1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
20 unsigned long blk_max_low_pfn
;
21 EXPORT_SYMBOL(blk_max_low_pfn
);
23 unsigned long blk_max_pfn
;
25 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
27 q
->rq_timeout
= timeout
;
29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
32 * blk_set_default_limits - reset limits to default values
33 * @lim: the queue_limits structure to reset
36 * Returns a queue_limit struct to its default state.
38 void blk_set_default_limits(struct queue_limits
*lim
)
40 lim
->max_segments
= BLK_MAX_SEGMENTS
;
41 lim
->max_discard_segments
= 1;
42 lim
->max_integrity_segments
= 0;
43 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
44 lim
->virt_boundary_mask
= 0;
45 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
46 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
47 lim
->max_dev_sectors
= 0;
48 lim
->chunk_sectors
= 0;
49 lim
->max_write_same_sectors
= 0;
50 lim
->max_write_zeroes_sectors
= 0;
51 lim
->max_discard_sectors
= 0;
52 lim
->max_hw_discard_sectors
= 0;
53 lim
->discard_granularity
= 0;
54 lim
->discard_alignment
= 0;
55 lim
->discard_misaligned
= 0;
56 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
57 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
58 lim
->alignment_offset
= 0;
61 lim
->zoned
= BLK_ZONED_NONE
;
63 EXPORT_SYMBOL(blk_set_default_limits
);
66 * blk_set_stacking_limits - set default limits for stacking devices
67 * @lim: the queue_limits structure to reset
70 * Returns a queue_limit struct to its default state. Should be used
71 * by stacking drivers like DM that have no internal limits.
73 void blk_set_stacking_limits(struct queue_limits
*lim
)
75 blk_set_default_limits(lim
);
77 /* Inherit limits from component devices */
78 lim
->max_segments
= USHRT_MAX
;
79 lim
->max_discard_segments
= USHRT_MAX
;
80 lim
->max_hw_sectors
= UINT_MAX
;
81 lim
->max_segment_size
= UINT_MAX
;
82 lim
->max_sectors
= UINT_MAX
;
83 lim
->max_dev_sectors
= UINT_MAX
;
84 lim
->max_write_same_sectors
= UINT_MAX
;
85 lim
->max_write_zeroes_sectors
= UINT_MAX
;
87 EXPORT_SYMBOL(blk_set_stacking_limits
);
90 * blk_queue_bounce_limit - set bounce buffer limit for queue
91 * @q: the request queue for the device
92 * @max_addr: the maximum address the device can handle
95 * Different hardware can have different requirements as to what pages
96 * it can do I/O directly to. A low level driver can call
97 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
98 * buffers for doing I/O to pages residing above @max_addr.
100 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
102 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
105 q
->bounce_gfp
= GFP_NOIO
;
106 #if BITS_PER_LONG == 64
108 * Assume anything <= 4GB can be handled by IOMMU. Actually
109 * some IOMMUs can handle everything, but I don't know of a
110 * way to test this here.
112 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
114 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
116 if (b_pfn
< blk_max_low_pfn
)
118 q
->limits
.bounce_pfn
= b_pfn
;
121 init_emergency_isa_pool();
122 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
123 q
->limits
.bounce_pfn
= b_pfn
;
126 EXPORT_SYMBOL(blk_queue_bounce_limit
);
129 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
130 * @q: the request queue for the device
131 * @max_hw_sectors: max hardware sectors in the usual 512b unit
134 * Enables a low level driver to set a hard upper limit,
135 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
136 * the device driver based upon the capabilities of the I/O
139 * max_dev_sectors is a hard limit imposed by the storage device for
140 * READ/WRITE requests. It is set by the disk driver.
142 * max_sectors is a soft limit imposed by the block layer for
143 * filesystem type requests. This value can be overridden on a
144 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
145 * The soft limit can not exceed max_hw_sectors.
147 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
149 struct queue_limits
*limits
= &q
->limits
;
150 unsigned int max_sectors
;
152 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
153 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
154 printk(KERN_INFO
"%s: set to minimum %d\n",
155 __func__
, max_hw_sectors
);
158 limits
->max_hw_sectors
= max_hw_sectors
;
159 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
160 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
161 limits
->max_sectors
= max_sectors
;
162 q
->backing_dev_info
->io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
164 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
167 * blk_queue_chunk_sectors - set size of the chunk for this queue
168 * @q: the request queue for the device
169 * @chunk_sectors: chunk sectors in the usual 512b unit
172 * If a driver doesn't want IOs to cross a given chunk size, it can set
173 * this limit and prevent merging across chunks. Note that the chunk size
174 * must currently be a power-of-2 in sectors. Also note that the block
175 * layer must accept a page worth of data at any offset. So if the
176 * crossing of chunks is a hard limitation in the driver, it must still be
177 * prepared to split single page bios.
