Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / arch / x86 / xen / enlighten_pv.c
blob507f4fb88fa7fd184d1bba278a9ebaa8c8039f37
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
37 #include <xen/xen.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
47 #include <xen/page.h>
48 #include <xen/hvc-console.h>
49 #include <xen/acpi.h>
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
64 #include <asm/desc.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 #ifdef CONFIG_X86_IOPL_IOPERM
76 #include <asm/io_bitmap.h>
77 #endif
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
93 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
95 void *xen_initial_gdt;
97 static int xen_cpu_up_prepare_pv(unsigned int cpu);
98 static int xen_cpu_dead_pv(unsigned int cpu);
100 struct tls_descs {
101 struct desc_struct desc[3];
105 * Updating the 3 TLS descriptors in the GDT on every task switch is
106 * surprisingly expensive so we avoid updating them if they haven't
107 * changed. Since Xen writes different descriptors than the one
108 * passed in the update_descriptor hypercall we keep shadow copies to
109 * compare against.
111 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
113 static void __init xen_banner(void)
115 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
116 struct xen_extraversion extra;
117 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
119 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
120 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
121 version >> 16, version & 0xffff, extra.extraversion,
122 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
124 #ifdef CONFIG_X86_32
125 pr_warn("WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n"
126 "Support for running as 32-bit PV-guest under Xen will soon be removed\n"
127 "from the Linux kernel!\n"
128 "Please use either a 64-bit kernel or switch to HVM or PVH mode!\n"
129 "WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n");
130 #endif
133 static void __init xen_pv_init_platform(void)
135 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
137 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
138 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
140 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
141 xen_vcpu_info_reset(0);
143 /* pvclock is in shared info area */
144 xen_init_time_ops();
147 static void __init xen_pv_guest_late_init(void)
149 #ifndef CONFIG_SMP
150 /* Setup shared vcpu info for non-smp configurations */
151 xen_setup_vcpu_info_placement();
152 #endif
155 /* Check if running on Xen version (major, minor) or later */
156 bool
157 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
159 unsigned int version;
161 if (!xen_domain())
162 return false;
164 version = HYPERVISOR_xen_version(XENVER_version, NULL);
165 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
166 ((version >> 16) > major))
167 return true;
168 return false;
171 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
172 static __read_mostly unsigned int cpuid_leaf5_edx_val;
174 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
175 unsigned int *cx, unsigned int *dx)
177 unsigned maskebx = ~0;
180 * Mask out inconvenient features, to try and disable as many
181 * unsupported kernel subsystems as possible.
183 switch (*ax) {
184 case CPUID_MWAIT_LEAF:
185 /* Synthesize the values.. */
186 *ax = 0;
187 *bx = 0;
188 *cx = cpuid_leaf5_ecx_val;
189 *dx = cpuid_leaf5_edx_val;
190 return;
192 case 0xb:
193 /* Suppress extended topology stuff */
194 maskebx = 0;
195 break;
198 asm(XEN_EMULATE_PREFIX "cpuid"
199 : "=a" (*ax),
200 "=b" (*bx),
201 "=c" (*cx),
202 "=d" (*dx)
203 : "0" (*ax), "2" (*cx));
205 *bx &= maskebx;
207 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
209 static bool __init xen_check_mwait(void)
211 #ifdef CONFIG_ACPI
212 struct xen_platform_op op = {
213 .cmd = XENPF_set_processor_pminfo,
214 .u.set_pminfo.id = -1,
215 .u.set_pminfo.type = XEN_PM_PDC,
217 uint32_t buf[3];
218 unsigned int ax, bx, cx, dx;
219 unsigned int mwait_mask;
221 /* We need to determine whether it is OK to expose the MWAIT
222 * capability to the kernel to harvest deeper than C3 states from ACPI
223 * _CST using the processor_harvest_xen.c module. For this to work, we
224 * need to gather the MWAIT_LEAF values (which the cstate.c code
225 * checks against). The hypervisor won't expose the MWAIT flag because
226 * it would break backwards compatibility; so we will find out directly
227 * from the hardware and hypercall.
229 if (!xen_initial_domain())
230 return false;
233 * When running under platform earlier than Xen4.2, do not expose
234 * mwait, to avoid the risk of loading native acpi pad driver
236 if (!xen_running_on_version_or_later(4, 2))
237 return false;
239 ax = 1;
240 cx = 0;
242 native_cpuid(&ax, &bx, &cx, &dx);
244 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
245 (1 << (X86_FEATURE_MWAIT % 32));
247 if ((cx & mwait_mask) != mwait_mask)
248 return false;
250 /* We need to emulate the MWAIT_LEAF and for that we need both
251 * ecx and edx. The hypercall provides only partial information.
