Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / block / blk-core.c
blob9bfaee050c825f2ccb16981f693b4cc16f7557a9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
45 #include "blk.h"
46 #include "blk-mq.h"
47 #include "blk-mq-sched.h"
48 #include "blk-pm.h"
49 #include "blk-rq-qos.h"
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry *blk_debugfs_root;
53 #endif
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 DEFINE_IDA(blk_queue_ida);
64 * For queue allocation
66 struct kmem_cache *blk_requestq_cachep;
69 * Controlling structure to kblockd
71 static struct workqueue_struct *kblockd_workqueue;
73 /**
74 * blk_queue_flag_set - atomically set a queue flag
75 * @flag: flag to be set
76 * @q: request queue
78 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 set_bit(flag, &q->queue_flags);
82 EXPORT_SYMBOL(blk_queue_flag_set);
84 /**
85 * blk_queue_flag_clear - atomically clear a queue flag
86 * @flag: flag to be cleared
87 * @q: request queue
89 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 clear_bit(flag, &q->queue_flags);
93 EXPORT_SYMBOL(blk_queue_flag_clear);
95 /**
96 * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 * @flag: flag to be set
98 * @q: request queue
100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 * the flag was already set.
103 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 return test_and_set_bit(flag, &q->queue_flags);
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 void blk_rq_init(struct request_queue *q, struct request *rq)
111 memset(rq, 0, sizeof(*rq));
113 INIT_LIST_HEAD(&rq->queuelist);
114 rq->q = q;
115 rq->__sector = (sector_t) -1;
116 INIT_HLIST_NODE(&rq->hash);
117 RB_CLEAR_NODE(&rq->rb_node);
118 rq->tag = -1;
119 rq->internal_tag = -1;
120 rq->start_time_ns = ktime_get_ns();
121 rq->part = NULL;
122 refcount_set(&rq->ref, 1);
124 EXPORT_SYMBOL(blk_rq_init);
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name[] = {
128 REQ_OP_NAME(READ),
129 REQ_OP_NAME(WRITE),
130 REQ_OP_NAME(FLUSH),
131 REQ_OP_NAME(DISCARD),
132 REQ_OP_NAME(SECURE_ERASE),
133 REQ_OP_NAME(ZONE_RESET),
134 REQ_OP_NAME(ZONE_RESET_ALL),
135 REQ_OP_NAME(ZONE_OPEN),
136 REQ_OP_NAME(ZONE_CLOSE),
137 REQ_OP_NAME(ZONE_FINISH),
138 REQ_OP_NAME(WRITE_SAME),
139 REQ_OP_NAME(WRITE_ZEROES),
140 REQ_OP_NAME(SCSI_IN),
141 REQ_OP_NAME(SCSI_OUT),
142 REQ_OP_NAME(DRV_IN),
143 REQ_OP_NAME(DRV_OUT),
145 #undef REQ_OP_NAME
148 * blk_op_str - Return string XXX in the REQ_OP_XXX.
149 * @op: REQ_OP_XXX.
151 * Description: Centralize block layer function to convert REQ_OP_XXX into
152 * string format. Useful in the debugging and tracing bio or request. For
153 * invalid REQ_OP_XXX it returns string "UNKNOWN".
155 inline const char *blk_op_str(unsigned int op)
157 const char *op_str = "UNKNOWN";
159 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
160 op_str = blk_op_name[op];
162 return op_str;
164 EXPORT_SYMBOL_GPL(blk_op_str);
166 static const struct {
167 int errno;
168 const char *name;
169 } blk_errors[] = {
170 [BLK_STS_OK] = { 0, "" },
171 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
172 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
173 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
174 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
175 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
176 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
177 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
178 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
179 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
180 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
181 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
183 /* device mapper special case, should not leak out: */
184 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
186 /* everything else not covered above: */
187 [BLK_STS_IOERR] = { -EIO, "I/O" },
190 blk_status_t errno_to_blk_status(int errno)
192 int i;
194 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
195 if (blk_errors[i].errno == errno)
196 return (__force blk_status_t)i;
199 return BLK_STS_IOERR;
201 EXPORT_SYMBOL_GPL(errno_to_blk_status);
203 int blk_status_to_errno(blk_status_t status)
205 int idx = (__force int)status;
207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
208 return -EIO;
209 return blk_errors[idx].errno;
211 EXPORT_SYMBOL_GPL(blk_status_to_errno);
213 static void print_req_error(struct request *req, blk_status_t status,
214 const char *caller)
216 int idx = (__force int)status;
218 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
219 return;
221 printk_ratelimited(KERN_ERR
222 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
223 "phys_seg %u prio class %u\n",
224 caller, blk_errors[idx].name,
225 req->rq_disk ? req->rq_disk->disk_name : "?",
226 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
227 req->cmd_flags & ~REQ_OP_MASK,
228 req->nr_phys_segments,
229 IOPRIO_PRIO_CLASS(req->ioprio));
232 static void req_bio_endio(struct request *rq, struct bio *bio,
233 unsigned int nbytes, blk_status_t error)
235 if (error)
236 bio->bi_status = error;
238 if (unlikely(rq->rq_flags & RQF_QUIET))
239 bio_set_flag(bio, BIO_QUIET);
241 bio_advance(bio, nbytes);
243 /* don't actually finish bio if it's part of flush sequence */
244 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
245 bio_endio(bio);
248 void blk_dump_rq_flags(struct request *rq, char *msg)
250 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
251 rq->rq_disk ? rq->rq_disk->disk_name : "?",
252 (unsigned long long) rq->cmd_flags);
254 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
255 (unsigned long long)blk_rq_pos(rq),
256 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
257 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
258 rq->bio, rq->biotail, blk_rq_bytes(rq));
260 EXPORT_SYMBOL(blk_dump_rq_flags);
263 * blk_sync_queue - cancel any pending callbacks on a queue
264 * @q: the queue
266 * Description:
267 * The block layer may perform asynchronous callback activity
268 * on a queue, such as calling the unplug function after a timeout.