179 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
181 BUG_ON(!is_power_of_2(chunk_sectors
));
182 q
->limits
.chunk_sectors
= chunk_sectors
;
184 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
187 * blk_queue_max_discard_sectors - set max sectors for a single discard
188 * @q: the request queue for the device
189 * @max_discard_sectors: maximum number of sectors to discard
191 void blk_queue_max_discard_sectors(struct request_queue
*q
,
192 unsigned int max_discard_sectors
)
194 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
195 q
->limits
.max_discard_sectors
= max_discard_sectors
;
197 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
200 * blk_queue_max_write_same_sectors - set max sectors for a single write same
201 * @q: the request queue for the device
202 * @max_write_same_sectors: maximum number of sectors to write per command
204 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
205 unsigned int max_write_same_sectors
)
207 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
209 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
212 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
214 * @q: the request queue for the device
215 * @max_write_zeroes_sectors: maximum number of sectors to write per command
217 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
218 unsigned int max_write_zeroes_sectors
)
220 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
222 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
225 * blk_queue_max_segments - set max hw segments for a request for this queue
226 * @q: the request queue for the device
227 * @max_segments: max number of segments
230 * Enables a low level driver to set an upper limit on the number of
231 * hw data segments in a request.
233 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
237 printk(KERN_INFO
"%s: set to minimum %d\n",
238 __func__
, max_segments
);
241 q
->limits
.max_segments
= max_segments
;
243 EXPORT_SYMBOL(blk_queue_max_segments
);
246 * blk_queue_max_discard_segments - set max segments for discard requests
247 * @q: the request queue for the device
248 * @max_segments: max number of segments
251 * Enables a low level driver to set an upper limit on the number of
252 * segments in a discard request.
254 void blk_queue_max_discard_segments(struct request_queue
*q
,
255 unsigned short max_segments
)
257 q
->limits
.max_discard_segments
= max_segments
;
259 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments
);
262 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
263 * @q: the request queue for the device
264 * @max_size: max size of segment in bytes
267 * Enables a low level driver to set an upper limit on the size of a
270 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
272 if (max_size
< PAGE_SIZE
) {
273 max_size
= PAGE_SIZE
;
274 printk(KERN_INFO
"%s: set to minimum %d\n",
278 /* see blk_queue_virt_boundary() for the explanation */
279 WARN_ON_ONCE(q
->limits
.virt_boundary_mask
);
281 q
->limits
.max_segment_size
= max_size
;
283 EXPORT_SYMBOL(blk_queue_max_segment_size
);
286 * blk_queue_logical_block_size - set logical block size for the queue
287 * @q: the request queue for the device
288 * @size: the logical block size, in bytes
291 * This should be set to the lowest possible block size that the
292 * storage device can address. The default of 512 covers most
295 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned int size
)
297 q
->limits
.logical_block_size
= size
;
299 if (q
->limits
.physical_block_size
< size
)
300 q
->limits
.physical_block_size
= size
;
302 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
303 q
->limits
.io_min
= q
->limits
.physical_block_size
;
305 EXPORT_SYMBOL(blk_queue_logical_block_size
);
308 * blk_queue_physical_block_size - set physical block size for the queue
309 * @q: the request queue for the device
310 * @size: the physical block size, in bytes
313 * This should be set to the lowest possible sector size that the
314 * hardware can operate on without reverting to read-modify-write
317 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
319 q
->limits
.physical_block_size
= size
;
321 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
322 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
324 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
325 q
->limits
.io_min
= q
->limits
.physical_block_size
;
327 EXPORT_SYMBOL(blk_queue_physical_block_size
);
330 * blk_queue_alignment_offset - set physical block alignment offset
331 * @q: the request queue for the device
332 * @offset: alignment offset in bytes
335 * Some devices are naturally misaligned to compensate for things like
336 * the legacy DOS partition table 63-sector offset. Low-level drivers
337 * should call this function for devices whose first sector is not
340 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
342 q
->limits
.alignment_offset
=
343 offset
& (q
->limits
.physical_block_size
- 1);
344 q
->limits
.misaligned
= 0;
346 EXPORT_SYMBOL(blk_queue_alignment_offset
);
349 * blk_limits_io_min - set minimum request size for a device
350 * @limits: the queue limits
351 * @min: smallest I/O size in bytes
354 * Some devices have an internal block size bigger than the reported
355 * hardware sector size. This function can be used to signal the
356 * smallest I/O the device can perform without incurring a performance
359 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
361 limits
->io_min
= min
;
363 if (limits
->io_min
< limits
->logical_block_size
)
364 limits
->io_min
= limits
->logical_block_size
;
366 if (limits
->io_min
< limits
->physical_block_size
)
367 limits
->io_min
= limits
->physical_block_size
;
369 EXPORT_SYMBOL(blk_limits_io_min
);
372 * blk_queue_io_min - set minimum request size for the queue
373 * @q: the request queue for the device
374 * @min: smallest I/O size in bytes
377 * Storage devices may report a granularity or preferred minimum I/O
378 * size which is the smallest request the device can perform without
379 * incurring a performance penalty. For disk drives this is often the
380 * physical block size. For RAID arrays it is often the stripe chunk
381 * size. A properly aligned multiple of minimum_io_size is the
382 * preferred request size for workloads where a high number of I/O
383 * operations is desired.