254 ax = CPUID_MWAIT_LEAF;
255 bx = 0;
256 cx = 0;
257 dx = 0;
259 native_cpuid(&ax, &bx, &cx, &dx);
261 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
262 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
264 buf[0] = ACPI_PDC_REVISION_ID;
265 buf[1] = 1;
266 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
268 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
270 if ((HYPERVISOR_platform_op(&op) == 0) &&
271 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
272 cpuid_leaf5_ecx_val = cx;
273 cpuid_leaf5_edx_val = dx;
275 return true;
276 #else
277 return false;
278 #endif
281 static bool __init xen_check_xsave(void)
283 unsigned int cx, xsave_mask;
285 cx = cpuid_ecx(1);
287 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
288 (1 << (X86_FEATURE_OSXSAVE % 32));
290 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
291 return (cx & xsave_mask) == xsave_mask;
294 static void __init xen_init_capabilities(void)
296 setup_force_cpu_cap(X86_FEATURE_XENPV);
297 setup_clear_cpu_cap(X86_FEATURE_DCA);
298 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
299 setup_clear_cpu_cap(X86_FEATURE_MTRR);
300 setup_clear_cpu_cap(X86_FEATURE_ACC);
301 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
302 setup_clear_cpu_cap(X86_FEATURE_SME);
305 * Xen PV would need some work to support PCID: CR3 handling as well
306 * as xen_flush_tlb_others() would need updating.
308 setup_clear_cpu_cap(X86_FEATURE_PCID);
310 if (!xen_initial_domain())
311 setup_clear_cpu_cap(X86_FEATURE_ACPI);
313 if (xen_check_mwait())
314 setup_force_cpu_cap(X86_FEATURE_MWAIT);
315 else
316 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
318 if (!xen_check_xsave()) {
319 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
320 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
324 static void xen_set_debugreg(int reg, unsigned long val)
326 HYPERVISOR_set_debugreg(reg, val);
329 static unsigned long xen_get_debugreg(int reg)
331 return HYPERVISOR_get_debugreg(reg);
334 static void xen_end_context_switch(struct task_struct *next)
336 xen_mc_flush();
337 paravirt_end_context_switch(next);
340 static unsigned long xen_store_tr(void)
342 return 0;
346 * Set the page permissions for a particular virtual address. If the
347 * address is a vmalloc mapping (or other non-linear mapping), then
348 * find the linear mapping of the page and also set its protections to
349 * match.
351 static void set_aliased_prot(void *v, pgprot_t prot)
353 int level;
354 pte_t *ptep;
355 pte_t pte;
356 unsigned long pfn;
357 struct page *page;
358 unsigned char dummy;
360 ptep = lookup_address((unsigned long)v, &level);
361 BUG_ON(ptep == NULL);
363 pfn = pte_pfn(*ptep);
364 page = pfn_to_page(pfn);
366 pte = pfn_pte(pfn, prot);
369 * Careful: update_va_mapping() will fail if the virtual address
370 * we're poking isn't populated in the page tables. We don't
371 * need to worry about the direct map (that's always in the page
372 * tables), but we need to be careful about vmap space. In
373 * particular, the top level page table can lazily propagate
374 * entries between processes, so if we've switched mms since we
375 * vmapped the target in the first place, we might not have the
376 * top-level page table entry populated.
378 * We disable preemption because we want the same mm active when
379 * we probe the target and when we issue the hypercall. We'll
380 * have the same nominal mm, but if we're a kernel thread, lazy
381 * mm dropping could change our pgd.
383 * Out of an abundance of caution, this uses __get_user() to fault
384 * in the target address just in case there's some obscure case
385 * in which the target address isn't readable.
388 preempt_disable();
390 probe_kernel_read(&dummy, v, 1);
392 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
393 BUG();
395 if (!PageHighMem(page)) {
396 void *av = __va(PFN_PHYS(pfn));
398 if (av != v)
399 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
400 BUG();
401 } else
402 kmap_flush_unused();
404 preempt_enable();
407 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
409 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
410 int i;
413 * We need to mark the all aliases of the LDT pages RO. We
414 * don't need to call vm_flush_aliases(), though, since that's
415 * only responsible for flushing aliases out the TLBs, not the
416 * page tables, and Xen will flush the TLB for us if needed.
418 * To avoid confusing future readers: none of this is necessary
419 * to load the LDT. The hypervisor only checks this when the
420 * LDT is faulted in due to subsequent descriptor access.