269 * A block device may call blk_sync_queue to ensure that any
270 * such activity is cancelled, thus allowing it to release resources
271 * that the callbacks might use. The caller must already have made sure
272 * that its ->make_request_fn will not re-add plugging prior to calling
273 * this function.
275 * This function does not cancel any asynchronous activity arising
276 * out of elevator or throttling code. That would require elevator_exit()
277 * and blkcg_exit_queue() to be called with queue lock initialized.
280 void blk_sync_queue(struct request_queue *q)
282 del_timer_sync(&q->timeout);
283 cancel_work_sync(&q->timeout_work);
285 EXPORT_SYMBOL(blk_sync_queue);
288 * blk_set_pm_only - increment pm_only counter
289 * @q: request queue pointer
291 void blk_set_pm_only(struct request_queue *q)
293 atomic_inc(&q->pm_only);
295 EXPORT_SYMBOL_GPL(blk_set_pm_only);
297 void blk_clear_pm_only(struct request_queue *q)
299 int pm_only;
301 pm_only = atomic_dec_return(&q->pm_only);
302 WARN_ON_ONCE(pm_only < 0);
303 if (pm_only == 0)
304 wake_up_all(&q->mq_freeze_wq);
306 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
308 void blk_put_queue(struct request_queue *q)
310 kobject_put(&q->kobj);
312 EXPORT_SYMBOL(blk_put_queue);
314 void blk_set_queue_dying(struct request_queue *q)
316 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
319 * When queue DYING flag is set, we need to block new req
320 * entering queue, so we call blk_freeze_queue_start() to
321 * prevent I/O from crossing blk_queue_enter().
323 blk_freeze_queue_start(q);
325 if (queue_is_mq(q))
326 blk_mq_wake_waiters(q);
328 /* Make blk_queue_enter() reexamine the DYING flag. */
329 wake_up_all(&q->mq_freeze_wq);
331 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
334 * blk_cleanup_queue - shutdown a request queue
335 * @q: request queue to shutdown
337 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
338 * put it. All future requests will be failed immediately with -ENODEV.
340 void blk_cleanup_queue(struct request_queue *q)
342 WARN_ON_ONCE(blk_queue_registered(q));
344 /* mark @q DYING, no new request or merges will be allowed afterwards */
345 blk_set_queue_dying(q);
347 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
348 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
351 * Drain all requests queued before DYING marking. Set DEAD flag to
352 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
353 * after draining finished.
355 blk_freeze_queue(q);
357 rq_qos_exit(q);
359 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
361 /* for synchronous bio-based driver finish in-flight integrity i/o */
362 blk_flush_integrity();
364 /* @q won't process any more request, flush async actions */
365 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
366 blk_sync_queue(q);
368 if (queue_is_mq(q))
369 blk_mq_exit_queue(q);
372 * In theory, request pool of sched_tags belongs to request queue.
373 * However, the current implementation requires tag_set for freeing
374 * requests, so free the pool now.
376 * Queue has become frozen, there can't be any in-queue requests, so
377 * it is safe to free requests now.
379 mutex_lock(&q->sysfs_lock);
380 if (q->elevator)
381 blk_mq_sched_free_requests(q);
382 mutex_unlock(&q->sysfs_lock);
384 percpu_ref_exit(&q->q_usage_counter);
386 /* @q is and will stay empty, shutdown and put */
387 blk_put_queue(q);
389 EXPORT_SYMBOL(blk_cleanup_queue);
392 * blk_queue_enter() - try to increase q->q_usage_counter
393 * @q: request queue pointer
394 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
396 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
398 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
400 while (true) {
401 bool success = false;
403 rcu_read_lock();
404 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
406 * The code that increments the pm_only counter is
407 * responsible for ensuring that that counter is
408 * globally visible before the queue is unfrozen.
410 if (pm || !blk_queue_pm_only(q)) {
411 success = true;
412 } else {
413 percpu_ref_put(&q->q_usage_counter);
416 rcu_read_unlock();
418 if (success)
419 return 0;
421 if (flags & BLK_MQ_REQ_NOWAIT)
422 return -EBUSY;
425 * read pair of barrier in blk_freeze_queue_start(),
426 * we need to order reading __PERCPU_REF_DEAD flag of
427 * .q_usage_counter and reading .mq_freeze_depth or
428 * queue dying flag, otherwise the following wait may
429 * never return if the two reads are reordered.
431 smp_rmb();
433 wait_event(q->mq_freeze_wq,
434 (!q->mq_freeze_depth &&
435 (pm || (blk_pm_request_resume(q),
436 !blk_queue_pm_only(q)))) ||
437 blk_queue_dying(q));
438 if (blk_queue_dying(q))
439 return -ENODEV;
443 void blk_queue_exit(struct request_queue *q)
445 percpu_ref_put(&q->q_usage_counter);
448 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
450 struct request_queue *q =
451 container_of(ref, struct request_queue, q_usage_counter);
453 wake_up_all(&q->mq_freeze_wq);
456 static void blk_rq_timed_out_timer(struct timer_list *t)
458 struct request_queue *q = from_timer(q, t, timeout);
460 kblockd_schedule_work(&q->timeout_work);
463 static void blk_timeout_work(struct work_struct *work)
467 struct request_queue *__blk_alloc_queue(int node_id)
469 struct request_queue *q;
470 int ret;
472 q = kmem_cache_alloc_node(blk_requestq_cachep,
473 GFP_KERNEL | __GFP_ZERO, node_id);
474 if (!q)
475 return NULL;
477 q->last_merge = NULL;
479 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
480 if (q->id < 0)
481 goto fail_q;
483 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
484 if (ret)
485 goto fail_id;
487 q->backing_dev_info = bdi_alloc_node(GFP_KERNEL, node_id);
488 if (!q->backing_dev_info)
489 goto fail_split;
491 q->stats = blk_alloc_queue_stats();
492 if (!q->stats)
493 goto fail_stats;
495 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
496 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
497 q->backing_dev_info->name = "block";
498 q->node = node_id;
500 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
501 laptop_mode_timer_fn, 0);
502 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
503 INIT_WORK(&q->timeout_work, blk_timeout_work);
504 INIT_LIST_HEAD(&q->icq_list);
505 #ifdef CONFIG_BLK_CGROUP
506 INIT_LIST_HEAD(&q->blkg_list);
507 #endif
509 kobject_init(&q->kobj, &blk_queue_ktype);
511 #ifdef CONFIG_BLK_DEV_IO_TRACE
512 mutex_init(&q->blk_trace_mutex);
513 #endif
514 mutex_init(&q->sysfs_lock);
515 mutex_init(&q->sysfs_dir_lock);
516 spin_lock_init(&q->queue_lock);
518 init_waitqueue_head(&q->mq_freeze_wq);
519 mutex_init(&q->mq_freeze_lock);
522 * Init percpu_ref in atomic mode so that it's faster to shutdown.
