Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / arch / x86 / mm / numa.c
blob59ba008504dced55c48e2bbf86c36d1462568b9d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Common code for 32 and 64-bit NUMA */
3 #include <linux/acpi.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/string.h>
7 #include <linux/init.h>
8 #include <linux/memblock.h>
9 #include <linux/mmzone.h>
10 #include <linux/ctype.h>
11 #include <linux/nodemask.h>
12 #include <linux/sched.h>
13 #include <linux/topology.h>
15 #include <asm/e820/api.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/amd_nb.h>
20 #include "numa_internal.h"
22 int numa_off;
23 nodemask_t numa_nodes_parsed __initdata;
25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
26 EXPORT_SYMBOL(node_data);
28 static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
29 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
31 static int numa_distance_cnt;
32 static u8 *numa_distance;
34 static __init int numa_setup(char *opt)
36 if (!opt)
37 return -EINVAL;
38 if (!strncmp(opt, "off", 3))
39 numa_off = 1;
40 #ifdef CONFIG_NUMA_EMU
41 if (!strncmp(opt, "fake=", 5))
42 numa_emu_cmdline(opt + 5);
43 #endif
44 #ifdef CONFIG_ACPI_NUMA
45 if (!strncmp(opt, "noacpi", 6))
46 acpi_numa = -1;
47 #endif
48 return 0;
50 early_param("numa", numa_setup);
53 * apicid, cpu, node mappings
55 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
56 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
59 int numa_cpu_node(int cpu)
61 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
63 if (apicid != BAD_APICID)
64 return __apicid_to_node[apicid];
65 return NUMA_NO_NODE;
68 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
69 EXPORT_SYMBOL(node_to_cpumask_map);
72 * Map cpu index to node index
74 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
75 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
77 void numa_set_node(int cpu, int node)
79 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
81 /* early setting, no percpu area yet */
82 if (cpu_to_node_map) {
83 cpu_to_node_map[cpu] = node;
84 return;
87 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
88 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
89 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
90 dump_stack();
91 return;
93 #endif
94 per_cpu(x86_cpu_to_node_map, cpu) = node;
96 set_cpu_numa_node(cpu, node);
99 void numa_clear_node(int cpu)
101 numa_set_node(cpu, NUMA_NO_NODE);
105 * Allocate node_to_cpumask_map based on number of available nodes
106 * Requires node_possible_map to be valid.
108 * Note: cpumask_of_node() is not valid until after this is done.
109 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
111 void __init setup_node_to_cpumask_map(void)
113 unsigned int node;
115 /* setup nr_node_ids if not done yet */
116 if (nr_node_ids == MAX_NUMNODES)
117 setup_nr_node_ids();
119 /* allocate the map */
120 for (node = 0; node < nr_node_ids; node++)
121 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
123 /* cpumask_of_node() will now work */
124 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
127 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
128 struct numa_meminfo *mi)
130 /* ignore zero length blks */
131 if (start == end)
132 return 0;
134 /* whine about and ignore invalid blks */
135 if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
136 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
137 nid, start, end - 1);
138 return 0;
141 if (mi->nr_blks >= NR_NODE_MEMBLKS) {
142 pr_err("too many memblk ranges\n");
143 return -EINVAL;
146 mi->blk[mi->nr_blks].start = start;
147 mi->blk[mi->nr_blks].end = end;
148 mi->blk[mi->nr_blks].nid = nid;
149 mi->nr_blks++;
150 return 0;
154 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
155 * @idx: Index of memblk to remove
156 * @mi: numa_meminfo to remove memblk from
158 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
159 * decrementing @mi->nr_blks.
161 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
163 mi->nr_blks--;
164 memmove(&mi->blk[idx], &mi->blk[idx + 1],
165 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
169 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
170 * @dst: numa_meminfo to append block to
171 * @idx: Index of memblk to remove
172 * @src: numa_meminfo to remove memblk from
174 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
175 struct numa_meminfo *src)
177 dst->blk[dst->nr_blks++] = src->blk[idx];
178 numa_remove_memblk_from(idx, src);
182 * numa_add_memblk - Add one numa_memblk to numa_meminfo
183 * @nid: NUMA node ID of the new memblk
184 * @start: Start address of the new memblk
185 * @end: End address of the new memblk
187 * Add a new memblk to the default numa_meminfo.