423 for (i = 0; i < entries; i += entries_per_page)
424 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
427 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
429 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
430 int i;
432 for (i = 0; i < entries; i += entries_per_page)
433 set_aliased_prot(ldt + i, PAGE_KERNEL);
436 static void xen_set_ldt(const void *addr, unsigned entries)
438 struct mmuext_op *op;
439 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
441 trace_xen_cpu_set_ldt(addr, entries);
443 op = mcs.args;
444 op->cmd = MMUEXT_SET_LDT;
445 op->arg1.linear_addr = (unsigned long)addr;
446 op->arg2.nr_ents = entries;
448 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
450 xen_mc_issue(PARAVIRT_LAZY_CPU);
453 static void xen_load_gdt(const struct desc_ptr *dtr)
455 unsigned long va = dtr->address;
456 unsigned int size = dtr->size + 1;
457 unsigned long pfn, mfn;
458 int level;
459 pte_t *ptep;
460 void *virt;
462 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
463 BUG_ON(size > PAGE_SIZE);
464 BUG_ON(va & ~PAGE_MASK);
467 * The GDT is per-cpu and is in the percpu data area.
468 * That can be virtually mapped, so we need to do a
469 * page-walk to get the underlying MFN for the
470 * hypercall. The page can also be in the kernel's
471 * linear range, so we need to RO that mapping too.
473 ptep = lookup_address(va, &level);
474 BUG_ON(ptep == NULL);
476 pfn = pte_pfn(*ptep);
477 mfn = pfn_to_mfn(pfn);
478 virt = __va(PFN_PHYS(pfn));
480 make_lowmem_page_readonly((void *)va);
481 make_lowmem_page_readonly(virt);
483 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
484 BUG();
488 * load_gdt for early boot, when the gdt is only mapped once
490 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
492 unsigned long va = dtr->address;
493 unsigned int size = dtr->size + 1;
494 unsigned long pfn, mfn;
495 pte_t pte;
497 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
498 BUG_ON(size > PAGE_SIZE);
499 BUG_ON(va & ~PAGE_MASK);
501 pfn = virt_to_pfn(va);
502 mfn = pfn_to_mfn(pfn);
504 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
506 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
507 BUG();
509 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
510 BUG();
513 static inline bool desc_equal(const struct desc_struct *d1,
514 const struct desc_struct *d2)
516 return !memcmp(d1, d2, sizeof(*d1));
519 static void load_TLS_descriptor(struct thread_struct *t,
520 unsigned int cpu, unsigned int i)
522 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
523 struct desc_struct *gdt;
524 xmaddr_t maddr;
525 struct multicall_space mc;
527 if (desc_equal(shadow, &t->tls_array[i]))
528 return;
530 *shadow = t->tls_array[i];
532 gdt = get_cpu_gdt_rw(cpu);
533 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
534 mc = __xen_mc_entry(0);
536 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
539 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
542 * XXX sleazy hack: If we're being called in a lazy-cpu zone
543 * and lazy gs handling is enabled, it means we're in a
544 * context switch, and %gs has just been saved. This means we
545 * can zero it out to prevent faults on exit from the
546 * hypervisor if the next process has no %gs. Either way, it
547 * has been saved, and the new value will get loaded properly.
548 * This will go away as soon as Xen has been modified to not
549 * save/restore %gs for normal hypercalls.
551 * On x86_64, this hack is not used for %gs, because gs points
552 * to KERNEL_GS_BASE (and uses it for PDA references), so we
553 * must not zero %gs on x86_64
555 * For x86_64, we need to zero %fs, otherwise we may get an
556 * exception between the new %fs descriptor being loaded and
557 * %fs being effectively cleared at __switch_to().
559 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
560 #ifdef CONFIG_X86_32
561 lazy_load_gs(0);
562 #else
563 loadsegment(fs, 0);
564 #endif
567 xen_mc_batch();
569 load_TLS_descriptor(t, cpu, 0);
570 load_TLS_descriptor(t, cpu, 1);
571 load_TLS_descriptor(t, cpu, 2);
573 xen_mc_issue(PARAVIRT_LAZY_CPU);
576 #ifdef CONFIG_X86_64
577 static void xen_load_gs_index(unsigned int idx)
579 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
580 BUG();
582 #endif
584 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
585 const void *ptr)
587 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
588 u64 entry = *(u64 *)ptr;
590 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
592 preempt_disable();
594 xen_mc_flush();
595 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
596 BUG();
598 preempt_enable();
601 #ifdef CONFIG_X86_64
602 struct trap_array_entry {
603 void (*orig)(void);
604 void (*xen)(void);
605 bool ist_okay;
608 static struct trap_array_entry trap_array[] = {
609 { debug, xen_xendebug, true },
610 { double_fault, xen_double_fault, true },
611 #ifdef CONFIG_X86_MCE
612 { machine_check, xen_machine_check, true },
613 #endif
614 { nmi, xen_xennmi, true },
615 { int3, xen_int3, false },
616 { overflow, xen_overflow, false },
617 #ifdef CONFIG_IA32_EMULATION
618 { entry_INT80_compat, xen_entry_INT80_compat, false },
619 #endif
620 { page_fault, xen_page_fault, false },
621 { divide_error, xen_divide_error, false },
622 { bounds, xen_bounds, false },
623 { invalid_op, xen_invalid_op, false },
624 { device_not_available, xen_device_not_available, false },
625 { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
626 { invalid_TSS, xen_invalid_TSS, false },
627 { segment_not_present, xen_segment_not_present, false },
628 { stack_segment, xen_stack_segment, false },
629 { general_protection, xen_general_protection, false },
630 { spurious_interrupt_bug, xen_spurious_interrupt_bug, false },
631 { coprocessor_error, xen_coprocessor_error, false },
632 { alignment_check, xen_alignment_check, false },
633 { simd_coprocessor_error, xen_simd_coprocessor_error, false },
636 static bool __ref get_trap_addr(void **addr, unsigned int ist)
638 unsigned int nr;
639 bool ist_okay = false;
642 * Replace trap handler addresses by Xen specific ones.