523 * See blk_register_queue() for details.
525 if (percpu_ref_init(&q->q_usage_counter,
526 blk_queue_usage_counter_release,
527 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
528 goto fail_bdi;
530 if (blkcg_init_queue(q))
531 goto fail_ref;
533 blk_queue_dma_alignment(q, 511);
534 blk_set_default_limits(&q->limits);
536 return q;
538 fail_ref:
539 percpu_ref_exit(&q->q_usage_counter);
540 fail_bdi:
541 blk_free_queue_stats(q->stats);
542 fail_stats:
543 bdi_put(q->backing_dev_info);
544 fail_split:
545 bioset_exit(&q->bio_split);
546 fail_id:
547 ida_simple_remove(&blk_queue_ida, q->id);
548 fail_q:
549 kmem_cache_free(blk_requestq_cachep, q);
550 return NULL;
553 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id)
555 struct request_queue *q;
557 if (WARN_ON_ONCE(!make_request))
558 return NULL;
560 q = __blk_alloc_queue(node_id);
561 if (!q)
562 return NULL;
563 q->make_request_fn = make_request;
564 q->nr_requests = BLKDEV_MAX_RQ;
565 return q;
567 EXPORT_SYMBOL(blk_alloc_queue);
569 bool blk_get_queue(struct request_queue *q)
571 if (likely(!blk_queue_dying(q))) {
572 __blk_get_queue(q);
573 return true;
576 return false;
578 EXPORT_SYMBOL(blk_get_queue);
581 * blk_get_request - allocate a request
582 * @q: request queue to allocate a request for
583 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
584 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
586 struct request *blk_get_request(struct request_queue *q, unsigned int op,
587 blk_mq_req_flags_t flags)
589 struct request *req;
591 WARN_ON_ONCE(op & REQ_NOWAIT);
592 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
594 req = blk_mq_alloc_request(q, op, flags);
595 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
596 q->mq_ops->initialize_rq_fn(req);
598 return req;
600 EXPORT_SYMBOL(blk_get_request);
602 void blk_put_request(struct request *req)
604 blk_mq_free_request(req);
606 EXPORT_SYMBOL(blk_put_request);
608 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
609 unsigned int nr_segs)
611 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
613 if (!ll_back_merge_fn(req, bio, nr_segs))
614 return false;
616 trace_block_bio_backmerge(req->q, req, bio);
617 rq_qos_merge(req->q, req, bio);
619 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
620 blk_rq_set_mixed_merge(req);
622 req->biotail->bi_next = bio;
623 req->biotail = bio;
624 req->__data_len += bio->bi_iter.bi_size;
626 blk_account_io_start(req, false);
627 return true;
630 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
631 unsigned int nr_segs)
633 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
635 if (!ll_front_merge_fn(req, bio, nr_segs))
636 return false;
638 trace_block_bio_frontmerge(req->q, req, bio);
639 rq_qos_merge(req->q, req, bio);
641 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
642 blk_rq_set_mixed_merge(req);
644 bio->bi_next = req->bio;
645 req->bio = bio;
647 req->__sector = bio->bi_iter.bi_sector;
648 req->__data_len += bio->bi_iter.bi_size;
650 blk_account_io_start(req, false);
651 return true;
654 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
655 struct bio *bio)
657 unsigned short segments = blk_rq_nr_discard_segments(req);
659 if (segments >= queue_max_discard_segments(q))
660 goto no_merge;
661 if (blk_rq_sectors(req) + bio_sectors(bio) >
662 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
663 goto no_merge;
665 rq_qos_merge(q, req, bio);
667 req->biotail->bi_next = bio;
668 req->biotail = bio;
669 req->__data_len += bio->bi_iter.bi_size;
670 req->nr_phys_segments = segments + 1;
672 blk_account_io_start(req, false);
673 return true;
674 no_merge:
675 req_set_nomerge(q, req);
676 return false;
680 * blk_attempt_plug_merge - try to merge with %current's plugged list
681 * @q: request_queue new bio is being queued at
682 * @bio: new bio being queued
683 * @nr_segs: number of segments in @bio
684 * @same_queue_rq: pointer to &struct request that gets filled in when
685 * another request associated with @q is found on the plug list
686 * (optional, may be %NULL)
688 * Determine whether @bio being queued on @q can be merged with a request
689 * on %current's plugged list. Returns %true if merge was successful,
690 * otherwise %false.
692 * Plugging coalesces IOs from the same issuer for the same purpose without
693 * going through @q->queue_lock. As such it's more of an issuing mechanism
694 * than scheduling, and the request, while may have elvpriv data, is not
695 * added on the elevator at this point. In addition, we don't have
696 * reliable access to the elevator outside queue lock. Only check basic
697 * merging parameters without querying the elevator.
699 * Caller must ensure !blk_queue_nomerges(q) beforehand.
