Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / block / blk-mq.c
blob8f580e66691b9c8de32e935b0b340f12b533dbdc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
30 #include <trace/events/block.h>
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
34 #include "blk.h"
35 #include "blk-mq.h"
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 int ddir, sectors, bucket;
50 ddir = rq_data_dir(rq);
51 sectors = blk_rq_stats_sectors(rq);
53 bucket = ddir + 2 * ilog2(sectors);
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60 return bucket;
64 * Check if any of the ctx, dispatch list or elevator
65 * have pending work in this hardware queue.
67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 return !list_empty_careful(&hctx->dispatch) ||
70 sbitmap_any_bit_set(&hctx->ctx_map) ||
71 blk_mq_sched_has_work(hctx);
75 * Mark this ctx as having pending work in this hardware queue
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
80 const int bit = ctx->index_hw[hctx->type];
82 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 sbitmap_set_bit(&hctx->ctx_map, bit);
86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 struct blk_mq_ctx *ctx)
89 const int bit = ctx->index_hw[hctx->type];
91 sbitmap_clear_bit(&hctx->ctx_map, bit);
94 struct mq_inflight {
95 struct hd_struct *part;
96 unsigned int inflight[2];
99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
100 struct request *rq, void *priv,
101 bool reserved)
103 struct mq_inflight *mi = priv;
105 if (rq->part == mi->part)
106 mi->inflight[rq_data_dir(rq)]++;
108 return true;
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 struct mq_inflight mi = { .part = part };
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 return mi.inflight[0] + mi.inflight[1];
120 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
121 unsigned int inflight[2])
123 struct mq_inflight mi = { .part = part };
125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126 inflight[0] = mi.inflight[0];
127 inflight[1] = mi.inflight[1];
130 void blk_freeze_queue_start(struct request_queue *q)
132 mutex_lock(&q->mq_freeze_lock);
133 if (++q->mq_freeze_depth == 1) {
134 percpu_ref_kill(&q->q_usage_counter);
135 mutex_unlock(&q->mq_freeze_lock);
136 if (queue_is_mq(q))
137 blk_mq_run_hw_queues(q, false);
138 } else {
139 mutex_unlock(&q->mq_freeze_lock);
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151 unsigned long timeout)
153 return wait_event_timeout(q->mq_freeze_wq,
154 percpu_ref_is_zero(&q->q_usage_counter),
155 timeout);
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
160 * Guarantee no request is in use, so we can change any data structure of
161 * the queue afterward.
163 void blk_freeze_queue(struct request_queue *q)
166 * In the !blk_mq case we are only calling this to kill the
167 * q_usage_counter, otherwise this increases the freeze depth
168 * and waits for it to return to zero. For this reason there is
169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170 * exported to drivers as the only user for unfreeze is blk_mq.
172 blk_freeze_queue_start(q);
173 blk_mq_freeze_queue_wait(q);
176 void blk_mq_freeze_queue(struct request_queue *q)
179 * ...just an alias to keep freeze and unfreeze actions balanced
180 * in the blk_mq_* namespace
182 blk_freeze_queue(q);
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
186 void blk_mq_unfreeze_queue(struct request_queue *q)
188 mutex_lock(&q->mq_freeze_lock);
189 q->mq_freeze_depth--;
190 WARN_ON_ONCE(q->mq_freeze_depth < 0);
191 if (!q->mq_freeze_depth) {
192 percpu_ref_resurrect(&q->q_usage_counter);
193 wake_up_all(&q->mq_freeze_wq);
195 mutex_unlock(&q->mq_freeze_lock);
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
207 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
210 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
211 * @q: request queue.
213 * Note: this function does not prevent that the struct request end_io()
214 * callback function is invoked. Once this function is returned, we make
215 * sure no dispatch can happen until the queue is unquiesced via
216 * blk_mq_unquiesce_queue().
218 void blk_mq_quiesce_queue(struct request_queue *q)
220 struct blk_mq_hw_ctx *hctx;
221 unsigned int i;
222 bool rcu = false;
224 blk_mq_quiesce_queue_nowait(q);
226 queue_for_each_hw_ctx(q, hctx, i) {
227 if (hctx->flags & BLK_MQ_F_BLOCKING)
228 synchronize_srcu(hctx->srcu);
229 else
230 rcu = true;
232 if (rcu)
233 synchronize_rcu();
235 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
238 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
239 * @q: request queue.
241 * This function recovers queue into the state before quiescing
242 * which is done by blk_mq_quiesce_queue.
244 void blk_mq_unquiesce_queue(struct request_queue *q)
246 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
248 /* dispatch requests which are inserted during quiescing */
249 blk_mq_run_hw_queues(q, true);
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253 void blk_mq_wake_waiters(struct request_queue *q)
255 struct blk_mq_hw_ctx *hctx;
256 unsigned int i;
258 queue_for_each_hw_ctx(q, hctx, i)
259 if (blk_mq_hw_queue_mapped(hctx))
260 blk_mq_tag_wakeup_all(hctx->tags, true);
264 * Only need start/end time stamping if we have iostat or
265 * blk stats enabled, or using an IO scheduler.
267 static inline bool blk_mq_need_time_stamp(struct request *rq)
269 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
272 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
273 unsigned int tag, unsigned int op, u64 alloc_time_ns)
275 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
276 struct request *rq = tags->static_rqs[tag];
277 req_flags_t rq_flags = 0;
279 if (data->flags & BLK_MQ_REQ_INTERNAL) {
280 rq->tag = -1;
281 rq->internal_tag = tag;
282 } else {
283 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
284 rq_flags = RQF_MQ_INFLIGHT;
285 atomic_inc(&data->hctx->nr_active);
287 rq->tag = tag;
288 rq->internal_tag = -1;
289 data->hctx->tags->rqs[rq->tag] = rq;
292 /* csd/requeue_work/fifo_time is initialized before use */
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
295 rq->mq_hctx = data->hctx;
296 rq->rq_flags = rq_flags;
297 rq->cmd_flags = op;
298 if (data->flags & BLK_MQ_REQ_PREEMPT)
299 rq->rq_flags |= RQF_PREEMPT;
300 if (blk_queue_io_stat(data->q))
301 rq->rq_flags |= RQF_IO_STAT;
302 INIT_LIST_HEAD(&rq->queuelist);
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
308 rq->alloc_time_ns = alloc_time_ns;
309 #endif
310 if (blk_mq_need_time_stamp(rq))
311 rq->start_time_ns = ktime_get_ns();
312 else
313 rq->start_time_ns = 0;
314 rq->io_start_time_ns = 0;
315 rq->stats_sectors = 0;
316 rq->nr_phys_segments = 0;
317 #if defined(CONFIG_BLK_DEV_INTEGRITY)
318 rq->nr_integrity_segments = 0;
319 #endif
320 /* tag was already set */
321 rq->extra_len = 0;
322 WRITE_ONCE(rq->deadline, 0);
324 rq->timeout = 0;
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
329 data->ctx->rq_dispatched[op_is_sync(op)]++;
330 refcount_set(&rq->ref, 1);
331 return rq;
334 static struct request *blk_mq_get_request(struct request_queue *q,
335 struct bio *bio,
336 struct blk_mq_alloc_data *data)
338 struct elevator_queue *e = q->elevator;
339 struct request *rq;
340 unsigned int tag;
341 bool clear_ctx_on_error = false;
342 u64 alloc_time_ns = 0;
344 blk_queue_enter_live(q);
346 /* alloc_time includes depth and tag waits */
347 if (blk_queue_rq_alloc_time(q))
348 alloc_time_ns = ktime_get_ns();
350 data->q = q;
351 if (likely(!data->ctx)) {
352 data->ctx = blk_mq_get_ctx(q);
353 clear_ctx_on_error = true;
355 if (likely(!data->hctx))
356 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
357 data->ctx);
358 if (data->cmd_flags & REQ_NOWAIT)
359 data->flags |= BLK_MQ_REQ_NOWAIT;
361 if (e) {
362 data->flags |= BLK_MQ_REQ_INTERNAL;
365 * Flush requests are special and go directly to the
366 * dispatch list. Don't include reserved tags in the
367 * limiting, as it isn't useful.
369 if (!op_is_flush(data->cmd_flags) &&
370 e->type->ops.limit_depth &&
371 !(data->flags & BLK_MQ_REQ_RESERVED))
372 e->type->ops.limit_depth(data->cmd_flags, data);
373 } else {
374 blk_mq_tag_busy(data->hctx);
377 tag = blk_mq_get_tag(data);
378 if (tag == BLK_MQ_TAG_FAIL) {
379 if (clear_ctx_on_error)
380 data->ctx = NULL;
381 blk_queue_exit(q);
382 return NULL;
385 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
386 if (!op_is_flush(data->cmd_flags)) {
387 rq->elv.icq = NULL;
388 if (e && e->type->ops.prepare_request) {
389 if (e->type->icq_cache)
390 blk_mq_sched_assign_ioc(rq);
392 e->type->ops.prepare_request(rq, bio);
393 rq->rq_flags |= RQF_ELVPRIV;
396 data->hctx->queued++;
397 return rq;
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401 blk_mq_req_flags_t flags)
403 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
404 struct request *rq;
405 int ret;
407 ret = blk_queue_enter(q, flags);
408 if (ret)
409 return ERR_PTR(ret);
411 rq = blk_mq_get_request(q, NULL, &alloc_data);
412 blk_queue_exit(q);
414 if (!rq)
415 return ERR_PTR(-EWOULDBLOCK);
417 rq->__data_len = 0;
418 rq->__sector = (sector_t) -1;
419 rq->bio = rq->biotail = NULL;
420 return rq;
422 EXPORT_SYMBOL(blk_mq_alloc_request);
424 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
425 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
428 struct request *rq;
429 unsigned int cpu;
430 int ret;
433 * If the tag allocator sleeps we could get an allocation for a
434 * different hardware context. No need to complicate the low level
435 * allocator for this for the rare use case of a command tied to
436 * a specific queue.
438 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
439 return ERR_PTR(-EINVAL);
441 if (hctx_idx >= q->nr_hw_queues)
442 return ERR_PTR(-EIO);
444 ret = blk_queue_enter(q, flags);
445 if (ret)
446 return ERR_PTR(ret);
449 * Check if the hardware context is actually mapped to anything.
450 * If not tell the caller that it should skip this queue.