643 * Check for known traps using IST and whitelist them.
644 * The debugger ones are the only ones we care about.
645 * Xen will handle faults like double_fault, * so we should never see
646 * them. Warn if there's an unexpected IST-using fault handler.
648 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
649 struct trap_array_entry *entry = trap_array + nr;
651 if (*addr == entry->orig) {
652 *addr = entry->xen;
653 ist_okay = entry->ist_okay;
654 break;
658 if (nr == ARRAY_SIZE(trap_array) &&
659 *addr >= (void *)early_idt_handler_array[0] &&
660 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
661 nr = (*addr - (void *)early_idt_handler_array[0]) /
662 EARLY_IDT_HANDLER_SIZE;
663 *addr = (void *)xen_early_idt_handler_array[nr];
666 if (WARN_ON(ist != 0 && !ist_okay))
667 return false;
669 return true;
671 #endif
673 static int cvt_gate_to_trap(int vector, const gate_desc *val,
674 struct trap_info *info)
676 unsigned long addr;
678 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
679 return 0;
681 info->vector = vector;
683 addr = gate_offset(val);
684 #ifdef CONFIG_X86_64
685 if (!get_trap_addr((void **)&addr, val->bits.ist))
686 return 0;
687 #endif /* CONFIG_X86_64 */
688 info->address = addr;
690 info->cs = gate_segment(val);
691 info->flags = val->bits.dpl;
692 /* interrupt gates clear IF */
693 if (val->bits.type == GATE_INTERRUPT)
694 info->flags |= 1 << 2;
696 return 1;
699 /* Locations of each CPU's IDT */
700 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
702 /* Set an IDT entry. If the entry is part of the current IDT, then
703 also update Xen. */
704 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
706 unsigned long p = (unsigned long)&dt[entrynum];
707 unsigned long start, end;
709 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
711 preempt_disable();
713 start = __this_cpu_read(idt_desc.address);
714 end = start + __this_cpu_read(idt_desc.size) + 1;
716 xen_mc_flush();
718 native_write_idt_entry(dt, entrynum, g);
720 if (p >= start && (p + 8) <= end) {
721 struct trap_info info[2];
723 info[1].address = 0;
725 if (cvt_gate_to_trap(entrynum, g, &info[0]))
726 if (HYPERVISOR_set_trap_table(info))
727 BUG();
730 preempt_enable();
733 static void xen_convert_trap_info(const struct desc_ptr *desc,
734 struct trap_info *traps)
736 unsigned in, out, count;
738 count = (desc->size+1) / sizeof(gate_desc);
739 BUG_ON(count > 256);
741 for (in = out = 0; in < count; in++) {
742 gate_desc *entry = (gate_desc *)(desc->address) + in;
744 if (cvt_gate_to_trap(in, entry, &traps[out]))
745 out++;
747 traps[out].address = 0;
750 void xen_copy_trap_info(struct trap_info *traps)
752 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
754 xen_convert_trap_info(desc, traps);
757 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
758 hold a spinlock to protect the static traps[] array (static because
759 it avoids allocation, and saves stack space). */
760 static void xen_load_idt(const struct desc_ptr *desc)
762 static DEFINE_SPINLOCK(lock);
763 static struct trap_info traps[257];
765 trace_xen_cpu_load_idt(desc);
767 spin_lock(&lock);
769 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
771 xen_convert_trap_info(desc, traps);
773 xen_mc_flush();
774 if (HYPERVISOR_set_trap_table(traps))
775 BUG();
777 spin_unlock(&lock);
780 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
781 they're handled differently. */
782 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
783 const void *desc, int type)
785 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
787 preempt_disable();
789 switch (type) {
790 case DESC_LDT:
791 case DESC_TSS:
792 /* ignore */
793 break;
795 default: {
796 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
798 xen_mc_flush();
799 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
800 BUG();
805 preempt_enable();
809 * Version of write_gdt_entry for use at early boot-time needed to
810 * update an entry as simply as possible.
