (masked)
4458 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4459 GUEST_INTR_STATE_NMI);
4460 else
4461 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4462 GUEST_INTR_STATE_NMI);
4466 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4468 if (to_vmx(vcpu)->nested.nested_run_pending)
4469 return 0;
4471 if (!enable_vnmi &&
4472 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4473 return 0;
4475 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4476 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4477 | GUEST_INTR_STATE_NMI));
4480 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4482 if (to_vmx(vcpu)->nested.nested_run_pending)
4483 return false;
4485 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4486 return true;
4488 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4489 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4490 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4493 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4495 int ret;
4497 if (enable_unrestricted_guest)
4498 return 0;
4500 mutex_lock(&kvm->slots_lock);
4501 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4502 PAGE_SIZE * 3);
4503 mutex_unlock(&kvm->slots_lock);
4505 if (ret)
4506 return ret;
4507 to_kvm_vmx(kvm)->tss_addr = addr;
4508 return init_rmode_tss(kvm);
4511 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4513 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4514 return 0;
4517 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4519 switch (vec) {
4520 case BP_VECTOR:
4522 * Update instruction length as we may reinject the exception
4523 * from user space while in guest debugging mode.
4525 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4526 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4527 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4528 return false;
4529 /* fall through */
4530 case DB_VECTOR:
4531 if (vcpu->guest_debug &
4532 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4533 return false;
4534 /* fall through */
4535 case DE_VECTOR:
4536 case OF_VECTOR:
4537 case BR_VECTOR:
4538 case UD_VECTOR:
4539 case DF_VECTOR:
4540 case SS_VECTOR:
4541 case GP_VECTOR:
4542 case MF_VECTOR:
4543 return true;
4545 return false;
4548 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4549 int vec, u32 err_code)
4552 * Instruction with address size override prefix opcode 0x67
4553 * Cause the #SS fault with 0 error code in VM86 mode.
4555 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4556 if (kvm_emulate_instruction(vcpu, 0)) {
4557 if (vcpu->arch.halt_request) {
4558 vcpu->arch.halt_request = 0;
4559 return kvm_vcpu_halt(vcpu);
4561 return 1;
4563 return 0;
4567 * Forward all other exceptions that are valid in real mode.
4568 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4569 * the required debugging infrastructure rework.
4571 kvm_queue_exception(vcpu, vec);
4572 return 1;
4576 * Trigger machine check on the host. We assume all the MSRs are already set up
4577 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4578 * We pass a fake environment to the machine check handler because we want
4579 * the guest to be always treated like user space, no matter what context
4580 * it used internally.
4582 static void kvm_machine_check(void)
4584 #if defined(CONFIG_X86_MCE)
4585 struct pt_regs regs = {
4586 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4587 .flags = X86_EFLAGS_IF,
4590 do_machine_check(&regs, 0);
4591 #endif
4594 static int handle_machine_check(struct kvm_vcpu *vcpu)
4596 /* handled by vmx_vcpu_run() */
4597 return 1;
4601 * If the host has split lock detection disabled, then #AC is
4602 * unconditionally injected into the guest, which is the pre split lock
4603 * detection behaviour.
4605 * If the host has split lock detection enabled then #AC is
4606 * only injected into the guest when:
4607 * - Guest CPL == 3 (user mode)
4608 * - Guest has #AC detection enabled in CR0
4609 * - Guest EFLAGS has AC bit set
4611 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4613 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4614 return true;
4616 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4617 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4620 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4622 struct vcpu_vmx *vmx = to_vmx(vcpu);
4623 struct kvm_run *kvm_run = vcpu->run;
4624 u32 intr_info, ex_no, error_code;
4625 unsigned long cr2, rip, dr6;
4626 u32 vect_info;
4628 vect_info = vmx->idt_vectoring_info;
4629 intr_info = vmx->exit_intr_info;
4631 if (is_machine_check(intr_info) || is_nmi(intr_info))
4632 return 1; /* handled by handle_exception_nmi_irqoff() */
4634 if (is_invalid_opcode(intr_info))
4635 return handle_ud(vcpu);
4637 error_code = 0;
4638 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4639 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4641 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4642 WARN_ON_ONCE(!enable_vmware_backdoor);
4645 * VMware backdoor emulation on #GP interception only handles
4646 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4647 * error code on #GP.
4649 if (error_code) {
4650 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4651 return 1;
4653 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4657 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4658 * MMIO, it is better to report an internal error.
4659 * See the comments in vmx_handle_exit.
4661 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4662 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4663 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4664 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4665 vcpu->run->internal.ndata = 3;
4666 vcpu->run->internal.data[0] = vect_info;
4667 vcpu->run->internal.data[1] = intr_info;
4668 vcpu->run->internal.data[2] = error_code;
4669 return 0;
4672 if (is_page_fault(intr_info)) {
4673 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4674 /* EPT won't cause page fault directly */
4675 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4676 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4679 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4681 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4682 return handle_rmode_exception(vcpu, ex_no, error_code);
4684 switch (ex_no) {
4685 case DB_VECTOR:
4686 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4687 if (!(vcpu->guest_debug &
4688 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4689 if (is_icebp(intr_info))
4690 WARN_ON(!skip_emulated_instruction(vcpu));
4692 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4693 return 1;
4695 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4696 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4697 /* fall through */
4698 case BP_VECTOR:
4700 * Update instruction length as we may reinject #BP from
4701 * user space while in guest debugging mode. Reading it for
4702 * #DB as well causes no harm, it is not used in that case.
4704 vmx->vcpu.arch.event_exit_inst_len =
4705 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4706 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4707 rip = kvm_rip_read(vcpu);
4708 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4709 kvm_run->debug.arch.exception = ex_no;
4710 break;
4711 case AC_VECTOR:
4712 if (guest_inject_ac(vcpu)) {
4713 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4714 return 1;
4718 * Handle split lock. Depending on detection mode this will
4719 * either warn and disable split lock detection for this
4720 * task or force SIGBUS on it.
4722 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4723 return 1;
4724 fallthrough;
4725 default:
4726 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4727 kvm_run->ex.exception = ex_no;
4728 kvm_run->ex.error_code = error_code;
4729 break;
4731 return 0;
4734 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4736 ++vcpu->stat.irq_exits;
4737 return 1;
4740 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4742 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4743 vcpu->mmio_needed = 0;
4744 return 0;
4747 static int handle_io(struct kvm_vcpu *vcpu)
4749 unsigned long exit_qualification;
4750 int size, in, string;
4751 unsigned port;
4753 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4754 string = (exit_qualification & 16) != 0;
4756 ++vcpu->stat.io_exits;
4758 if (string)
4759 return kvm_emulate_instruction(vcpu, 0);
4761 port = exit_qualification >> 16;
4762 size = (exit_qualification & 7) + 1;
4763 in = (exit_qualification & 8) != 0;
4765 return kvm_fast_pio(vcpu, size, port, in);
4768 static void
4769 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4772 * Patch in the VMCALL instruction:
4774 hypercall[0] = 0x0f;
4775 hypercall[1] = 0x01;
4776 hypercall[2] = 0xc1;
4779 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4780 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4782 if (is_guest_mode(vcpu)) {
4783 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4784 unsigned long orig_val = val;
4787 * We get here when L2 changed cr0 in a way that did not change
4788 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4789 * but did change L0 shadowed bits. So we first calculate the
4790 * effective cr0 value that L1 would like to write into the
4791 * hardware. It consists of the L2-owned bits from the new
4792 * value combined with the L1-owned bits from L1's guest_cr0.
4794 val = (val & ~vmcs12->cr0_guest_host_mask) |
4795 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4797 if (!nested_guest_cr0_valid(vcpu, val))
4798 return 1;
4800 if (kvm_set_cr0(vcpu, val))
4801 return 1;
4802 vmcs_writel(CR0_READ_SHADOW, orig_val);
4803 return 0;
4804 } else {
4805 if (to_vmx(vcpu)->nested.vmxon &&
4806 !nested_host_cr0_valid(vcpu, val))
4807 return 1;
4809 return kvm_set_cr0(vcpu, val);
4813 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4815 if (is_guest_mode(vcpu)) {
4816 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4817 unsigned long orig_val = val;
4819 /* analogously to handle_set_cr0 */
4820 val = (val & ~vmcs12->cr4_guest_host_mask) |
4821 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4822 if (kvm_set_cr4(vcpu, val))
4823 return 1;
4824 vmcs_writel(CR4_READ_SHADOW, orig_val);
4825 return 0;
4826 } else
4827 return kvm_set_cr4(vcpu, val);
4830 static int handle_desc(struct kvm_vcpu *vcpu)
4832 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4833 return kvm_emulate_instruction(vcpu, 0);
4836 static int handle_cr(struct kvm_vcpu *vcpu)
4838 unsigned long exit_qualification, val;
4839 int cr;
4840 int reg;
4841 int err;
4842 int ret;
4844 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4845 cr = exit_qualification & 15;
4846 reg = (exit_qualification >> 8) & 15;
4847 switch ((exit_qualification >> 4) & 3) {
4848 case 0: /* mov to cr */
4849 val = kvm_register_readl(vcpu, reg);
4850 trace_kvm_cr_write(cr, val);
4851 switch (cr) {
4852 case 0:
4853 err = handle_set_cr0(vcpu, val);
4854 return kvm_complete_insn_gp(vcpu, err);
4855 case 3:
4856 WARN_ON_ONCE(enable_unrestricted_guest);
4857 err = kvm_set_cr3(vcpu, val);
4858 return kvm_complete_insn_gp(vcpu, err);
4859 case 4:
4860 err = handle_set_cr4(vcpu, val);
4861 return kvm_complete_insn_gp(vcpu, err);
4862 case 8: {
4863 u8 cr8_prev = kvm_get_cr8(vcpu);
4864 u8 cr8 = (u8)val;
4865 err = kvm_set_cr8(vcpu, cr8);
4866 ret = kvm_complete_insn_gp(vcpu, err);
4867 if (lapic_in_kernel(vcpu))
4868 return ret;
4869 if (cr8_prev <= cr8)
4870 return ret;
4872 * TODO: we might be squashing a
4873 * KVM_GUESTDBG_SINGLESTEP-triggered
4874 * KVM_EXIT_DEBUG here.
4876 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4877 return 0;
4880 break;
4881 case 2: /* clts */
4882 WARN_ONCE(1, "Guest should always own CR0.TS");
4883 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4884 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4885 return kvm_skip_emulated_instruction(vcpu);
4886 case 1: /*mov from cr*/
4887 switch (cr) {
4888 case 3:
4889 WARN_ON_ONCE(enable_unrestricted_guest);
4890 val = kvm_read_cr3(vcpu);
4891 kvm_register_write(vcpu, reg, val);
4892 trace_kvm_cr_read(cr, val);
4893 return kvm_skip_emulated_instruction(vcpu);
4894 case 8:
4895 val = kvm_get_cr8(vcpu);
4896 kvm_register_write(vcpu, reg, val);
4897 trace_kvm_cr_read(cr, val);
4898 return kvm_skip_emulated_instruction(vcpu);
4900 break;
4901 case 3: /* lmsw */
4902 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4903 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4904 kvm_lmsw(vcpu, val);
4906 return kvm_skip_emulated_instruction(vcpu);
4907 default:
4908 break;
4910 vcpu->run->exit_reason = 0;
4911 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4912 (int)(exit_qualification >> 4) & 3, cr);
4913 return 0;
4916 static int handle_dr(struct kvm_vcpu *vcpu)
4918 unsigned long exit_qualification;
4919 int dr, dr7, reg;
4921 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4922 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4924 /* First, if DR does not exist, trigger UD */
4925 if (!kvm_require_dr(vcpu, dr))
4926 return 1;
4928 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4929 if (!kvm_require_cpl(vcpu, 0))
4930 return 1;
4931 dr7 = vmcs_readl(GUEST_DR7);
4932 if (dr7 & DR7_GD) {
4934 * As the vm-exit takes precedence over the debug trap, we
4935 * need to emulate the latter, either for the host or the
4936 * guest debugging itself.