701 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
702 unsigned int nr_segs, struct request **same_queue_rq)
704 struct blk_plug *plug;
705 struct request *rq;
706 struct list_head *plug_list;
708 plug = blk_mq_plug(q, bio);
709 if (!plug)
710 return false;
712 plug_list = &plug->mq_list;
714 list_for_each_entry_reverse(rq, plug_list, queuelist) {
715 bool merged = false;
717 if (rq->q == q && same_queue_rq) {
719 * Only blk-mq multiple hardware queues case checks the
720 * rq in the same queue, there should be only one such
721 * rq in a queue
723 *same_queue_rq = rq;
726 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
727 continue;
729 switch (blk_try_merge(rq, bio)) {
730 case ELEVATOR_BACK_MERGE:
731 merged = bio_attempt_back_merge(rq, bio, nr_segs);
732 break;
733 case ELEVATOR_FRONT_MERGE:
734 merged = bio_attempt_front_merge(rq, bio, nr_segs);
735 break;
736 case ELEVATOR_DISCARD_MERGE:
737 merged = bio_attempt_discard_merge(q, rq, bio);
738 break;
739 default:
740 break;
743 if (merged)
744 return true;
747 return false;
750 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
752 char b[BDEVNAME_SIZE];
754 printk(KERN_INFO "attempt to access beyond end of device\n");
755 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
756 bio_devname(bio, b), bio->bi_opf,
757 (unsigned long long)bio_end_sector(bio),
758 (long long)maxsector);
761 #ifdef CONFIG_FAIL_MAKE_REQUEST
763 static DECLARE_FAULT_ATTR(fail_make_request);
765 static int __init setup_fail_make_request(char *str)
767 return setup_fault_attr(&fail_make_request, str);
769 __setup("fail_make_request=", setup_fail_make_request);
771 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
773 return part->make_it_fail && should_fail(&fail_make_request, bytes);
776 static int __init fail_make_request_debugfs(void)
778 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
779 NULL, &fail_make_request);
781 return PTR_ERR_OR_ZERO(dir);
784 late_initcall(fail_make_request_debugfs);
786 #else /* CONFIG_FAIL_MAKE_REQUEST */
788 static inline bool should_fail_request(struct hd_struct *part,
789 unsigned int bytes)
791 return false;
794 #endif /* CONFIG_FAIL_MAKE_REQUEST */
796 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
798 const int op = bio_op(bio);
800 if (part->policy && op_is_write(op)) {
801 char b[BDEVNAME_SIZE];
803 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
804 return false;
806 WARN_ONCE(1,
807 "generic_make_request: Trying to write "
808 "to read-only block-device %s (partno %d)\n",
809 bio_devname(bio, b), part->partno);
810 /* Older lvm-tools actually trigger this */
811 return false;
814 return false;
817 static noinline int should_fail_bio(struct bio *bio)
819 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
820 return -EIO;
821 return 0;
823 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
826 * Check whether this bio extends beyond the end of the device or partition.
827 * This may well happen - the kernel calls bread() without checking the size of
828 * the device, e.g., when mounting a file system.
830 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
832 unsigned int nr_sectors = bio_sectors(bio);
834 if (nr_sectors && maxsector &&
835 (nr_sectors > maxsector ||
836 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
837 handle_bad_sector(bio, maxsector);
838 return -EIO;
840 return 0;
844 * Remap block n of partition p to block n+start(p) of the disk.
846 static inline int blk_partition_remap(struct bio *bio)
848 struct hd_struct *p;
849 int ret = -EIO;
851 rcu_read_lock();
852 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
853 if (unlikely(!p))
854 goto out;
855 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
856 goto out;
857 if (unlikely(bio_check_ro(bio, p)))
858 goto out;
860 if (bio_sectors(bio)) {
861 if (bio_check_eod(bio, part_nr_sects_read(p)))
862 goto out;
863 bio->bi_iter.bi_sector += p->start_sect;
864 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
865 bio->bi_iter.bi_sector - p->start_sect);
867 bio->bi_partno = 0;
868 ret = 0;
869 out:
870 rcu_read_unlock();
871 return ret;
874 static noinline_for_stack bool
875 generic_make_request_checks(struct bio *bio)
877 struct request_queue *q;
878 int nr_sectors = bio_sectors(bio);
879 blk_status_t status = BLK_STS_IOERR;
880 char b[BDEVNAME_SIZE];
882 might_sleep();
884 q = bio->bi_disk->queue;
885 if (unlikely(!q)) {
886 printk(KERN_ERR
887 "generic_make_request: Trying to access "
888 "nonexistent block-device %s (%Lu)\n",
889 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
890 goto end_io;
894 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
895 * if queue is not a request based queue.
897 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
898 goto not_supported;
900 if (should_fail_bio(bio))
901 goto end_io;
903 if (bio->bi_partno) {
904 if (unlikely(blk_partition_remap(bio)))
905 goto end_io;
906 } else {
907 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
908 goto end_io;
909 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
910 goto end_io;
914 * Filter flush bio's early so that make_request based
915 * drivers without flush support don't have to worry
916 * about them.
918 if (op_is_flush(bio->bi_opf) &&
919 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
920 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
921 if (!nr_sectors) {
922 status = BLK_STS_OK;
923 goto end_io;
927 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
928 bio->bi_opf &= ~REQ_HIPRI;
930 switch (bio_op(bio)) {
931 case REQ_OP_DISCARD:
932 if (!blk_queue_discard(q))
933 goto not_supported;
934 break;
935 case REQ_OP_SECURE_ERASE:
936 if (!blk_queue_secure_erase(q))
937 goto not_supported;
938 break;
939 case REQ_OP_WRITE_SAME:
940 if (!q->limits.max_write_same_sectors)
941 goto not_supported;
942 break;
943 case REQ_OP_ZONE_RESET:
944 case REQ_OP_ZONE_OPEN:
945 case REQ_OP_ZONE_CLOSE:
946 case REQ_OP_ZONE_FINISH:
947 if (!blk_queue_is_zoned(q))
948 goto not_supported;
949 break;
950 case REQ_OP_ZONE_RESET_ALL:
951 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
952 goto not_supported;
953 break;
954 case REQ_OP_WRITE_ZEROES:
955 if (!q->limits.max_write_zeroes_sectors)
956 goto not_supported;
957 break;
958 default:
959 break;
963 * Various block parts want %current->io_context and lazy ioc
964 * allocation ends up trading a lot of pain for a small amount of
965 * memory. Just allocate it upfront. This may fail and block
966 * layer knows how to live with it.