812 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
813 const void *desc, int type)
815 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
817 switch (type) {
818 case DESC_LDT:
819 case DESC_TSS:
820 /* ignore */
821 break;
823 default: {
824 xmaddr_t maddr = virt_to_machine(&dt[entry]);
826 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
827 dt[entry] = *(struct desc_struct *)desc;
833 static void xen_load_sp0(unsigned long sp0)
835 struct multicall_space mcs;
837 mcs = xen_mc_entry(0);
838 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
839 xen_mc_issue(PARAVIRT_LAZY_CPU);
840 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
843 #ifdef CONFIG_X86_IOPL_IOPERM
844 static void xen_update_io_bitmap(void)
846 struct physdev_set_iobitmap iobitmap;
847 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
849 native_tss_update_io_bitmap();
851 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
852 tss->x86_tss.io_bitmap_base;
853 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
854 iobitmap.nr_ports = 0;
855 else
856 iobitmap.nr_ports = IO_BITMAP_BITS;
858 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
860 #endif
862 static void xen_io_delay(void)
866 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
868 static unsigned long xen_read_cr0(void)
870 unsigned long cr0 = this_cpu_read(xen_cr0_value);
872 if (unlikely(cr0 == 0)) {
873 cr0 = native_read_cr0();
874 this_cpu_write(xen_cr0_value, cr0);
877 return cr0;
880 static void xen_write_cr0(unsigned long cr0)
882 struct multicall_space mcs;
884 this_cpu_write(xen_cr0_value, cr0);
886 /* Only pay attention to cr0.TS; everything else is
887 ignored. */
888 mcs = xen_mc_entry(0);
890 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
892 xen_mc_issue(PARAVIRT_LAZY_CPU);
895 static void xen_write_cr4(unsigned long cr4)
897 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
899 native_write_cr4(cr4);
902 static u64 xen_read_msr_safe(unsigned int msr, int *err)
904 u64 val;
906 if (pmu_msr_read(msr, &val, err))
907 return val;
909 val = native_read_msr_safe(msr, err);
910 switch (msr) {
911 case MSR_IA32_APICBASE:
912 val &= ~X2APIC_ENABLE;
913 break;
915 return val;
918 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
920 int ret;
921 #ifdef CONFIG_X86_64
922 unsigned int which;
923 u64 base;
924 #endif
926 ret = 0;
928 switch (msr) {
929 #ifdef CONFIG_X86_64
930 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
931 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
932 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
934 set:
935 base = ((u64)high << 32) | low;
936 if (HYPERVISOR_set_segment_base(which, base) != 0)
937 ret = -EIO;
938 break;
939 #endif
941 case MSR_STAR:
942 case MSR_CSTAR:
943 case MSR_LSTAR:
944 case MSR_SYSCALL_MASK:
945 case MSR_IA32_SYSENTER_CS:
946 case MSR_IA32_SYSENTER_ESP:
947 case MSR_IA32_SYSENTER_EIP:
948 /* Fast syscall setup is all done in hypercalls, so
949 these are all ignored. Stub them out here to stop
950 Xen console noise. */
951 break;
953 default:
954 if (!pmu_msr_write(msr, low, high, &ret))
955 ret = native_write_msr_safe(msr, low, high);
958 return ret;
961 static u64 xen_read_msr(unsigned int msr)
964 * This will silently swallow a #GP from RDMSR. It may be worth
965 * changing that.
967 int err;
969 return xen_read_msr_safe(msr, &err);
972 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
975 * This will silently swallow a #GP from WRMSR. It may be worth
976 * changing that.
978 xen_write_msr_safe(msr, low, high);
981 /* This is called once we have the cpu_possible_mask */
982 void __init xen_setup_vcpu_info_placement(void)
984 int cpu;
986 for_each_possible_cpu(cpu) {
987 /* Set up direct vCPU id mapping for PV guests. */
988 per_cpu(xen_vcpu_id, cpu) = cpu;
991 * xen_vcpu_setup(cpu) can fail -- in which case it
992 * falls back to the shared_info version for cpus
993 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
995 * xen_cpu_up_prepare_pv() handles the rest by failing
996 * them in hotplug.