4938 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4939 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
4940 vcpu->run->debug.arch.dr7 = dr7;
4941 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4942 vcpu->run->debug.arch.exception = DB_VECTOR;
4943 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4944 return 0;
4945 } else {
4946 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
4947 return 1;
4951 if (vcpu->guest_debug == 0) {
4952 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4955 * No more DR vmexits; force a reload of the debug registers
4956 * and reenter on this instruction. The next vmexit will
4957 * retrieve the full state of the debug registers.
4959 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4960 return 1;
4963 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4964 if (exit_qualification & TYPE_MOV_FROM_DR) {
4965 unsigned long val;
4967 if (kvm_get_dr(vcpu, dr, &val))
4968 return 1;
4969 kvm_register_write(vcpu, reg, val);
4970 } else
4971 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4972 return 1;
4974 return kvm_skip_emulated_instruction(vcpu);
4977 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4979 get_debugreg(vcpu->arch.db[0], 0);
4980 get_debugreg(vcpu->arch.db[1], 1);
4981 get_debugreg(vcpu->arch.db[2], 2);
4982 get_debugreg(vcpu->arch.db[3], 3);
4983 get_debugreg(vcpu->arch.dr6, 6);
4984 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4986 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4987 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4990 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4992 vmcs_writel(GUEST_DR7, val);
4995 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4997 kvm_apic_update_ppr(vcpu);
4998 return 1;
5001 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5003 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5005 kvm_make_request(KVM_REQ_EVENT, vcpu);
5007 ++vcpu->stat.irq_window_exits;
5008 return 1;
5011 static int handle_vmcall(struct kvm_vcpu *vcpu)
5013 return kvm_emulate_hypercall(vcpu);
5016 static int handle_invd(struct kvm_vcpu *vcpu)
5018 return kvm_emulate_instruction(vcpu, 0);
5021 static int handle_invlpg(struct kvm_vcpu *vcpu)
5023 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5025 kvm_mmu_invlpg(vcpu, exit_qualification);
5026 return kvm_skip_emulated_instruction(vcpu);
5029 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5031 int err;
5033 err = kvm_rdpmc(vcpu);
5034 return kvm_complete_insn_gp(vcpu, err);
5037 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5039 return kvm_emulate_wbinvd(vcpu);
5042 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5044 u64 new_bv = kvm_read_edx_eax(vcpu);
5045 u32 index = kvm_rcx_read(vcpu);
5047 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5048 return kvm_skip_emulated_instruction(vcpu);
5049 return 1;
5052 static int handle_apic_access(struct kvm_vcpu *vcpu)
5054 if (likely(fasteoi)) {
5055 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5056 int access_type, offset;
5058 access_type = exit_qualification & APIC_ACCESS_TYPE;
5059 offset = exit_qualification & APIC_ACCESS_OFFSET;
5061 * Sane guest uses MOV to write EOI, with written value
5062 * not cared. So make a short-circuit here by avoiding
5063 * heavy instruction emulation.
5065 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5066 (offset == APIC_EOI)) {
5067 kvm_lapic_set_eoi(vcpu);
5068 return kvm_skip_emulated_instruction(vcpu);
5071 return kvm_emulate_instruction(vcpu, 0);
5074 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5076 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5077 int vector = exit_qualification & 0xff;
5079 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5080 kvm_apic_set_eoi_accelerated(vcpu, vector);
5081 return 1;
5084 static int handle_apic_write(struct kvm_vcpu *vcpu)
5086 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5087 u32 offset = exit_qualification & 0xfff;
5089 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5090 kvm_apic_write_nodecode(vcpu, offset);
5091 return 1;
5094 static int handle_task_switch(struct kvm_vcpu *vcpu)
5096 struct vcpu_vmx *vmx = to_vmx(vcpu);
5097 unsigned long exit_qualification;
5098 bool has_error_code = false;
5099 u32 error_code = 0;
5100 u16 tss_selector;
5101 int reason, type, idt_v, idt_index;
5103 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5104 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5105 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5107 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5109 reason = (u32)exit_qualification >> 30;
5110 if (reason == TASK_SWITCH_GATE && idt_v) {
5111 switch (type) {
5112 case INTR_TYPE_NMI_INTR:
5113 vcpu->arch.nmi_injected = false;
5114 vmx_set_nmi_mask(vcpu, true);
5115 break;
5116 case INTR_TYPE_EXT_INTR:
5117 case INTR_TYPE_SOFT_INTR:
5118 kvm_clear_interrupt_queue(vcpu);
5119 break;
5120 case INTR_TYPE_HARD_EXCEPTION:
5121 if (vmx->idt_vectoring_info &
5122 VECTORING_INFO_DELIVER_CODE_MASK) {
5123 has_error_code = true;
5124 error_code =
5125 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5127 /* fall through */
5128 case INTR_TYPE_SOFT_EXCEPTION:
5129 kvm_clear_exception_queue(vcpu);
5130 break;
5131 default:
5132 break;
5135 tss_selector = exit_qualification;
5137 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5138 type != INTR_TYPE_EXT_INTR &&
5139 type != INTR_TYPE_NMI_INTR))
5140 WARN_ON(!skip_emulated_instruction(vcpu));
5143 * TODO: What about debug traps on tss switch?
5144 * Are we supposed to inject them and update dr6?
5146 return kvm_task_switch(vcpu, tss_selector,
5147 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5148 reason, has_error_code, error_code);
5151 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5153 unsigned long exit_qualification;
5154 gpa_t gpa;
5155 u64 error_code;
5157 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5160 * EPT violation happened while executing iret from NMI,
5161 * "blocked by NMI" bit has to be set before next VM entry.
5162 * There are errata that may cause this bit to not be set:
5163 * AAK134, BY25.
5165 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5166 enable_vnmi &&
5167 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5168 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5170 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5171 trace_kvm_page_fault(gpa, exit_qualification);
5173 /* Is it a read fault? */
5174 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5175 ? PFERR_USER_MASK : 0;
5176 /* Is it a write fault? */
5177 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5178 ? PFERR_WRITE_MASK : 0;
5179 /* Is it a fetch fault? */
5180 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5181 ? PFERR_FETCH_MASK : 0;
5182 /* ept page table entry is present? */
5183 error_code |= (exit_qualification &
5184 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5185 EPT_VIOLATION_EXECUTABLE))
5186 ? PFERR_PRESENT_MASK : 0;
5188 error_code |= (exit_qualification & 0x100) != 0 ?
5189 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5191 vcpu->arch.exit_qualification = exit_qualification;
5192 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5195 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5197 gpa_t gpa;
5200 * A nested guest cannot optimize MMIO vmexits, because we have an
5201 * nGPA here instead of the required GPA.
5203 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5204 if (!is_guest_mode(vcpu) &&
5205 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5206 trace_kvm_fast_mmio(gpa);
5207 return kvm_skip_emulated_instruction(vcpu);
5210 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5213 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5215 WARN_ON_ONCE(!enable_vnmi);
5216 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5217 ++vcpu->stat.nmi_window_exits;
5218 kvm_make_request(KVM_REQ_EVENT, vcpu);
5220 return 1;
5223 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5225 struct vcpu_vmx *vmx = to_vmx(vcpu);
5226 bool intr_window_requested;
5227 unsigned count = 130;
5230 * We should never reach the point where we are emulating L2
5231 * due to invalid guest state as that means we incorrectly
5232 * allowed a nested VMEntry with an invalid vmcs12.
5234 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5236 intr_window_requested = exec_controls_get(vmx) &
5237 CPU_BASED_INTR_WINDOW_EXITING;
5239 while (vmx->emulation_required && count-- != 0) {
5240 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5241 return handle_interrupt_window(&vmx->vcpu);
5243 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5244 return 1;
5246 if (!kvm_emulate_instruction(vcpu, 0))
5247 return 0;
5249 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5250 vcpu->arch.exception.pending) {
5251 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5252 vcpu->run->internal.suberror =
5253 KVM_INTERNAL_ERROR_EMULATION;
5254 vcpu->run->internal.ndata = 0;
5255 return 0;
5258 if (vcpu->arch.halt_request) {
5259 vcpu->arch.halt_request = 0;
5260 return kvm_vcpu_halt(vcpu);
5264 * Note, return 1 and not 0, vcpu_run() is responsible for
5265 * morphing the pending signal into the proper return code.
5267 if (signal_pending(current))
5268 return 1;
5270 if (need_resched())
5271 schedule();
5274 return 1;
5277 static void grow_ple_window(struct kvm_vcpu *vcpu)
5279 struct vcpu_vmx *vmx = to_vmx(vcpu);
5280 unsigned int old = vmx->ple_window;
5282 vmx->ple_window = __grow_ple_window(old, ple_window,
5283 ple_window_grow,
5284 ple_window_max);
5286 if (vmx->ple_window != old) {
5287 vmx->ple_window_dirty = true;
5288 trace_kvm_ple_window_update(vcpu->vcpu_id,
5289 vmx->ple_window, old);
5293 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5295 struct vcpu_vmx *vmx = to_vmx(vcpu);
5296 unsigned int old = vmx->ple_window;
5298 vmx->ple_window = __shrink_ple_window(old, ple_window,
5299 ple_window_shrink,
5300 ple_window);
5302 if (vmx->ple_window != old) {
5303 vmx->ple_window_dirty = true;
5304 trace_kvm_ple_window_update(vcpu->vcpu_id,
5305 vmx->ple_window, old);
5310 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5312 static void wakeup_handler(void)
5314 struct kvm_vcpu *vcpu;
5315 int cpu = smp_processor_id();
5317 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5318 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5319 blocked_vcpu_list) {
5320 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5322 if (pi_test_on(pi_desc) == 1)
5323 kvm_vcpu_kick(vcpu);
5325 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5328 static void vmx_enable_tdp(void)
5330 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5331 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5332 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5333 0ull, VMX_EPT_EXECUTABLE_MASK,
5334 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5335 VMX_EPT_RWX_MASK, 0ull);
5337 ept_set_mmio_spte_mask();
5341 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5342 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5344 static int handle_pause(struct kvm_vcpu *vcpu)
5346 if (!kvm_pause_in_guest(vcpu->kvm))
5347 grow_ple_window(vcpu);
5350 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5351 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5352 * never set PAUSE_EXITING and just set PLE if supported,
5353 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5355 kvm_vcpu_on_spin(vcpu, true);
5356 return kvm_skip_emulated_instruction(vcpu);
5359 static int handle_nop(struct kvm_vcpu *vcpu)
5361 return kvm_skip_emulated_instruction(vcpu);
5364 static int handle_mwait(struct kvm_vcpu *vcpu)
5366 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5367 return handle_nop(vcpu);
5370 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5372 kvm_queue_exception(vcpu, UD_VECTOR);
5373 return 1;
5376 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5378 return 1;
5381 static int handle_monitor(struct kvm_vcpu *vcpu)
5383 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5384 return handle_nop(vcpu);
5387 static int handle_invpcid(struct kvm_vcpu *vcpu)
5389 u32 vmx_instruction_info;
5390 unsigned long type;
5391 bool pcid_enabled;
5392 gva_t gva;
5393 struct x86_exception e;
5394 unsigned i;
5395 unsigned long roots_to_free = 0;
5396 struct {
5397 u64 pcid;
5398 u64 gla;
5399 } operand;
5401 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5402 kvm_queue_exception(vcpu, UD_VECTOR);
5403 return 1;
5406 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5407 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5409 if (type > 3) {
5410 kvm_inject_gp(vcpu, 0);
5411 return 1;
5414 /* According to the Intel instruction reference, the memory operand
5415 * is read even if it isn't needed (e.g., for type==all)
5417 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5418 vmx_instruction_info, false,
5419 sizeof(operand), &gva))
5420 return 1;
5422 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5423 kvm_inject_page_fault(vcpu, &e);
5424 return 1;
5427 if (operand.pcid >> 12 != 0) {
5428 kvm_inject_gp(vcpu, 0);
5429 return 1;
5432 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5434 switch (type) {
5435 case INVPCID_TYPE_INDIV_ADDR:
5436 if ((!pcid_enabled && (operand.pcid != 0)) ||
5437 is_noncanonical_address(operand.gla, vcpu)) {
5438 kvm_inject_gp(vcpu, 0);
5439 return 1;
5441 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5442 return kvm_skip_emulated_instruction(vcpu);
5444 case INVPCID_TYPE_SINGLE_CTXT:
5445 if (!pcid_enabled && (operand.pcid != 0)) {
5446 kvm_inject_gp(vcpu, 0);
5447 return 1;
5450 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5451 kvm_mmu_sync_roots(vcpu);
5452 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5455 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5456 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5457 == operand.pcid)
5458 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5460 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5462 * If neither the current cr3 nor any of the prev_roots use the
5463 * given PCID, then nothing needs to be done here because a
5464 * resync will happen anyway before switching to any other CR3.