452 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
453 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
454 blk_queue_exit(q);
455 return ERR_PTR(-EXDEV);
457 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
458 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460 rq = blk_mq_get_request(q, NULL, &alloc_data);
461 blk_queue_exit(q);
463 if (!rq)
464 return ERR_PTR(-EWOULDBLOCK);
466 return rq;
468 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470 static void __blk_mq_free_request(struct request *rq)
472 struct request_queue *q = rq->q;
473 struct blk_mq_ctx *ctx = rq->mq_ctx;
474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
475 const int sched_tag = rq->internal_tag;
477 blk_pm_mark_last_busy(rq);
478 rq->mq_hctx = NULL;
479 if (rq->tag != -1)
480 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
481 if (sched_tag != -1)
482 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
483 blk_mq_sched_restart(hctx);
484 blk_queue_exit(q);
487 void blk_mq_free_request(struct request *rq)
489 struct request_queue *q = rq->q;
490 struct elevator_queue *e = q->elevator;
491 struct blk_mq_ctx *ctx = rq->mq_ctx;
492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494 if (rq->rq_flags & RQF_ELVPRIV) {
495 if (e && e->type->ops.finish_request)
496 e->type->ops.finish_request(rq);
497 if (rq->elv.icq) {
498 put_io_context(rq->elv.icq->ioc);
499 rq->elv.icq = NULL;
503 ctx->rq_completed[rq_is_sync(rq)]++;
504 if (rq->rq_flags & RQF_MQ_INFLIGHT)
505 atomic_dec(&hctx->nr_active);
507 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
508 laptop_io_completion(q->backing_dev_info);
510 rq_qos_done(q, rq);
512 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 if (refcount_dec_and_test(&rq->ref))
514 __blk_mq_free_request(rq);
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
520 u64 now = 0;
522 if (blk_mq_need_time_stamp(rq))
523 now = ktime_get_ns();
525 if (rq->rq_flags & RQF_STATS) {
526 blk_mq_poll_stats_start(rq->q);
527 blk_stat_add(rq, now);
530 if (rq->internal_tag != -1)
531 blk_mq_sched_completed_request(rq, now);
533 blk_account_io_done(rq, now);
535 if (rq->end_io) {
536 rq_qos_done(rq->q, rq);
537 rq->end_io(rq, error);
538 } else {
539 blk_mq_free_request(rq);
542 EXPORT_SYMBOL(__blk_mq_end_request);
544 void blk_mq_end_request(struct request *rq, blk_status_t error)
546 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
547 BUG();
548 __blk_mq_end_request(rq, error);
550 EXPORT_SYMBOL(blk_mq_end_request);
552 static void __blk_mq_complete_request_remote(void *data)
554 struct request *rq = data;
555 struct request_queue *q = rq->q;
557 q->mq_ops->complete(rq);
560 static void __blk_mq_complete_request(struct request *rq)
562 struct blk_mq_ctx *ctx = rq->mq_ctx;
563 struct request_queue *q = rq->q;
564 bool shared = false;
565 int cpu;
567 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
569 * Most of single queue controllers, there is only one irq vector
570 * for handling IO completion, and the only irq's affinity is set
571 * as all possible CPUs. On most of ARCHs, this affinity means the
572 * irq is handled on one specific CPU.
574 * So complete IO reqeust in softirq context in case of single queue
575 * for not degrading IO performance by irqsoff latency.
577 if (q->nr_hw_queues == 1) {
578 __blk_complete_request(rq);
579 return;
583 * For a polled request, always complete locallly, it's pointless
584 * to redirect the completion.
586 if ((rq->cmd_flags & REQ_HIPRI) ||
587 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
588 q->mq_ops->complete(rq);
589 return;
592 cpu = get_cpu();
593 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
594 shared = cpus_share_cache(cpu, ctx->cpu);
596 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
597 rq->csd.func = __blk_mq_complete_request_remote;
598 rq->csd.info = rq;
599 rq->csd.flags = 0;
600 smp_call_function_single_async(ctx->cpu, &rq->csd);
601 } else {
602 q->mq_ops->complete(rq);
604 put_cpu();
607 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
608 __releases(hctx->srcu)
610 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
611 rcu_read_unlock();
612 else
613 srcu_read_unlock(hctx->srcu, srcu_idx);
616 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
617 __acquires(hctx->srcu)
619 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
620 /* shut up gcc false positive */
621 *srcu_idx = 0;
622 rcu_read_lock();
623 } else
624 *srcu_idx = srcu_read_lock(hctx->srcu);
628 * blk_mq_complete_request - end I/O on a request
629 * @rq: the request being processed
631 * Description:
632 * Ends all I/O on a request. It does not handle partial completions.
633 * The actual completion happens out-of-order, through a IPI handler.
635 bool blk_mq_complete_request(struct request *rq)
637 if (unlikely(blk_should_fake_timeout(rq->q)))
638 return false;
639 __blk_mq_complete_request(rq);
640 return true;
642 EXPORT_SYMBOL(blk_mq_complete_request);
645 * blk_mq_start_request - Start processing a request
646 * @rq: Pointer to request to be started
648 * Function used by device drivers to notify the block layer that a request
649 * is going to be processed now, so blk layer can do proper initializations
650 * such as starting the timeout timer.
652 void blk_mq_start_request(struct request *rq)
654 struct request_queue *q = rq->q;
656 trace_block_rq_issue(q, rq);
658 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
659 rq->io_start_time_ns = ktime_get_ns();
660 rq->stats_sectors = blk_rq_sectors(rq);
661 rq->rq_flags |= RQF_STATS;
662 rq_qos_issue(q, rq);
665 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
667 blk_add_timer(rq);
668 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
670 if (q->dma_drain_size && blk_rq_bytes(rq)) {
672 * Make sure space for the drain appears. We know we can do
673 * this because max_hw_segments has been adjusted to be one
674 * fewer than the device can handle.
676 rq->nr_phys_segments++;
679 #ifdef CONFIG_BLK_DEV_INTEGRITY
680 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
681 q->integrity.profile->prepare_fn(rq);
682 #endif
684 EXPORT_SYMBOL(blk_mq_start_request);
686 static void __blk_mq_requeue_request(struct request *rq)
688 struct request_queue *q = rq->q;
690 blk_mq_put_driver_tag(rq);
692 trace_block_rq_requeue(q, rq);
693 rq_qos_requeue(q, rq);
695 if (blk_mq_request_started(rq)) {
696 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
697 rq->rq_flags &= ~RQF_TIMED_OUT;
698 if (q->dma_drain_size && blk_rq_bytes(rq))
699 rq->nr_phys_segments--;
703 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
705 __blk_mq_requeue_request(rq);
707 /* this request will be re-inserted to io scheduler queue */
708 blk_mq_sched_requeue_request(rq);
710 BUG_ON(!list_empty(&rq->queuelist));
711 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
713 EXPORT_SYMBOL(blk_mq_requeue_request);
715 static void blk_mq_requeue_work(struct work_struct *work)
717 struct request_queue *q =
718 container_of(work, struct request_queue, requeue_work.work);
719 LIST_HEAD(rq_list);
720 struct request *rq, *next;
722 spin_lock_irq(&q->requeue_lock);
723 list_splice_init(&q->requeue_list, &rq_list);
724 spin_unlock_irq(&q->requeue_lock);
726 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
727 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
728 continue;
730 rq->rq_flags &= ~RQF_SOFTBARRIER;
731 list_del_init(&rq->queuelist);
733 * If RQF_DONTPREP, rq has contained some driver specific
734 * data, so insert it to hctx dispatch list to avoid any
735 * merge.
737 if (rq->rq_flags & RQF_DONTPREP)
738 blk_mq_request_bypass_insert(rq, false, false);
739 else
740 blk_mq_sched_insert_request(rq, true, false, false);
743 while (!list_empty(&rq_list)) {
744 rq = list_entry(rq_list.next, struct request, queuelist);
745 list_del_init(&rq->queuelist);
746 blk_mq_sched_insert_request(rq, false, false, false);
749 blk_mq_run_hw_queues(q, false);
752 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
753 bool kick_requeue_list)
755 struct request_queue *q = rq->q;
756 unsigned long flags;
759 * We abuse this flag that is otherwise used by the I/O scheduler to
760 * request head insertion from the workqueue.
762 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
764 spin_lock_irqsave(&q->requeue_lock, flags);
765 if (at_head) {
766 rq->rq_flags |= RQF_SOFTBARRIER;
767 list_add(&rq->queuelist, &q->requeue_list);
768 } else {
769 list_add_tail(&rq->queuelist, &q->requeue_list);
771 spin_unlock_irqrestore(&q->requeue_lock, flags);
773 if (kick_requeue_list)
774 blk_mq_kick_requeue_list(q);
777 void blk_mq_kick_requeue_list(struct request_queue *q)
779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
781 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
783 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
784 unsigned long msecs)
786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
787 msecs_to_jiffies(msecs));
789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
793 if (tag < tags->nr_tags) {
794 prefetch(tags->rqs[tag]);
795 return tags->rqs[tag];
798 return NULL;
800 EXPORT_SYMBOL(blk_mq_tag_to_rq);
802 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
803 void *priv, bool reserved)
806 * If we find a request that is inflight and the queue matches,
807 * we know the queue is busy. Return false to stop the iteration.
809 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
810 bool *busy = priv;
812 *busy = true;
813 return false;
816 return true;
819 bool blk_mq_queue_inflight(struct request_queue *q)
821 bool busy = false;
823 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
824 return busy;
826 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
828 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
830 req->rq_flags |= RQF_TIMED_OUT;
831 if (req->q->mq_ops->timeout) {
832 enum blk_eh_timer_return ret;
834 ret = req->q->mq_ops->timeout(req, reserved);
835 if (ret == BLK_EH_DONE)
836 return;
837 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
840 blk_add_timer(req);
843 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
845 unsigned long deadline;
847 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
848 return false;
849 if (rq->rq_flags & RQF_TIMED_OUT)
850 return false;
852 deadline = READ_ONCE(rq->deadline);
853 if (time_after_eq(jiffies, deadline))
854 return true;
856 if (*next == 0)
857 *next = deadline;
858 else if (time_after(*next, deadline))
859 *next = deadline;
860 return false;
863 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
864 struct request *rq, void *priv, bool reserved)
866 unsigned long *next = priv;
869 * Just do a quick check if it is expired before locking the request in
870 * so we're not unnecessarilly synchronizing across CPUs.
872 if (!blk_mq_req_expired(rq, next))
873 return true;
876 * We have reason to believe the request may be expired. Take a
877 * reference on the request to lock this request lifetime into its
878 * currently allocated context to prevent it from being reallocated in
879 * the event the completion by-passes this timeout handler.
881 * If the reference was already released, then the driver beat the
882 * timeout handler to posting a natural completion.
884 if (!refcount_inc_not_zero(&rq->ref))
885 return true;
888 * The request is now locked and cannot be reallocated underneath the
889 * timeout handler's processing. Re-verify this exact request is truly
890 * expired; if it is not expired, then the request was completed and
891 * reallocated as a new request.
893 if (blk_mq_req_expired(rq, next))
894 blk_mq_rq_timed_out(rq, reserved);
896 if (is_flush_rq(rq, hctx))
897 rq->end_io(rq, 0);
898 else if (refcount_dec_and_test(&rq->ref))
899 __blk_mq_free_request(rq);
901 return true;
904 static void blk_mq_timeout_work(struct work_struct *work)
906 struct request_queue *q =
907 container_of(work, struct request_queue, timeout_work);
908 unsigned long next = 0;
909 struct blk_mq_hw_ctx *hctx;
910 int i;
912 /* A deadlock might occur if a request is stuck requiring a
913 * timeout at the same time a queue freeze is waiting
914 * completion, since the timeout code would not be able to
915 * acquire the queue reference here.
917 * That's why we don't use blk_queue_enter here; instead, we use
918 * percpu_ref_tryget directly, because we need to be able to
919 * obtain a reference even in the short window between the queue
920 * starting to freeze, by dropping the first reference in
921 * blk_freeze_queue_start, and the moment the last request is
922 * consumed, marked by the instant q_usage_counter reaches
923 * zero.
925 if (!percpu_ref_tryget(&q->q_usage_counter))
926 return;
928 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
930 if (next != 0) {
931 mod_timer(&q->timeout, next);
932 } else {
934 * Request timeouts are handled as a forward rolling timer. If
935 * we end up here it means that no requests are pending and
936 * also that no request has been pending for a while. Mark
937 * each hctx as idle.