998 (void) xen_vcpu_setup(cpu);
1002 * xen_vcpu_setup managed to place the vcpu_info within the
1003 * percpu area for all cpus, so make use of it.
1005 if (xen_have_vcpu_info_placement) {
1006 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1007 pv_ops.irq.restore_fl =
1008 __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1009 pv_ops.irq.irq_disable =
1010 __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1011 pv_ops.irq.irq_enable =
1012 __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1013 pv_ops.mmu.read_cr2 =
1014 __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1018 static const struct pv_info xen_info __initconst = {
1019 .shared_kernel_pmd = 0,
1021 #ifdef CONFIG_X86_64
1022 .extra_user_64bit_cs = FLAT_USER_CS64,
1023 #endif
1024 .name = "Xen",
1027 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1028 .cpuid = xen_cpuid,
1030 .set_debugreg = xen_set_debugreg,
1031 .get_debugreg = xen_get_debugreg,
1033 .read_cr0 = xen_read_cr0,
1034 .write_cr0 = xen_write_cr0,
1036 .write_cr4 = xen_write_cr4,
1038 .wbinvd = native_wbinvd,
1040 .read_msr = xen_read_msr,
1041 .write_msr = xen_write_msr,
1043 .read_msr_safe = xen_read_msr_safe,
1044 .write_msr_safe = xen_write_msr_safe,
1046 .read_pmc = xen_read_pmc,
1048 .iret = xen_iret,
1049 #ifdef CONFIG_X86_64
1050 .usergs_sysret64 = xen_sysret64,
1051 #endif
1053 .load_tr_desc = paravirt_nop,
1054 .set_ldt = xen_set_ldt,
1055 .load_gdt = xen_load_gdt,
1056 .load_idt = xen_load_idt,
1057 .load_tls = xen_load_tls,
1058 #ifdef CONFIG_X86_64
1059 .load_gs_index = xen_load_gs_index,
1060 #endif
1062 .alloc_ldt = xen_alloc_ldt,
1063 .free_ldt = xen_free_ldt,
1065 .store_tr = xen_store_tr,
1067 .write_ldt_entry = xen_write_ldt_entry,
1068 .write_gdt_entry = xen_write_gdt_entry,
1069 .write_idt_entry = xen_write_idt_entry,
1070 .load_sp0 = xen_load_sp0,
1072 #ifdef CONFIG_X86_IOPL_IOPERM
1073 .update_io_bitmap = xen_update_io_bitmap,
1074 #endif
1075 .io_delay = xen_io_delay,
1077 /* Xen takes care of %gs when switching to usermode for us */
1078 .swapgs = paravirt_nop,
1080 .start_context_switch = paravirt_start_context_switch,
1081 .end_context_switch = xen_end_context_switch,
1084 static void xen_restart(char *msg)
1086 xen_reboot(SHUTDOWN_reboot);
1089 static void xen_machine_halt(void)
1091 xen_reboot(SHUTDOWN_poweroff);
1094 static void xen_machine_power_off(void)
1096 if (pm_power_off)
1097 pm_power_off();
1098 xen_reboot(SHUTDOWN_poweroff);
1101 static void xen_crash_shutdown(struct pt_regs *regs)
1103 xen_reboot(SHUTDOWN_crash);
1106 static const struct machine_ops xen_machine_ops __initconst = {
1107 .restart = xen_restart,
1108 .halt = xen_machine_halt,
1109 .power_off = xen_machine_power_off,
1110 .shutdown = xen_machine_halt,
1111 .crash_shutdown = xen_crash_shutdown,
1112 .emergency_restart = xen_emergency_restart,
1115 static unsigned char xen_get_nmi_reason(void)
1117 unsigned char reason = 0;
1119 /* Construct a value which looks like it came from port 0x61. */
1120 if (test_bit(_XEN_NMIREASON_io_error,
1121 &HYPERVISOR_shared_info->arch.nmi_reason))
1122 reason |= NMI_REASON_IOCHK;
1123 if (test_bit(_XEN_NMIREASON_pci_serr,
1124 &HYPERVISOR_shared_info->arch.nmi_reason))
1125 reason |= NMI_REASON_SERR;
1127 return reason;
1130 static void __init xen_boot_params_init_edd(void)
1132 #if IS_ENABLED(CONFIG_EDD)
1133 struct xen_platform_op op;
1134 struct edd_info *edd_info;
1135 u32 *mbr_signature;
1136 unsigned nr;
1137 int ret;
1139 edd_info = boot_params.eddbuf;
1140 mbr_signature = boot_params.edd_mbr_sig_buffer;
1142 op.cmd = XENPF_firmware_info;
1144 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1145 for (nr = 0; nr < EDDMAXNR; nr++) {
1146 struct edd_info *info = edd_info + nr;
1148 op.u.firmware_info.index = nr;
1149 info->params.length = sizeof(info->params);
1150 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1151 &info->params);
1152 ret = HYPERVISOR_platform_op(&op);
1153 if (ret)
1154 break;
1156 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1157 C(device);
1158 C(version);
1159 C(interface_support);
1160 C(legacy_max_cylinder);
1161 C(legacy_max_head);
1162 C(legacy_sectors_per_track);
1163 #undef C
1165 boot_params.eddbuf_entries = nr;
1167 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1168 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1169 op.u.firmware_info.index = nr;
1170 ret = HYPERVISOR_platform_op(&op);
1171 if (ret)
1172 break;
1173 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1175 boot_params.edd_mbr_sig_buf_entries = nr;
1176 #endif
1180 * Set up the GDT and segment registers for -fstack-protector. Until
1181 * we do this, we have to be careful not to call any stack-protected
1182 * function, which is most of the kernel.