5467 return kvm_skip_emulated_instruction(vcpu);
5469 case INVPCID_TYPE_ALL_NON_GLOBAL:
5471 * Currently, KVM doesn't mark global entries in the shadow
5472 * page tables, so a non-global flush just degenerates to a
5473 * global flush. If needed, we could optimize this later by
5474 * keeping track of global entries in shadow page tables.
5477 /* fall-through */
5478 case INVPCID_TYPE_ALL_INCL_GLOBAL:
5479 kvm_mmu_unload(vcpu);
5480 return kvm_skip_emulated_instruction(vcpu);
5482 default:
5483 BUG(); /* We have already checked above that type <= 3 */
5487 static int handle_pml_full(struct kvm_vcpu *vcpu)
5489 unsigned long exit_qualification;
5491 trace_kvm_pml_full(vcpu->vcpu_id);
5493 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5496 * PML buffer FULL happened while executing iret from NMI,
5497 * "blocked by NMI" bit has to be set before next VM entry.
5499 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5500 enable_vnmi &&
5501 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5502 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5503 GUEST_INTR_STATE_NMI);
5506 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5507 * here.., and there's no userspace involvement needed for PML.
5509 return 1;
5512 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5514 struct vcpu_vmx *vmx = to_vmx(vcpu);
5516 if (!vmx->req_immediate_exit &&
5517 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5518 kvm_lapic_expired_hv_timer(vcpu);
5520 return 1;
5524 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5525 * are overwritten by nested_vmx_setup() when nested=1.
5527 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5529 kvm_queue_exception(vcpu, UD_VECTOR);
5530 return 1;
5533 static int handle_encls(struct kvm_vcpu *vcpu)
5536 * SGX virtualization is not yet supported. There is no software
5537 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5538 * to prevent the guest from executing ENCLS.
5540 kvm_queue_exception(vcpu, UD_VECTOR);
5541 return 1;
5545 * The exit handlers return 1 if the exit was handled fully and guest execution
5546 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5547 * to be done to userspace and return 0.
5549 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5550 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5551 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5552 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5553 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5554 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5555 [EXIT_REASON_CR_ACCESS] = handle_cr,
5556 [EXIT_REASON_DR_ACCESS] = handle_dr,
5557 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5558 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5559 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5560 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5561 [EXIT_REASON_HLT] = kvm_emulate_halt,
5562 [EXIT_REASON_INVD] = handle_invd,
5563 [EXIT_REASON_INVLPG] = handle_invlpg,
5564 [EXIT_REASON_RDPMC] = handle_rdpmc,
5565 [EXIT_REASON_VMCALL] = handle_vmcall,
5566 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5567 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5568 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5569 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5570 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5571 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5572 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5573 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5574 [EXIT_REASON_VMON] = handle_vmx_instruction,
5575 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5576 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5577 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5578 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5579 [EXIT_REASON_WBINVD] = handle_wbinvd,
5580 [EXIT_REASON_XSETBV] = handle_xsetbv,
5581 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5582 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5583 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5584 [EXIT_REASON_LDTR_TR] = handle_desc,
5585 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5586 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5587 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5588 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5589 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5590 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5591 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5592 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5593 [EXIT_REASON_RDRAND] = handle_invalid_op,
5594 [EXIT_REASON_RDSEED] = handle_invalid_op,
5595 [EXIT_REASON_PML_FULL] = handle_pml_full,
5596 [EXIT_REASON_INVPCID] = handle_invpcid,
5597 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5598 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5599 [EXIT_REASON_ENCLS] = handle_encls,
5602 static const int kvm_vmx_max_exit_handlers =
5603 ARRAY_SIZE(kvm_vmx_exit_handlers);
5605 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5607 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5608 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5611 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5613 if (vmx->pml_pg) {
5614 __free_page(vmx->pml_pg);
5615 vmx->pml_pg = NULL;
5619 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5621 struct vcpu_vmx *vmx = to_vmx(vcpu);
5622 u64 *pml_buf;
5623 u16 pml_idx;
5625 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5627 /* Do nothing if PML buffer is empty */
5628 if (pml_idx == (PML_ENTITY_NUM - 1))
5629 return;
5631 /* PML index always points to next available PML buffer entity */
5632 if (pml_idx >= PML_ENTITY_NUM)
5633 pml_idx = 0;
5634 else
5635 pml_idx++;
5637 pml_buf = page_address(vmx->pml_pg);
5638 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5639 u64 gpa;
5641 gpa = pml_buf[pml_idx];
5642 WARN_ON(gpa & (PAGE_SIZE - 1));
5643 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5646 /* reset PML index */
5647 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5651 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5652 * Called before reporting dirty_bitmap to userspace.
5654 static void kvm_flush_pml_buffers(struct kvm *kvm)
5656 int i;
5657 struct kvm_vcpu *vcpu;
5659 * We only need to kick vcpu out of guest mode here, as PML buffer
5660 * is flushed at beginning of all VMEXITs, and it's obvious that only
5661 * vcpus running in guest are possible to have unflushed GPAs in PML
5662 * buffer.
5664 kvm_for_each_vcpu(i, vcpu, kvm)
5665 kvm_vcpu_kick(vcpu);
5668 static void vmx_dump_sel(char *name, uint32_t sel)
5670 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5671 name, vmcs_read16(sel),
5672 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5673 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5674 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5677 static void vmx_dump_dtsel(char *name, uint32_t limit)
5679 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5680 name, vmcs_read32(limit),
5681 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5684 void dump_vmcs(void)
5686 u32 vmentry_ctl, vmexit_ctl;
5687 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5688 unsigned long cr4;
5689 u64 efer;
5690 int i, n;
5692 if (!dump_invalid_vmcs) {
5693 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5694 return;
5697 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5698 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5699 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5700 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5701 cr4 = vmcs_readl(GUEST_CR4);
5702 efer = vmcs_read64(GUEST_IA32_EFER);
5703 secondary_exec_control = 0;
5704 if (cpu_has_secondary_exec_ctrls())
5705 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5707 pr_err("*** Guest State ***\n");
5708 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5709 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5710 vmcs_readl(CR0_GUEST_HOST_MASK));
5711 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5712 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5713 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5714 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5715 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5717 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5718 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5719 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5720 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5722 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5723 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5724 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5725 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5726 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5727 vmcs_readl(GUEST_SYSENTER_ESP),
5728 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5729 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5730 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5731 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5732 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5733 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5734 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5735 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5736 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5737 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5738 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5739 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5740 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5741 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5742 efer, vmcs_read64(GUEST_IA32_PAT));
5743 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5744 vmcs_read64(GUEST_IA32_DEBUGCTL),
5745 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5746 if (cpu_has_load_perf_global_ctrl() &&
5747 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5748 pr_err("PerfGlobCtl = 0x%016llx\n",
5749 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5750 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5751 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5752 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5753 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5754 vmcs_read32(GUEST_ACTIVITY_STATE));
5755 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5756 pr_err("InterruptStatus = %04x\n",
5757 vmcs_read16(GUEST_INTR_STATUS));
5759 pr_err("*** Host State ***\n");
5760 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5761 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5762 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5763 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5764 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5765 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5766 vmcs_read16(HOST_TR_SELECTOR));
5767 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5768 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5769 vmcs_readl(HOST_TR_BASE));
5770 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5771 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5772 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5773 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5774 vmcs_readl(HOST_CR4));
5775 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5776 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5777 vmcs_read32(HOST_IA32_SYSENTER_CS),
5778 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5779 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5780 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5781 vmcs_read64(HOST_IA32_EFER),
5782 vmcs_read64(HOST_IA32_PAT));
5783 if (cpu_has_load_perf_global_ctrl() &&
5784 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5785 pr_err("PerfGlobCtl = 0x%016llx\n",
5786 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5788 pr_err("*** Control State ***\n");
5789 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5790 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5791 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5792 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5793 vmcs_read32(EXCEPTION_BITMAP),
5794 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5795 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5796 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5797 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5798 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5799 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5800 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5801 vmcs_read32(VM_EXIT_INTR_INFO),
5802 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5803 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5804 pr_err(" reason=%08x qualification=%016lx\n",
5805 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5806 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5807 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5808 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5809 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5810 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5811 pr_err("TSC Multiplier = 0x%016llx\n",
5812 vmcs_read64(TSC_MULTIPLIER));
5813 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5814 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5815 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5816 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5818 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5819 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5820 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5821 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5823 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5824 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5825 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5826 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5827 n = vmcs_read32(CR3_TARGET_COUNT);
5828 for (i = 0; i + 1 < n; i += 4)
5829 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5830 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5831 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5832 if (i < n)
5833 pr_err("CR3 target%u=%016lx\n",
5834 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5835 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5836 pr_err("PLE Gap=%08x Window=%08x\n",
5837 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5838 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5839 pr_err("Virtual processor ID = 0x%04x\n",
5840 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5844 * The guest has exited. See if we can fix it or if we need userspace
5845 * assistance.
5847 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5848 enum exit_fastpath_completion exit_fastpath)
5850 struct vcpu_vmx *vmx = to_vmx(vcpu);
5851 u32 exit_reason = vmx->exit_reason;
5852 u32 vectoring_info = vmx->idt_vectoring_info;
5854 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5857 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5858 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5859 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5860 * mode as if vcpus is in root mode, the PML buffer must has been
5861 * flushed already.
5863 if (enable_pml)
5864 vmx_flush_pml_buffer(vcpu);
5866 /* If guest state is invalid, start emulating */
5867 if (vmx->emulation_required)
5868 return handle_invalid_guest_state(vcpu);
5870 if (is_guest_mode(vcpu)) {
5872 * The host physical addresses of some pages of guest memory
5873 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5874 * Page). The CPU may write to these pages via their host
5875 * physical address while L2 is running, bypassing any
5876 * address-translation-based dirty tracking (e.g. EPT write
5877 * protection).