939 queue_for_each_hw_ctx(q, hctx, i) {
940 /* the hctx may be unmapped, so check it here */
941 if (blk_mq_hw_queue_mapped(hctx))
942 blk_mq_tag_idle(hctx);
945 blk_queue_exit(q);
948 struct flush_busy_ctx_data {
949 struct blk_mq_hw_ctx *hctx;
950 struct list_head *list;
953 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
955 struct flush_busy_ctx_data *flush_data = data;
956 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
957 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
958 enum hctx_type type = hctx->type;
960 spin_lock(&ctx->lock);
961 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
962 sbitmap_clear_bit(sb, bitnr);
963 spin_unlock(&ctx->lock);
964 return true;
968 * Process software queues that have been marked busy, splicing them
969 * to the for-dispatch
971 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
973 struct flush_busy_ctx_data data = {
974 .hctx = hctx,
975 .list = list,
978 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
980 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
982 struct dispatch_rq_data {
983 struct blk_mq_hw_ctx *hctx;
984 struct request *rq;
987 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
988 void *data)
990 struct dispatch_rq_data *dispatch_data = data;
991 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
992 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
993 enum hctx_type type = hctx->type;
995 spin_lock(&ctx->lock);
996 if (!list_empty(&ctx->rq_lists[type])) {
997 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
998 list_del_init(&dispatch_data->rq->queuelist);
999 if (list_empty(&ctx->rq_lists[type]))
1000 sbitmap_clear_bit(sb, bitnr);
1002 spin_unlock(&ctx->lock);
1004 return !dispatch_data->rq;
1007 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1008 struct blk_mq_ctx *start)
1010 unsigned off = start ? start->index_hw[hctx->type] : 0;
1011 struct dispatch_rq_data data = {
1012 .hctx = hctx,
1013 .rq = NULL,
1016 __sbitmap_for_each_set(&hctx->ctx_map, off,
1017 dispatch_rq_from_ctx, &data);
1019 return data.rq;
1022 static inline unsigned int queued_to_index(unsigned int queued)
1024 if (!queued)
1025 return 0;
1027 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1030 bool blk_mq_get_driver_tag(struct request *rq)
1032 struct blk_mq_alloc_data data = {
1033 .q = rq->q,
1034 .hctx = rq->mq_hctx,
1035 .flags = BLK_MQ_REQ_NOWAIT,
1036 .cmd_flags = rq->cmd_flags,
1038 bool shared;
1040 if (rq->tag != -1)
1041 return true;
1043 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1044 data.flags |= BLK_MQ_REQ_RESERVED;
1046 shared = blk_mq_tag_busy(data.hctx);
1047 rq->tag = blk_mq_get_tag(&data);
1048 if (rq->tag >= 0) {
1049 if (shared) {
1050 rq->rq_flags |= RQF_MQ_INFLIGHT;
1051 atomic_inc(&data.hctx->nr_active);
1053 data.hctx->tags->rqs[rq->tag] = rq;
1056 return rq->tag != -1;
1059 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1060 int flags, void *key)
1062 struct blk_mq_hw_ctx *hctx;
1064 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1066 spin_lock(&hctx->dispatch_wait_lock);
1067 if (!list_empty(&wait->entry)) {
1068 struct sbitmap_queue *sbq;
1070 list_del_init(&wait->entry);
1071 sbq = &hctx->tags->bitmap_tags;
1072 atomic_dec(&sbq->ws_active);
1074 spin_unlock(&hctx->dispatch_wait_lock);
1076 blk_mq_run_hw_queue(hctx, true);
1077 return 1;
1081 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1082 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1083 * restart. For both cases, take care to check the condition again after
1084 * marking us as waiting.
1086 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1087 struct request *rq)
1089 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1090 struct wait_queue_head *wq;
1091 wait_queue_entry_t *wait;
1092 bool ret;
1094 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1095 blk_mq_sched_mark_restart_hctx(hctx);
1098 * It's possible that a tag was freed in the window between the
1099 * allocation failure and adding the hardware queue to the wait
1100 * queue.
1102 * Don't clear RESTART here, someone else could have set it.
1103 * At most this will cost an extra queue run.
1105 return blk_mq_get_driver_tag(rq);
1108 wait = &hctx->dispatch_wait;
1109 if (!list_empty_careful(&wait->entry))
1110 return false;
1112 wq = &bt_wait_ptr(sbq, hctx)->wait;
1114 spin_lock_irq(&wq->lock);
1115 spin_lock(&hctx->dispatch_wait_lock);
1116 if (!list_empty(&wait->entry)) {
1117 spin_unlock(&hctx->dispatch_wait_lock);
1118 spin_unlock_irq(&wq->lock);
1119 return false;
1122 atomic_inc(&sbq->ws_active);
1123 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1124 __add_wait_queue(wq, wait);
1127 * It's possible that a tag was freed in the window between the
1128 * allocation failure and adding the hardware queue to the wait
1129 * queue.
1131 ret = blk_mq_get_driver_tag(rq);
1132 if (!ret) {
1133 spin_unlock(&hctx->dispatch_wait_lock);
1134 spin_unlock_irq(&wq->lock);
1135 return false;
1139 * We got a tag, remove ourselves from the wait queue to ensure
1140 * someone else gets the wakeup.
1142 list_del_init(&wait->entry);
1143 atomic_dec(&sbq->ws_active);
1144 spin_unlock(&hctx->dispatch_wait_lock);
1145 spin_unlock_irq(&wq->lock);
1147 return true;
1150 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1151 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1153 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1154 * - EWMA is one simple way to compute running average value
1155 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1156 * - take 4 as factor for avoiding to get too small(0) result, and this
1157 * factor doesn't matter because EWMA decreases exponentially
1159 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1161 unsigned int ewma;
1163 if (hctx->queue->elevator)
1164 return;
1166 ewma = hctx->dispatch_busy;
1168 if (!ewma && !busy)
1169 return;
1171 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1172 if (busy)
1173 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1174 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1176 hctx->dispatch_busy = ewma;
1179 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1181 static void blk_mq_handle_dev_resource(struct request *rq,
1182 struct list_head *list)
1184 struct request *next =
1185 list_first_entry_or_null(list, struct request, queuelist);
1188 * If an I/O scheduler has been configured and we got a driver tag for
1189 * the next request already, free it.
1191 if (next)
1192 blk_mq_put_driver_tag(next);
1194 list_add(&rq->queuelist, list);
1195 __blk_mq_requeue_request(rq);
1199 * Returns true if we did some work AND can potentially do more.
1201 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1202 bool got_budget)
1204 struct blk_mq_hw_ctx *hctx;
1205 struct request *rq, *nxt;
1206 bool no_tag = false;
1207 int errors, queued;
1208 blk_status_t ret = BLK_STS_OK;
1210 if (list_empty(list))
1211 return false;
1213 WARN_ON(!list_is_singular(list) && got_budget);
1216 * Now process all the entries, sending them to the driver.
1218 errors = queued = 0;
1219 do {
1220 struct blk_mq_queue_data bd;
1222 rq = list_first_entry(list, struct request, queuelist);
1224 hctx = rq->mq_hctx;
1225 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1226 blk_mq_put_driver_tag(rq);
1227 break;
1230 if (!blk_mq_get_driver_tag(rq)) {
1232 * The initial allocation attempt failed, so we need to
1233 * rerun the hardware queue when a tag is freed. The
1234 * waitqueue takes care of that. If the queue is run
1235 * before we add this entry back on the dispatch list,
1236 * we'll re-run it below.
1238 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1239 blk_mq_put_dispatch_budget(hctx);
1241 * For non-shared tags, the RESTART check
1242 * will suffice.
1244 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1245 no_tag = true;
1246 break;
1250 list_del_init(&rq->queuelist);
1252 bd.rq = rq;
1255 * Flag last if we have no more requests, or if we have more
1256 * but can't assign a driver tag to it.
1258 if (list_empty(list))
1259 bd.last = true;
1260 else {
1261 nxt = list_first_entry(list, struct request, queuelist);
1262 bd.last = !blk_mq_get_driver_tag(nxt);
1265 ret = q->mq_ops->queue_rq(hctx, &bd);
1266 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1267 blk_mq_handle_dev_resource(rq, list);
1268 break;
1271 if (unlikely(ret != BLK_STS_OK)) {
1272 errors++;
1273 blk_mq_end_request(rq, BLK_STS_IOERR);
1274 continue;
1277 queued++;
1278 } while (!list_empty(list));
1280 hctx->dispatched[queued_to_index(queued)]++;
1283 * Any items that need requeuing? Stuff them into hctx->dispatch,
1284 * that is where we will continue on next queue run.
1286 if (!list_empty(list)) {
1287 bool needs_restart;
1290 * If we didn't flush the entire list, we could have told
1291 * the driver there was more coming, but that turned out to
1292 * be a lie.
1294 if (q->mq_ops->commit_rqs && queued)
1295 q->mq_ops->commit_rqs(hctx);
1297 spin_lock(&hctx->lock);
1298 list_splice_tail_init(list, &hctx->dispatch);
1299 spin_unlock(&hctx->lock);
1302 * If SCHED_RESTART was set by the caller of this function and
1303 * it is no longer set that means that it was cleared by another
1304 * thread and hence that a queue rerun is needed.
1306 * If 'no_tag' is set, that means that we failed getting
1307 * a driver tag with an I/O scheduler attached. If our dispatch
1308 * waitqueue is no longer active, ensure that we run the queue
1309 * AFTER adding our entries back to the list.
1311 * If no I/O scheduler has been configured it is possible that
1312 * the hardware queue got stopped and restarted before requests
1313 * were pushed back onto the dispatch list. Rerun the queue to
1314 * avoid starvation. Notes:
1315 * - blk_mq_run_hw_queue() checks whether or not a queue has
1316 * been stopped before rerunning a queue.
1317 * - Some but not all block drivers stop a queue before
1318 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1319 * and dm-rq.
1321 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1322 * bit is set, run queue after a delay to avoid IO stalls
1323 * that could otherwise occur if the queue is idle.
1325 needs_restart = blk_mq_sched_needs_restart(hctx);
1326 if (!needs_restart ||
1327 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1328 blk_mq_run_hw_queue(hctx, true);
1329 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1330 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1332 blk_mq_update_dispatch_busy(hctx, true);
1333 return false;
1334 } else
1335 blk_mq_update_dispatch_busy(hctx, false);
1338 * If the host/device is unable to accept more work, inform the
1339 * caller of that.
1341 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1342 return false;
1344 return (queued + errors) != 0;
1348 * __blk_mq_run_hw_queue - Run a hardware queue.
1349 * @hctx: Pointer to the hardware queue to run.
1351 * Send pending requests to the hardware.
1353 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1355 int srcu_idx;
1358 * We should be running this queue from one of the CPUs that
1359 * are mapped to it.
1361 * There are at least two related races now between setting
1362 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1363 * __blk_mq_run_hw_queue():
1365 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1366 * but later it becomes online, then this warning is harmless
1367 * at all
1369 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1370 * but later it becomes offline, then the warning can't be
1371 * triggered, and we depend on blk-mq timeout handler to
1372 * handle dispatched requests to this hctx
1374 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1375 cpu_online(hctx->next_cpu)) {
1376 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1377 raw_smp_processor_id(),
1378 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1379 dump_stack();
1383 * We can't run the queue inline with ints disabled. Ensure that
1384 * we catch bad users of this early.
1386 WARN_ON_ONCE(in_interrupt());
1388 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1390 hctx_lock(hctx, &srcu_idx);
1391 blk_mq_sched_dispatch_requests(hctx);
1392 hctx_unlock(hctx, srcu_idx);
1395 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1397 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1399 if (cpu >= nr_cpu_ids)
1400 cpu = cpumask_first(hctx->cpumask);
1401 return cpu;
1405 * It'd be great if the workqueue API had a way to pass
1406 * in a mask and had some smarts for more clever placement.
