Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / block / blk-mq-sched.c
blob74cedea560348167ab951c53dc3d8e14fe4f70dc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
11 #include <trace/events/block.h>
13 #include "blk.h"
14 #include "blk-mq.h"
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-mq-tag.h"
18 #include "blk-wbt.h"
20 void blk_mq_sched_free_hctx_data(struct request_queue *q,
21 void (*exit)(struct blk_mq_hw_ctx *))
23 struct blk_mq_hw_ctx *hctx;
24 int i;
26 queue_for_each_hw_ctx(q, hctx, i) {
27 if (exit && hctx->sched_data)
28 exit(hctx);
29 kfree(hctx->sched_data);
30 hctx->sched_data = NULL;
33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
35 void blk_mq_sched_assign_ioc(struct request *rq)
37 struct request_queue *q = rq->q;
38 struct io_context *ioc;
39 struct io_cq *icq;
42 * May not have an IO context if it's a passthrough request
44 ioc = current->io_context;
45 if (!ioc)
46 return;
48 spin_lock_irq(&q->queue_lock);
49 icq = ioc_lookup_icq(ioc, q);
50 spin_unlock_irq(&q->queue_lock);
52 if (!icq) {
53 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
54 if (!icq)
55 return;
57 get_io_context(icq->ioc);
58 rq->elv.icq = icq;
62 * Mark a hardware queue as needing a restart. For shared queues, maintain
63 * a count of how many hardware queues are marked for restart.
65 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
67 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 return;
70 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
72 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
74 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
76 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
77 return;
78 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
80 blk_mq_run_hw_queue(hctx, true);
84 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
85 * its queue by itself in its completion handler, so we don't need to
86 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
88 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
90 struct request_queue *q = hctx->queue;
91 struct elevator_queue *e = q->elevator;
92 LIST_HEAD(rq_list);
94 do {
95 struct request *rq;
97 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
98 break;
100 if (!blk_mq_get_dispatch_budget(hctx))
101 break;
103 rq = e->type->ops.dispatch_request(hctx);
104 if (!rq) {
105 blk_mq_put_dispatch_budget(hctx);
106 break;
110 * Now this rq owns the budget which has to be released
111 * if this rq won't be queued to driver via .queue_rq()
112 * in blk_mq_dispatch_rq_list().
114 list_add(&rq->queuelist, &rq_list);
115 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
118 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
119 struct blk_mq_ctx *ctx)
121 unsigned short idx = ctx->index_hw[hctx->type];
123 if (++idx == hctx->nr_ctx)
124 idx = 0;
126 return hctx->ctxs[idx];
130 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
131 * its queue by itself in its completion handler, so we don't need to
132 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
134 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
136 struct request_queue *q = hctx->queue;
137 LIST_HEAD(rq_list);
138 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
140 do {
141 struct request *rq;
143 if (!sbitmap_any_bit_set(&hctx->ctx_map))
144 break;
146 if (!blk_mq_get_dispatch_budget(hctx))
147 break;
149 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
150 if (!rq) {
151 blk_mq_put_dispatch_budget(hctx);
152 break;
156 * Now this rq owns the budget which has to be released
157 * if this rq won't be queued to driver via .queue_rq()
158 * in blk_mq_dispatch_rq_list().
160 list_add(&rq->queuelist, &rq_list);
162 /* round robin for fair dispatch */
163 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
165 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
167 WRITE_ONCE(hctx->dispatch_from, ctx);
170 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
172 struct request_queue *q = hctx->queue;
173 struct elevator_queue *e = q->elevator;
174 const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
175 LIST_HEAD(rq_list);
177 /* RCU or SRCU read lock is needed before checking quiesced flag */
178 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
179 return;
181 hctx->run++;
184 * If we have previous entries on our dispatch list, grab them first for
185 * more fair dispatch.