5879 * Mark them dirty on every exit from L2 to prevent them from
5880 * getting out of sync with dirty tracking.
5882 nested_mark_vmcs12_pages_dirty(vcpu);
5884 if (nested_vmx_exit_reflected(vcpu, exit_reason))
5885 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5888 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5889 dump_vmcs();
5890 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5891 vcpu->run->fail_entry.hardware_entry_failure_reason
5892 = exit_reason;
5893 return 0;
5896 if (unlikely(vmx->fail)) {
5897 dump_vmcs();
5898 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5899 vcpu->run->fail_entry.hardware_entry_failure_reason
5900 = vmcs_read32(VM_INSTRUCTION_ERROR);
5901 return 0;
5905 * Note:
5906 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5907 * delivery event since it indicates guest is accessing MMIO.
5908 * The vm-exit can be triggered again after return to guest that
5909 * will cause infinite loop.
5911 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5912 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5913 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5914 exit_reason != EXIT_REASON_PML_FULL &&
5915 exit_reason != EXIT_REASON_TASK_SWITCH)) {
5916 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5917 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5918 vcpu->run->internal.ndata = 3;
5919 vcpu->run->internal.data[0] = vectoring_info;
5920 vcpu->run->internal.data[1] = exit_reason;
5921 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5922 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5923 vcpu->run->internal.ndata++;
5924 vcpu->run->internal.data[3] =
5925 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5927 return 0;
5930 if (unlikely(!enable_vnmi &&
5931 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5932 if (vmx_interrupt_allowed(vcpu)) {
5933 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5934 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5935 vcpu->arch.nmi_pending) {
5937 * This CPU don't support us in finding the end of an
5938 * NMI-blocked window if the guest runs with IRQs
5939 * disabled. So we pull the trigger after 1 s of
5940 * futile waiting, but inform the user about this.
5942 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5943 "state on VCPU %d after 1 s timeout\n",
5944 __func__, vcpu->vcpu_id);
5945 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5949 if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5950 kvm_skip_emulated_instruction(vcpu);
5951 return 1;
5954 if (exit_reason >= kvm_vmx_max_exit_handlers)
5955 goto unexpected_vmexit;
5956 #ifdef CONFIG_RETPOLINE
5957 if (exit_reason == EXIT_REASON_MSR_WRITE)
5958 return kvm_emulate_wrmsr(vcpu);
5959 else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5960 return handle_preemption_timer(vcpu);
5961 else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
5962 return handle_interrupt_window(vcpu);
5963 else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
5964 return handle_external_interrupt(vcpu);
5965 else if (exit_reason == EXIT_REASON_HLT)
5966 return kvm_emulate_halt(vcpu);
5967 else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
5968 return handle_ept_misconfig(vcpu);
5969 #endif
5971 exit_reason = array_index_nospec(exit_reason,
5972 kvm_vmx_max_exit_handlers);
5973 if (!kvm_vmx_exit_handlers[exit_reason])
5974 goto unexpected_vmexit;
5976 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5978 unexpected_vmexit:
5979 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
5980 dump_vmcs();
5981 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5982 vcpu->run->internal.suberror =
5983 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5984 vcpu->run->internal.ndata = 1;
5985 vcpu->run->internal.data[0] = exit_reason;
5986 return 0;
5990 * Software based L1D cache flush which is used when microcode providing
5991 * the cache control MSR is not loaded.
5993 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5994 * flush it is required to read in 64 KiB because the replacement algorithm
5995 * is not exactly LRU. This could be sized at runtime via topology
5996 * information but as all relevant affected CPUs have 32KiB L1D cache size
5997 * there is no point in doing so.
5999 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6001 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6004 * This code is only executed when the the flush mode is 'cond' or
6005 * 'always'
6007 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6008 bool flush_l1d;
6011 * Clear the per-vcpu flush bit, it gets set again
6012 * either from vcpu_run() or from one of the unsafe
6013 * VMEXIT handlers.
6015 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6016 vcpu->arch.l1tf_flush_l1d = false;
6019 * Clear the per-cpu flush bit, it gets set again from
6020 * the interrupt handlers.
6022 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6023 kvm_clear_cpu_l1tf_flush_l1d();
6025 if (!flush_l1d)
6026 return;
6029 vcpu->stat.l1d_flush++;
6031 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6032 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6033 return;
6036 asm volatile(
6037 /* First ensure the pages are in the TLB */
6038 "xorl %%eax, %%eax\n"
6039 ".Lpopulate_tlb:\n\t"
6040 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6041 "addl $4096, %%eax\n\t"
6042 "cmpl %%eax, %[size]\n\t"
6043 "jne .Lpopulate_tlb\n\t"
6044 "xorl %%eax, %%eax\n\t"
6045 "cpuid\n\t"
6046 /* Now fill the cache */
6047 "xorl %%eax, %%eax\n"
6048 ".Lfill_cache:\n"
6049 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6050 "addl $64, %%eax\n\t"
6051 "cmpl %%eax, %[size]\n\t"
6052 "jne .Lfill_cache\n\t"
6053 "lfence\n"
6054 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6055 [size] "r" (size)
6056 : "eax", "ebx", "ecx", "edx");
6059 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6061 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6062 int tpr_threshold;
6064 if (is_guest_mode(vcpu) &&
6065 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6066 return;
6068 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6069 if (is_guest_mode(vcpu))
6070 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6071 else
6072 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6075 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6077 struct vcpu_vmx *vmx = to_vmx(vcpu);
6078 u32 sec_exec_control;
6080 if (!lapic_in_kernel(vcpu))
6081 return;
6083 if (!flexpriority_enabled &&
6084 !cpu_has_vmx_virtualize_x2apic_mode())
6085 return;
6087 /* Postpone execution until vmcs01 is the current VMCS. */
6088 if (is_guest_mode(vcpu)) {
6089 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6090 return;
6093 sec_exec_control = secondary_exec_controls_get(vmx);
6094 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6095 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6097 switch (kvm_get_apic_mode(vcpu)) {
6098 case LAPIC_MODE_INVALID:
6099 WARN_ONCE(true, "Invalid local APIC state");
6100 case LAPIC_MODE_DISABLED:
6101 break;
6102 case LAPIC_MODE_XAPIC:
6103 if (flexpriority_enabled) {
6104 sec_exec_control |=
6105 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6106 vmx_flush_tlb(vcpu, true);
6108 break;
6109 case LAPIC_MODE_X2APIC:
6110 if (cpu_has_vmx_virtualize_x2apic_mode())
6111 sec_exec_control |=
6112 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6113 break;
6115 secondary_exec_controls_set(vmx, sec_exec_control);
6117 vmx_update_msr_bitmap(vcpu);
6120 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6122 if (!is_guest_mode(vcpu)) {
6123 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6124 vmx_flush_tlb(vcpu, true);
6128 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6130 u16 status;
6131 u8 old;
6133 if (max_isr == -1)
6134 max_isr = 0;
6136 status = vmcs_read16(GUEST_INTR_STATUS);
6137 old = status >> 8;
6138 if (max_isr != old) {
6139 status &= 0xff;
6140 status |= max_isr << 8;
6141 vmcs_write16(GUEST_INTR_STATUS, status);
6145 static void vmx_set_rvi(int vector)
6147 u16 status;
6148 u8 old;
6150 if (vector == -1)
6151 vector = 0;
6153 status = vmcs_read16(GUEST_INTR_STATUS);
6154 old = (u8)status & 0xff;
6155 if ((u8)vector != old) {
6156 status &= ~0xff;
6157 status |= (u8)vector;
6158 vmcs_write16(GUEST_INTR_STATUS, status);
6162 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6165 * When running L2, updating RVI is only relevant when
6166 * vmcs12 virtual-interrupt-delivery enabled.
6167 * However, it can be enabled only when L1 also
6168 * intercepts external-interrupts and in that case
6169 * we should not update vmcs02 RVI but instead intercept
6170 * interrupt. Therefore, do nothing when running L2.
6172 if (!is_guest_mode(vcpu))
6173 vmx_set_rvi(max_irr);
6176 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6178 struct vcpu_vmx *vmx = to_vmx(vcpu);
6179 int max_irr;
6180 bool max_irr_updated;
6182 WARN_ON(!vcpu->arch.apicv_active);
6183 if (pi_test_on(&vmx->pi_desc)) {
6184 pi_clear_on(&vmx->pi_desc);
6186 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6187 * But on x86 this is just a compiler barrier anyway.
6189 smp_mb__after_atomic();
6190 max_irr_updated =
6191 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6194 * If we are running L2 and L1 has a new pending interrupt
6195 * which can be injected, we should re-evaluate
6196 * what should be done with this new L1 interrupt.
6197 * If L1 intercepts external-interrupts, we should
6198 * exit from L2 to L1. Otherwise, interrupt should be
6199 * delivered directly to L2.
6201 if (is_guest_mode(vcpu) && max_irr_updated) {
6202 if (nested_exit_on_intr(vcpu))
6203 kvm_vcpu_exiting_guest_mode(vcpu);
6204 else
6205 kvm_make_request(KVM_REQ_EVENT, vcpu);
6207 } else {
6208 max_irr = kvm_lapic_find_highest_irr(vcpu);
6210 vmx_hwapic_irr_update(vcpu, max_irr);
6211 return max_irr;
6214 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6216 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6218 return pi_test_on(pi_desc) ||
6219 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6222 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6224 if (!kvm_vcpu_apicv_active(vcpu))
6225 return;
6227 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6228 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6229 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6230 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6233 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6235 struct vcpu_vmx *vmx = to_vmx(vcpu);
6237 pi_clear_on(&vmx->pi_desc);
6238 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6241 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6243 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6245 /* if exit due to PF check for async PF */
6246 if (is_page_fault(vmx->exit_intr_info)) {
6247 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6248 /* Handle machine checks before interrupts are enabled */
6249 } else if (is_machine_check(vmx->exit_intr_info)) {
6250 kvm_machine_check();
6251 /* We need to handle NMIs before interrupts are enabled */
6252 } else if (is_nmi(vmx->exit_intr_info)) {
6253 kvm_before_interrupt(&vmx->vcpu);
6254 asm("int $2");
6255 kvm_after_interrupt(&vmx->vcpu);
6259 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6261 unsigned int vector;
6262 unsigned long entry;
6263 #ifdef CONFIG_X86_64
6264 unsigned long tmp;
6265 #endif
6266 gate_desc *desc;
6267 u32 intr_info;
6269 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6270 if (WARN_ONCE(!is_external_intr(intr_info),
6271 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6272 return;
6274 vector = intr_info & INTR_INFO_VECTOR_MASK;
6275 desc = (gate_desc *)host_idt_base + vector;
6276 entry = gate_offset(desc);
6278 kvm_before_interrupt(vcpu);
6280 asm volatile(
6281 #ifdef CONFIG_X86_64
6282 "mov %%" _ASM_SP ", %[sp]\n\t"
6283 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6284 "push $%c[ss]\n\t"
6285 "push %[sp]\n\t"
6286 #endif
6287 "pushf\n\t"
6288 __ASM_SIZE(push) " $%c[cs]\n\t"
6289 CALL_NOSPEC
6291 #ifdef CONFIG_X86_64
6292 [sp]"=&r"(tmp),
6293 #endif
6294 ASM_CALL_CONSTRAINT
6296 [thunk_target]"r"(entry),
6297 [ss]"i"(__KERNEL_DS),
6298 [cs]"i"(__KERNEL_CS)
6301 kvm_after_interrupt(vcpu);
6303 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6305 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu,
6306 enum exit_fastpath_completion *exit_fastpath)
6308 struct vcpu_vmx *vmx = to_vmx(vcpu);
6310 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6311 handle_external_interrupt_irqoff(vcpu);
6312 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6313 handle_exception_nmi_irqoff(vmx);
6314 else if (!is_guest_mode(vcpu) &&
6315 vmx->exit_reason == EXIT_REASON_MSR_WRITE)
6316 *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6319 static bool vmx_has_emulated_msr(int index)
6321 switch (index) {
6322 case MSR_IA32_SMBASE:
6324 * We cannot do SMM unless we can run the guest in big
6325 * real mode.