968 create_io_context(GFP_ATOMIC, q->node);
970 if (!blkcg_bio_issue_check(q, bio))
971 return false;
973 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
974 trace_block_bio_queue(q, bio);
975 /* Now that enqueuing has been traced, we need to trace
976 * completion as well.
978 bio_set_flag(bio, BIO_TRACE_COMPLETION);
980 return true;
982 not_supported:
983 status = BLK_STS_NOTSUPP;
984 end_io:
985 bio->bi_status = status;
986 bio_endio(bio);
987 return false;
991 * generic_make_request - hand a buffer to its device driver for I/O
992 * @bio: The bio describing the location in memory and on the device.
994 * generic_make_request() is used to make I/O requests of block
995 * devices. It is passed a &struct bio, which describes the I/O that needs
996 * to be done.
998 * generic_make_request() does not return any status. The
999 * success/failure status of the request, along with notification of
1000 * completion, is delivered asynchronously through the bio->bi_end_io
1001 * function described (one day) else where.
1003 * The caller of generic_make_request must make sure that bi_io_vec
1004 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1005 * set to describe the device address, and the
1006 * bi_end_io and optionally bi_private are set to describe how
1007 * completion notification should be signaled.
1009 * generic_make_request and the drivers it calls may use bi_next if this
1010 * bio happens to be merged with someone else, and may resubmit the bio to
1011 * a lower device by calling into generic_make_request recursively, which
1012 * means the bio should NOT be touched after the call to ->make_request_fn.
1014 blk_qc_t generic_make_request(struct bio *bio)
1017 * bio_list_on_stack[0] contains bios submitted by the current
1018 * make_request_fn.
1019 * bio_list_on_stack[1] contains bios that were submitted before
1020 * the current make_request_fn, but that haven't been processed
1021 * yet.
1023 struct bio_list bio_list_on_stack[2];
1024 blk_qc_t ret = BLK_QC_T_NONE;
1026 if (!generic_make_request_checks(bio))
1027 goto out;
1030 * We only want one ->make_request_fn to be active at a time, else
1031 * stack usage with stacked devices could be a problem. So use
1032 * current->bio_list to keep a list of requests submited by a
1033 * make_request_fn function. current->bio_list is also used as a
1034 * flag to say if generic_make_request is currently active in this
1035 * task or not. If it is NULL, then no make_request is active. If
1036 * it is non-NULL, then a make_request is active, and new requests
1037 * should be added at the tail
1039 if (current->bio_list) {
1040 bio_list_add(&current->bio_list[0], bio);
1041 goto out;
1044 /* following loop may be a bit non-obvious, and so deserves some
1045 * explanation.
1046 * Before entering the loop, bio->bi_next is NULL (as all callers
1047 * ensure that) so we have a list with a single bio.
1048 * We pretend that we have just taken it off a longer list, so
1049 * we assign bio_list to a pointer to the bio_list_on_stack,
1050 * thus initialising the bio_list of new bios to be
1051 * added. ->make_request() may indeed add some more bios
1052 * through a recursive call to generic_make_request. If it
1053 * did, we find a non-NULL value in bio_list and re-enter the loop
1054 * from the top. In this case we really did just take the bio
1055 * of the top of the list (no pretending) and so remove it from
1056 * bio_list, and call into ->make_request() again.
1058 BUG_ON(bio->bi_next);
1059 bio_list_init(&bio_list_on_stack[0]);
1060 current->bio_list = bio_list_on_stack;
1061 do {
1062 struct request_queue *q = bio->bi_disk->queue;
1063 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1064 BLK_MQ_REQ_NOWAIT : 0;
1066 if (likely(blk_queue_enter(q, flags) == 0)) {
1067 struct bio_list lower, same;
1069 /* Create a fresh bio_list for all subordinate requests */
1070 bio_list_on_stack[1] = bio_list_on_stack[0];
1071 bio_list_init(&bio_list_on_stack[0]);
1072 ret = q->make_request_fn(q, bio);
1074 blk_queue_exit(q);
1076 /* sort new bios into those for a lower level
1077 * and those for the same level
1079 bio_list_init(&lower);
1080 bio_list_init(&same);
1081 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1082 if (q == bio->bi_disk->queue)
1083 bio_list_add(&same, bio);
1084 else
1085 bio_list_add(&lower, bio);
1086 /* now assemble so we handle the lowest level first */
1087 bio_list_merge(&bio_list_on_stack[0], &lower);
1088 bio_list_merge(&bio_list_on_stack[0], &same);
1089 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1090 } else {
1091 if (unlikely(!blk_queue_dying(q) &&
1092 (bio->bi_opf & REQ_NOWAIT)))
1093 bio_wouldblock_error(bio);
1094 else
1095 bio_io_error(bio);
1097 bio = bio_list_pop(&bio_list_on_stack[0]);
1098 } while (bio);
1099 current->bio_list = NULL; /* deactivate */
1101 out:
1102 return ret;
1104 EXPORT_SYMBOL(generic_make_request);
1107 * direct_make_request - hand a buffer directly to its device driver for I/O
1108 * @bio: The bio describing the location in memory and on the device.
1110 * This function behaves like generic_make_request(), but does not protect
1111 * against recursion. Must only be used if the called driver is known
1112 * to not call generic_make_request (or direct_make_request) again from
1113 * its make_request function. (Calling direct_make_request again from
1114 * a workqueue is perfectly fine as that doesn't recurse).
1116 blk_qc_t direct_make_request(struct bio *bio)
1118 struct request_queue *q = bio->bi_disk->queue;
1119 bool nowait = bio->bi_opf & REQ_NOWAIT;
1120 blk_qc_t ret;
1122 if (!generic_make_request_checks(bio))
1123 return BLK_QC_T_NONE;
1125 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1126 if (nowait && !blk_queue_dying(q))
1127 bio_wouldblock_error(bio);
1128 else
1129 bio_io_error(bio);
1130 return BLK_QC_T_NONE;
1133 ret = q->make_request_fn(q, bio);
1134 blk_queue_exit(q);
1135 return ret;
1137 EXPORT_SYMBOL_GPL(direct_make_request);
1140 * submit_bio - submit a bio to the block device layer for I/O
1141 * @bio: The &struct bio which describes the I/O
1143 * submit_bio() is very similar in purpose to generic_make_request(), and
1144 * uses that function to do most of the work. Both are fairly rough
1145 * interfaces; @bio must be presetup and ready for I/O.
