Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / crypto / aegis128-core.c
blob44fb4956f0dd95eedccef64b47bb398d35e2e34d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * The AEGIS-128 Authenticated-Encryption Algorithm
5 * Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com>
6 * Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
7 */
9 #include <crypto/algapi.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/simd.h>
12 #include <crypto/internal/skcipher.h>
13 #include <crypto/scatterwalk.h>
14 #include <linux/err.h>
15 #include <linux/init.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/scatterlist.h>
21 #include <asm/simd.h>
23 #include "aegis.h"
25 #define AEGIS128_NONCE_SIZE 16
26 #define AEGIS128_STATE_BLOCKS 5
27 #define AEGIS128_KEY_SIZE 16
28 #define AEGIS128_MIN_AUTH_SIZE 8
29 #define AEGIS128_MAX_AUTH_SIZE 16
31 struct aegis_state {
32 union aegis_block blocks[AEGIS128_STATE_BLOCKS];
35 struct aegis_ctx {
36 union aegis_block key;
39 static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_simd);
41 static const union aegis_block crypto_aegis_const[2] = {
42 { .words64 = {
43 cpu_to_le64(U64_C(0x0d08050302010100)),
44 cpu_to_le64(U64_C(0x6279e99059372215)),
45 } },
46 { .words64 = {
47 cpu_to_le64(U64_C(0xf12fc26d55183ddb)),
48 cpu_to_le64(U64_C(0xdd28b57342311120)),
49 } },
52 static bool aegis128_do_simd(void)
54 #ifdef CONFIG_CRYPTO_AEGIS128_SIMD
55 if (static_branch_likely(&have_simd))
56 return crypto_simd_usable();
57 #endif
58 return false;
61 bool crypto_aegis128_have_simd(void);
62 void crypto_aegis128_update_simd(struct aegis_state *state, const void *msg);
63 void crypto_aegis128_init_simd(struct aegis_state *state,
64 const union aegis_block *key,
65 const u8 *iv);
66 void crypto_aegis128_encrypt_chunk_simd(struct aegis_state *state, u8 *dst,
67 const u8 *src, unsigned int size);
68 void crypto_aegis128_decrypt_chunk_simd(struct aegis_state *state, u8 *dst,
69 const u8 *src, unsigned int size);
70 void crypto_aegis128_final_simd(struct aegis_state *state,
71 union aegis_block *tag_xor,
72 u64 assoclen, u64 cryptlen);
74 static void crypto_aegis128_update(struct aegis_state *state)
76 union aegis_block tmp;
77 unsigned int i;
79 tmp = state->blocks[AEGIS128_STATE_BLOCKS - 1];
80 for (i = AEGIS128_STATE_BLOCKS - 1; i > 0; i--)
81 crypto_aegis_aesenc(&state->blocks[i], &state->blocks[i - 1],
82 &state->blocks[i]);
83 crypto_aegis_aesenc(&state->blocks[0], &tmp, &state->blocks[0]);
86 static void crypto_aegis128_update_a(struct aegis_state *state,
87 const union aegis_block *msg)
89 if (aegis128_do_simd()) {
90 crypto_aegis128_update_simd(state, msg);
91 return;
94 crypto_aegis128_update(state);
95 crypto_aegis_block_xor(&state->blocks[0], msg);
98 static void crypto_aegis128_update_u(struct aegis_state *state, const void *msg)
100 if (aegis128_do_simd()) {
101 crypto_aegis128_update_simd(state, msg);
102 return;
105 crypto_aegis128_update(state);
106 crypto_xor(state->blocks[0].bytes, msg, AEGIS_BLOCK_SIZE);
109 static void crypto_aegis128_init(struct aegis_state *state,
110 const union aegis_block *key,
111 const u8 *iv)
113 union aegis_block key_iv;
114 unsigned int i;
116 key_iv = *key;
117 crypto_xor(key_iv.bytes, iv, AEGIS_BLOCK_SIZE);
119 state->blocks[0] = key_iv;
120 state->blocks[1] = crypto_aegis_const[1];
121 state->blocks[2] = crypto_aegis_const[0];
122 state->blocks[3] = *key;
123 state->blocks[4] = *key;