385 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
387 blk_limits_io_min(&q
->limits
, min
);
389 EXPORT_SYMBOL(blk_queue_io_min
);
392 * blk_limits_io_opt - set optimal request size for a device
393 * @limits: the queue limits
394 * @opt: smallest I/O size in bytes
397 * Storage devices may report an optimal I/O size, which is the
398 * device's preferred unit for sustained I/O. This is rarely reported
399 * for disk drives. For RAID arrays it is usually the stripe width or
400 * the internal track size. A properly aligned multiple of
401 * optimal_io_size is the preferred request size for workloads where
402 * sustained throughput is desired.
404 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
406 limits
->io_opt
= opt
;
408 EXPORT_SYMBOL(blk_limits_io_opt
);
411 * blk_queue_io_opt - set optimal request size for the queue
412 * @q: the request queue for the device
413 * @opt: optimal request size in bytes
416 * Storage devices may report an optimal I/O size, which is the
417 * device's preferred unit for sustained I/O. This is rarely reported
418 * for disk drives. For RAID arrays it is usually the stripe width or
419 * the internal track size. A properly aligned multiple of
420 * optimal_io_size is the preferred request size for workloads where
421 * sustained throughput is desired.
423 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
425 blk_limits_io_opt(&q
->limits
, opt
);
427 EXPORT_SYMBOL(blk_queue_io_opt
);
430 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
431 * @t: the stacking driver (top)
432 * @b: the underlying device (bottom)
434 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
436 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
438 EXPORT_SYMBOL(blk_queue_stack_limits
);
441 * blk_stack_limits - adjust queue_limits for stacked devices
442 * @t: the stacking driver limits (top device)
443 * @b: the underlying queue limits (bottom, component device)
444 * @start: first data sector within component device
447 * This function is used by stacking drivers like MD and DM to ensure
448 * that all component devices have compatible block sizes and
449 * alignments. The stacking driver must provide a queue_limits
450 * struct (top) and then iteratively call the stacking function for
451 * all component (bottom) devices. The stacking function will
452 * attempt to combine the values and ensure proper alignment.
454 * Returns 0 if the top and bottom queue_limits are compatible. The
455 * top device's block sizes and alignment offsets may be adjusted to
456 * ensure alignment with the bottom device. If no compatible sizes
457 * and alignments exist, -1 is returned and the resulting top
458 * queue_limits will have the misaligned flag set to indicate that
459 * the alignment_offset is undefined.
461 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
464 unsigned int top
, bottom
, alignment
, ret
= 0;
466 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
467 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
468 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
469 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
470 b
->max_write_same_sectors
);
471 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
472 b
->max_write_zeroes_sectors
);
473 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
475 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
476 b
->seg_boundary_mask
);
477 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
478 b
->virt_boundary_mask
);
480 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
481 t
->max_discard_segments
= min_not_zero(t
->max_discard_segments
,
482 b
->max_discard_segments
);
483 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
484 b
->max_integrity_segments
);
486 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
487 b
->max_segment_size
);
489 t
->misaligned
|= b
->misaligned
;
491 alignment
= queue_limit_alignment_offset(b
, start
);
493 /* Bottom device has different alignment. Check that it is
494 * compatible with the current top alignment.