1407 * For now we just round-robin here, switching for every
1408 * BLK_MQ_CPU_WORK_BATCH queued items.
1410 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1412 bool tried = false;
1413 int next_cpu = hctx->next_cpu;
1415 if (hctx->queue->nr_hw_queues == 1)
1416 return WORK_CPU_UNBOUND;
1418 if (--hctx->next_cpu_batch <= 0) {
1419 select_cpu:
1420 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1421 cpu_online_mask);
1422 if (next_cpu >= nr_cpu_ids)
1423 next_cpu = blk_mq_first_mapped_cpu(hctx);
1424 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1428 * Do unbound schedule if we can't find a online CPU for this hctx,
1429 * and it should only happen in the path of handling CPU DEAD.
1431 if (!cpu_online(next_cpu)) {
1432 if (!tried) {
1433 tried = true;
1434 goto select_cpu;
1438 * Make sure to re-select CPU next time once after CPUs
1439 * in hctx->cpumask become online again.
1441 hctx->next_cpu = next_cpu;
1442 hctx->next_cpu_batch = 1;
1443 return WORK_CPU_UNBOUND;
1446 hctx->next_cpu = next_cpu;
1447 return next_cpu;
1451 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1452 * @hctx: Pointer to the hardware queue to run.
1453 * @async: If we want to run the queue asynchronously.
1454 * @msecs: Microseconds of delay to wait before running the queue.
1456 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1457 * with a delay of @msecs.
1459 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1460 unsigned long msecs)
1462 if (unlikely(blk_mq_hctx_stopped(hctx)))
1463 return;
1465 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1466 int cpu = get_cpu();
1467 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1468 __blk_mq_run_hw_queue(hctx);
1469 put_cpu();
1470 return;
1473 put_cpu();
1476 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1477 msecs_to_jiffies(msecs));
1481 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1482 * @hctx: Pointer to the hardware queue to run.
1483 * @msecs: Microseconds of delay to wait before running the queue.
1485 * Run a hardware queue asynchronously with a delay of @msecs.
1487 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1489 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1491 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1494 * blk_mq_run_hw_queue - Start to run a hardware queue.
1495 * @hctx: Pointer to the hardware queue to run.
1496 * @async: If we want to run the queue asynchronously.
1498 * Check if the request queue is not in a quiesced state and if there are
1499 * pending requests to be sent. If this is true, run the queue to send requests
1500 * to hardware.
1502 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1504 int srcu_idx;
1505 bool need_run;
1508 * When queue is quiesced, we may be switching io scheduler, or
1509 * updating nr_hw_queues, or other things, and we can't run queue
1510 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1512 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1513 * quiesced.
1515 hctx_lock(hctx, &srcu_idx);
1516 need_run = !blk_queue_quiesced(hctx->queue) &&
1517 blk_mq_hctx_has_pending(hctx);
1518 hctx_unlock(hctx, srcu_idx);
1520 if (need_run)
1521 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1523 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1526 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1527 * @q: Pointer to the request queue to run.
1528 * @async: If we want to run the queue asynchronously.
1530 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1532 struct blk_mq_hw_ctx *hctx;
1533 int i;
1535 queue_for_each_hw_ctx(q, hctx, i) {
1536 if (blk_mq_hctx_stopped(hctx))
1537 continue;
1539 blk_mq_run_hw_queue(hctx, async);
1542 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1545 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1546 * @q: request queue.
1548 * The caller is responsible for serializing this function against
1549 * blk_mq_{start,stop}_hw_queue().
1551 bool blk_mq_queue_stopped(struct request_queue *q)
1553 struct blk_mq_hw_ctx *hctx;
1554 int i;
1556 queue_for_each_hw_ctx(q, hctx, i)
1557 if (blk_mq_hctx_stopped(hctx))
1558 return true;
1560 return false;
1562 EXPORT_SYMBOL(blk_mq_queue_stopped);
1565 * This function is often used for pausing .queue_rq() by driver when
1566 * there isn't enough resource or some conditions aren't satisfied, and
1567 * BLK_STS_RESOURCE is usually returned.
1569 * We do not guarantee that dispatch can be drained or blocked
1570 * after blk_mq_stop_hw_queue() returns. Please use
1571 * blk_mq_quiesce_queue() for that requirement.
1573 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1575 cancel_delayed_work(&hctx->run_work);
1577 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1582 * This function is often used for pausing .queue_rq() by driver when
1583 * there isn't enough resource or some conditions aren't satisfied, and
1584 * BLK_STS_RESOURCE is usually returned.
1586 * We do not guarantee that dispatch can be drained or blocked
1587 * after blk_mq_stop_hw_queues() returns. Please use
1588 * blk_mq_quiesce_queue() for that requirement.
1590 void blk_mq_stop_hw_queues(struct request_queue *q)
1592 struct blk_mq_hw_ctx *hctx;
1593 int i;
1595 queue_for_each_hw_ctx(q, hctx, i)
1596 blk_mq_stop_hw_queue(hctx);
1598 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1600 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1602 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1604 blk_mq_run_hw_queue(hctx, false);
1606 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1608 void blk_mq_start_hw_queues(struct request_queue *q)
1610 struct blk_mq_hw_ctx *hctx;
1611 int i;
1613 queue_for_each_hw_ctx(q, hctx, i)
1614 blk_mq_start_hw_queue(hctx);
1616 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1618 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1620 if (!blk_mq_hctx_stopped(hctx))
1621 return;
1623 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1624 blk_mq_run_hw_queue(hctx, async);
1626 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1628 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1630 struct blk_mq_hw_ctx *hctx;
1631 int i;
1633 queue_for_each_hw_ctx(q, hctx, i)
1634 blk_mq_start_stopped_hw_queue(hctx, async);
1636 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1638 static void blk_mq_run_work_fn(struct work_struct *work)
1640 struct blk_mq_hw_ctx *hctx;
1642 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1645 * If we are stopped, don't run the queue.
1647 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1648 return;
1650 __blk_mq_run_hw_queue(hctx);
1653 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1654 struct request *rq,
1655 bool at_head)
1657 struct blk_mq_ctx *ctx = rq->mq_ctx;
1658 enum hctx_type type = hctx->type;
1660 lockdep_assert_held(&ctx->lock);
1662 trace_block_rq_insert(hctx->queue, rq);
1664 if (at_head)
1665 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1666 else
1667 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1670 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1671 bool at_head)
1673 struct blk_mq_ctx *ctx = rq->mq_ctx;
1675 lockdep_assert_held(&ctx->lock);
1677 __blk_mq_insert_req_list(hctx, rq, at_head);
1678 blk_mq_hctx_mark_pending(hctx, ctx);
1682 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1683 * @rq: Pointer to request to be inserted.
1684 * @run_queue: If we should run the hardware queue after inserting the request.
1686 * Should only be used carefully, when the caller knows we want to
1687 * bypass a potential IO scheduler on the target device.
1689 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1690 bool run_queue)
1692 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1694 spin_lock(&hctx->lock);
1695 if (at_head)
1696 list_add(&rq->queuelist, &hctx->dispatch);
1697 else
1698 list_add_tail(&rq->queuelist, &hctx->dispatch);
1699 spin_unlock(&hctx->lock);
1701 if (run_queue)
1702 blk_mq_run_hw_queue(hctx, false);
1705 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1706 struct list_head *list)
1709 struct request *rq;
1710 enum hctx_type type = hctx->type;
1713 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1714 * offline now
1716 list_for_each_entry(rq, list, queuelist) {
1717 BUG_ON(rq->mq_ctx != ctx);
1718 trace_block_rq_insert(hctx->queue, rq);
1721 spin_lock(&ctx->lock);
1722 list_splice_tail_init(list, &ctx->rq_lists[type]);
1723 blk_mq_hctx_mark_pending(hctx, ctx);
1724 spin_unlock(&ctx->lock);
1727 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1729 struct request *rqa = container_of(a, struct request, queuelist);
1730 struct request *rqb = container_of(b, struct request, queuelist);
1732 if (rqa->mq_ctx != rqb->mq_ctx)
1733 return rqa->mq_ctx > rqb->mq_ctx;
1734 if (rqa->mq_hctx != rqb->mq_hctx)
1735 return rqa->mq_hctx > rqb->mq_hctx;
1737 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1740 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1742 LIST_HEAD(list);
1744 if (list_empty(&plug->mq_list))
1745 return;
1746 list_splice_init(&plug->mq_list, &list);
1748 if (plug->rq_count > 2 && plug->multiple_queues)
1749 list_sort(NULL, &list, plug_rq_cmp);
1751 plug->rq_count = 0;
1753 do {
1754 struct list_head rq_list;
1755 struct request *rq, *head_rq = list_entry_rq(list.next);
1756 struct list_head *pos = &head_rq->queuelist; /* skip first */
1757 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1758 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1759 unsigned int depth = 1;
1761 list_for_each_continue(pos, &list) {
1762 rq = list_entry_rq(pos);
1763 BUG_ON(!rq->q);
1764 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1765 break;
1766 depth++;
1769 list_cut_before(&rq_list, &list, pos);
1770 trace_block_unplug(head_rq->q, depth, !from_schedule);
1771 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1772 from_schedule);
1773 } while(!list_empty(&list));
1776 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1777 unsigned int nr_segs)
1779 if (bio->bi_opf & REQ_RAHEAD)
1780 rq->cmd_flags |= REQ_FAILFAST_MASK;
1782 rq->__sector = bio->bi_iter.bi_sector;
1783 rq->write_hint = bio->bi_write_hint;
1784 blk_rq_bio_prep(rq, bio, nr_segs);
1786 blk_account_io_start(rq, true);
1789 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1790 struct request *rq,
1791 blk_qc_t *cookie, bool last)
1793 struct request_queue *q = rq->q;
1794 struct blk_mq_queue_data bd = {
1795 .rq = rq,
1796 .last = last,
1798 blk_qc_t new_cookie;
1799 blk_status_t ret;
1801 new_cookie = request_to_qc_t(hctx, rq);
1804 * For OK queue, we are done. For error, caller may kill it.
1805 * Any other error (busy), just add it to our list as we
1806 * previously would have done.
1808 ret = q->mq_ops->queue_rq(hctx, &bd);
1809 switch (ret) {
1810 case BLK_STS_OK:
1811 blk_mq_update_dispatch_busy(hctx, false);
1812 *cookie = new_cookie;
1813 break;
1814 case BLK_STS_RESOURCE:
1815 case BLK_STS_DEV_RESOURCE:
1816 blk_mq_update_dispatch_busy(hctx, true);
1817 __blk_mq_requeue_request(rq);
1818 break;
1819 default:
1820 blk_mq_update_dispatch_busy(hctx, false);
1821 *cookie = BLK_QC_T_NONE;
1822 break;
1825 return ret;
1828 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1829 struct request *rq,
1830 blk_qc_t *cookie,
1831 bool bypass_insert, bool last)
1833 struct request_queue *q = rq->q;
1834 bool run_queue = true;
1837 * RCU or SRCU read lock is needed before checking quiesced flag.
1839 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1840 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1841 * and avoid driver to try to dispatch again.