187 if (!list_empty_careful(&hctx->dispatch)) {
188 spin_lock(&hctx->lock);
189 if (!list_empty(&hctx->dispatch))
190 list_splice_init(&hctx->dispatch, &rq_list);
191 spin_unlock(&hctx->lock);
195 * Only ask the scheduler for requests, if we didn't have residual
196 * requests from the dispatch list. This is to avoid the case where
197 * we only ever dispatch a fraction of the requests available because
198 * of low device queue depth. Once we pull requests out of the IO
199 * scheduler, we can no longer merge or sort them. So it's best to
200 * leave them there for as long as we can. Mark the hw queue as
201 * needing a restart in that case.
203 * We want to dispatch from the scheduler if there was nothing
204 * on the dispatch list or we were able to dispatch from the
205 * dispatch list.
207 if (!list_empty(&rq_list)) {
208 blk_mq_sched_mark_restart_hctx(hctx);
209 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
210 if (has_sched_dispatch)
211 blk_mq_do_dispatch_sched(hctx);
212 else
213 blk_mq_do_dispatch_ctx(hctx);
215 } else if (has_sched_dispatch) {
216 blk_mq_do_dispatch_sched(hctx);
217 } else if (hctx->dispatch_busy) {
218 /* dequeue request one by one from sw queue if queue is busy */
219 blk_mq_do_dispatch_ctx(hctx);
220 } else {
221 blk_mq_flush_busy_ctxs(hctx, &rq_list);
222 blk_mq_dispatch_rq_list(q, &rq_list, false);
226 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
227 unsigned int nr_segs, struct request **merged_request)
229 struct request *rq;
231 switch (elv_merge(q, &rq, bio)) {
232 case ELEVATOR_BACK_MERGE:
233 if (!blk_mq_sched_allow_merge(q, rq, bio))
234 return false;
235 if (!bio_attempt_back_merge(rq, bio, nr_segs))
236 return false;
237 *merged_request = attempt_back_merge(q, rq);
238 if (!*merged_request)
239 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
240 return true;
241 case ELEVATOR_FRONT_MERGE:
242 if (!blk_mq_sched_allow_merge(q, rq, bio))
243 return false;
244 if (!bio_attempt_front_merge(rq, bio, nr_segs))
245 return false;
246 *merged_request = attempt_front_merge(q, rq);
247 if (!*merged_request)
248 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
249 return true;
250 case ELEVATOR_DISCARD_MERGE:
251 return bio_attempt_discard_merge(q, rq, bio);
252 default:
253 return false;
256 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
259 * Iterate list of requests and see if we can merge this bio with any
260 * of them.
262 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
263 struct bio *bio, unsigned int nr_segs)
265 struct request *rq;
266 int checked = 8;
268 list_for_each_entry_reverse(rq, list, queuelist) {
269 bool merged = false;
271 if (!checked--)
272 break;
274 if (!blk_rq_merge_ok(rq, bio))
275 continue;
277 switch (blk_try_merge(rq, bio)) {
278 case ELEVATOR_BACK_MERGE:
279 if (blk_mq_sched_allow_merge(q, rq, bio))
280 merged = bio_attempt_back_merge(rq, bio,
281 nr_segs);
282 break;
283 case ELEVATOR_FRONT_MERGE:
284 if (blk_mq_sched_allow_merge(q, rq, bio))
285 merged = bio_attempt_front_merge(rq, bio,
286 nr_segs);
287 break;
288 case ELEVATOR_DISCARD_MERGE:
289 merged = bio_attempt_discard_merge(q, rq, bio);
290 break;
291 default:
292 continue;
295 return merged;
298 return false;
300 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
303 * Reverse check our software queue for entries that we could potentially
304 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
305 * too much time checking for merges.