1148 blk_qc_t submit_bio(struct bio *bio)
1150 bool workingset_read = false;
1151 unsigned long pflags;
1152 blk_qc_t ret;
1154 if (blkcg_punt_bio_submit(bio))
1155 return BLK_QC_T_NONE;
1158 * If it's a regular read/write or a barrier with data attached,
1159 * go through the normal accounting stuff before submission.
1161 if (bio_has_data(bio)) {
1162 unsigned int count;
1164 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1165 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1166 else
1167 count = bio_sectors(bio);
1169 if (op_is_write(bio_op(bio))) {
1170 count_vm_events(PGPGOUT, count);
1171 } else {
1172 if (bio_flagged(bio, BIO_WORKINGSET))
1173 workingset_read = true;
1174 task_io_account_read(bio->bi_iter.bi_size);
1175 count_vm_events(PGPGIN, count);
1178 if (unlikely(block_dump)) {
1179 char b[BDEVNAME_SIZE];
1180 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1181 current->comm, task_pid_nr(current),
1182 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1183 (unsigned long long)bio->bi_iter.bi_sector,
1184 bio_devname(bio, b), count);
1189 * If we're reading data that is part of the userspace
1190 * workingset, count submission time as memory stall. When the
1191 * device is congested, or the submitting cgroup IO-throttled,
1192 * submission can be a significant part of overall IO time.
1194 if (workingset_read)
1195 psi_memstall_enter(&pflags);
1197 ret = generic_make_request(bio);
1199 if (workingset_read)
1200 psi_memstall_leave(&pflags);
1202 return ret;
1204 EXPORT_SYMBOL(submit_bio);
1207 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1208 * for the new queue limits
1209 * @q: the queue
1210 * @rq: the request being checked
1212 * Description:
1213 * @rq may have been made based on weaker limitations of upper-level queues
1214 * in request stacking drivers, and it may violate the limitation of @q.
1215 * Since the block layer and the underlying device driver trust @rq
1216 * after it is inserted to @q, it should be checked against @q before
1217 * the insertion using this generic function.
1219 * Request stacking drivers like request-based dm may change the queue
1220 * limits when retrying requests on other queues. Those requests need
1221 * to be checked against the new queue limits again during dispatch.
1223 static int blk_cloned_rq_check_limits(struct request_queue *q,
1224 struct request *rq)
1226 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1227 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1228 __func__, blk_rq_sectors(rq),
1229 blk_queue_get_max_sectors(q, req_op(rq)));
1230 return -EIO;
1234 * queue's settings related to segment counting like q->bounce_pfn
1235 * may differ from that of other stacking queues.
1236 * Recalculate it to check the request correctly on this queue's
1237 * limitation.
1239 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1240 if (rq->nr_phys_segments > queue_max_segments(q)) {
1241 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1242 __func__, rq->nr_phys_segments, queue_max_segments(q));
1243 return -EIO;
1246 return 0;
1250 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1251 * @q: the queue to submit the request
1252 * @rq: the request being queued
1254 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1256 if (blk_cloned_rq_check_limits(q, rq))
1257 return BLK_STS_IOERR;
1259 if (rq->rq_disk &&
1260 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1261 return BLK_STS_IOERR;
1263 if (blk_queue_io_stat(q))
1264 blk_account_io_start(rq, true);
1267 * Since we have a scheduler attached on the top device,
1268 * bypass a potential scheduler on the bottom device for
1269 * insert.
1271 return blk_mq_request_issue_directly(rq, true);
1273 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1276 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1277 * @rq: request to examine
1279 * Description:
1280 * A request could be merge of IOs which require different failure
1281 * handling. This function determines the number of bytes which
1282 * can be failed from the beginning of the request without
1283 * crossing into area which need to be retried further.
1285 * Return:
1286 * The number of bytes to fail.
1288 unsigned int blk_rq_err_bytes(const struct request *rq)
1290 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1291 unsigned int bytes = 0;
1292 struct bio *bio;
1294 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1295 return blk_rq_bytes(rq);
1298 * Currently the only 'mixing' which can happen is between
1299 * different fastfail types. We can safely fail portions
1300 * which have all the failfast bits that the first one has -
1301 * the ones which are at least as eager to fail as the first
1302 * one.
1304 for (bio = rq->bio; bio; bio = bio->bi_next) {
1305 if ((bio->bi_opf & ff) != ff)
1306 break;
1307 bytes += bio->bi_iter.bi_size;
1310 /* this could lead to infinite loop */
1311 BUG_ON(blk_rq_bytes(rq) && !bytes);
1312 return bytes;
1314 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1316 void blk_account_io_completion(struct request *req, unsigned int bytes)
1318 if (req->part && blk_do_io_stat(req)) {
1319 const int sgrp = op_stat_group(req_op(req));
1320 struct hd_struct *part;
1322 part_stat_lock();
1323 part = req->part;
1324 part_stat_add(part, sectors[sgrp], bytes >> 9);
1325 part_stat_unlock();
1329 void blk_account_io_done(struct request *req, u64 now)
1332 * Account IO completion. flush_rq isn't accounted as a
1333 * normal IO on queueing nor completion. Accounting the
1334 * containing request is enough.