125 crypto_aegis_block_xor(&state->blocks[3], &crypto_aegis_const[0]);
126 crypto_aegis_block_xor(&state->blocks[4], &crypto_aegis_const[1]);
128 for (i = 0; i < 5; i++) {
129 crypto_aegis128_update_a(state, key);
130 crypto_aegis128_update_a(state, &key_iv);
134 static void crypto_aegis128_ad(struct aegis_state *state,
135 const u8 *src, unsigned int size)
137 if (AEGIS_ALIGNED(src)) {
138 const union aegis_block *src_blk =
139 (const union aegis_block *)src;
141 while (size >= AEGIS_BLOCK_SIZE) {
142 crypto_aegis128_update_a(state, src_blk);
144 size -= AEGIS_BLOCK_SIZE;
145 src_blk++;
147 } else {
148 while (size >= AEGIS_BLOCK_SIZE) {
149 crypto_aegis128_update_u(state, src);
151 size -= AEGIS_BLOCK_SIZE;
152 src += AEGIS_BLOCK_SIZE;
157 static void crypto_aegis128_encrypt_chunk(struct aegis_state *state, u8 *dst,
158 const u8 *src, unsigned int size)
160 union aegis_block tmp;
162 if (AEGIS_ALIGNED(src) && AEGIS_ALIGNED(dst)) {
163 while (size >= AEGIS_BLOCK_SIZE) {
164 union aegis_block *dst_blk =
165 (union aegis_block *)dst;
166 const union aegis_block *src_blk =
167 (const union aegis_block *)src;
169 tmp = state->blocks[2];
170 crypto_aegis_block_and(&tmp, &state->blocks[3]);
171 crypto_aegis_block_xor(&tmp, &state->blocks[4]);
172 crypto_aegis_block_xor(&tmp, &state->blocks[1]);
173 crypto_aegis_block_xor(&tmp, src_blk);
175 crypto_aegis128_update_a(state, src_blk);
177 *dst_blk = tmp;
179 size -= AEGIS_BLOCK_SIZE;
180 src += AEGIS_BLOCK_SIZE;
181 dst += AEGIS_BLOCK_SIZE;
183 } else {
184 while (size >= AEGIS_BLOCK_SIZE) {
185 tmp = state->blocks[2];
186 crypto_aegis_block_and(&tmp, &state->blocks[3]);
187 crypto_aegis_block_xor(&tmp, &state->blocks[4]);
188 crypto_aegis_block_xor(&tmp, &state->blocks[1]);
189 crypto_xor(tmp.bytes, src, AEGIS_BLOCK_SIZE);
191 crypto_aegis128_update_u(state, src);
193 memcpy(dst, tmp.bytes, AEGIS_BLOCK_SIZE);
195 size -= AEGIS_BLOCK_SIZE;
196 src += AEGIS_BLOCK_SIZE;
197 dst += AEGIS_BLOCK_SIZE;
201 if (size > 0) {
202 union aegis_block msg = {};
203 memcpy(msg.bytes, src, size);
205 tmp = state->blocks[2];
206 crypto_aegis_block_and(&tmp, &state->blocks[3]);
207 crypto_aegis_block_xor(&tmp, &state->blocks[4]);
208 crypto_aegis_block_xor(&tmp, &state->blocks[1]);
210 crypto_aegis128_update_a(state, &msg);
212 crypto_aegis_block_xor(&msg, &tmp);
214 memcpy(dst, msg.bytes, size);
218 static void crypto_aegis128_decrypt_chunk(struct aegis_state *state, u8 *dst,
219 const u8 *src, unsigned int size)
221 union aegis_block tmp;
223 if (AEGIS_ALIGNED(src) && AEGIS_ALIGNED(dst)) {
224 while (size >= AEGIS_BLOCK_SIZE) {
225 union aegis_block *dst_blk =
226 (union aegis_block *)dst;
227 const union aegis_block *src_blk =
228 (const union aegis_block *)src;
230 tmp = state->blocks[2];
231 crypto_aegis_block_and(&tmp, &state->blocks[3]);
232 crypto_aegis_block_xor(&tmp, &state->blocks[4]);
233 crypto_aegis_block_xor(&tmp, &state->blocks[1]);
234 crypto_aegis_block_xor(&tmp, src_blk);
236 crypto_aegis128_update_a(state, &tmp);
238 *dst_blk = tmp;
240 size -= AEGIS_BLOCK_SIZE;
241 src += AEGIS_BLOCK_SIZE;
242 dst += AEGIS_BLOCK_SIZE;
244 } else {
245 while (size >= AEGIS_BLOCK_SIZE) {
246 tmp = state->blocks[2];
247 crypto_aegis_block_and(&tmp, &state->blocks[3]);
248 crypto_aegis_block_xor(&tmp, &state->blocks[4]);
249 crypto_aegis_block_xor(&tmp, &state->blocks[1]);
250 crypto_xor(tmp.bytes, src, AEGIS_BLOCK_SIZE);
252 crypto_aegis128_update_a(state, &tmp);
254 memcpy(dst, tmp.bytes, AEGIS_BLOCK_SIZE);