1843 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1844 run_queue = false;
1845 bypass_insert = false;
1846 goto insert;
1849 if (q->elevator && !bypass_insert)
1850 goto insert;
1852 if (!blk_mq_get_dispatch_budget(hctx))
1853 goto insert;
1855 if (!blk_mq_get_driver_tag(rq)) {
1856 blk_mq_put_dispatch_budget(hctx);
1857 goto insert;
1860 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1861 insert:
1862 if (bypass_insert)
1863 return BLK_STS_RESOURCE;
1865 blk_mq_request_bypass_insert(rq, false, run_queue);
1866 return BLK_STS_OK;
1870 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1871 * @hctx: Pointer of the associated hardware queue.
1872 * @rq: Pointer to request to be sent.
1873 * @cookie: Request queue cookie.
1875 * If the device has enough resources to accept a new request now, send the
1876 * request directly to device driver. Else, insert at hctx->dispatch queue, so
1877 * we can try send it another time in the future. Requests inserted at this
1878 * queue have higher priority.
1880 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1881 struct request *rq, blk_qc_t *cookie)
1883 blk_status_t ret;
1884 int srcu_idx;
1886 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1888 hctx_lock(hctx, &srcu_idx);
1890 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1891 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1892 blk_mq_request_bypass_insert(rq, false, true);
1893 else if (ret != BLK_STS_OK)
1894 blk_mq_end_request(rq, ret);
1896 hctx_unlock(hctx, srcu_idx);
1899 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1901 blk_status_t ret;
1902 int srcu_idx;
1903 blk_qc_t unused_cookie;
1904 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1906 hctx_lock(hctx, &srcu_idx);
1907 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1908 hctx_unlock(hctx, srcu_idx);
1910 return ret;
1913 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1914 struct list_head *list)
1916 int queued = 0;
1918 while (!list_empty(list)) {
1919 blk_status_t ret;
1920 struct request *rq = list_first_entry(list, struct request,
1921 queuelist);
1923 list_del_init(&rq->queuelist);
1924 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1925 if (ret != BLK_STS_OK) {
1926 if (ret == BLK_STS_RESOURCE ||
1927 ret == BLK_STS_DEV_RESOURCE) {
1928 blk_mq_request_bypass_insert(rq, false,
1929 list_empty(list));
1930 break;
1932 blk_mq_end_request(rq, ret);
1933 } else
1934 queued++;
1938 * If we didn't flush the entire list, we could have told
1939 * the driver there was more coming, but that turned out to
1940 * be a lie.
1942 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
1943 hctx->queue->mq_ops->commit_rqs(hctx);
1946 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1948 list_add_tail(&rq->queuelist, &plug->mq_list);
1949 plug->rq_count++;
1950 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1951 struct request *tmp;
1953 tmp = list_first_entry(&plug->mq_list, struct request,
1954 queuelist);
1955 if (tmp->q != rq->q)
1956 plug->multiple_queues = true;
1961 * blk_mq_make_request - Create and send a request to block device.
1962 * @q: Request queue pointer.
1963 * @bio: Bio pointer.
1965 * Builds up a request structure from @q and @bio and send to the device. The
1966 * request may not be queued directly to hardware if:
1967 * * This request can be merged with another one
1968 * * We want to place request at plug queue for possible future merging
1969 * * There is an IO scheduler active at this queue
1971 * It will not queue the request if there is an error with the bio, or at the
1972 * request creation.
1974 * Returns: Request queue cookie.
1976 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1978 const int is_sync = op_is_sync(bio->bi_opf);
1979 const int is_flush_fua = op_is_flush(bio->bi_opf);
1980 struct blk_mq_alloc_data data = { .flags = 0};
1981 struct request *rq;
1982 struct blk_plug *plug;
1983 struct request *same_queue_rq = NULL;
1984 unsigned int nr_segs;
1985 blk_qc_t cookie;
1987 blk_queue_bounce(q, &bio);
1988 __blk_queue_split(q, &bio, &nr_segs);
1990 if (!bio_integrity_prep(bio))
1991 return BLK_QC_T_NONE;
1993 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1994 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1995 return BLK_QC_T_NONE;
1997 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1998 return BLK_QC_T_NONE;
2000 rq_qos_throttle(q, bio);
2002 data.cmd_flags = bio->bi_opf;
2003 rq = blk_mq_get_request(q, bio, &data);
2004 if (unlikely(!rq)) {
2005 rq_qos_cleanup(q, bio);
2006 if (bio->bi_opf & REQ_NOWAIT)
2007 bio_wouldblock_error(bio);
2008 return BLK_QC_T_NONE;
2011 trace_block_getrq(q, bio, bio->bi_opf);
2013 rq_qos_track(q, rq, bio);
2015 cookie = request_to_qc_t(data.hctx, rq);
2017 blk_mq_bio_to_request(rq, bio, nr_segs);
2019 plug = blk_mq_plug(q, bio);
2020 if (unlikely(is_flush_fua)) {
2021 /* Bypass scheduler for flush requests */
2022 blk_insert_flush(rq);
2023 blk_mq_run_hw_queue(data.hctx, true);
2024 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2025 !blk_queue_nonrot(q))) {
2027 * Use plugging if we have a ->commit_rqs() hook as well, as
2028 * we know the driver uses bd->last in a smart fashion.
2030 * Use normal plugging if this disk is slow HDD, as sequential
2031 * IO may benefit a lot from plug merging.
2033 unsigned int request_count = plug->rq_count;
2034 struct request *last = NULL;
2036 if (!request_count)
2037 trace_block_plug(q);
2038 else
2039 last = list_entry_rq(plug->mq_list.prev);
2041 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2042 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2043 blk_flush_plug_list(plug, false);
2044 trace_block_plug(q);
2047 blk_add_rq_to_plug(plug, rq);
2048 } else if (q->elevator) {
2049 /* Insert the request at the IO scheduler queue */
2050 blk_mq_sched_insert_request(rq, false, true, true);
2051 } else if (plug && !blk_queue_nomerges(q)) {
2053 * We do limited plugging. If the bio can be merged, do that.
2054 * Otherwise the existing request in the plug list will be
2055 * issued. So the plug list will have one request at most
2056 * The plug list might get flushed before this. If that happens,
2057 * the plug list is empty, and same_queue_rq is invalid.
2059 if (list_empty(&plug->mq_list))
2060 same_queue_rq = NULL;
2061 if (same_queue_rq) {
2062 list_del_init(&same_queue_rq->queuelist);
2063 plug->rq_count--;
2065 blk_add_rq_to_plug(plug, rq);
2066 trace_block_plug(q);
2068 if (same_queue_rq) {
2069 data.hctx = same_queue_rq->mq_hctx;
2070 trace_block_unplug(q, 1, true);
2071 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2072 &cookie);
2074 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2075 !data.hctx->dispatch_busy) {
2077 * There is no scheduler and we can try to send directly
2078 * to the hardware.
2080 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2081 } else {
2082 /* Default case. */
2083 blk_mq_sched_insert_request(rq, false, true, true);
2086 return cookie;
2089 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2090 unsigned int hctx_idx)
2092 struct page *page;
2094 if (tags->rqs && set->ops->exit_request) {
2095 int i;
2097 for (i = 0; i < tags->nr_tags; i++) {
2098 struct request *rq = tags->static_rqs[i];
2100 if (!rq)
2101 continue;
2102 set->ops->exit_request(set, rq, hctx_idx);
2103 tags->static_rqs[i] = NULL;
2107 while (!list_empty(&tags->page_list)) {
2108 page = list_first_entry(&tags->page_list, struct page, lru);
2109 list_del_init(&page->lru);
2111 * Remove kmemleak object previously allocated in
2112 * blk_mq_alloc_rqs().
2114 kmemleak_free(page_address(page));
2115 __free_pages(page, page->private);
2119 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2121 kfree(tags->rqs);
2122 tags->rqs = NULL;
2123 kfree(tags->static_rqs);
2124 tags->static_rqs = NULL;
2126 blk_mq_free_tags(tags);
2129 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2130 unsigned int hctx_idx,
2131 unsigned int nr_tags,
2132 unsigned int reserved_tags)
2134 struct blk_mq_tags *tags;
2135 int node;
2137 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2138 if (node == NUMA_NO_NODE)
2139 node = set->numa_node;
2141 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2142 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2143 if (!tags)
2144 return NULL;
2146 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2147 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2148 node);
2149 if (!tags->rqs) {
2150 blk_mq_free_tags(tags);
2151 return NULL;
2154 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2155 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2156 node);
2157 if (!tags->static_rqs) {
2158 kfree(tags->rqs);
2159 blk_mq_free_tags(tags);
2160 return NULL;
2163 return tags;
2166 static size_t order_to_size(unsigned int order)
2168 return (size_t)PAGE_SIZE << order;
2171 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2172 unsigned int hctx_idx, int node)
2174 int ret;
2176 if (set->ops->init_request) {
2177 ret = set->ops->init_request(set, rq, hctx_idx, node);
2178 if (ret)
2179 return ret;
2182 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2183 return 0;
2186 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2187 unsigned int hctx_idx, unsigned int depth)
2189 unsigned int i, j, entries_per_page, max_order = 4;
2190 size_t rq_size, left;
2191 int node;
2193 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2194 if (node == NUMA_NO_NODE)
2195 node = set->numa_node;
2197 INIT_LIST_HEAD(&tags->page_list);
2200 * rq_size is the size of the request plus driver payload, rounded
2201 * to the cacheline size
2203 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2204 cache_line_size());
2205 left = rq_size * depth;
2207 for (i = 0; i < depth; ) {
2208 int this_order = max_order;
2209 struct page *page;
2210 int to_do;
2211 void *p;
2213 while (this_order && left < order_to_size(this_order - 1))
2214 this_order--;
2216 do {
2217 page = alloc_pages_node(node,
2218 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2219 this_order);
2220 if (page)
2221 break;
2222 if (!this_order--)
2223 break;
2224 if (order_to_size(this_order) < rq_size)
2225 break;
2226 } while (1);
2228 if (!page)
2229 goto fail;
2231 page->private = this_order;
2232 list_add_tail(&page->lru, &tags->page_list);
2234 p = page_address(page);
2236 * Allow kmemleak to scan these pages as they contain pointers
2237 * to additional allocations like via ops->init_request().
2239 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2240 entries_per_page = order_to_size(this_order) / rq_size;
2241 to_do = min(entries_per_page, depth - i);
2242 left -= to_do * rq_size;
2243 for (j = 0; j < to_do; j++) {
2244 struct request *rq = p;
2246 tags->static_rqs[i] = rq;
2247 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2248 tags->static_rqs[i] = NULL;
2249 goto fail;
2252 p += rq_size;
2253 i++;
2256 return 0;
2258 fail:
2259 blk_mq_free_rqs(set, tags, hctx_idx);
2260 return -ENOMEM;
2264 * 'cpu' is going away. splice any existing rq_list entries from this
2265 * software queue to the hw queue dispatch list, and ensure that it
2266 * gets run.