6327 return enable_unrestricted_guest || emulate_invalid_guest_state;
6328 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6329 return nested;
6330 case MSR_AMD64_VIRT_SPEC_CTRL:
6331 /* This is AMD only. */
6332 return false;
6333 default:
6334 return true;
6338 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6340 u32 exit_intr_info;
6341 bool unblock_nmi;
6342 u8 vector;
6343 bool idtv_info_valid;
6345 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6347 if (enable_vnmi) {
6348 if (vmx->loaded_vmcs->nmi_known_unmasked)
6349 return;
6351 * Can't use vmx->exit_intr_info since we're not sure what
6352 * the exit reason is.
6354 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6355 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6356 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6358 * SDM 3: 27.7.1.2 (September 2008)
6359 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6360 * a guest IRET fault.
6361 * SDM 3: 23.2.2 (September 2008)
6362 * Bit 12 is undefined in any of the following cases:
6363 * If the VM exit sets the valid bit in the IDT-vectoring
6364 * information field.
6365 * If the VM exit is due to a double fault.
6367 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6368 vector != DF_VECTOR && !idtv_info_valid)
6369 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6370 GUEST_INTR_STATE_NMI);
6371 else
6372 vmx->loaded_vmcs->nmi_known_unmasked =
6373 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6374 & GUEST_INTR_STATE_NMI);
6375 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6376 vmx->loaded_vmcs->vnmi_blocked_time +=
6377 ktime_to_ns(ktime_sub(ktime_get(),
6378 vmx->loaded_vmcs->entry_time));
6381 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6382 u32 idt_vectoring_info,
6383 int instr_len_field,
6384 int error_code_field)
6386 u8 vector;
6387 int type;
6388 bool idtv_info_valid;
6390 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6392 vcpu->arch.nmi_injected = false;
6393 kvm_clear_exception_queue(vcpu);
6394 kvm_clear_interrupt_queue(vcpu);
6396 if (!idtv_info_valid)
6397 return;
6399 kvm_make_request(KVM_REQ_EVENT, vcpu);
6401 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6402 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6404 switch (type) {
6405 case INTR_TYPE_NMI_INTR:
6406 vcpu->arch.nmi_injected = true;
6408 * SDM 3: 27.7.1.2 (September 2008)
6409 * Clear bit "block by NMI" before VM entry if a NMI
6410 * delivery faulted.
6412 vmx_set_nmi_mask(vcpu, false);
6413 break;
6414 case INTR_TYPE_SOFT_EXCEPTION:
6415 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6416 /* fall through */
6417 case INTR_TYPE_HARD_EXCEPTION:
6418 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6419 u32 err = vmcs_read32(error_code_field);
6420 kvm_requeue_exception_e(vcpu, vector, err);
6421 } else
6422 kvm_requeue_exception(vcpu, vector);
6423 break;
6424 case INTR_TYPE_SOFT_INTR:
6425 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6426 /* fall through */
6427 case INTR_TYPE_EXT_INTR:
6428 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6429 break;
6430 default:
6431 break;
6435 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6437 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6438 VM_EXIT_INSTRUCTION_LEN,
6439 IDT_VECTORING_ERROR_CODE);
6442 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6444 __vmx_complete_interrupts(vcpu,
6445 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6446 VM_ENTRY_INSTRUCTION_LEN,
6447 VM_ENTRY_EXCEPTION_ERROR_CODE);
6449 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6452 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6454 int i, nr_msrs;
6455 struct perf_guest_switch_msr *msrs;
6457 msrs = perf_guest_get_msrs(&nr_msrs);
6459 if (!msrs)
6460 return;
6462 for (i = 0; i < nr_msrs; i++)
6463 if (msrs[i].host == msrs[i].guest)
6464 clear_atomic_switch_msr(vmx, msrs[i].msr);
6465 else
6466 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6467 msrs[i].host, false);
6470 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6472 struct vcpu_vmx *vmx = to_vmx(vcpu);
6473 u64 tscl;
6474 u32 delta_tsc;
6476 if (vmx->req_immediate_exit) {
6477 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6478 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6479 } else if (vmx->hv_deadline_tsc != -1) {
6480 tscl = rdtsc();
6481 if (vmx->hv_deadline_tsc > tscl)
6482 /* set_hv_timer ensures the delta fits in 32-bits */
6483 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6484 cpu_preemption_timer_multi);
6485 else
6486 delta_tsc = 0;
6488 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6489 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6490 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6491 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6492 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6496 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6498 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6499 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6500 vmcs_writel(HOST_RSP, host_rsp);
6504 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6506 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6508 struct vcpu_vmx *vmx = to_vmx(vcpu);
6509 unsigned long cr3, cr4;
6511 /* Record the guest's net vcpu time for enforced NMI injections. */
6512 if (unlikely(!enable_vnmi &&
6513 vmx->loaded_vmcs->soft_vnmi_blocked))
6514 vmx->loaded_vmcs->entry_time = ktime_get();
6516 /* Don't enter VMX if guest state is invalid, let the exit handler
6517 start emulation until we arrive back to a valid state */
6518 if (vmx->emulation_required)
6519 return;
6521 if (vmx->ple_window_dirty) {
6522 vmx->ple_window_dirty = false;
6523 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6527 * We did this in prepare_switch_to_guest, because it needs to
6528 * be within srcu_read_lock.
6530 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6532 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6533 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6534 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6535 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6537 cr3 = __get_current_cr3_fast();
6538 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6539 vmcs_writel(HOST_CR3, cr3);
6540 vmx->loaded_vmcs->host_state.cr3 = cr3;
6543 cr4 = cr4_read_shadow();
6544 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6545 vmcs_writel(HOST_CR4, cr4);
6546 vmx->loaded_vmcs->host_state.cr4 = cr4;
6549 /* When single-stepping over STI and MOV SS, we must clear the
6550 * corresponding interruptibility bits in the guest state. Otherwise
6551 * vmentry fails as it then expects bit 14 (BS) in pending debug
6552 * exceptions being set, but that's not correct for the guest debugging
6553 * case. */
6554 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6555 vmx_set_interrupt_shadow(vcpu, 0);
6557 kvm_load_guest_xsave_state(vcpu);
6559 pt_guest_enter(vmx);
6561 atomic_switch_perf_msrs(vmx);
6563 if (enable_preemption_timer)
6564 vmx_update_hv_timer(vcpu);
6566 if (lapic_in_kernel(vcpu) &&
6567 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6568 kvm_wait_lapic_expire(vcpu);
6571 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6572 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6573 * is no need to worry about the conditional branch over the wrmsr
6574 * being speculatively taken.
6576 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6578 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6579 if (static_branch_unlikely(&vmx_l1d_should_flush))
6580 vmx_l1d_flush(vcpu);
6581 else if (static_branch_unlikely(&mds_user_clear))
6582 mds_clear_cpu_buffers();
6584 if (vcpu->arch.cr2 != read_cr2())
6585 write_cr2(vcpu->arch.cr2);
6587 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6588 vmx->loaded_vmcs->launched);
6590 vcpu->arch.cr2 = read_cr2();
6593 * We do not use IBRS in the kernel. If this vCPU has used the
6594 * SPEC_CTRL MSR it may have left it on; save the value and
6595 * turn it off. This is much more efficient than blindly adding
6596 * it to the atomic save/restore list. Especially as the former
6597 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6599 * For non-nested case:
6600 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6601 * save it.
6603 * For nested case:
6604 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6605 * save it.
6607 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6608 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6610 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6612 /* All fields are clean at this point */
6613 if (static_branch_unlikely(&enable_evmcs))
6614 current_evmcs->hv_clean_fields |=
6615 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6617 if (static_branch_unlikely(&enable_evmcs))
6618 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6620 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6621 if (vmx->host_debugctlmsr)
6622 update_debugctlmsr(vmx->host_debugctlmsr);
6624 #ifndef CONFIG_X86_64
6626 * The sysexit path does not restore ds/es, so we must set them to
6627 * a reasonable value ourselves.
6629 * We can't defer this to vmx_prepare_switch_to_host() since that
6630 * function may be executed in interrupt context, which saves and
6631 * restore segments around it, nullifying its effect.
6633 loadsegment(ds, __USER_DS);
6634 loadsegment(es, __USER_DS);
6635 #endif
6637 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6638 | (1 << VCPU_EXREG_RFLAGS)
6639 | (1 << VCPU_EXREG_PDPTR)
6640 | (1 << VCPU_EXREG_SEGMENTS)
6641 | (1 << VCPU_EXREG_CR3));
6642 vcpu->arch.regs_dirty = 0;
6644 pt_guest_exit(vmx);
6646 kvm_load_host_xsave_state(vcpu);
6648 vmx->nested.nested_run_pending = 0;
6649 vmx->idt_vectoring_info = 0;
6651 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6652 if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6653 kvm_machine_check();
6655 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6656 return;
6658 vmx->loaded_vmcs->launched = 1;
6659 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6661 vmx_recover_nmi_blocking(vmx);
6662 vmx_complete_interrupts(vmx);
6665 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6667 struct vcpu_vmx *vmx = to_vmx(vcpu);
6669 if (enable_pml)
6670 vmx_destroy_pml_buffer(vmx);
6671 free_vpid(vmx->vpid);
6672 nested_vmx_free_vcpu(vcpu);
6673 free_loaded_vmcs(vmx->loaded_vmcs);
6676 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6678 struct vcpu_vmx *vmx;
6679 unsigned long *msr_bitmap;
6680 int i, cpu, err;
6682 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6683 vmx = to_vmx(vcpu);
6685 err = -ENOMEM;
6687 vmx->vpid = allocate_vpid();
6690 * If PML is turned on, failure on enabling PML just results in failure
6691 * of creating the vcpu, therefore we can simplify PML logic (by
6692 * avoiding dealing with cases, such as enabling PML partially on vcpus
6693 * for the guest), etc.
6695 if (enable_pml) {
6696 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6697 if (!vmx->pml_pg)
6698 goto free_vpid;
6701 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6703 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6704 u32 index = vmx_msr_index[i];
6705 u32 data_low, data_high;
6706 int j = vmx->nmsrs;
6708 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6709 continue;
6710 if (wrmsr_safe(index, data_low, data_high) < 0)
6711 continue;
6713 vmx->guest_msrs[j].index = i;
6714 vmx->guest_msrs[j].data = 0;
6715 switch (index) {
6716 case MSR_IA32_TSX_CTRL:
6718 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6719 * let's avoid changing CPUID bits under the host
6720 * kernel's feet.