189 * RETURNS:
190 * 0 on success, -errno on failure.
192 int __init numa_add_memblk(int nid, u64 start, u64 end)
194 return numa_add_memblk_to(nid, start, end, &numa_meminfo);
197 /* Allocate NODE_DATA for a node on the local memory */
198 static void __init alloc_node_data(int nid)
200 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
201 u64 nd_pa;
202 void *nd;
203 int tnid;
206 * Allocate node data. Try node-local memory and then any node.
207 * Never allocate in DMA zone.
209 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
210 if (!nd_pa) {
211 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
212 nd_size, nid);
213 return;
215 nd = __va(nd_pa);
217 /* report and initialize */
218 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
219 nd_pa, nd_pa + nd_size - 1);
220 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
221 if (tnid != nid)
222 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
224 node_data[nid] = nd;
225 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
227 node_set_online(nid);
231 * numa_cleanup_meminfo - Cleanup a numa_meminfo
232 * @mi: numa_meminfo to clean up
234 * Sanitize @mi by merging and removing unnecessary memblks. Also check for
235 * conflicts and clear unused memblks.
237 * RETURNS:
238 * 0 on success, -errno on failure.
240 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
242 const u64 low = 0;
243 const u64 high = PFN_PHYS(max_pfn);
244 int i, j, k;
246 /* first, trim all entries */
247 for (i = 0; i < mi->nr_blks; i++) {
248 struct numa_memblk *bi = &mi->blk[i];
250 /* move / save reserved memory ranges */
251 if (!memblock_overlaps_region(&memblock.memory,
252 bi->start, bi->end - bi->start)) {
253 numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
254 continue;
257 /* make sure all non-reserved blocks are inside the limits */
258 bi->start = max(bi->start, low);
259 bi->end = min(bi->end, high);
261 /* and there's no empty block */
262 if (bi->start >= bi->end)
263 numa_remove_memblk_from(i--, mi);
266 /* merge neighboring / overlapping entries */
267 for (i = 0; i < mi->nr_blks; i++) {
268 struct numa_memblk *bi = &mi->blk[i];
270 for (j = i + 1; j < mi->nr_blks; j++) {
271 struct numa_memblk *bj = &mi->blk[j];
272 u64 start, end;
275 * See whether there are overlapping blocks. Whine
276 * about but allow overlaps of the same nid. They
277 * will be merged below.
279 if (bi->end > bj->start && bi->start < bj->end) {
280 if (bi->nid != bj->nid) {
281 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
282 bi->nid, bi->start, bi->end - 1,
283 bj->nid, bj->start, bj->end - 1);
284 return -EINVAL;
286 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
287 bi->nid, bi->start, bi->end - 1,
288 bj->start, bj->end - 1);
292 * Join together blocks on the same node, holes
293 * between which don't overlap with memory on other
294 * nodes.
296 if (bi->nid != bj->nid)
297 continue;
298 start = min(bi->start, bj->start);
299 end = max(bi->end, bj->end);
300 for (k = 0; k < mi->nr_blks; k++) {
301 struct numa_memblk *bk = &mi->blk[k];
303 if (bi->nid == bk->nid)
304 continue;
305 if (start < bk->end && end > bk->start)
306 break;
308 if (k < mi->nr_blks)
309 continue;
310 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
311 bi->nid, bi->start, bi->end - 1, bj->start,
312 bj->end - 1, start, end - 1);
313 bi->start = start;
314 bi->end = end;
315 numa_remove_memblk_from(j--, mi);
319 /* clear unused ones */
320 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
321 mi->blk[i].start = mi->blk[i].end = 0;
322 mi->blk[i].nid = NUMA_NO_NODE;
325 return 0;
329 * Set nodes, which have memory in @mi, in *@nodemask.