2268 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2270 struct blk_mq_hw_ctx *hctx;
2271 struct blk_mq_ctx *ctx;
2272 LIST_HEAD(tmp);
2273 enum hctx_type type;
2275 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2276 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2277 type = hctx->type;
2279 spin_lock(&ctx->lock);
2280 if (!list_empty(&ctx->rq_lists[type])) {
2281 list_splice_init(&ctx->rq_lists[type], &tmp);
2282 blk_mq_hctx_clear_pending(hctx, ctx);
2284 spin_unlock(&ctx->lock);
2286 if (list_empty(&tmp))
2287 return 0;
2289 spin_lock(&hctx->lock);
2290 list_splice_tail_init(&tmp, &hctx->dispatch);
2291 spin_unlock(&hctx->lock);
2293 blk_mq_run_hw_queue(hctx, true);
2294 return 0;
2297 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2299 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2300 &hctx->cpuhp_dead);
2303 /* hctx->ctxs will be freed in queue's release handler */
2304 static void blk_mq_exit_hctx(struct request_queue *q,
2305 struct blk_mq_tag_set *set,
2306 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2308 if (blk_mq_hw_queue_mapped(hctx))
2309 blk_mq_tag_idle(hctx);
2311 if (set->ops->exit_request)
2312 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2314 if (set->ops->exit_hctx)
2315 set->ops->exit_hctx(hctx, hctx_idx);
2317 blk_mq_remove_cpuhp(hctx);
2319 spin_lock(&q->unused_hctx_lock);
2320 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2321 spin_unlock(&q->unused_hctx_lock);
2324 static void blk_mq_exit_hw_queues(struct request_queue *q,
2325 struct blk_mq_tag_set *set, int nr_queue)
2327 struct blk_mq_hw_ctx *hctx;
2328 unsigned int i;
2330 queue_for_each_hw_ctx(q, hctx, i) {
2331 if (i == nr_queue)
2332 break;
2333 blk_mq_debugfs_unregister_hctx(hctx);
2334 blk_mq_exit_hctx(q, set, hctx, i);
2338 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2340 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2342 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2343 __alignof__(struct blk_mq_hw_ctx)) !=
2344 sizeof(struct blk_mq_hw_ctx));
2346 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2347 hw_ctx_size += sizeof(struct srcu_struct);
2349 return hw_ctx_size;
2352 static int blk_mq_init_hctx(struct request_queue *q,
2353 struct blk_mq_tag_set *set,
2354 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2356 hctx->queue_num = hctx_idx;
2358 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2360 hctx->tags = set->tags[hctx_idx];
2362 if (set->ops->init_hctx &&
2363 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2364 goto unregister_cpu_notifier;
2366 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2367 hctx->numa_node))
2368 goto exit_hctx;
2369 return 0;
2371 exit_hctx:
2372 if (set->ops->exit_hctx)
2373 set->ops->exit_hctx(hctx, hctx_idx);
2374 unregister_cpu_notifier:
2375 blk_mq_remove_cpuhp(hctx);
2376 return -1;
2379 static struct blk_mq_hw_ctx *
2380 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2381 int node)
2383 struct blk_mq_hw_ctx *hctx;
2384 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2386 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2387 if (!hctx)
2388 goto fail_alloc_hctx;
2390 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2391 goto free_hctx;
2393 atomic_set(&hctx->nr_active, 0);
2394 if (node == NUMA_NO_NODE)
2395 node = set->numa_node;
2396 hctx->numa_node = node;
2398 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2399 spin_lock_init(&hctx->lock);
2400 INIT_LIST_HEAD(&hctx->dispatch);
2401 hctx->queue = q;
2402 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2404 INIT_LIST_HEAD(&hctx->hctx_list);
2407 * Allocate space for all possible cpus to avoid allocation at
2408 * runtime
2410 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2411 gfp, node);
2412 if (!hctx->ctxs)
2413 goto free_cpumask;
2415 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2416 gfp, node))
2417 goto free_ctxs;
2418 hctx->nr_ctx = 0;
2420 spin_lock_init(&hctx->dispatch_wait_lock);
2421 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2422 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2424 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2425 if (!hctx->fq)
2426 goto free_bitmap;
2428 if (hctx->flags & BLK_MQ_F_BLOCKING)
2429 init_srcu_struct(hctx->srcu);
2430 blk_mq_hctx_kobj_init(hctx);
2432 return hctx;
2434 free_bitmap:
2435 sbitmap_free(&hctx->ctx_map);
2436 free_ctxs:
2437 kfree(hctx->ctxs);
2438 free_cpumask:
2439 free_cpumask_var(hctx->cpumask);
2440 free_hctx:
2441 kfree(hctx);
2442 fail_alloc_hctx:
2443 return NULL;
2446 static void blk_mq_init_cpu_queues(struct request_queue *q,
2447 unsigned int nr_hw_queues)
2449 struct blk_mq_tag_set *set = q->tag_set;
2450 unsigned int i, j;
2452 for_each_possible_cpu(i) {
2453 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2454 struct blk_mq_hw_ctx *hctx;
2455 int k;
2457 __ctx->cpu = i;
2458 spin_lock_init(&__ctx->lock);
2459 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2460 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2462 __ctx->queue = q;
2465 * Set local node, IFF we have more than one hw queue. If
2466 * not, we remain on the home node of the device
2468 for (j = 0; j < set->nr_maps; j++) {
2469 hctx = blk_mq_map_queue_type(q, j, i);
2470 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2471 hctx->numa_node = local_memory_node(cpu_to_node(i));
2476 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2478 int ret = 0;
2480 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2481 set->queue_depth, set->reserved_tags);
2482 if (!set->tags[hctx_idx])
2483 return false;
2485 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2486 set->queue_depth);
2487 if (!ret)
2488 return true;
2490 blk_mq_free_rq_map(set->tags[hctx_idx]);
2491 set->tags[hctx_idx] = NULL;
2492 return false;
2495 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2496 unsigned int hctx_idx)
2498 if (set->tags && set->tags[hctx_idx]) {
2499 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2500 blk_mq_free_rq_map(set->tags[hctx_idx]);
2501 set->tags[hctx_idx] = NULL;
2505 static void blk_mq_map_swqueue(struct request_queue *q)
2507 unsigned int i, j, hctx_idx;
2508 struct blk_mq_hw_ctx *hctx;
2509 struct blk_mq_ctx *ctx;
2510 struct blk_mq_tag_set *set = q->tag_set;
2512 queue_for_each_hw_ctx(q, hctx, i) {
2513 cpumask_clear(hctx->cpumask);
2514 hctx->nr_ctx = 0;
2515 hctx->dispatch_from = NULL;
2519 * Map software to hardware queues.
2521 * If the cpu isn't present, the cpu is mapped to first hctx.
2523 for_each_possible_cpu(i) {
2525 ctx = per_cpu_ptr(q->queue_ctx, i);
2526 for (j = 0; j < set->nr_maps; j++) {
2527 if (!set->map[j].nr_queues) {
2528 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2529 HCTX_TYPE_DEFAULT, i);
2530 continue;
2532 hctx_idx = set->map[j].mq_map[i];
2533 /* unmapped hw queue can be remapped after CPU topo changed */
2534 if (!set->tags[hctx_idx] &&
2535 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2537 * If tags initialization fail for some hctx,
2538 * that hctx won't be brought online. In this
2539 * case, remap the current ctx to hctx[0] which
2540 * is guaranteed to always have tags allocated
2542 set->map[j].mq_map[i] = 0;
2545 hctx = blk_mq_map_queue_type(q, j, i);
2546 ctx->hctxs[j] = hctx;
2548 * If the CPU is already set in the mask, then we've
2549 * mapped this one already. This can happen if
2550 * devices share queues across queue maps.
2552 if (cpumask_test_cpu(i, hctx->cpumask))
2553 continue;
2555 cpumask_set_cpu(i, hctx->cpumask);
2556 hctx->type = j;
2557 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2558 hctx->ctxs[hctx->nr_ctx++] = ctx;
2561 * If the nr_ctx type overflows, we have exceeded the
2562 * amount of sw queues we can support.
2564 BUG_ON(!hctx->nr_ctx);
2567 for (; j < HCTX_MAX_TYPES; j++)
2568 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2569 HCTX_TYPE_DEFAULT, i);
2572 queue_for_each_hw_ctx(q, hctx, i) {
2574 * If no software queues are mapped to this hardware queue,
2575 * disable it and free the request entries.
2577 if (!hctx->nr_ctx) {
2578 /* Never unmap queue 0. We need it as a
2579 * fallback in case of a new remap fails
2580 * allocation
2582 if (i && set->tags[i])
2583 blk_mq_free_map_and_requests(set, i);
2585 hctx->tags = NULL;
2586 continue;
2589 hctx->tags = set->tags[i];
2590 WARN_ON(!hctx->tags);
2593 * Set the map size to the number of mapped software queues.
2594 * This is more accurate and more efficient than looping
2595 * over all possibly mapped software queues.
2597 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2600 * Initialize batch roundrobin counts
2602 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2603 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2608 * Caller needs to ensure that we're either frozen/quiesced, or that
2609 * the queue isn't live yet.
2611 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2613 struct blk_mq_hw_ctx *hctx;
2614 int i;
2616 queue_for_each_hw_ctx(q, hctx, i) {
2617 if (shared)
2618 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2619 else
2620 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2624 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2625 bool shared)
2627 struct request_queue *q;
2629 lockdep_assert_held(&set->tag_list_lock);
2631 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2632 blk_mq_freeze_queue(q);
2633 queue_set_hctx_shared(q, shared);
2634 blk_mq_unfreeze_queue(q);
2638 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2640 struct blk_mq_tag_set *set = q->tag_set;
2642 mutex_lock(&set->tag_list_lock);
2643 list_del_rcu(&q->tag_set_list);
2644 if (list_is_singular(&set->tag_list)) {
2645 /* just transitioned to unshared */
2646 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2647 /* update existing queue */
2648 blk_mq_update_tag_set_depth(set, false);
2650 mutex_unlock(&set->tag_list_lock);
2651 INIT_LIST_HEAD(&q->tag_set_list);
2654 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2655 struct request_queue *q)
2657 mutex_lock(&set->tag_list_lock);
2660 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2662 if (!list_empty(&set->tag_list) &&
2663 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2664 set->flags |= BLK_MQ_F_TAG_SHARED;
2665 /* update existing queue */
2666 blk_mq_update_tag_set_depth(set, true);
2668 if (set->flags & BLK_MQ_F_TAG_SHARED)
2669 queue_set_hctx_shared(q, true);
2670 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2672 mutex_unlock(&set->tag_list_lock);
2675 /* All allocations will be freed in release handler of q->mq_kobj */
2676 static int blk_mq_alloc_ctxs(struct request_queue *q)
2678 struct blk_mq_ctxs *ctxs;
2679 int cpu;
2681 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2682 if (!ctxs)
2683 return -ENOMEM;
2685 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2686 if (!ctxs->queue_ctx)
2687 goto fail;
2689 for_each_possible_cpu(cpu) {
2690 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2691 ctx->ctxs = ctxs;
2694 q->mq_kobj = &ctxs->kobj;
2695 q->queue_ctx = ctxs->queue_ctx;
2697 return 0;
2698 fail:
2699 kfree(ctxs);
2700 return -ENOMEM;
2704 * It is the actual release handler for mq, but we do it from
2705 * request queue's release handler for avoiding use-after-free
2706 * and headache because q->mq_kobj shouldn't have been introduced,
2707 * but we can't group ctx/kctx kobj without it.
2709 void blk_mq_release(struct request_queue *q)
2711 struct blk_mq_hw_ctx *hctx, *next;
2712 int i;
2714 queue_for_each_hw_ctx(q, hctx, i)
2715 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2717 /* all hctx are in .unused_hctx_list now */
2718 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2719 list_del_init(&hctx->hctx_list);
2720 kobject_put(&hctx->kobj);
2723 kfree(q->queue_hw_ctx);
2726 * release .mq_kobj and sw queue's kobject now because
2727 * both share lifetime with request queue.