256 size -= AEGIS_BLOCK_SIZE;
257 src += AEGIS_BLOCK_SIZE;
258 dst += AEGIS_BLOCK_SIZE;
262 if (size > 0) {
263 union aegis_block msg = {};
264 memcpy(msg.bytes, src, size);
266 tmp = state->blocks[2];
267 crypto_aegis_block_and(&tmp, &state->blocks[3]);
268 crypto_aegis_block_xor(&tmp, &state->blocks[4]);
269 crypto_aegis_block_xor(&tmp, &state->blocks[1]);
270 crypto_aegis_block_xor(&msg, &tmp);
272 memset(msg.bytes + size, 0, AEGIS_BLOCK_SIZE - size);
274 crypto_aegis128_update_a(state, &msg);
276 memcpy(dst, msg.bytes, size);
280 static void crypto_aegis128_process_ad(struct aegis_state *state,
281 struct scatterlist *sg_src,
282 unsigned int assoclen)
284 struct scatter_walk walk;
285 union aegis_block buf;
286 unsigned int pos = 0;
288 scatterwalk_start(&walk, sg_src);
289 while (assoclen != 0) {
290 unsigned int size = scatterwalk_clamp(&walk, assoclen);
291 unsigned int left = size;
292 void *mapped = scatterwalk_map(&walk);
293 const u8 *src = (const u8 *)mapped;
295 if (pos + size >= AEGIS_BLOCK_SIZE) {
296 if (pos > 0) {
297 unsigned int fill = AEGIS_BLOCK_SIZE - pos;
298 memcpy(buf.bytes + pos, src, fill);
299 crypto_aegis128_update_a(state, &buf);
300 pos = 0;
301 left -= fill;
302 src += fill;
305 crypto_aegis128_ad(state, src, left);
306 src += left & ~(AEGIS_BLOCK_SIZE - 1);
307 left &= AEGIS_BLOCK_SIZE - 1;
310 memcpy(buf.bytes + pos, src, left);
312 pos += left;
313 assoclen -= size;
314 scatterwalk_unmap(mapped);
315 scatterwalk_advance(&walk, size);
316 scatterwalk_done(&walk, 0, assoclen);
319 if (pos > 0) {
320 memset(buf.bytes + pos, 0, AEGIS_BLOCK_SIZE - pos);
321 crypto_aegis128_update_a(state, &buf);
325 static __always_inline
326 int crypto_aegis128_process_crypt(struct aegis_state *state,
327 struct aead_request *req,
328 struct skcipher_walk *walk,
329 void (*crypt)(struct aegis_state *state,
330 u8 *dst, const u8 *src,
331 unsigned int size))
333 int err = 0;
335 while (walk->nbytes) {
336 unsigned int nbytes = walk->nbytes;
338 if (nbytes < walk->total)
339 nbytes = round_down(nbytes, walk->stride);
341 crypt(state, walk->dst.virt.addr, walk->src.virt.addr, nbytes);
343 err = skcipher_walk_done(walk, walk->nbytes - nbytes);
345 return err;
348 static void crypto_aegis128_final(struct aegis_state *state,
349 union aegis_block *tag_xor,
350 u64 assoclen, u64 cryptlen)
352 u64 assocbits = assoclen * 8;
353 u64 cryptbits = cryptlen * 8;
355 union aegis_block tmp;
356 unsigned int i;
358 tmp.words64[0] = cpu_to_le64(assocbits);
359 tmp.words64[1] = cpu_to_le64(cryptbits);
361 crypto_aegis_block_xor(&tmp, &state->blocks[3]);
363 for (i = 0; i < 7; i++)
364 crypto_aegis128_update_a(state, &tmp);
366 for (i = 0; i < AEGIS128_STATE_BLOCKS; i++)
367 crypto_aegis_block_xor(tag_xor, &state->blocks[i]);
370 static int crypto_aegis128_setkey(struct crypto_aead *aead, const u8 *key,
371 unsigned int keylen)
373 struct aegis_ctx *ctx = crypto_aead_ctx(aead);
375 if (keylen != AEGIS128_KEY_SIZE)
376 return -EINVAL;
378 memcpy(ctx->key.bytes, key, AEGIS128_KEY_SIZE);
379 return 0;
382 static int crypto_aegis128_setauthsize(struct crypto_aead *tfm,
383 unsigned int authsize)
385 if (authsize > AEGIS128_MAX_AUTH_SIZE)
386 return -EINVAL;
387 if (authsize < AEGIS128_MIN_AUTH_SIZE)
388 return -EINVAL;
389 return 0;
392 static int crypto_aegis128_encrypt(struct aead_request *req)
394 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
395 union aegis_block tag = {};