331 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
332 const struct numa_meminfo *mi)
334 int i;
336 for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
337 if (mi->blk[i].start != mi->blk[i].end &&
338 mi->blk[i].nid != NUMA_NO_NODE)
339 node_set(mi->blk[i].nid, *nodemask);
343 * numa_reset_distance - Reset NUMA distance table
345 * The current table is freed. The next numa_set_distance() call will
346 * create a new one.
348 void __init numa_reset_distance(void)
350 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
352 /* numa_distance could be 1LU marking allocation failure, test cnt */
353 if (numa_distance_cnt)
354 memblock_free(__pa(numa_distance), size);
355 numa_distance_cnt = 0;
356 numa_distance = NULL; /* enable table creation */
359 static int __init numa_alloc_distance(void)
361 nodemask_t nodes_parsed;
362 size_t size;
363 int i, j, cnt = 0;
364 u64 phys;
366 /* size the new table and allocate it */
367 nodes_parsed = numa_nodes_parsed;
368 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
370 for_each_node_mask(i, nodes_parsed)
371 cnt = i;
372 cnt++;
373 size = cnt * cnt * sizeof(numa_distance[0]);
375 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
376 size, PAGE_SIZE);
377 if (!phys) {
378 pr_warn("Warning: can't allocate distance table!\n");
379 /* don't retry until explicitly reset */
380 numa_distance = (void *)1LU;
381 return -ENOMEM;
383 memblock_reserve(phys, size);
385 numa_distance = __va(phys);
386 numa_distance_cnt = cnt;
388 /* fill with the default distances */
389 for (i = 0; i < cnt; i++)
390 for (j = 0; j < cnt; j++)
391 numa_distance[i * cnt + j] = i == j ?
392 LOCAL_DISTANCE : REMOTE_DISTANCE;
393 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
395 return 0;
399 * numa_set_distance - Set NUMA distance from one NUMA to another
400 * @from: the 'from' node to set distance
401 * @to: the 'to' node to set distance
402 * @distance: NUMA distance
404 * Set the distance from node @from to @to to @distance. If distance table
405 * doesn't exist, one which is large enough to accommodate all the currently
406 * known nodes will be created.
408 * If such table cannot be allocated, a warning is printed and further
409 * calls are ignored until the distance table is reset with
410 * numa_reset_distance().
412 * If @from or @to is higher than the highest known node or lower than zero
413 * at the time of table creation or @distance doesn't make sense, the call
414 * is ignored.
415 * This is to allow simplification of specific NUMA config implementations.
417 void __init numa_set_distance(int from, int to, int distance)
419 if (!numa_distance && numa_alloc_distance() < 0)
420 return;
422 if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
423 from < 0 || to < 0) {
424 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
425 from, to, distance);
426 return;
429 if ((u8)distance != distance ||
430 (from == to && distance != LOCAL_DISTANCE)) {
431 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
432 from, to, distance);
433 return;
436 numa_distance[from * numa_distance_cnt + to] = distance;
439 int __node_distance(int from, int to)
441 if (from >= numa_distance_cnt || to >= numa_distance_cnt)
442 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
443 return numa_distance[from * numa_distance_cnt + to];
445 EXPORT_SYMBOL(__node_distance);
448 * Sanity check to catch more bad NUMA configurations (they are amazingly
449 * common). Make sure the nodes cover all memory.
451 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
453 u64 numaram, e820ram;
454 int i;
456 numaram = 0;
457 for (i = 0; i < mi->nr_blks; i++) {
458 u64 s = mi->blk[i].start >> PAGE_SHIFT;
459 u64 e = mi->blk[i].end >> PAGE_SHIFT;
460 numaram += e - s;
461 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
462 if ((s64)numaram < 0)
463 numaram = 0;
466 e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
468 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
469 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
470 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
471 (numaram << PAGE_SHIFT) >> 20,
472 (e820ram << PAGE_SHIFT) >> 20);
473 return false;
475 return true;
479 * Mark all currently memblock-reserved physical memory (which covers the
480 * kernel's own memory ranges) as hot-unswappable.
482 static void __init numa_clear_kernel_node_hotplug(void)
484 nodemask_t reserved_nodemask = NODE_MASK_NONE;
485 struct memblock_region *mb_region;
486 int i;
489 * We have to do some preprocessing of memblock regions, to
490 * make them suitable for reservation.