2729 blk_mq_sysfs_deinit(q);
2732 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2733 void *queuedata)
2735 struct request_queue *uninit_q, *q;
2737 uninit_q = __blk_alloc_queue(set->numa_node);
2738 if (!uninit_q)
2739 return ERR_PTR(-ENOMEM);
2740 uninit_q->queuedata = queuedata;
2743 * Initialize the queue without an elevator. device_add_disk() will do
2744 * the initialization.
2746 q = blk_mq_init_allocated_queue(set, uninit_q, false);
2747 if (IS_ERR(q))
2748 blk_cleanup_queue(uninit_q);
2750 return q;
2752 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2754 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2756 return blk_mq_init_queue_data(set, NULL);
2758 EXPORT_SYMBOL(blk_mq_init_queue);
2761 * Helper for setting up a queue with mq ops, given queue depth, and
2762 * the passed in mq ops flags.
2764 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2765 const struct blk_mq_ops *ops,
2766 unsigned int queue_depth,
2767 unsigned int set_flags)
2769 struct request_queue *q;
2770 int ret;
2772 memset(set, 0, sizeof(*set));
2773 set->ops = ops;
2774 set->nr_hw_queues = 1;
2775 set->nr_maps = 1;
2776 set->queue_depth = queue_depth;
2777 set->numa_node = NUMA_NO_NODE;
2778 set->flags = set_flags;
2780 ret = blk_mq_alloc_tag_set(set);
2781 if (ret)
2782 return ERR_PTR(ret);
2784 q = blk_mq_init_queue(set);
2785 if (IS_ERR(q)) {
2786 blk_mq_free_tag_set(set);
2787 return q;
2790 return q;
2792 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2794 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2795 struct blk_mq_tag_set *set, struct request_queue *q,
2796 int hctx_idx, int node)
2798 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2800 /* reuse dead hctx first */
2801 spin_lock(&q->unused_hctx_lock);
2802 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2803 if (tmp->numa_node == node) {
2804 hctx = tmp;
2805 break;
2808 if (hctx)
2809 list_del_init(&hctx->hctx_list);
2810 spin_unlock(&q->unused_hctx_lock);
2812 if (!hctx)
2813 hctx = blk_mq_alloc_hctx(q, set, node);
2814 if (!hctx)
2815 goto fail;
2817 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2818 goto free_hctx;
2820 return hctx;
2822 free_hctx:
2823 kobject_put(&hctx->kobj);
2824 fail:
2825 return NULL;
2828 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2829 struct request_queue *q)
2831 int i, j, end;
2832 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2834 if (q->nr_hw_queues < set->nr_hw_queues) {
2835 struct blk_mq_hw_ctx **new_hctxs;
2837 new_hctxs = kcalloc_node(set->nr_hw_queues,
2838 sizeof(*new_hctxs), GFP_KERNEL,
2839 set->numa_node);
2840 if (!new_hctxs)
2841 return;
2842 if (hctxs)
2843 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2844 sizeof(*hctxs));
2845 q->queue_hw_ctx = new_hctxs;
2846 kfree(hctxs);
2847 hctxs = new_hctxs;
2850 /* protect against switching io scheduler */
2851 mutex_lock(&q->sysfs_lock);
2852 for (i = 0; i < set->nr_hw_queues; i++) {
2853 int node;
2854 struct blk_mq_hw_ctx *hctx;
2856 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2858 * If the hw queue has been mapped to another numa node,
2859 * we need to realloc the hctx. If allocation fails, fallback
2860 * to use the previous one.
2862 if (hctxs[i] && (hctxs[i]->numa_node == node))
2863 continue;
2865 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2866 if (hctx) {
2867 if (hctxs[i])
2868 blk_mq_exit_hctx(q, set, hctxs[i], i);
2869 hctxs[i] = hctx;
2870 } else {
2871 if (hctxs[i])
2872 pr_warn("Allocate new hctx on node %d fails,\
2873 fallback to previous one on node %d\n",
2874 node, hctxs[i]->numa_node);
2875 else
2876 break;
2880 * Increasing nr_hw_queues fails. Free the newly allocated
2881 * hctxs and keep the previous q->nr_hw_queues.
2883 if (i != set->nr_hw_queues) {
2884 j = q->nr_hw_queues;
2885 end = i;
2886 } else {
2887 j = i;
2888 end = q->nr_hw_queues;
2889 q->nr_hw_queues = set->nr_hw_queues;
2892 for (; j < end; j++) {
2893 struct blk_mq_hw_ctx *hctx = hctxs[j];
2895 if (hctx) {
2896 if (hctx->tags)
2897 blk_mq_free_map_and_requests(set, j);
2898 blk_mq_exit_hctx(q, set, hctx, j);
2899 hctxs[j] = NULL;
2902 mutex_unlock(&q->sysfs_lock);
2905 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2906 struct request_queue *q,
2907 bool elevator_init)
2909 /* mark the queue as mq asap */
2910 q->mq_ops = set->ops;
2912 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2913 blk_mq_poll_stats_bkt,
2914 BLK_MQ_POLL_STATS_BKTS, q);
2915 if (!q->poll_cb)
2916 goto err_exit;
2918 if (blk_mq_alloc_ctxs(q))
2919 goto err_poll;
2921 /* init q->mq_kobj and sw queues' kobjects */
2922 blk_mq_sysfs_init(q);
2924 INIT_LIST_HEAD(&q->unused_hctx_list);
2925 spin_lock_init(&q->unused_hctx_lock);
2927 blk_mq_realloc_hw_ctxs(set, q);
2928 if (!q->nr_hw_queues)
2929 goto err_hctxs;
2931 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2932 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2934 q->tag_set = set;
2936 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2937 if (set->nr_maps > HCTX_TYPE_POLL &&
2938 set->map[HCTX_TYPE_POLL].nr_queues)
2939 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2941 q->sg_reserved_size = INT_MAX;
2943 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2944 INIT_LIST_HEAD(&q->requeue_list);
2945 spin_lock_init(&q->requeue_lock);
2947 q->make_request_fn = blk_mq_make_request;
2948 q->nr_requests = set->queue_depth;
2951 * Default to classic polling
2953 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2955 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2956 blk_mq_add_queue_tag_set(set, q);
2957 blk_mq_map_swqueue(q);
2959 if (elevator_init)
2960 elevator_init_mq(q);
2962 return q;
2964 err_hctxs:
2965 kfree(q->queue_hw_ctx);
2966 q->nr_hw_queues = 0;
2967 blk_mq_sysfs_deinit(q);
2968 err_poll:
2969 blk_stat_free_callback(q->poll_cb);
2970 q->poll_cb = NULL;
2971 err_exit:
2972 q->mq_ops = NULL;
2973 return ERR_PTR(-ENOMEM);
2975 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2977 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2978 void blk_mq_exit_queue(struct request_queue *q)
2980 struct blk_mq_tag_set *set = q->tag_set;
2982 blk_mq_del_queue_tag_set(q);
2983 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2986 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2988 int i;
2990 for (i = 0; i < set->nr_hw_queues; i++)
2991 if (!__blk_mq_alloc_rq_map(set, i))
2992 goto out_unwind;
2994 return 0;
2996 out_unwind:
2997 while (--i >= 0)
2998 blk_mq_free_rq_map(set->tags[i]);
3000 return -ENOMEM;
3004 * Allocate the request maps associated with this tag_set. Note that this
3005 * may reduce the depth asked for, if memory is tight. set->queue_depth
3006 * will be updated to reflect the allocated depth.
3008 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3010 unsigned int depth;
3011 int err;
3013 depth = set->queue_depth;
3014 do {
3015 err = __blk_mq_alloc_rq_maps(set);
3016 if (!err)
3017 break;
3019 set->queue_depth >>= 1;
3020 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3021 err = -ENOMEM;
3022 break;
3024 } while (set->queue_depth);
3026 if (!set->queue_depth || err) {
3027 pr_err("blk-mq: failed to allocate request map\n");
3028 return -ENOMEM;
3031 if (depth != set->queue_depth)
3032 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3033 depth, set->queue_depth);
3035 return 0;
3038 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3041 * blk_mq_map_queues() and multiple .map_queues() implementations
3042 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3043 * number of hardware queues.
3045 if (set->nr_maps == 1)
3046 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3048 if (set->ops->map_queues && !is_kdump_kernel()) {
3049 int i;
3052 * transport .map_queues is usually done in the following
3053 * way:
3055 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3056 * mask = get_cpu_mask(queue)
3057 * for_each_cpu(cpu, mask)
3058 * set->map[x].mq_map[cpu] = queue;
3061 * When we need to remap, the table has to be cleared for
3062 * killing stale mapping since one CPU may not be mapped
3063 * to any hw queue.
3065 for (i = 0; i < set->nr_maps; i++)
3066 blk_mq_clear_mq_map(&set->map[i]);
3068 return set->ops->map_queues(set);
3069 } else {
3070 BUG_ON(set->nr_maps > 1);
3071 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3075 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3076 int cur_nr_hw_queues, int new_nr_hw_queues)
3078 struct blk_mq_tags **new_tags;
3080 if (cur_nr_hw_queues >= new_nr_hw_queues)
3081 return 0;
3083 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3084 GFP_KERNEL, set->numa_node);
3085 if (!new_tags)
3086 return -ENOMEM;
3088 if (set->tags)
3089 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3090 sizeof(*set->tags));
3091 kfree(set->tags);
3092 set->tags = new_tags;
3093 set->nr_hw_queues = new_nr_hw_queues;
3095 return 0;
3099 * Alloc a tag set to be associated with one or more request queues.
3100 * May fail with EINVAL for various error conditions. May adjust the
3101 * requested depth down, if it's too large. In that case, the set
3102 * value will be stored in set->queue_depth.
3104 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3106 int i, ret;
3108 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3110 if (!set->nr_hw_queues)
3111 return -EINVAL;
3112 if (!set->queue_depth)
3113 return -EINVAL;
3114 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3115 return -EINVAL;
3117 if (!set->ops->queue_rq)
3118 return -EINVAL;
3120 if (!set->ops->get_budget ^ !set->ops->put_budget)
3121 return -EINVAL;
3123 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3124 pr_info("blk-mq: reduced tag depth to %u\n",
3125 BLK_MQ_MAX_DEPTH);
3126 set->queue_depth = BLK_MQ_MAX_DEPTH;
3129 if (!set->nr_maps)
3130 set->nr_maps = 1;
3131 else if (set->nr_maps > HCTX_MAX_TYPES)
3132 return -EINVAL;
3135 * If a crashdump is active, then we are potentially in a very
3136 * memory constrained environment. Limit us to 1 queue and
3137 * 64 tags to prevent using too much memory.