1184 static void __init xen_setup_gdt(int cpu)
1186 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1187 pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1189 setup_stack_canary_segment(cpu);
1190 switch_to_new_gdt(cpu);
1192 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1193 pv_ops.cpu.load_gdt = xen_load_gdt;
1196 static void __init xen_dom0_set_legacy_features(void)
1198 x86_platform.legacy.rtc = 1;
1201 /* First C function to be called on Xen boot */
1202 asmlinkage __visible void __init xen_start_kernel(void)
1204 struct physdev_set_iopl set_iopl;
1205 unsigned long initrd_start = 0;
1206 int rc;
1208 if (!xen_start_info)
1209 return;
1211 xen_domain_type = XEN_PV_DOMAIN;
1212 xen_start_flags = xen_start_info->flags;
1214 xen_setup_features();
1216 /* Install Xen paravirt ops */
1217 pv_info = xen_info;
1218 pv_ops.init.patch = paravirt_patch_default;
1219 pv_ops.cpu = xen_cpu_ops;
1220 xen_init_irq_ops();
1223 * Setup xen_vcpu early because it is needed for
1224 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1226 * Don't do the full vcpu_info placement stuff until we have
1227 * the cpu_possible_mask and a non-dummy shared_info.
1229 xen_vcpu_info_reset(0);
1231 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1233 x86_init.resources.memory_setup = xen_memory_setup;
1234 x86_init.irqs.intr_mode_select = x86_init_noop;
1235 x86_init.irqs.intr_mode_init = x86_init_noop;
1236 x86_init.oem.arch_setup = xen_arch_setup;
1237 x86_init.oem.banner = xen_banner;
1238 x86_init.hyper.init_platform = xen_pv_init_platform;
1239 x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1242 * Set up some pagetable state before starting to set any ptes.
1245 xen_setup_machphys_mapping();
1246 xen_init_mmu_ops();
1248 /* Prevent unwanted bits from being set in PTEs. */
1249 __supported_pte_mask &= ~_PAGE_GLOBAL;
1250 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1253 * Prevent page tables from being allocated in highmem, even
1254 * if CONFIG_HIGHPTE is enabled.
1256 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1258 /* Get mfn list */
1259 xen_build_dynamic_phys_to_machine();
1262 * Set up kernel GDT and segment registers, mainly so that
1263 * -fstack-protector code can be executed.
1265 xen_setup_gdt(0);
1267 /* Work out if we support NX */
1268 get_cpu_cap(&boot_cpu_data);
1269 x86_configure_nx();
1271 /* Determine virtual and physical address sizes */
1272 get_cpu_address_sizes(&boot_cpu_data);
1274 /* Let's presume PV guests always boot on vCPU with id 0. */
1275 per_cpu(xen_vcpu_id, 0) = 0;
1277 idt_setup_early_handler();
1279 xen_init_capabilities();
1281 #ifdef CONFIG_X86_LOCAL_APIC
1283 * set up the basic apic ops.
1285 xen_init_apic();
1286 #endif
1288 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1289 pv_ops.mmu.ptep_modify_prot_start =
1290 xen_ptep_modify_prot_start;
1291 pv_ops.mmu.ptep_modify_prot_commit =
1292 xen_ptep_modify_prot_commit;
1295 machine_ops = xen_machine_ops;
1298 * The only reliable way to retain the initial address of the
1299 * percpu gdt_page is to remember it here, so we can go and
1300 * mark it RW later, when the initial percpu area is freed.
1302 xen_initial_gdt = &per_cpu(gdt_page, 0);
1304 xen_smp_init();
1306 #ifdef CONFIG_ACPI_NUMA
1308 * The pages we from Xen are not related to machine pages, so
1309 * any NUMA information the kernel tries to get from ACPI will
1310 * be meaningless. Prevent it from trying.