492 * At this time, all memory regions reserved by memblock are
493 * used by the kernel, but those regions are not split up
494 * along node boundaries yet, and don't necessarily have their
495 * node ID set yet either.
497 * So iterate over all memory known to the x86 architecture,
498 * and use those ranges to set the nid in memblock.reserved.
499 * This will split up the memblock regions along node
500 * boundaries and will set the node IDs as well.
502 for (i = 0; i < numa_meminfo.nr_blks; i++) {
503 struct numa_memblk *mb = numa_meminfo.blk + i;
504 int ret;
506 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
507 WARN_ON_ONCE(ret);
511 * Now go over all reserved memblock regions, to construct a
512 * node mask of all kernel reserved memory areas.
514 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
515 * numa_meminfo might not include all memblock.reserved
516 * memory ranges, because quirks such as trim_snb_memory()
517 * reserve specific pages for Sandy Bridge graphics. ]
519 for_each_memblock(reserved, mb_region) {
520 if (mb_region->nid != MAX_NUMNODES)
521 node_set(mb_region->nid, reserved_nodemask);
525 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
526 * belonging to the reserved node mask.
528 * Note that this will include memory regions that reside
529 * on nodes that contain kernel memory - entire nodes
530 * become hot-unpluggable:
532 for (i = 0; i < numa_meminfo.nr_blks; i++) {
533 struct numa_memblk *mb = numa_meminfo.blk + i;
535 if (!node_isset(mb->nid, reserved_nodemask))
536 continue;
538 memblock_clear_hotplug(mb->start, mb->end - mb->start);
542 static int __init numa_register_memblks(struct numa_meminfo *mi)
544 unsigned long uninitialized_var(pfn_align);
545 int i, nid;
547 /* Account for nodes with cpus and no memory */
548 node_possible_map = numa_nodes_parsed;
549 numa_nodemask_from_meminfo(&node_possible_map, mi);
550 if (WARN_ON(nodes_empty(node_possible_map)))
551 return -EINVAL;
553 for (i = 0; i < mi->nr_blks; i++) {
554 struct numa_memblk *mb = &mi->blk[i];
555 memblock_set_node(mb->start, mb->end - mb->start,
556 &memblock.memory, mb->nid);
560 * At very early time, the kernel have to use some memory such as
561 * loading the kernel image. We cannot prevent this anyway. So any
562 * node the kernel resides in should be un-hotpluggable.
564 * And when we come here, alloc node data won't fail.
566 numa_clear_kernel_node_hotplug();
569 * If sections array is gonna be used for pfn -> nid mapping, check
570 * whether its granularity is fine enough.
572 #ifdef NODE_NOT_IN_PAGE_FLAGS
573 pfn_align = node_map_pfn_alignment();
574 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
575 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
576 PFN_PHYS(pfn_align) >> 20,
577 PFN_PHYS(PAGES_PER_SECTION) >> 20);
578 return -EINVAL;
580 #endif
581 if (!numa_meminfo_cover_memory(mi))
582 return -EINVAL;
584 /* Finally register nodes. */
585 for_each_node_mask(nid, node_possible_map) {
586 u64 start = PFN_PHYS(max_pfn);
587 u64 end = 0;
589 for (i = 0; i < mi->nr_blks; i++) {
590 if (nid != mi->blk[i].nid)
591 continue;
592 start = min(mi->blk[i].start, start);
593 end = max(mi->blk[i].end, end);
596 if (start >= end)
597 continue;
600 * Don't confuse VM with a node that doesn't have the
601 * minimum amount of memory:
603 if (end && (end - start) < NODE_MIN_SIZE)
604 continue;
606 alloc_node_data(nid);
609 /* Dump memblock with node info and return. */
610 memblock_dump_all();
611 return 0;
615 * There are unfortunately some poorly designed mainboards around that
616 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
617 * mapping. To avoid this fill in the mapping for all possible CPUs,
618 * as the number of CPUs is not known yet. We round robin the existing
619 * nodes.