307 static bool blk_mq_attempt_merge(struct request_queue *q,
308 struct blk_mq_hw_ctx *hctx,
309 struct blk_mq_ctx *ctx, struct bio *bio,
310 unsigned int nr_segs)
312 enum hctx_type type = hctx->type;
314 lockdep_assert_held(&ctx->lock);
316 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
317 ctx->rq_merged++;
318 return true;
321 return false;
324 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
325 unsigned int nr_segs)
327 struct elevator_queue *e = q->elevator;
328 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
329 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
330 bool ret = false;
331 enum hctx_type type;
333 if (e && e->type->ops.bio_merge)
334 return e->type->ops.bio_merge(hctx, bio, nr_segs);
336 type = hctx->type;
337 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
338 !list_empty_careful(&ctx->rq_lists[type])) {
339 /* default per sw-queue merge */
340 spin_lock(&ctx->lock);
341 ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
342 spin_unlock(&ctx->lock);
345 return ret;
348 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
350 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
352 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
354 void blk_mq_sched_request_inserted(struct request *rq)
356 trace_block_rq_insert(rq->q, rq);
358 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
360 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
361 bool has_sched,
362 struct request *rq)
365 * dispatch flush and passthrough rq directly
367 * passthrough request has to be added to hctx->dispatch directly.
368 * For some reason, device may be in one situation which can't
369 * handle FS request, so STS_RESOURCE is always returned and the
370 * FS request will be added to hctx->dispatch. However passthrough
371 * request may be required at that time for fixing the problem. If
372 * passthrough request is added to scheduler queue, there isn't any
373 * chance to dispatch it given we prioritize requests in hctx->dispatch.
375 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
376 return true;
378 if (has_sched)
379 rq->rq_flags |= RQF_SORTED;
381 return false;
384 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
385 bool run_queue, bool async)
387 struct request_queue *q = rq->q;
388 struct elevator_queue *e = q->elevator;
389 struct blk_mq_ctx *ctx = rq->mq_ctx;
390 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
392 /* flush rq in flush machinery need to be dispatched directly */
393 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
394 blk_insert_flush(rq);
395 goto run;
398 WARN_ON(e && (rq->tag != -1));
400 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
402 * Firstly normal IO request is inserted to scheduler queue or
403 * sw queue, meantime we add flush request to dispatch queue(
404 * hctx->dispatch) directly and there is at most one in-flight
405 * flush request for each hw queue, so it doesn't matter to add
406 * flush request to tail or front of the dispatch queue.
408 * Secondly in case of NCQ, flush request belongs to non-NCQ
409 * command, and queueing it will fail when there is any
410 * in-flight normal IO request(NCQ command). When adding flush
411 * rq to the front of hctx->dispatch, it is easier to introduce
412 * extra time to flush rq's latency because of S_SCHED_RESTART
413 * compared with adding to the tail of dispatch queue, then
414 * chance of flush merge is increased, and less flush requests
415 * will be issued to controller. It is observed that ~10% time
416 * is saved in blktests block/004 on disk attached to AHCI/NCQ
417 * drive when adding flush rq to the front of hctx->dispatch.
419 * Simply queue flush rq to the front of hctx->dispatch so that
420 * intensive flush workloads can benefit in case of NCQ HW.
422 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
423 blk_mq_request_bypass_insert(rq, at_head, false);
424 goto run;
427 if (e && e->type->ops.insert_requests) {
428 LIST_HEAD(list);
430 list_add(&rq->queuelist, &list);
431 e->type->ops.insert_requests(hctx, &list, at_head);
432 } else {
433 spin_lock(&ctx->lock);
434 __blk_mq_insert_request(hctx, rq, at_head);
435 spin_unlock(&ctx->lock);
438 run:
439 if (run_queue)
440 blk_mq_run_hw_queue(hctx, async);
443 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
444 struct blk_mq_ctx *ctx,
445 struct list_head *list, bool run_queue_async)
447 struct elevator_queue *e;
448 struct request_queue *q = hctx->queue;
451 * blk_mq_sched_insert_requests() is called from flush plug
452 * context only, and hold one usage counter to prevent queue
453 * from being released.
455 percpu_ref_get(&q->q_usage_counter);
457 e = hctx->queue->elevator;
458 if (e && e->type->ops.insert_requests)
459 e->type->ops.insert_requests(hctx, list, false);
460 else {
462 * try to issue requests directly if the hw queue isn't
463 * busy in case of 'none' scheduler, and this way may save
464 * us one extra enqueue & dequeue to sw queue.