1336 if (req->part && blk_do_io_stat(req) &&
1337 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1338 const int sgrp = op_stat_group(req_op(req));
1339 struct hd_struct *part;
1341 part_stat_lock();
1342 part = req->part;
1344 update_io_ticks(part, jiffies, true);
1345 part_stat_inc(part, ios[sgrp]);
1346 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1347 part_dec_in_flight(req->q, part, rq_data_dir(req));
1349 hd_struct_put(part);
1350 part_stat_unlock();
1354 void blk_account_io_start(struct request *rq, bool new_io)
1356 struct hd_struct *part;
1357 int rw = rq_data_dir(rq);
1359 if (!blk_do_io_stat(rq))
1360 return;
1362 part_stat_lock();
1364 if (!new_io) {
1365 part = rq->part;
1366 part_stat_inc(part, merges[rw]);
1367 } else {
1368 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1369 if (!hd_struct_try_get(part)) {
1371 * The partition is already being removed,
1372 * the request will be accounted on the disk only
1374 * We take a reference on disk->part0 although that
1375 * partition will never be deleted, so we can treat
1376 * it as any other partition.
1378 part = &rq->rq_disk->part0;
1379 hd_struct_get(part);
1381 part_inc_in_flight(rq->q, part, rw);
1382 rq->part = part;
1385 update_io_ticks(part, jiffies, false);
1387 part_stat_unlock();
1391 * Steal bios from a request and add them to a bio list.
1392 * The request must not have been partially completed before.
1394 void blk_steal_bios(struct bio_list *list, struct request *rq)
1396 if (rq->bio) {
1397 if (list->tail)
1398 list->tail->bi_next = rq->bio;
1399 else
1400 list->head = rq->bio;
1401 list->tail = rq->biotail;
1403 rq->bio = NULL;
1404 rq->biotail = NULL;
1407 rq->__data_len = 0;
1409 EXPORT_SYMBOL_GPL(blk_steal_bios);
1412 * blk_update_request - Special helper function for request stacking drivers
1413 * @req: the request being processed
1414 * @error: block status code
1415 * @nr_bytes: number of bytes to complete @req
1417 * Description:
1418 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1419 * the request structure even if @req doesn't have leftover.
1420 * If @req has leftover, sets it up for the next range of segments.
1422 * This special helper function is only for request stacking drivers
1423 * (e.g. request-based dm) so that they can handle partial completion.
1424 * Actual device drivers should use blk_mq_end_request instead.
1426 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1427 * %false return from this function.
1429 * Note:
1430 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1431 * blk_rq_bytes() and in blk_update_request().
1433 * Return:
1434 * %false - this request doesn't have any more data
1435 * %true - this request has more data
1437 bool blk_update_request(struct request *req, blk_status_t error,
1438 unsigned int nr_bytes)
1440 int total_bytes;
1442 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1444 if (!req->bio)
1445 return false;
1447 #ifdef CONFIG_BLK_DEV_INTEGRITY
1448 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1449 error == BLK_STS_OK)
1450 req->q->integrity.profile->complete_fn(req, nr_bytes);
1451 #endif
1453 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1454 !(req->rq_flags & RQF_QUIET)))
1455 print_req_error(req, error, __func__);
1457 blk_account_io_completion(req, nr_bytes);
1459 total_bytes = 0;
1460 while (req->bio) {
1461 struct bio *bio = req->bio;
1462 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1464 if (bio_bytes == bio->bi_iter.bi_size)
1465 req->bio = bio->bi_next;
1467 /* Completion has already been traced */
1468 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1469 req_bio_endio(req, bio, bio_bytes, error);
1471 total_bytes += bio_bytes;
1472 nr_bytes -= bio_bytes;
1474 if (!nr_bytes)
1475 break;
1479 * completely done
1481 if (!req->bio) {
1483 * Reset counters so that the request stacking driver
1484 * can find how many bytes remain in the request
1485 * later.
1487 req->__data_len = 0;
1488 return false;
1491 req->__data_len -= total_bytes;
1493 /* update sector only for requests with clear definition of sector */
1494 if (!blk_rq_is_passthrough(req))
1495 req->__sector += total_bytes >> 9;
1497 /* mixed attributes always follow the first bio */
1498 if (req->rq_flags & RQF_MIXED_MERGE) {
1499 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1500 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1503 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1505 * If total number of sectors is less than the first segment
1506 * size, something has gone terribly wrong.
1508 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1509 blk_dump_rq_flags(req, "request botched");
1510 req->__data_len = blk_rq_cur_bytes(req);
1513 /* recalculate the number of segments */
1514 req->nr_phys_segments = blk_recalc_rq_segments(req);
1517 return true;
1519 EXPORT_SYMBOL_GPL(blk_update_request);
1521 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1523 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1524 * @rq: the request to be flushed
1526 * Description:
1527 * Flush all pages in @rq.
1529 void rq_flush_dcache_pages(struct request *rq)
1531 struct req_iterator iter;
1532 struct bio_vec bvec;
1534 rq_for_each_segment(bvec, rq, iter)
1535 flush_dcache_page(bvec.bv_page);
1537 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1538 #endif
1541 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1542 * @q : the queue of the device being checked
1544 * Description:
1545 * Check if underlying low-level drivers of a device are busy.
1546 * If the drivers want to export their busy state, they must set own
1547 * exporting function using blk_queue_lld_busy() first.
1549 * Basically, this function is used only by request stacking drivers
1550 * to stop dispatching requests to underlying devices when underlying
1551 * devices are busy. This behavior helps more I/O merging on the queue
1552 * of the request stacking driver and prevents I/O throughput regression
1553 * on burst I/O load.
1555 * Return:
1556 * 0 - Not busy (The request stacking driver should dispatch request)
1557 * 1 - Busy (The request stacking driver should stop dispatching request)
1559 int blk_lld_busy(struct request_queue *q)
1561 if (queue_is_mq(q) && q->mq_ops->busy)
1562 return q->mq_ops->busy(q);
1564 return 0;
1566 EXPORT_SYMBOL_GPL(blk_lld_busy);
1569 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1570 * @rq: the clone request to be cleaned up
1572 * Description:
1573 * Free all bios in @rq for a cloned request.
1575 void blk_rq_unprep_clone(struct request *rq)
1577 struct bio *bio;
1579 while ((bio = rq->bio) != NULL) {
1580 rq->bio = bio->bi_next;
1582 bio_put(bio);
1585 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1588 * blk_rq_prep_clone - Helper function to setup clone request
1589 * @rq: the request to be setup
1590 * @rq_src: original request to be cloned
1591 * @bs: bio_set that bios for clone are allocated from
1592 * @gfp_mask: memory allocation mask for bio
1593 * @bio_ctr: setup function to be called for each clone bio.