6722 vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6723 break;
6724 default:
6725 vmx->guest_msrs[j].mask = -1ull;
6726 break;
6728 ++vmx->nmsrs;
6731 err = alloc_loaded_vmcs(&vmx->vmcs01);
6732 if (err < 0)
6733 goto free_pml;
6735 msr_bitmap = vmx->vmcs01.msr_bitmap;
6736 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6737 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6738 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6739 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6740 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6741 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6742 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6743 if (kvm_cstate_in_guest(vcpu->kvm)) {
6744 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6745 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6746 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6747 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6749 vmx->msr_bitmap_mode = 0;
6751 vmx->loaded_vmcs = &vmx->vmcs01;
6752 cpu = get_cpu();
6753 vmx_vcpu_load(vcpu, cpu);
6754 vcpu->cpu = cpu;
6755 init_vmcs(vmx);
6756 vmx_vcpu_put(vcpu);
6757 put_cpu();
6758 if (cpu_need_virtualize_apic_accesses(vcpu)) {
6759 err = alloc_apic_access_page(vcpu->kvm);
6760 if (err)
6761 goto free_vmcs;
6764 if (enable_ept && !enable_unrestricted_guest) {
6765 err = init_rmode_identity_map(vcpu->kvm);
6766 if (err)
6767 goto free_vmcs;
6770 if (nested)
6771 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6772 vmx_capability.ept);
6773 else
6774 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6776 vmx->nested.posted_intr_nv = -1;
6777 vmx->nested.current_vmptr = -1ull;
6779 vcpu->arch.microcode_version = 0x100000000ULL;
6780 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6783 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6784 * or POSTED_INTR_WAKEUP_VECTOR.
6786 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6787 vmx->pi_desc.sn = 1;
6789 vmx->ept_pointer = INVALID_PAGE;
6791 return 0;
6793 free_vmcs:
6794 free_loaded_vmcs(vmx->loaded_vmcs);
6795 free_pml:
6796 vmx_destroy_pml_buffer(vmx);
6797 free_vpid:
6798 free_vpid(vmx->vpid);
6799 return err;
6802 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6803 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6805 static int vmx_vm_init(struct kvm *kvm)
6807 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6809 if (!ple_gap)
6810 kvm->arch.pause_in_guest = true;
6812 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6813 switch (l1tf_mitigation) {
6814 case L1TF_MITIGATION_OFF:
6815 case L1TF_MITIGATION_FLUSH_NOWARN:
6816 /* 'I explicitly don't care' is set */
6817 break;
6818 case L1TF_MITIGATION_FLUSH:
6819 case L1TF_MITIGATION_FLUSH_NOSMT:
6820 case L1TF_MITIGATION_FULL:
6822 * Warn upon starting the first VM in a potentially
6823 * insecure environment.
6825 if (sched_smt_active())
6826 pr_warn_once(L1TF_MSG_SMT);
6827 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6828 pr_warn_once(L1TF_MSG_L1D);
6829 break;
6830 case L1TF_MITIGATION_FULL_FORCE:
6831 /* Flush is enforced */
6832 break;
6835 kvm_apicv_init(kvm, enable_apicv);
6836 return 0;
6839 static int __init vmx_check_processor_compat(void)
6841 struct vmcs_config vmcs_conf;
6842 struct vmx_capability vmx_cap;
6844 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6845 !this_cpu_has(X86_FEATURE_VMX)) {
6846 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6847 return -EIO;
6850 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6851 return -EIO;
6852 if (nested)
6853 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6854 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6855 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6856 smp_processor_id());
6857 return -EIO;
6859 return 0;
6862 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6864 u8 cache;
6865 u64 ipat = 0;
6867 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6868 * memory aliases with conflicting memory types and sometimes MCEs.
6869 * We have to be careful as to what are honored and when.
6871 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
6872 * UC. The effective memory type is UC or WC depending on guest PAT.
6873 * This was historically the source of MCEs and we want to be
6874 * conservative.
6876 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6877 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
6878 * EPT memory type is set to WB. The effective memory type is forced
6879 * WB.
6881 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
6882 * EPT memory type is used to emulate guest CD/MTRR.
6885 if (is_mmio) {
6886 cache = MTRR_TYPE_UNCACHABLE;
6887 goto exit;
6890 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6891 ipat = VMX_EPT_IPAT_BIT;
6892 cache = MTRR_TYPE_WRBACK;
6893 goto exit;
6896 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6897 ipat = VMX_EPT_IPAT_BIT;
6898 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6899 cache = MTRR_TYPE_WRBACK;
6900 else
6901 cache = MTRR_TYPE_UNCACHABLE;
6902 goto exit;
6905 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6907 exit:
6908 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6911 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6914 * These bits in the secondary execution controls field
6915 * are dynamic, the others are mostly based on the hypervisor
6916 * architecture and the guest's CPUID. Do not touch the
6917 * dynamic bits.
6919 u32 mask =
6920 SECONDARY_EXEC_SHADOW_VMCS |
6921 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6922 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6923 SECONDARY_EXEC_DESC;
6925 u32 new_ctl = vmx->secondary_exec_control;
6926 u32 cur_ctl = secondary_exec_controls_get(vmx);
6928 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6932 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6933 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6935 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6937 struct vcpu_vmx *vmx = to_vmx(vcpu);
6938 struct kvm_cpuid_entry2 *entry;
6940 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6941 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6943 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
6944 if (entry && (entry->_reg & (_cpuid_mask))) \
6945 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
6946 } while (0)
6948 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6949 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
6950 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
6951 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
6952 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
6953 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
6954 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
6955 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
6956 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
6957 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
6958 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
6959 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
6960 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
6961 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
6962 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
6964 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6965 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
6966 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
6967 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
6968 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
6969 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
6970 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
6972 #undef cr4_fixed1_update
6975 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6977 struct vcpu_vmx *vmx = to_vmx(vcpu);
6979 if (kvm_mpx_supported()) {
6980 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6982 if (mpx_enabled) {
6983 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6984 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6985 } else {
6986 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6987 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6992 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6994 struct vcpu_vmx *vmx = to_vmx(vcpu);
6995 struct kvm_cpuid_entry2 *best = NULL;
6996 int i;
6998 for (i = 0; i < PT_CPUID_LEAVES; i++) {
6999 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7000 if (!best)
7001 return;
7002 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7003 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7004 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7005 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7008 /* Get the number of configurable Address Ranges for filtering */
7009 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7010 PT_CAP_num_address_ranges);
7012 /* Initialize and clear the no dependency bits */
7013 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7014 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7017 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7018 * will inject an #GP
7020 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7021 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7024 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7025 * PSBFreq can be set
7027 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7028 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7029 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7032 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7033 * MTCFreq can be set
7035 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7036 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7037 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7039 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7040 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7041 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7042 RTIT_CTL_PTW_EN);
7044 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7045 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7046 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7048 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7049 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7050 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7052 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7053 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7054 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7056 /* unmask address range configure area */
7057 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7058 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7061 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7063 struct vcpu_vmx *vmx = to_vmx(vcpu);
7065 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7066 vcpu->arch.xsaves_enabled = false;
7068 if (cpu_has_secondary_exec_ctrls()) {
7069 vmx_compute_secondary_exec_control(vmx);
7070 vmcs_set_secondary_exec_control(vmx);
7073 if (nested_vmx_allowed(vcpu))
7074 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7075 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7076 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7077 else
7078 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7079 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7080 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7082 if (nested_vmx_allowed(vcpu)) {
7083 nested_vmx_cr_fixed1_bits_update(vcpu);
7084 nested_vmx_entry_exit_ctls_update(vcpu);
7087 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7088 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7089 update_intel_pt_cfg(vcpu);
7091 if (boot_cpu_has(X86_FEATURE_RTM)) {
7092 struct shared_msr_entry *msr;
7093 msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7094 if (msr) {
7095 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7096 vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7101 static __init void vmx_set_cpu_caps(void)
7103 kvm_set_cpu_caps();
7105 /* CPUID 0x1 */
7106 if (nested)
7107 kvm_cpu_cap_set(X86_FEATURE_VMX);
7109 /* CPUID 0x7 */
7110 if (kvm_mpx_supported())
7111 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7112 if (cpu_has_vmx_invpcid())
7113 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7114 if (vmx_pt_mode_is_host_guest())
7115 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7117 /* PKU is not yet implemented for shadow paging. */
7118 if (enable_ept && boot_cpu_has(X86_FEATURE_OSPKE))
7119 kvm_cpu_cap_check_and_set(X86_FEATURE_PKU);
7121 if (vmx_umip_emulated())
7122 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7124 /* CPUID 0xD.1 */
7125 supported_xss = 0;
7126 if (!vmx_xsaves_supported())
7127 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7129 /* CPUID 0x80000001 */
7130 if (!cpu_has_vmx_rdtscp())
7131 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7133 if (vmx_waitpkg_supported())
7134 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7137 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7139 to_vmx(vcpu)->req_immediate_exit = true;
7142 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7143 struct x86_instruction_info *info)
7145 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7146 unsigned short port;
7147 bool intercept;
7148 int size;
7150 if (info->intercept == x86_intercept_in ||
7151 info->intercept == x86_intercept_ins) {
7152 port = info->src_val;
7153 size = info->dst_bytes;
7154 } else {
7155 port = info->dst_val;
7156 size = info->src_bytes;
7160 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7161 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7162 * control.
7164 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7166 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7167 intercept = nested_cpu_has(vmcs12,
7168 CPU_BASED_UNCOND_IO_EXITING);
7169 else
7170 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7172 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7173 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7176 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7177 struct x86_instruction_info *info,
7178 enum x86_intercept_stage stage,
7179 struct x86_exception *exception)
7181 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7183 switch (info->intercept) {
7185 * RDPID causes #UD if disabled through secondary execution controls.
7186 * Because it is marked as EmulateOnUD, we need to intercept it here.
7188 case x86_intercept_rdtscp:
7189 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7190 exception->vector = UD_VECTOR;
7191 exception->error_code_valid = false;
7192 return X86EMUL_PROPAGATE_FAULT;
7194 break;
7196 case x86_intercept_in:
7197 case x86_intercept_ins:
7198 case x86_intercept_out:
7199 case x86_intercept_outs:
7200 return vmx_check_intercept_io(vcpu, info);
7202 case x86_intercept_lgdt:
7203 case x86_intercept_lidt:
7204 case x86_intercept_lldt:
7205 case x86_intercept_ltr:
7206 case x86_intercept_sgdt:
7207 case x86_intercept_sidt:
7208 case x86_intercept_sldt:
7209 case x86_intercept_str:
7210 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7211 return X86EMUL_CONTINUE;
7213 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7214 break;
7216 /* TODO: check more intercepts... */
7217 default:
7218 break;
7221 return X86EMUL_UNHANDLEABLE;
7224 #ifdef CONFIG_X86_64
7225 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7226 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7227 u64 divisor, u64 *result)
7229 u64 low = a << shift, high = a >> (64 - shift);
7231 /* To avoid the overflow on divq */
7232 if (high >= divisor)
7233 return 1;
7235 /* Low hold the result, high hold rem which is discarded */
7236 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7237 "rm" (divisor), "0" (low), "1" (high));
7238 *result = low;
7240 return 0;
7243 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7244 bool *expired)
7246 struct vcpu_vmx *vmx;
7247 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7248 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7250 if (kvm_mwait_in_guest(vcpu->kvm) ||
7251 kvm_can_post_timer_interrupt(vcpu))
7252 return -EOPNOTSUPP;
7254 vmx = to_vmx(vcpu);
7255 tscl = rdtsc();
7256 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7257 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7258 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7259 ktimer->timer_advance_ns);
7261 if (delta_tsc > lapic_timer_advance_cycles)
7262 delta_tsc -= lapic_timer_advance_cycles;
7263 else
7264 delta_tsc = 0;
7266 /* Convert to host delta tsc if tsc scaling is enabled */
7267 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7268 delta_tsc && u64_shl_div_u64(delta_tsc,
7269 kvm_tsc_scaling_ratio_frac_bits,
7270 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7271 return -ERANGE;
7274 * If the delta tsc can't fit in the 32 bit after the multi shift,
7275 * we can't use the preemption timer.