496 if (t
->alignment_offset
!= alignment
) {
498 top
= max(t
->physical_block_size
, t
->io_min
)
499 + t
->alignment_offset
;
500 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
502 /* Verify that top and bottom intervals line up */
503 if (max(top
, bottom
) % min(top
, bottom
)) {
509 t
->logical_block_size
= max(t
->logical_block_size
,
510 b
->logical_block_size
);
512 t
->physical_block_size
= max(t
->physical_block_size
,
513 b
->physical_block_size
);
515 t
->io_min
= max(t
->io_min
, b
->io_min
);
516 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
518 /* Physical block size a multiple of the logical block size? */
519 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
520 t
->physical_block_size
= t
->logical_block_size
;
525 /* Minimum I/O a multiple of the physical block size? */
526 if (t
->io_min
& (t
->physical_block_size
- 1)) {
527 t
->io_min
= t
->physical_block_size
;
532 /* Optimal I/O a multiple of the physical block size? */
533 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
539 t
->raid_partial_stripes_expensive
=
540 max(t
->raid_partial_stripes_expensive
,
541 b
->raid_partial_stripes_expensive
);
543 /* Find lowest common alignment_offset */
544 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
545 % max(t
->physical_block_size
, t
->io_min
);
547 /* Verify that new alignment_offset is on a logical block boundary */
548 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
553 /* Discard alignment and granularity */
554 if (b
->discard_granularity
) {
555 alignment
= queue_limit_discard_alignment(b
, start
);
557 if (t
->discard_granularity
!= 0 &&
558 t
->discard_alignment
!= alignment
) {
559 top
= t
->discard_granularity
+ t
->discard_alignment
;
560 bottom
= b
->discard_granularity
+ alignment
;
562 /* Verify that top and bottom intervals line up */
563 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
564 t
->discard_misaligned
= 1;
567 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
568 b
->max_discard_sectors
);
569 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
570 b
->max_hw_discard_sectors
);
571 t
->discard_granularity
= max(t
->discard_granularity
,
572 b
->discard_granularity
);
573 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
574 t
->discard_granularity
;
577 if (b
->chunk_sectors
)
578 t
->chunk_sectors
= min_not_zero(t
->chunk_sectors
,
583 EXPORT_SYMBOL(blk_stack_limits
);
586 * bdev_stack_limits - adjust queue limits for stacked drivers
587 * @t: the stacking driver limits (top device)
588 * @bdev: the component block_device (bottom)
589 * @start: first data sector within component device
592 * Merges queue limits for a top device and a block_device. Returns
593 * 0 if alignment didn't change. Returns -1 if adding the bottom
594 * device caused misalignment.
596 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
599 struct request_queue
*bq
= bdev_get_queue(bdev
);
601 start
+= get_start_sect(bdev
);
603 return blk_stack_limits(t
, &bq
->limits
, start
);
605 EXPORT_SYMBOL(bdev_stack_limits
);
608 * disk_stack_limits - adjust queue limits for stacked drivers
609 * @disk: MD/DM gendisk (top)
610 * @bdev: the underlying block device (bottom)
611 * @offset: offset to beginning of data within component device
614 * Merges the limits for a top level gendisk and a bottom level
617 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
620 struct request_queue
*t
= disk
->queue
;
622 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
623 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
625 disk_name(disk
, 0, top
);
626 bdevname(bdev
, bottom
);
628 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
632 t
->backing_dev_info
->io_pages
=
633 t
->limits
.max_sectors
>> (PAGE_SHIFT
- 9);
635 EXPORT_SYMBOL(disk_stack_limits
);
638 * blk_queue_update_dma_pad - update pad mask
639 * @q: the request queue for the device
642 * Update dma pad mask.
644 * Appending pad buffer to a request modifies the last entry of a
645 * scatter list such that it includes the pad buffer.
647 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
649 if (mask
> q
->dma_pad_mask
)
650 q
->dma_pad_mask
= mask
;
652 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
655 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
656 * @q: the request queue for the device
657 * @dma_drain_needed: fn which returns non-zero if drain is necessary
658 * @buf: physically contiguous buffer
659 * @size: size of the buffer in bytes
661 * Some devices have excess DMA problems and can't simply discard (or
662 * zero fill) the unwanted piece of the transfer. They have to have a
663 * real area of memory to transfer it into. The use case for this is
664 * ATAPI devices in DMA mode. If the packet command causes a transfer
665 * bigger than the transfer size some HBAs will lock up if there
666 * aren't DMA elements to contain the excess transfer. What this API
667 * does is adjust the queue so that the buf is always appended
668 * silently to the scatterlist.
670 * Note: This routine adjusts max_hw_segments to make room for appending
671 * the drain buffer. If you call blk_queue_max_segments() after calling
672 * this routine, you must set the limit to one fewer than your device
673 * can support otherwise there won't be room for the drain buffer.