3139 if (is_kdump_kernel()) {
3140 set->nr_hw_queues = 1;
3141 set->nr_maps = 1;
3142 set->queue_depth = min(64U, set->queue_depth);
3145 * There is no use for more h/w queues than cpus if we just have
3146 * a single map
3148 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3149 set->nr_hw_queues = nr_cpu_ids;
3151 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3152 return -ENOMEM;
3154 ret = -ENOMEM;
3155 for (i = 0; i < set->nr_maps; i++) {
3156 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3157 sizeof(set->map[i].mq_map[0]),
3158 GFP_KERNEL, set->numa_node);
3159 if (!set->map[i].mq_map)
3160 goto out_free_mq_map;
3161 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3164 ret = blk_mq_update_queue_map(set);
3165 if (ret)
3166 goto out_free_mq_map;
3168 ret = blk_mq_alloc_rq_maps(set);
3169 if (ret)
3170 goto out_free_mq_map;
3172 mutex_init(&set->tag_list_lock);
3173 INIT_LIST_HEAD(&set->tag_list);
3175 return 0;
3177 out_free_mq_map:
3178 for (i = 0; i < set->nr_maps; i++) {
3179 kfree(set->map[i].mq_map);
3180 set->map[i].mq_map = NULL;
3182 kfree(set->tags);
3183 set->tags = NULL;
3184 return ret;
3186 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3188 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3190 int i, j;
3192 for (i = 0; i < set->nr_hw_queues; i++)
3193 blk_mq_free_map_and_requests(set, i);
3195 for (j = 0; j < set->nr_maps; j++) {
3196 kfree(set->map[j].mq_map);
3197 set->map[j].mq_map = NULL;
3200 kfree(set->tags);
3201 set->tags = NULL;
3203 EXPORT_SYMBOL(blk_mq_free_tag_set);
3205 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3207 struct blk_mq_tag_set *set = q->tag_set;
3208 struct blk_mq_hw_ctx *hctx;
3209 int i, ret;
3211 if (!set)
3212 return -EINVAL;
3214 if (q->nr_requests == nr)
3215 return 0;
3217 blk_mq_freeze_queue(q);
3218 blk_mq_quiesce_queue(q);
3220 ret = 0;
3221 queue_for_each_hw_ctx(q, hctx, i) {
3222 if (!hctx->tags)
3223 continue;
3225 * If we're using an MQ scheduler, just update the scheduler
3226 * queue depth. This is similar to what the old code would do.
3228 if (!hctx->sched_tags) {
3229 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3230 false);
3231 } else {
3232 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3233 nr, true);
3235 if (ret)
3236 break;
3237 if (q->elevator && q->elevator->type->ops.depth_updated)
3238 q->elevator->type->ops.depth_updated(hctx);
3241 if (!ret)
3242 q->nr_requests = nr;
3244 blk_mq_unquiesce_queue(q);
3245 blk_mq_unfreeze_queue(q);
3247 return ret;
3251 * request_queue and elevator_type pair.
3252 * It is just used by __blk_mq_update_nr_hw_queues to cache
3253 * the elevator_type associated with a request_queue.
3255 struct blk_mq_qe_pair {
3256 struct list_head node;
3257 struct request_queue *q;
3258 struct elevator_type *type;
3262 * Cache the elevator_type in qe pair list and switch the
3263 * io scheduler to 'none'
3265 static bool blk_mq_elv_switch_none(struct list_head *head,
3266 struct request_queue *q)
3268 struct blk_mq_qe_pair *qe;
3270 if (!q->elevator)
3271 return true;
3273 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3274 if (!qe)
3275 return false;
3277 INIT_LIST_HEAD(&qe->node);
3278 qe->q = q;
3279 qe->type = q->elevator->type;
3280 list_add(&qe->node, head);
3282 mutex_lock(&q->sysfs_lock);
3284 * After elevator_switch_mq, the previous elevator_queue will be
3285 * released by elevator_release. The reference of the io scheduler
3286 * module get by elevator_get will also be put. So we need to get
3287 * a reference of the io scheduler module here to prevent it to be
3288 * removed.
3290 __module_get(qe->type->elevator_owner);
3291 elevator_switch_mq(q, NULL);
3292 mutex_unlock(&q->sysfs_lock);
3294 return true;
3297 static void blk_mq_elv_switch_back(struct list_head *head,
3298 struct request_queue *q)
3300 struct blk_mq_qe_pair *qe;
3301 struct elevator_type *t = NULL;
3303 list_for_each_entry(qe, head, node)
3304 if (qe->q == q) {
3305 t = qe->type;
3306 break;
3309 if (!t)
3310 return;
3312 list_del(&qe->node);
3313 kfree(qe);
3315 mutex_lock(&q->sysfs_lock);
3316 elevator_switch_mq(q, t);
3317 mutex_unlock(&q->sysfs_lock);
3320 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3321 int nr_hw_queues)
3323 struct request_queue *q;
3324 LIST_HEAD(head);
3325 int prev_nr_hw_queues;
3327 lockdep_assert_held(&set->tag_list_lock);
3329 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3330 nr_hw_queues = nr_cpu_ids;
3331 if (nr_hw_queues < 1)
3332 return;
3333 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3334 return;
3336 list_for_each_entry(q, &set->tag_list, tag_set_list)
3337 blk_mq_freeze_queue(q);
3339 * Switch IO scheduler to 'none', cleaning up the data associated
3340 * with the previous scheduler. We will switch back once we are done
3341 * updating the new sw to hw queue mappings.
3343 list_for_each_entry(q, &set->tag_list, tag_set_list)
3344 if (!blk_mq_elv_switch_none(&head, q))
3345 goto switch_back;
3347 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3348 blk_mq_debugfs_unregister_hctxs(q);
3349 blk_mq_sysfs_unregister(q);
3352 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3354 goto reregister;
3356 prev_nr_hw_queues = set->nr_hw_queues;
3357 set->nr_hw_queues = nr_hw_queues;
3358 fallback:
3359 blk_mq_update_queue_map(set);
3360 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3361 blk_mq_realloc_hw_ctxs(set, q);
3362 if (q->nr_hw_queues != set->nr_hw_queues) {
3363 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3364 nr_hw_queues, prev_nr_hw_queues);
3365 set->nr_hw_queues = prev_nr_hw_queues;
3366 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3367 goto fallback;
3369 blk_mq_map_swqueue(q);
3372 reregister:
3373 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3374 blk_mq_sysfs_register(q);
3375 blk_mq_debugfs_register_hctxs(q);
3378 switch_back:
3379 list_for_each_entry(q, &set->tag_list, tag_set_list)
3380 blk_mq_elv_switch_back(&head, q);
3382 list_for_each_entry(q, &set->tag_list, tag_set_list)
3383 blk_mq_unfreeze_queue(q);
3386 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3388 mutex_lock(&set->tag_list_lock);
3389 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3390 mutex_unlock(&set->tag_list_lock);
3392 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3394 /* Enable polling stats and return whether they were already enabled. */
3395 static bool blk_poll_stats_enable(struct request_queue *q)
3397 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3398 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3399 return true;
3400 blk_stat_add_callback(q, q->poll_cb);
3401 return false;
3404 static void blk_mq_poll_stats_start(struct request_queue *q)
3407 * We don't arm the callback if polling stats are not enabled or the
3408 * callback is already active.
3410 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3411 blk_stat_is_active(q->poll_cb))
3412 return;
3414 blk_stat_activate_msecs(q->poll_cb, 100);
3417 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3419 struct request_queue *q = cb->data;
3420 int bucket;
3422 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3423 if (cb->stat[bucket].nr_samples)
3424 q->poll_stat[bucket] = cb->stat[bucket];
3428 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3429 struct request *rq)
3431 unsigned long ret = 0;
3432 int bucket;
3435 * If stats collection isn't on, don't sleep but turn it on for
3436 * future users
3438 if (!blk_poll_stats_enable(q))
3439 return 0;
3442 * As an optimistic guess, use half of the mean service time
3443 * for this type of request. We can (and should) make this smarter.
3444 * For instance, if the completion latencies are tight, we can
3445 * get closer than just half the mean. This is especially
3446 * important on devices where the completion latencies are longer
3447 * than ~10 usec. We do use the stats for the relevant IO size
3448 * if available which does lead to better estimates.
3450 bucket = blk_mq_poll_stats_bkt(rq);
3451 if (bucket < 0)
3452 return ret;
3454 if (q->poll_stat[bucket].nr_samples)
3455 ret = (q->poll_stat[bucket].mean + 1) / 2;
3457 return ret;
3460 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3461 struct request *rq)
3463 struct hrtimer_sleeper hs;
3464 enum hrtimer_mode mode;
3465 unsigned int nsecs;
3466 ktime_t kt;
3468 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3469 return false;
3472 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3474 * 0: use half of prev avg
3475 * >0: use this specific value
3477 if (q->poll_nsec > 0)
3478 nsecs = q->poll_nsec;
3479 else
3480 nsecs = blk_mq_poll_nsecs(q, rq);
3482 if (!nsecs)
3483 return false;
3485 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3488 * This will be replaced with the stats tracking code, using
3489 * 'avg_completion_time / 2' as the pre-sleep target.
3491 kt = nsecs;
3493 mode = HRTIMER_MODE_REL;
3494 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3495 hrtimer_set_expires(&hs.timer, kt);
3497 do {
3498 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3499 break;
3500 set_current_state(TASK_UNINTERRUPTIBLE);
3501 hrtimer_sleeper_start_expires(&hs, mode);
3502 if (hs.task)
3503 io_schedule();
3504 hrtimer_cancel(&hs.timer);
3505 mode = HRTIMER_MODE_ABS;
3506 } while (hs.task && !signal_pending(current));
3508 __set_current_state(TASK_RUNNING);
3509 destroy_hrtimer_on_stack(&hs.timer);
3510 return true;
3513 static bool blk_mq_poll_hybrid(struct request_queue *q,
3514 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3516 struct request *rq;
3518 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3519 return false;
3521 if (!blk_qc_t_is_internal(cookie))
3522 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3523 else {
3524 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3526 * With scheduling, if the request has completed, we'll
3527 * get a NULL return here, as we clear the sched tag when
3528 * that happens. The request still remains valid, like always,
3529 * so we should be safe with just the NULL check.
3531 if (!rq)
3532 return false;
3535 return blk_mq_poll_hybrid_sleep(q, rq);
3539 * blk_poll - poll for IO completions
3540 * @q: the queue
3541 * @cookie: cookie passed back at IO submission time
3542 * @spin: whether to spin for completions
3544 * Description:
3545 * Poll for completions on the passed in queue. Returns number of
3546 * completed entries found. If @spin is true, then blk_poll will continue
3547 * looping until at least one completion is found, unless the task is
3548 * otherwise marked running (or we need to reschedule).
3550 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3552 struct blk_mq_hw_ctx *hctx;
3553 long state;
3555 if (!blk_qc_t_valid(cookie) ||
3556 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3557 return 0;
3559 if (current->plug)
3560 blk_flush_plug_list(current->plug, false);
3562 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3565 * If we sleep, have the caller restart the poll loop to reset
3566 * the state. Like for the other success return cases, the
3567 * caller is responsible for checking if the IO completed. If
3568 * the IO isn't complete, we'll get called again and will go
3569 * straight to the busy poll loop.
3571 if (blk_mq_poll_hybrid(q, hctx, cookie))
3572 return 1;
3574 hctx->poll_considered++;
3576 state = current->state;
3577 do {
3578 int ret;
3580 hctx->poll_invoked++;
3582 ret = q->mq_ops->poll(hctx);
3583 if (ret > 0) {
3584 hctx->poll_success++;
3585 __set_current_state(TASK_RUNNING);
3586 return ret;
3589 if (signal_pending_state(state, current))
3590 __set_current_state(TASK_RUNNING);
3592 if (current->state == TASK_RUNNING)
3593 return 1;
3594 if (ret < 0 || !spin)
3595 break;
3596 cpu_relax();
3597 } while (!need_resched());
3599 __set_current_state(TASK_RUNNING);
3600 return 0;
3602 EXPORT_SYMBOL_GPL(blk_poll);
3604 unsigned int blk_mq_rq_cpu(struct request *rq)
3606 return rq->mq_ctx->cpu;
3608 EXPORT_SYMBOL(blk_mq_rq_cpu);
3610 static int __init blk_mq_init(void)
3612 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3613 blk_mq_hctx_notify_dead);
3614 return 0;
3616 subsys_initcall(blk_mq_init);