7276 * It's possible that it fits on later vmentries, but checking
7277 * on every vmentry is costly so we just use an hrtimer.
7279 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7280 return -ERANGE;
7282 vmx->hv_deadline_tsc = tscl + delta_tsc;
7283 *expired = !delta_tsc;
7284 return 0;
7287 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7289 to_vmx(vcpu)->hv_deadline_tsc = -1;
7291 #endif
7293 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7295 if (!kvm_pause_in_guest(vcpu->kvm))
7296 shrink_ple_window(vcpu);
7299 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7300 struct kvm_memory_slot *slot)
7302 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7303 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7304 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7307 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7308 struct kvm_memory_slot *slot)
7310 kvm_mmu_slot_set_dirty(kvm, slot);
7313 static void vmx_flush_log_dirty(struct kvm *kvm)
7315 kvm_flush_pml_buffers(kvm);
7318 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
7320 struct vmcs12 *vmcs12;
7321 struct vcpu_vmx *vmx = to_vmx(vcpu);
7322 gpa_t dst;
7324 if (is_guest_mode(vcpu)) {
7325 WARN_ON_ONCE(vmx->nested.pml_full);
7328 * Check if PML is enabled for the nested guest.
7329 * Whether eptp bit 6 is set is already checked
7330 * as part of A/D emulation.
7332 vmcs12 = get_vmcs12(vcpu);
7333 if (!nested_cpu_has_pml(vmcs12))
7334 return 0;
7336 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7337 vmx->nested.pml_full = true;
7338 return 1;
7341 gpa &= ~0xFFFull;
7342 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7344 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7345 offset_in_page(dst), sizeof(gpa)))
7346 return 0;
7348 vmcs12->guest_pml_index--;
7351 return 0;
7354 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7355 struct kvm_memory_slot *memslot,
7356 gfn_t offset, unsigned long mask)
7358 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7361 static void __pi_post_block(struct kvm_vcpu *vcpu)
7363 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7364 struct pi_desc old, new;
7365 unsigned int dest;
7367 do {
7368 old.control = new.control = pi_desc->control;
7369 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7370 "Wakeup handler not enabled while the VCPU is blocked\n");
7372 dest = cpu_physical_id(vcpu->cpu);
7374 if (x2apic_enabled())
7375 new.ndst = dest;
7376 else
7377 new.ndst = (dest << 8) & 0xFF00;
7379 /* set 'NV' to 'notification vector' */
7380 new.nv = POSTED_INTR_VECTOR;
7381 } while (cmpxchg64(&pi_desc->control, old.control,
7382 new.control) != old.control);
7384 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7385 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7386 list_del(&vcpu->blocked_vcpu_list);
7387 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7388 vcpu->pre_pcpu = -1;
7393 * This routine does the following things for vCPU which is going
7394 * to be blocked if VT-d PI is enabled.
7395 * - Store the vCPU to the wakeup list, so when interrupts happen
7396 * we can find the right vCPU to wake up.
7397 * - Change the Posted-interrupt descriptor as below:
7398 * 'NDST' <-- vcpu->pre_pcpu
7399 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7400 * - If 'ON' is set during this process, which means at least one
7401 * interrupt is posted for this vCPU, we cannot block it, in
7402 * this case, return 1, otherwise, return 0.
7405 static int pi_pre_block(struct kvm_vcpu *vcpu)
7407 unsigned int dest;
7408 struct pi_desc old, new;
7409 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7411 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7412 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7413 !kvm_vcpu_apicv_active(vcpu))
7414 return 0;
7416 WARN_ON(irqs_disabled());
7417 local_irq_disable();
7418 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7419 vcpu->pre_pcpu = vcpu->cpu;
7420 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7421 list_add_tail(&vcpu->blocked_vcpu_list,
7422 &per_cpu(blocked_vcpu_on_cpu,
7423 vcpu->pre_pcpu));
7424 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7427 do {
7428 old.control = new.control = pi_desc->control;
7430 WARN((pi_desc->sn == 1),
7431 "Warning: SN field of posted-interrupts "
7432 "is set before blocking\n");
7435 * Since vCPU can be preempted during this process,
7436 * vcpu->cpu could be different with pre_pcpu, we
7437 * need to set pre_pcpu as the destination of wakeup
7438 * notification event, then we can find the right vCPU
7439 * to wakeup in wakeup handler if interrupts happen
7440 * when the vCPU is in blocked state.
7442 dest = cpu_physical_id(vcpu->pre_pcpu);
7444 if (x2apic_enabled())
7445 new.ndst = dest;
7446 else
7447 new.ndst = (dest << 8) & 0xFF00;
7449 /* set 'NV' to 'wakeup vector' */
7450 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7451 } while (cmpxchg64(&pi_desc->control, old.control,
7452 new.control) != old.control);
7454 /* We should not block the vCPU if an interrupt is posted for it. */
7455 if (pi_test_on(pi_desc) == 1)
7456 __pi_post_block(vcpu);
7458 local_irq_enable();
7459 return (vcpu->pre_pcpu == -1);
7462 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7464 if (pi_pre_block(vcpu))
7465 return 1;
7467 if (kvm_lapic_hv_timer_in_use(vcpu))
7468 kvm_lapic_switch_to_sw_timer(vcpu);
7470 return 0;
7473 static void pi_post_block(struct kvm_vcpu *vcpu)
7475 if (vcpu->pre_pcpu == -1)
7476 return;
7478 WARN_ON(irqs_disabled());
7479 local_irq_disable();
7480 __pi_post_block(vcpu);
7481 local_irq_enable();
7484 static void vmx_post_block(struct kvm_vcpu *vcpu)
7486 if (kvm_x86_ops.set_hv_timer)
7487 kvm_lapic_switch_to_hv_timer(vcpu);
7489 pi_post_block(vcpu);
7493 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7495 * @kvm: kvm
7496 * @host_irq: host irq of the interrupt
7497 * @guest_irq: gsi of the interrupt
7498 * @set: set or unset PI
7499 * returns 0 on success, < 0 on failure
7501 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7502 uint32_t guest_irq, bool set)
7504 struct kvm_kernel_irq_routing_entry *e;
7505 struct kvm_irq_routing_table *irq_rt;
7506 struct kvm_lapic_irq irq;
7507 struct kvm_vcpu *vcpu;
7508 struct vcpu_data vcpu_info;
7509 int idx, ret = 0;
7511 if (!kvm_arch_has_assigned_device(kvm) ||
7512 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7513 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7514 return 0;
7516 idx = srcu_read_lock(&kvm->irq_srcu);
7517 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7518 if (guest_irq >= irq_rt->nr_rt_entries ||
7519 hlist_empty(&irq_rt->map[guest_irq])) {
7520 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7521 guest_irq, irq_rt->nr_rt_entries);
7522 goto out;
7525 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7526 if (e->type != KVM_IRQ_ROUTING_MSI)
7527 continue;
7529 * VT-d PI cannot support posting multicast/broadcast
7530 * interrupts to a vCPU, we still use interrupt remapping
7531 * for these kind of interrupts.
7533 * For lowest-priority interrupts, we only support
7534 * those with single CPU as the destination, e.g. user
7535 * configures the interrupts via /proc/irq or uses
7536 * irqbalance to make the interrupts single-CPU.
7538 * We will support full lowest-priority interrupt later.
7540 * In addition, we can only inject generic interrupts using
7541 * the PI mechanism, refuse to route others through it.
7544 kvm_set_msi_irq(kvm, e, &irq);
7545 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7546 !kvm_irq_is_postable(&irq)) {
7548 * Make sure the IRTE is in remapped mode if
7549 * we don't handle it in posted mode.
7551 ret = irq_set_vcpu_affinity(host_irq, NULL);
7552 if (ret < 0) {
7553 printk(KERN_INFO
7554 "failed to back to remapped mode, irq: %u\n",
7555 host_irq);
7556 goto out;
7559 continue;
7562 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7563 vcpu_info.vector = irq.vector;
7565 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7566 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7568 if (set)
7569 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7570 else
7571 ret = irq_set_vcpu_affinity(host_irq, NULL);
7573 if (ret < 0) {
7574 printk(KERN_INFO "%s: failed to update PI IRTE\n",
7575 __func__);
7576 goto out;
7580 ret = 0;
7581 out:
7582 srcu_read_unlock(&kvm->irq_srcu, idx);
7583 return ret;
7586 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7588 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7589 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7590 FEAT_CTL_LMCE_ENABLED;
7591 else
7592 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7593 ~FEAT_CTL_LMCE_ENABLED;
7596 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7598 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7599 if (to_vmx(vcpu)->nested.nested_run_pending)
7600 return 0;
7601 return 1;
7604 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7606 struct vcpu_vmx *vmx = to_vmx(vcpu);
7608 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7609 if (vmx->nested.smm.guest_mode)
7610 nested_vmx_vmexit(vcpu, -1, 0, 0);
7612 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7613 vmx->nested.vmxon = false;
7614 vmx_clear_hlt(vcpu);
7615 return 0;
7618 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7620 struct vcpu_vmx *vmx = to_vmx(vcpu);
7621 int ret;
7623 if (vmx->nested.smm.vmxon) {
7624 vmx->nested.vmxon = true;
7625 vmx->nested.smm.vmxon = false;
7628 if (vmx->nested.smm.guest_mode) {
7629 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7630 if (ret)
7631 return ret;
7633 vmx->nested.smm.guest_mode = false;
7635 return 0;
7638 static int enable_smi_window(struct kvm_vcpu *vcpu)
7640 return 0;
7643 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7645 return false;
7648 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7650 return to_vmx(vcpu)->nested.vmxon;
7653 static void hardware_unsetup(void)
7655 if (nested)
7656 nested_vmx_hardware_unsetup();
7658 free_kvm_area();
7661 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7663 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7664 BIT(APICV_INHIBIT_REASON_HYPERV);
7666 return supported & BIT(bit);
7669 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7670 .hardware_unsetup = hardware_unsetup,
7672 .hardware_enable = hardware_enable,
7673 .hardware_disable = hardware_disable,
7674 .cpu_has_accelerated_tpr = report_flexpriority,
7675 .has_emulated_msr = vmx_has_emulated_msr,
7677 .vm_size = sizeof(struct kvm_vmx),
7678 .vm_init = vmx_vm_init,
7680 .vcpu_create = vmx_create_vcpu,
7681 .vcpu_free = vmx_free_vcpu,
7682 .vcpu_reset = vmx_vcpu_reset,
7684 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7685 .vcpu_load = vmx_vcpu_load,
7686 .vcpu_put = vmx_vcpu_put,
7688 .update_bp_intercept = update_exception_bitmap,
7689 .get_msr_feature = vmx_get_msr_feature,
7690 .get_msr = vmx_get_msr,
7691 .set_msr = vmx_set_msr,
7692 .get_segment_base = vmx_get_segment_base,
7693 .get_segment = vmx_get_segment,
7694 .set_segment = vmx_set_segment,
7695 .get_cpl = vmx_get_cpl,
7696 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7697 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7698 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7699 .set_cr0 = vmx_set_cr0,
7700 .set_cr4 = vmx_set_cr4,
7701 .set_efer = vmx_set_efer,
7702 .get_idt = vmx_get_idt,
7703 .set_idt = vmx_set_idt,
7704 .get_gdt = vmx_get_gdt,