466 if (!hctx->dispatch_busy && !e && !run_queue_async) {
467 blk_mq_try_issue_list_directly(hctx, list);
468 if (list_empty(list))
469 goto out;
471 blk_mq_insert_requests(hctx, ctx, list);
474 blk_mq_run_hw_queue(hctx, run_queue_async);
475 out:
476 percpu_ref_put(&q->q_usage_counter);
479 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
480 struct blk_mq_hw_ctx *hctx,
481 unsigned int hctx_idx)
483 if (hctx->sched_tags) {
484 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
485 blk_mq_free_rq_map(hctx->sched_tags);
486 hctx->sched_tags = NULL;
490 static int blk_mq_sched_alloc_tags(struct request_queue *q,
491 struct blk_mq_hw_ctx *hctx,
492 unsigned int hctx_idx)
494 struct blk_mq_tag_set *set = q->tag_set;
495 int ret;
497 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
498 set->reserved_tags);
499 if (!hctx->sched_tags)
500 return -ENOMEM;
502 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
503 if (ret)
504 blk_mq_sched_free_tags(set, hctx, hctx_idx);
506 return ret;
509 /* called in queue's release handler, tagset has gone away */
510 static void blk_mq_sched_tags_teardown(struct request_queue *q)
512 struct blk_mq_hw_ctx *hctx;
513 int i;
515 queue_for_each_hw_ctx(q, hctx, i) {
516 if (hctx->sched_tags) {
517 blk_mq_free_rq_map(hctx->sched_tags);
518 hctx->sched_tags = NULL;
523 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
525 struct blk_mq_hw_ctx *hctx;
526 struct elevator_queue *eq;
527 unsigned int i;
528 int ret;
530 if (!e) {
531 q->elevator = NULL;
532 q->nr_requests = q->tag_set->queue_depth;
533 return 0;
537 * Default to double of smaller one between hw queue_depth and 128,
538 * since we don't split into sync/async like the old code did.
539 * Additionally, this is a per-hw queue depth.
541 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
542 BLKDEV_MAX_RQ);
544 queue_for_each_hw_ctx(q, hctx, i) {
545 ret = blk_mq_sched_alloc_tags(q, hctx, i);
546 if (ret)
547 goto err;
550 ret = e->ops.init_sched(q, e);
551 if (ret)
552 goto err;
554 blk_mq_debugfs_register_sched(q);
556 queue_for_each_hw_ctx(q, hctx, i) {
557 if (e->ops.init_hctx) {
558 ret = e->ops.init_hctx(hctx, i);
559 if (ret) {
560 eq = q->elevator;
561 blk_mq_sched_free_requests(q);
562 blk_mq_exit_sched(q, eq);
563 kobject_put(&eq->kobj);
564 return ret;
567 blk_mq_debugfs_register_sched_hctx(q, hctx);
570 return 0;
572 err:
573 blk_mq_sched_free_requests(q);
574 blk_mq_sched_tags_teardown(q);
575 q->elevator = NULL;
576 return ret;
580 * called in either blk_queue_cleanup or elevator_switch, tagset
581 * is required for freeing requests
583 void blk_mq_sched_free_requests(struct request_queue *q)
585 struct blk_mq_hw_ctx *hctx;
586 int i;
588 queue_for_each_hw_ctx(q, hctx, i) {
589 if (hctx->sched_tags)
590 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
594 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
596 struct blk_mq_hw_ctx *hctx;
597 unsigned int i;
599 queue_for_each_hw_ctx(q, hctx, i) {
600 blk_mq_debugfs_unregister_sched_hctx(hctx);
601 if (e->type->ops.exit_hctx && hctx->sched_data) {
602 e->type->ops.exit_hctx(hctx, i);
603 hctx->sched_data = NULL;
606 blk_mq_debugfs_unregister_sched(q);
607 if (e->type->ops.exit_sched)
608 e->type->ops.exit_sched(e);
609 blk_mq_sched_tags_teardown(q);
610 q->elevator = NULL;