1312 acpi_numa = -1;
1313 #endif
1314 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1316 local_irq_disable();
1317 early_boot_irqs_disabled = true;
1319 xen_raw_console_write("mapping kernel into physical memory\n");
1320 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1321 xen_start_info->nr_pages);
1322 xen_reserve_special_pages();
1324 /* keep using Xen gdt for now; no urgent need to change it */
1326 #ifdef CONFIG_X86_32
1327 pv_info.kernel_rpl = 1;
1328 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1329 pv_info.kernel_rpl = 0;
1330 #else
1331 pv_info.kernel_rpl = 0;
1332 #endif
1333 /* set the limit of our address space */
1334 xen_reserve_top();
1337 * We used to do this in xen_arch_setup, but that is too late
1338 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1339 * early_amd_init which pokes 0xcf8 port.
1341 set_iopl.iopl = 1;
1342 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1343 if (rc != 0)
1344 xen_raw_printk("physdev_op failed %d\n", rc);
1346 #ifdef CONFIG_X86_32
1347 /* set up basic CPUID stuff */
1348 cpu_detect(&new_cpu_data);
1349 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1350 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1351 #endif
1353 if (xen_start_info->mod_start) {
1354 if (xen_start_info->flags & SIF_MOD_START_PFN)
1355 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1356 else
1357 initrd_start = __pa(xen_start_info->mod_start);
1360 /* Poke various useful things into boot_params */
1361 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1362 boot_params.hdr.ramdisk_image = initrd_start;
1363 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1364 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1365 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1367 if (!xen_initial_domain()) {
1368 add_preferred_console("xenboot", 0, NULL);
1369 if (pci_xen)
1370 x86_init.pci.arch_init = pci_xen_init;
1371 } else {
1372 const struct dom0_vga_console_info *info =
1373 (void *)((char *)xen_start_info +
1374 xen_start_info->console.dom0.info_off);
1375 struct xen_platform_op op = {
1376 .cmd = XENPF_firmware_info,
1377 .interface_version = XENPF_INTERFACE_VERSION,
1378 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1381 x86_platform.set_legacy_features =
1382 xen_dom0_set_legacy_features;
1383 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1384 xen_start_info->console.domU.mfn = 0;
1385 xen_start_info->console.domU.evtchn = 0;
1387 if (HYPERVISOR_platform_op(&op) == 0)
1388 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1390 /* Make sure ACS will be enabled */
1391 pci_request_acs();
1393 xen_acpi_sleep_register();
1395 /* Avoid searching for BIOS MP tables */
1396 x86_init.mpparse.find_smp_config = x86_init_noop;
1397 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1399 xen_boot_params_init_edd();
1402 if (!boot_params.screen_info.orig_video_isVGA)
1403 add_preferred_console("tty", 0, NULL);
1404 add_preferred_console("hvc", 0, NULL);
1405 if (boot_params.screen_info.orig_video_isVGA)
1406 add_preferred_console("tty", 0, NULL);
1408 #ifdef CONFIG_PCI
1409 /* PCI BIOS service won't work from a PV guest. */
1410 pci_probe &= ~PCI_PROBE_BIOS;
1411 #endif
1412 xen_raw_console_write("about to get started...\n");
1414 /* We need this for printk timestamps */
1415 xen_setup_runstate_info(0);
1417 xen_efi_init(&boot_params);
1419 /* Start the world */
1420 #ifdef CONFIG_X86_32
1421 i386_start_kernel();
1422 #else
1423 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1424 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1425 #endif
1428 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1430 int rc;
1432 if (per_cpu(xen_vcpu, cpu) == NULL)
1433 return -ENODEV;
1435 xen_setup_timer(cpu);
1437 rc = xen_smp_intr_init(cpu);
1438 if (rc) {
1439 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1440 cpu, rc);
1441 return rc;
1444 rc = xen_smp_intr_init_pv(cpu);
1445 if (rc) {
1446 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1447 cpu, rc);
1448 return rc;
1451 return 0;
1454 static int xen_cpu_dead_pv(unsigned int cpu)
1456 xen_smp_intr_free(cpu);
1457 xen_smp_intr_free_pv(cpu);
1459 xen_teardown_timer(cpu);
1461 return 0;
1464 static uint32_t __init xen_platform_pv(void)
1466 if (xen_pv_domain())
1467 return xen_cpuid_base();
1469 return 0;
1472 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1473 .name = "Xen PV",
1474 .detect = xen_platform_pv,
1475 .type = X86_HYPER_XEN_PV,
1476 .runtime.pin_vcpu = xen_pin_vcpu,
1477 .ignore_nopv = true,