7705 .set_gdt = vmx_set_gdt,
7706 .set_dr7 = vmx_set_dr7,
7707 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7708 .cache_reg = vmx_cache_reg,
7709 .get_rflags = vmx_get_rflags,
7710 .set_rflags = vmx_set_rflags,
7712 .tlb_flush = vmx_flush_tlb,
7713 .tlb_flush_gva = vmx_flush_tlb_gva,
7715 .run = vmx_vcpu_run,
7716 .handle_exit = vmx_handle_exit,
7717 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7718 .update_emulated_instruction = vmx_update_emulated_instruction,
7719 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7720 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7721 .patch_hypercall = vmx_patch_hypercall,
7722 .set_irq = vmx_inject_irq,
7723 .set_nmi = vmx_inject_nmi,
7724 .queue_exception = vmx_queue_exception,
7725 .cancel_injection = vmx_cancel_injection,
7726 .interrupt_allowed = vmx_interrupt_allowed,
7727 .nmi_allowed = vmx_nmi_allowed,
7728 .get_nmi_mask = vmx_get_nmi_mask,
7729 .set_nmi_mask = vmx_set_nmi_mask,
7730 .enable_nmi_window = enable_nmi_window,
7731 .enable_irq_window = enable_irq_window,
7732 .update_cr8_intercept = update_cr8_intercept,
7733 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7734 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7735 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7736 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7737 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7738 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7739 .hwapic_irr_update = vmx_hwapic_irr_update,
7740 .hwapic_isr_update = vmx_hwapic_isr_update,
7741 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7742 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7743 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7744 .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7746 .set_tss_addr = vmx_set_tss_addr,
7747 .set_identity_map_addr = vmx_set_identity_map_addr,
7748 .get_tdp_level = get_ept_level,
7749 .get_mt_mask = vmx_get_mt_mask,
7751 .get_exit_info = vmx_get_exit_info,
7753 .cpuid_update = vmx_cpuid_update,
7755 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7757 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7758 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7760 .load_mmu_pgd = vmx_load_mmu_pgd,
7762 .check_intercept = vmx_check_intercept,
7763 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7765 .request_immediate_exit = vmx_request_immediate_exit,
7767 .sched_in = vmx_sched_in,
7769 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7770 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7771 .flush_log_dirty = vmx_flush_log_dirty,
7772 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7773 .write_log_dirty = vmx_write_pml_buffer,
7775 .pre_block = vmx_pre_block,
7776 .post_block = vmx_post_block,
7778 .pmu_ops = &intel_pmu_ops,
7780 .update_pi_irte = vmx_update_pi_irte,
7782 #ifdef CONFIG_X86_64
7783 .set_hv_timer = vmx_set_hv_timer,
7784 .cancel_hv_timer = vmx_cancel_hv_timer,
7785 #endif
7787 .setup_mce = vmx_setup_mce,
7789 .smi_allowed = vmx_smi_allowed,
7790 .pre_enter_smm = vmx_pre_enter_smm,
7791 .pre_leave_smm = vmx_pre_leave_smm,
7792 .enable_smi_window = enable_smi_window,
7794 .check_nested_events = NULL,
7795 .get_nested_state = NULL,
7796 .set_nested_state = NULL,
7797 .get_vmcs12_pages = NULL,
7798 .nested_enable_evmcs = NULL,
7799 .nested_get_evmcs_version = NULL,
7800 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7801 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7804 static __init int hardware_setup(void)
7806 unsigned long host_bndcfgs;
7807 struct desc_ptr dt;
7808 int r, i, ept_lpage_level;
7810 store_idt(&dt);
7811 host_idt_base = dt.address;
7813 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7814 kvm_define_shared_msr(i, vmx_msr_index[i]);
7816 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7817 return -EIO;
7819 if (boot_cpu_has(X86_FEATURE_NX))
7820 kvm_enable_efer_bits(EFER_NX);
7822 if (boot_cpu_has(X86_FEATURE_MPX)) {
7823 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7824 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7827 if (!cpu_has_vmx_mpx())
7828 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7829 XFEATURE_MASK_BNDCSR);
7831 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7832 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7833 enable_vpid = 0;
7835 if (!cpu_has_vmx_ept() ||
7836 !cpu_has_vmx_ept_4levels() ||
7837 !cpu_has_vmx_ept_mt_wb() ||
7838 !cpu_has_vmx_invept_global())
7839 enable_ept = 0;
7841 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7842 enable_ept_ad_bits = 0;
7844 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7845 enable_unrestricted_guest = 0;
7847 if (!cpu_has_vmx_flexpriority())
7848 flexpriority_enabled = 0;
7850 if (!cpu_has_virtual_nmis())
7851 enable_vnmi = 0;
7854 * set_apic_access_page_addr() is used to reload apic access
7855 * page upon invalidation. No need to do anything if not
7856 * using the APIC_ACCESS_ADDR VMCS field.
7858 if (!flexpriority_enabled)
7859 vmx_x86_ops.set_apic_access_page_addr = NULL;
7861 if (!cpu_has_vmx_tpr_shadow())
7862 vmx_x86_ops.update_cr8_intercept = NULL;
7864 #if IS_ENABLED(CONFIG_HYPERV)
7865 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7866 && enable_ept) {
7867 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7868 vmx_x86_ops.tlb_remote_flush_with_range =
7869 hv_remote_flush_tlb_with_range;
7871 #endif
7873 if (!cpu_has_vmx_ple()) {
7874 ple_gap = 0;
7875 ple_window = 0;
7876 ple_window_grow = 0;
7877 ple_window_max = 0;
7878 ple_window_shrink = 0;
7881 if (!cpu_has_vmx_apicv()) {
7882 enable_apicv = 0;
7883 vmx_x86_ops.sync_pir_to_irr = NULL;
7886 if (cpu_has_vmx_tsc_scaling()) {
7887 kvm_has_tsc_control = true;
7888 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7889 kvm_tsc_scaling_ratio_frac_bits = 48;
7892 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7894 if (enable_ept)
7895 vmx_enable_tdp();
7897 if (!enable_ept)
7898 ept_lpage_level = 0;
7899 else if (cpu_has_vmx_ept_1g_page())
7900 ept_lpage_level = PT_PDPE_LEVEL;
7901 else if (cpu_has_vmx_ept_2m_page())
7902 ept_lpage_level = PT_DIRECTORY_LEVEL;
7903 else
7904 ept_lpage_level = PT_PAGE_TABLE_LEVEL;
7905 kvm_configure_mmu(enable_ept, ept_lpage_level);
7908 * Only enable PML when hardware supports PML feature, and both EPT
7909 * and EPT A/D bit features are enabled -- PML depends on them to work.
7911 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7912 enable_pml = 0;
7914 if (!enable_pml) {
7915 vmx_x86_ops.slot_enable_log_dirty = NULL;
7916 vmx_x86_ops.slot_disable_log_dirty = NULL;
7917 vmx_x86_ops.flush_log_dirty = NULL;
7918 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7921 if (!cpu_has_vmx_preemption_timer())
7922 enable_preemption_timer = false;
7924 if (enable_preemption_timer) {
7925 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7926 u64 vmx_msr;
7928 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7929 cpu_preemption_timer_multi =
7930 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7932 if (tsc_khz)
7933 use_timer_freq = (u64)tsc_khz * 1000;
7934 use_timer_freq >>= cpu_preemption_timer_multi;
7937 * KVM "disables" the preemption timer by setting it to its max
7938 * value. Don't use the timer if it might cause spurious exits
7939 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7941 if (use_timer_freq > 0xffffffffu / 10)
7942 enable_preemption_timer = false;
7945 if (!enable_preemption_timer) {
7946 vmx_x86_ops.set_hv_timer = NULL;
7947 vmx_x86_ops.cancel_hv_timer = NULL;
7948 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7951 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7953 kvm_mce_cap_supported |= MCG_LMCE_P;
7955 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7956 return -EINVAL;
7957 if (!enable_ept || !cpu_has_vmx_intel_pt())
7958 pt_mode = PT_MODE_SYSTEM;
7960 if (nested) {
7961 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7962 vmx_capability.ept);
7964 r = nested_vmx_hardware_setup(&vmx_x86_ops,
7965 kvm_vmx_exit_handlers);
7966 if (r)
7967 return r;
7970 vmx_set_cpu_caps();
7972 r = alloc_kvm_area();
7973 if (r)
7974 nested_vmx_hardware_unsetup();
7975 return r;
7978 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7979 .cpu_has_kvm_support = cpu_has_kvm_support,
7980 .disabled_by_bios = vmx_disabled_by_bios,
7981 .check_processor_compatibility = vmx_check_processor_compat,
7982 .hardware_setup = hardware_setup,
7984 .runtime_ops = &vmx_x86_ops,
7987 static void vmx_cleanup_l1d_flush(void)
7989 if (vmx_l1d_flush_pages) {
7990 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7991 vmx_l1d_flush_pages = NULL;
7993 /* Restore state so sysfs ignores VMX */
7994 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7997 static void vmx_exit(void)
7999 #ifdef CONFIG_KEXEC_CORE
8000 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8001 synchronize_rcu();
8002 #endif
8004 kvm_exit();
8006 #if IS_ENABLED(CONFIG_HYPERV)
8007 if (static_branch_unlikely(&enable_evmcs)) {
8008 int cpu;
8009 struct hv_vp_assist_page *vp_ap;
8011 * Reset everything to support using non-enlightened VMCS
8012 * access later (e.g. when we reload the module with
8013 * enlightened_vmcs=0)
8015 for_each_online_cpu(cpu) {
8016 vp_ap = hv_get_vp_assist_page(cpu);
8018 if (!vp_ap)
8019 continue;
8021 vp_ap->nested_control.features.directhypercall = 0;
8022 vp_ap->current_nested_vmcs = 0;
8023 vp_ap->enlighten_vmentry = 0;
8026 static_branch_disable(&enable_evmcs);
8028 #endif
8029 vmx_cleanup_l1d_flush();
8031 module_exit(vmx_exit);
8033 static int __init vmx_init(void)
8035 int r, cpu;
8037 #if IS_ENABLED(CONFIG_HYPERV)
8039 * Enlightened VMCS usage should be recommended and the host needs
8040 * to support eVMCS v1 or above. We can also disable eVMCS support
8041 * with module parameter.
8043 if (enlightened_vmcs &&
8044 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8045 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8046 KVM_EVMCS_VERSION) {
8047 int cpu;
8049 /* Check that we have assist pages on all online CPUs */
8050 for_each_online_cpu(cpu) {
8051 if (!hv_get_vp_assist_page(cpu)) {
8052 enlightened_vmcs = false;
8053 break;
8057 if (enlightened_vmcs) {
8058 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8059 static_branch_enable(&enable_evmcs);
8062 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8063 vmx_x86_ops.enable_direct_tlbflush
8064 = hv_enable_direct_tlbflush;
8066 } else {
8067 enlightened_vmcs = false;
8069 #endif
8071 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8072 __alignof__(struct vcpu_vmx), THIS_MODULE);
8073 if (r)
8074 return r;
8077 * Must be called after kvm_init() so enable_ept is properly set
8078 * up. Hand the parameter mitigation value in which was stored in
8079 * the pre module init parser. If no parameter was given, it will
8080 * contain 'auto' which will be turned into the default 'cond'
8081 * mitigation mode.
8083 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8084 if (r) {
8085 vmx_exit();
8086 return r;
8089 for_each_possible_cpu(cpu) {
8090 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8091 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8092 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8095 #ifdef CONFIG_KEXEC_CORE
8096 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8097 crash_vmclear_local_loaded_vmcss);
8098 #endif
8099 vmx_check_vmcs12_offsets();
8101 return 0;
8103 module_init(vmx_init);