1594 * Returns %0 for success, non %0 for failure.
1595 * @data: private data to be passed to @bio_ctr
1597 * Description:
1598 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1599 * Also, pages which the original bios are pointing to are not copied
1600 * and the cloned bios just point same pages.
1601 * So cloned bios must be completed before original bios, which means
1602 * the caller must complete @rq before @rq_src.
1604 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1605 struct bio_set *bs, gfp_t gfp_mask,
1606 int (*bio_ctr)(struct bio *, struct bio *, void *),
1607 void *data)
1609 struct bio *bio, *bio_src;
1611 if (!bs)
1612 bs = &fs_bio_set;
1614 __rq_for_each_bio(bio_src, rq_src) {
1615 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1616 if (!bio)
1617 goto free_and_out;
1619 if (bio_ctr && bio_ctr(bio, bio_src, data))
1620 goto free_and_out;
1622 if (rq->bio) {
1623 rq->biotail->bi_next = bio;
1624 rq->biotail = bio;
1625 } else
1626 rq->bio = rq->biotail = bio;
1629 /* Copy attributes of the original request to the clone request. */
1630 rq->__sector = blk_rq_pos(rq_src);
1631 rq->__data_len = blk_rq_bytes(rq_src);
1632 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1633 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1634 rq->special_vec = rq_src->special_vec;
1636 rq->nr_phys_segments = rq_src->nr_phys_segments;
1637 rq->ioprio = rq_src->ioprio;
1638 rq->extra_len = rq_src->extra_len;
1640 return 0;
1642 free_and_out:
1643 if (bio)
1644 bio_put(bio);
1645 blk_rq_unprep_clone(rq);
1647 return -ENOMEM;
1649 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1651 int kblockd_schedule_work(struct work_struct *work)
1653 return queue_work(kblockd_workqueue, work);
1655 EXPORT_SYMBOL(kblockd_schedule_work);
1657 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1658 unsigned long delay)
1660 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1662 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1665 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1666 * @plug: The &struct blk_plug that needs to be initialized
1668 * Description:
1669 * blk_start_plug() indicates to the block layer an intent by the caller
1670 * to submit multiple I/O requests in a batch. The block layer may use
1671 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1672 * is called. However, the block layer may choose to submit requests
1673 * before a call to blk_finish_plug() if the number of queued I/Os
1674 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1675 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1676 * the task schedules (see below).
1678 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1679 * pending I/O should the task end up blocking between blk_start_plug() and
1680 * blk_finish_plug(). This is important from a performance perspective, but
1681 * also ensures that we don't deadlock. For instance, if the task is blocking
1682 * for a memory allocation, memory reclaim could end up wanting to free a
1683 * page belonging to that request that is currently residing in our private
1684 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1685 * this kind of deadlock.
1687 void blk_start_plug(struct blk_plug *plug)
1689 struct task_struct *tsk = current;
1692 * If this is a nested plug, don't actually assign it.
1694 if (tsk->plug)
1695 return;
1697 INIT_LIST_HEAD(&plug->mq_list);
1698 INIT_LIST_HEAD(&plug->cb_list);
1699 plug->rq_count = 0;
1700 plug->multiple_queues = false;
1703 * Store ordering should not be needed here, since a potential
1704 * preempt will imply a full memory barrier
1706 tsk->plug = plug;
1708 EXPORT_SYMBOL(blk_start_plug);
1710 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1712 LIST_HEAD(callbacks);
1714 while (!list_empty(&plug->cb_list)) {
1715 list_splice_init(&plug->cb_list, &callbacks);
1717 while (!list_empty(&callbacks)) {
1718 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1719 struct blk_plug_cb,
1720 list);
1721 list_del(&cb->list);
1722 cb->callback(cb, from_schedule);
1727 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1728 int size)
1730 struct blk_plug *plug = current->plug;
1731 struct blk_plug_cb *cb;
1733 if (!plug)
1734 return NULL;
1736 list_for_each_entry(cb, &plug->cb_list, list)
1737 if (cb->callback == unplug && cb->data == data)
1738 return cb;
1740 /* Not currently on the callback list */
1741 BUG_ON(size < sizeof(*cb));
1742 cb = kzalloc(size, GFP_ATOMIC);
1743 if (cb) {
1744 cb->data = data;
1745 cb->callback = unplug;
1746 list_add(&cb->list, &plug->cb_list);
1748 return cb;
1750 EXPORT_SYMBOL(blk_check_plugged);
1752 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1754 flush_plug_callbacks(plug, from_schedule);
1756 if (!list_empty(&plug->mq_list))
1757 blk_mq_flush_plug_list(plug, from_schedule);
1761 * blk_finish_plug - mark the end of a batch of submitted I/O
1762 * @plug: The &struct blk_plug passed to blk_start_plug()
1764 * Description:
1765 * Indicate that a batch of I/O submissions is complete. This function
1766 * must be paired with an initial call to blk_start_plug(). The intent
1767 * is to allow the block layer to optimize I/O submission. See the
1768 * documentation for blk_start_plug() for more information.
1770 void blk_finish_plug(struct blk_plug *plug)
1772 if (plug != current->plug)
1773 return;
1774 blk_flush_plug_list(plug, false);
1776 current->plug = NULL;
1778 EXPORT_SYMBOL(blk_finish_plug);
1780 int __init blk_dev_init(void)
1782 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1783 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1784 sizeof_field(struct request, cmd_flags));
1785 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1786 sizeof_field(struct bio, bi_opf));
1788 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1789 kblockd_workqueue = alloc_workqueue("kblockd",
1790 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1791 if (!kblockd_workqueue)
1792 panic("Failed to create kblockd\n");
1794 blk_requestq_cachep = kmem_cache_create("request_queue",
1795 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1797 #ifdef CONFIG_DEBUG_FS
1798 blk_debugfs_root = debugfs_create_dir("block", NULL);
1799 #endif
1801 return 0;