675 int blk_queue_dma_drain(struct request_queue
*q
,
676 dma_drain_needed_fn
*dma_drain_needed
,
677 void *buf
, unsigned int size
)
679 if (queue_max_segments(q
) < 2)
681 /* make room for appending the drain */
682 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
683 q
->dma_drain_needed
= dma_drain_needed
;
684 q
->dma_drain_buffer
= buf
;
685 q
->dma_drain_size
= size
;
689 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
692 * blk_queue_segment_boundary - set boundary rules for segment merging
693 * @q: the request queue for the device
694 * @mask: the memory boundary mask
696 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
698 if (mask
< PAGE_SIZE
- 1) {
699 mask
= PAGE_SIZE
- 1;
700 printk(KERN_INFO
"%s: set to minimum %lx\n",
704 q
->limits
.seg_boundary_mask
= mask
;
706 EXPORT_SYMBOL(blk_queue_segment_boundary
);
709 * blk_queue_virt_boundary - set boundary rules for bio merging
710 * @q: the request queue for the device
711 * @mask: the memory boundary mask
713 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
715 q
->limits
.virt_boundary_mask
= mask
;
718 * Devices that require a virtual boundary do not support scatter/gather
719 * I/O natively, but instead require a descriptor list entry for each
720 * page (which might not be idential to the Linux PAGE_SIZE). Because
721 * of that they are not limited by our notion of "segment size".
724 q
->limits
.max_segment_size
= UINT_MAX
;
726 EXPORT_SYMBOL(blk_queue_virt_boundary
);
729 * blk_queue_dma_alignment - set dma length and memory alignment
730 * @q: the request queue for the device
731 * @mask: alignment mask
734 * set required memory and length alignment for direct dma transactions.
735 * this is used when building direct io requests for the queue.
738 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
740 q
->dma_alignment
= mask
;
742 EXPORT_SYMBOL(blk_queue_dma_alignment
);
745 * blk_queue_update_dma_alignment - update dma length and memory alignment
746 * @q: the request queue for the device
747 * @mask: alignment mask
750 * update required memory and length alignment for direct dma transactions.
751 * If the requested alignment is larger than the current alignment, then
752 * the current queue alignment is updated to the new value, otherwise it
753 * is left alone. The design of this is to allow multiple objects
754 * (driver, device, transport etc) to set their respective
755 * alignments without having them interfere.
758 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
760 BUG_ON(mask
> PAGE_SIZE
);
762 if (mask
> q
->dma_alignment
)
763 q
->dma_alignment
= mask
;
765 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
768 * blk_set_queue_depth - tell the block layer about the device queue depth
769 * @q: the request queue for the device
770 * @depth: queue depth
773 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
775 q
->queue_depth
= depth
;
776 rq_qos_queue_depth_changed(q
);
778 EXPORT_SYMBOL(blk_set_queue_depth
);
781 * blk_queue_write_cache - configure queue's write cache
782 * @q: the request queue for the device
783 * @wc: write back cache on or off
784 * @fua: device supports FUA writes, if true
786 * Tell the block layer about the write cache of @q.
788 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
791 blk_queue_flag_set(QUEUE_FLAG_WC
, q
);
793 blk_queue_flag_clear(QUEUE_FLAG_WC
, q
);
795 blk_queue_flag_set(QUEUE_FLAG_FUA
, q
);
797 blk_queue_flag_clear(QUEUE_FLAG_FUA
, q
);
799 wbt_set_write_cache(q
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
801 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
804 * blk_queue_required_elevator_features - Set a queue required elevator features
805 * @q: the request queue for the target device
806 * @features: Required elevator features OR'ed together
808 * Tell the block layer that for the device controlled through @q, only the
809 * only elevators that can be used are those that implement at least the set of
810 * features specified by @features.
812 void blk_queue_required_elevator_features(struct request_queue
*q
,
813 unsigned int features
)
815 q
->required_elevator_features
= features
;
817 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features
);
820 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
821 * @q: the request queue for the device
822 * @dev: the device pointer for dma
824 * Tell the block layer about merging the segments by dma map of @q.
826 bool blk_queue_can_use_dma_map_merging(struct request_queue
*q
,
829 unsigned long boundary
= dma_get_merge_boundary(dev
);
834 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
835 blk_queue_virt_boundary(q
, boundary
);
839 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging
);
841 static int __init
blk_settings_init(void)
843 blk_max_low_pfn
= max_low_pfn
- 1;
844 blk_max_pfn
= max_pfn
- 1;
847 subsys_initcall(blk_settings_init
);