396 unsigned int authsize = crypto_aead_authsize(tfm);
397 struct aegis_ctx *ctx = crypto_aead_ctx(tfm);
398 unsigned int cryptlen = req->cryptlen;
399 struct skcipher_walk walk;
400 struct aegis_state state;
402 skcipher_walk_aead_encrypt(&walk, req, false);
403 if (aegis128_do_simd()) {
404 crypto_aegis128_init_simd(&state, &ctx->key, req->iv);
405 crypto_aegis128_process_ad(&state, req->src, req->assoclen);
406 crypto_aegis128_process_crypt(&state, req, &walk,
407 crypto_aegis128_encrypt_chunk_simd);
408 crypto_aegis128_final_simd(&state, &tag, req->assoclen,
409 cryptlen);
410 } else {
411 crypto_aegis128_init(&state, &ctx->key, req->iv);
412 crypto_aegis128_process_ad(&state, req->src, req->assoclen);
413 crypto_aegis128_process_crypt(&state, req, &walk,
414 crypto_aegis128_encrypt_chunk);
415 crypto_aegis128_final(&state, &tag, req->assoclen, cryptlen);
418 scatterwalk_map_and_copy(tag.bytes, req->dst, req->assoclen + cryptlen,
419 authsize, 1);
420 return 0;
423 static int crypto_aegis128_decrypt(struct aead_request *req)
425 static const u8 zeros[AEGIS128_MAX_AUTH_SIZE] = {};
426 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
427 union aegis_block tag;
428 unsigned int authsize = crypto_aead_authsize(tfm);
429 unsigned int cryptlen = req->cryptlen - authsize;
430 struct aegis_ctx *ctx = crypto_aead_ctx(tfm);
431 struct skcipher_walk walk;
432 struct aegis_state state;
434 scatterwalk_map_and_copy(tag.bytes, req->src, req->assoclen + cryptlen,
435 authsize, 0);
437 skcipher_walk_aead_decrypt(&walk, req, false);
438 if (aegis128_do_simd()) {
439 crypto_aegis128_init_simd(&state, &ctx->key, req->iv);
440 crypto_aegis128_process_ad(&state, req->src, req->assoclen);
441 crypto_aegis128_process_crypt(&state, req, &walk,
442 crypto_aegis128_decrypt_chunk_simd);
443 crypto_aegis128_final_simd(&state, &tag, req->assoclen,
444 cryptlen);
445 } else {
446 crypto_aegis128_init(&state, &ctx->key, req->iv);
447 crypto_aegis128_process_ad(&state, req->src, req->assoclen);
448 crypto_aegis128_process_crypt(&state, req, &walk,
449 crypto_aegis128_decrypt_chunk);
450 crypto_aegis128_final(&state, &tag, req->assoclen, cryptlen);
453 return crypto_memneq(tag.bytes, zeros, authsize) ? -EBADMSG : 0;
456 static struct aead_alg crypto_aegis128_alg = {
457 .setkey = crypto_aegis128_setkey,
458 .setauthsize = crypto_aegis128_setauthsize,
459 .encrypt = crypto_aegis128_encrypt,
460 .decrypt = crypto_aegis128_decrypt,
462 .ivsize = AEGIS128_NONCE_SIZE,
463 .maxauthsize = AEGIS128_MAX_AUTH_SIZE,
464 .chunksize = AEGIS_BLOCK_SIZE,
466 .base = {
467 .cra_blocksize = 1,
468 .cra_ctxsize = sizeof(struct aegis_ctx),
469 .cra_alignmask = 0,
471 .cra_priority = 100,
473 .cra_name = "aegis128",
474 .cra_driver_name = "aegis128-generic",
476 .cra_module = THIS_MODULE,
480 static int __init crypto_aegis128_module_init(void)
482 if (IS_ENABLED(CONFIG_CRYPTO_AEGIS128_SIMD) &&
483 crypto_aegis128_have_simd())
484 static_branch_enable(&have_simd);
486 return crypto_register_aead(&crypto_aegis128_alg);
489 static void __exit crypto_aegis128_module_exit(void)
491 crypto_unregister_aead(&crypto_aegis128_alg);
494 subsys_initcall(crypto_aegis128_module_init);
495 module_exit(crypto_aegis128_module_exit);
497 MODULE_LICENSE("GPL");
498 MODULE_AUTHOR("Ondrej Mosnacek <omosnacek@gmail.com>");
499 MODULE_DESCRIPTION("AEGIS-128 AEAD algorithm");
500 MODULE_ALIAS_CRYPTO("aegis128");
501 MODULE_ALIAS_CRYPTO("aegis128-generic");