621 static void __init numa_init_array(void)
623 int rr, i;
625 rr = first_node(node_online_map);
626 for (i = 0; i < nr_cpu_ids; i++) {
627 if (early_cpu_to_node(i) != NUMA_NO_NODE)
628 continue;
629 numa_set_node(i, rr);
630 rr = next_node_in(rr, node_online_map);
634 static int __init numa_init(int (*init_func)(void))
636 int i;
637 int ret;
639 for (i = 0; i < MAX_LOCAL_APIC; i++)
640 set_apicid_to_node(i, NUMA_NO_NODE);
642 nodes_clear(numa_nodes_parsed);
643 nodes_clear(node_possible_map);
644 nodes_clear(node_online_map);
645 memset(&numa_meminfo, 0, sizeof(numa_meminfo));
646 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
647 MAX_NUMNODES));
648 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
649 MAX_NUMNODES));
650 /* In case that parsing SRAT failed. */
651 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
652 numa_reset_distance();
654 ret = init_func();
655 if (ret < 0)
656 return ret;
659 * We reset memblock back to the top-down direction
660 * here because if we configured ACPI_NUMA, we have
661 * parsed SRAT in init_func(). It is ok to have the
662 * reset here even if we did't configure ACPI_NUMA
663 * or acpi numa init fails and fallbacks to dummy
664 * numa init.
666 memblock_set_bottom_up(false);
668 ret = numa_cleanup_meminfo(&numa_meminfo);
669 if (ret < 0)
670 return ret;
672 numa_emulation(&numa_meminfo, numa_distance_cnt);
674 ret = numa_register_memblks(&numa_meminfo);
675 if (ret < 0)
676 return ret;
678 for (i = 0; i < nr_cpu_ids; i++) {
679 int nid = early_cpu_to_node(i);
681 if (nid == NUMA_NO_NODE)
682 continue;
683 if (!node_online(nid))
684 numa_clear_node(i);
686 numa_init_array();
688 return 0;
692 * dummy_numa_init - Fallback dummy NUMA init
694 * Used if there's no underlying NUMA architecture, NUMA initialization
695 * fails, or NUMA is disabled on the command line.
697 * Must online at least one node and add memory blocks that cover all
698 * allowed memory. This function must not fail.
700 static int __init dummy_numa_init(void)
702 printk(KERN_INFO "%s\n",
703 numa_off ? "NUMA turned off" : "No NUMA configuration found");
704 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
705 0LLU, PFN_PHYS(max_pfn) - 1);
707 node_set(0, numa_nodes_parsed);
708 numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
710 return 0;
714 * x86_numa_init - Initialize NUMA
716 * Try each configured NUMA initialization method until one succeeds. The
717 * last fallback is dummy single node config encompassing whole memory and
718 * never fails.
720 void __init x86_numa_init(void)
722 if (!numa_off) {
723 #ifdef CONFIG_ACPI_NUMA
724 if (!numa_init(x86_acpi_numa_init))
725 return;
726 #endif
727 #ifdef CONFIG_AMD_NUMA
728 if (!numa_init(amd_numa_init))
729 return;
730 #endif
733 numa_init(dummy_numa_init);
736 static void __init init_memory_less_node(int nid)
738 unsigned long zones_size[MAX_NR_ZONES] = {0};
739 unsigned long zholes_size[MAX_NR_ZONES] = {0};
741 /* Allocate and initialize node data. Memory-less node is now online.*/
742 alloc_node_data(nid);
743 free_area_init_node(nid, zones_size, 0, zholes_size);
746 * All zonelists will be built later in start_kernel() after per cpu
747 * areas are initialized.
752 * Setup early cpu_to_node.
754 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
755 * and apicid_to_node[] tables have valid entries for a CPU.
756 * This means we skip cpu_to_node[] initialisation for NUMA
757 * emulation and faking node case (when running a kernel compiled
758 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
759 * is already initialized in a round robin manner at numa_init_array,
760 * prior to this call, and this initialization is good enough
761 * for the fake NUMA cases.
763 * Called before the per_cpu areas are setup.
765 void __init init_cpu_to_node(void)
767 int cpu;
768 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
770 BUG_ON(cpu_to_apicid == NULL);
772 for_each_possible_cpu(cpu) {
773 int node = numa_cpu_node(cpu);
775 if (node == NUMA_NO_NODE)
776 continue;
778 if (!node_online(node))
779 init_memory_less_node(node);
781 numa_set_node(cpu, node);
785 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
787 # ifndef CONFIG_NUMA_EMU
788 void numa_add_cpu(int cpu)
790 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
793 void numa_remove_cpu(int cpu)
795 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
797 # endif /* !CONFIG_NUMA_EMU */
799 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */
801 int __cpu_to_node(int cpu)
803 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
804 printk(KERN_WARNING
805 "cpu_to_node(%d): usage too early!\n", cpu);
806 dump_stack();
807 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
809 return per_cpu(x86_cpu_to_node_map, cpu);
811 EXPORT_SYMBOL(__cpu_to_node);
814 * Same function as cpu_to_node() but used if called before the
815 * per_cpu areas are setup.
817 int early_cpu_to_node(int cpu)
819 if (early_per_cpu_ptr(x86_cpu_to_node_map))
820 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
822 if (!cpu_possible(cpu)) {
823 printk(KERN_WARNING
824 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
825 dump_stack();
826 return NUMA_NO_NODE;
828 return per_cpu(x86_cpu_to_node_map, cpu);
831 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
833 struct cpumask *mask;
835 if (node == NUMA_NO_NODE) {
836 /* early_cpu_to_node() already emits a warning and trace */
837 return;
839 mask = node_to_cpumask_map[node];
840 if (!mask) {
841 pr_err("node_to_cpumask_map[%i] NULL\n", node);
842 dump_stack();
843 return;
846 if (enable)
847 cpumask_set_cpu(cpu, mask);
848 else
849 cpumask_clear_cpu(cpu, mask);
851 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
852 enable ? "numa_add_cpu" : "numa_remove_cpu",
853 cpu, node, cpumask_pr_args(mask));
854 return;
857 # ifndef CONFIG_NUMA_EMU
858 static void numa_set_cpumask(int cpu, bool enable)
860 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
863 void numa_add_cpu(int cpu)
865 numa_set_cpumask(cpu, true);
868 void numa_remove_cpu(int cpu)
870 numa_set_cpumask(cpu, false);
872 # endif /* !CONFIG_NUMA_EMU */
875 * Returns a pointer to the bitmask of CPUs on Node 'node'.
877 const struct cpumask *cpumask_of_node(int node)
879 if ((unsigned)node >= nr_node_ids) {
880 printk(KERN_WARNING
881 "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
882 node, nr_node_ids);
883 dump_stack();
884 return cpu_none_mask;
886 if (node_to_cpumask_map[node] == NULL) {
887 printk(KERN_WARNING
888 "cpumask_of_node(%d): no node_to_cpumask_map!\n",
889 node);
890 dump_stack();
891 return cpu_online_mask;
893 return node_to_cpumask_map[node];
895 EXPORT_SYMBOL(cpumask_of_node);
897 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
899 #ifdef CONFIG_NUMA_KEEP_MEMINFO
900 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
902 int i;
904 for (i = 0; i < mi->nr_blks; i++)
905 if (mi->blk[i].start <= start && mi->blk[i].end > start)
906 return mi->blk[i].nid;
907 return NUMA_NO_NODE;
910 int phys_to_target_node(phys_addr_t start)
912 int nid = meminfo_to_nid(&numa_meminfo, start);
915 * Prefer online nodes, but if reserved memory might be
916 * hot-added continue the search with reserved ranges.
918 if (nid != NUMA_NO_NODE)
919 return nid;
921 return meminfo_to_nid(&numa_reserved_meminfo, start);
923 EXPORT_SYMBOL_GPL(phys_to_target_node);
925 int memory_add_physaddr_to_nid(u64 start)
927 int nid = meminfo_to_nid(&numa_meminfo, start);
929 if (nid == NUMA_NO_NODE)
930 nid = numa_meminfo.blk[0].nid;
931 return nid;
933 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
934 #endif