1 // SPDX-License-Identifier: GPL-2.0-only
3 * intel_pstate.c: Native P state management for Intel processors
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
30 #include <asm/div64.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
42 #include <acpi/processor.h>
43 #include <acpi/cppc_acpi.h>
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
50 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 static inline int32_t mul_fp(int32_t x
, int32_t y
)
59 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
62 static inline int32_t div_fp(s64 x
, s64 y
)
64 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
67 static inline int ceiling_fp(int32_t x
)
72 mask
= (1 << FRAC_BITS
) - 1;
78 static inline int32_t percent_fp(int percent
)
80 return div_fp(percent
, 100);
83 static inline u64
mul_ext_fp(u64 x
, u64 y
)
85 return (x
* y
) >> EXT_FRAC_BITS
;
88 static inline u64
div_ext_fp(u64 x
, u64 y
)
90 return div64_u64(x
<< EXT_FRAC_BITS
, y
);
93 static inline int32_t percent_ext_fp(int percent
)
95 return div_ext_fp(percent
, 100);
99 * struct sample - Store performance sample
100 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
101 * performance during last sample period
102 * @busy_scaled: Scaled busy value which is used to calculate next
103 * P state. This can be different than core_avg_perf
104 * to account for cpu idle period
105 * @aperf: Difference of actual performance frequency clock count
106 * read from APERF MSR between last and current sample
107 * @mperf: Difference of maximum performance frequency clock count
108 * read from MPERF MSR between last and current sample
109 * @tsc: Difference of time stamp counter between last and
111 * @time: Current time from scheduler
113 * This structure is used in the cpudata structure to store performance sample
114 * data for choosing next P State.
117 int32_t core_avg_perf
;
126 * struct pstate_data - Store P state data
127 * @current_pstate: Current requested P state
128 * @min_pstate: Min P state possible for this platform
129 * @max_pstate: Max P state possible for this platform
130 * @max_pstate_physical:This is physical Max P state for a processor
131 * This can be higher than the max_pstate which can
132 * be limited by platform thermal design power limits
133 * @scaling: Scaling factor to convert frequency to cpufreq
135 * @turbo_pstate: Max Turbo P state possible for this platform
136 * @max_freq: @max_pstate frequency in cpufreq units
137 * @turbo_freq: @turbo_pstate frequency in cpufreq units
139 * Stores the per cpu model P state limits and current P state.
145 int max_pstate_physical
;
148 unsigned int max_freq
;
149 unsigned int turbo_freq
;
153 * struct vid_data - Stores voltage information data
154 * @min: VID data for this platform corresponding to
156 * @max: VID data corresponding to the highest P State.
157 * @turbo: VID data for turbo P state
158 * @ratio: Ratio of (vid max - vid min) /
159 * (max P state - Min P State)
161 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162 * This data is used in Atom platforms, where in addition to target P state,
163 * the voltage data needs to be specified to select next P State.
173 * struct global_params - Global parameters, mostly tunable via sysfs.
174 * @no_turbo: Whether or not to use turbo P-states.
175 * @turbo_disabled: Whether or not turbo P-states are available at all,
176 * based on the MSR_IA32_MISC_ENABLE value and whether or
177 * not the maximum reported turbo P-state is different from
178 * the maximum reported non-turbo one.
179 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
185 struct global_params
{
188 bool turbo_disabled_mf
;
194 * struct cpudata - Per CPU instance data storage
195 * @cpu: CPU number for this instance data
196 * @policy: CPUFreq policy value
197 * @update_util: CPUFreq utility callback information
198 * @update_util_set: CPUFreq utility callback is set
199 * @iowait_boost: iowait-related boost fraction
200 * @last_update: Time of the last update.
201 * @pstate: Stores P state limits for this CPU
202 * @vid: Stores VID limits for this CPU
203 * @last_sample_time: Last Sample time
204 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
205 * This shift is a multiplier to mperf delta to
206 * calculate CPU busy.
207 * @prev_aperf: Last APERF value read from APERF MSR
208 * @prev_mperf: Last MPERF value read from MPERF MSR
209 * @prev_tsc: Last timestamp counter (TSC) value
210 * @prev_cummulative_iowait: IO Wait time difference from last and
212 * @sample: Storage for storing last Sample data
213 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
214 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
215 * @acpi_perf_data: Stores ACPI perf information read from _PSS
216 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
217 * @epp_powersave: Last saved HWP energy performance preference
218 * (EPP) or energy performance bias (EPB),
219 * when policy switched to performance
220 * @epp_policy: Last saved policy used to set EPP/EPB
221 * @epp_default: Power on default HWP energy performance
223 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
225 * @hwp_req_cached: Cached value of the last HWP Request MSR
226 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
227 * @last_io_update: Last time when IO wake flag was set
228 * @sched_flags: Store scheduler flags for possible cross CPU update
229 * @hwp_boost_min: Last HWP boosted min performance
231 * This structure stores per CPU instance data for all CPUs.
237 struct update_util_data update_util
;
238 bool update_util_set
;
240 struct pstate_data pstate
;
244 u64 last_sample_time
;
245 u64 aperf_mperf_shift
;
249 u64 prev_cummulative_iowait
;
250 struct sample sample
;
251 int32_t min_perf_ratio
;
252 int32_t max_perf_ratio
;
254 struct acpi_processor_performance acpi_perf_data
;
255 bool valid_pss_table
;
257 unsigned int iowait_boost
;
265 unsigned int sched_flags
;
269 static struct cpudata
**all_cpu_data
;
272 * struct pstate_funcs - Per CPU model specific callbacks
273 * @get_max: Callback to get maximum non turbo effective P state
274 * @get_max_physical: Callback to get maximum non turbo physical P state
275 * @get_min: Callback to get minimum P state
276 * @get_turbo: Callback to get turbo P state
277 * @get_scaling: Callback to get frequency scaling factor
278 * @get_val: Callback to convert P state to actual MSR write value
279 * @get_vid: Callback to get VID data for Atom platforms
281 * Core and Atom CPU models have different way to get P State limits. This
282 * structure is used to store those callbacks.
284 struct pstate_funcs
{
285 int (*get_max
)(void);
286 int (*get_max_physical
)(void);
287 int (*get_min
)(void);
288 int (*get_turbo
)(void);
289 int (*get_scaling
)(void);
290 int (*get_aperf_mperf_shift
)(void);
291 u64 (*get_val
)(struct cpudata
*, int pstate
);
292 void (*get_vid
)(struct cpudata
*);
295 static struct pstate_funcs pstate_funcs __read_mostly
;
297 static int hwp_active __read_mostly
;
298 static int hwp_mode_bdw __read_mostly
;
299 static bool per_cpu_limits __read_mostly
;
300 static bool hwp_boost __read_mostly
;
302 static struct cpufreq_driver
*intel_pstate_driver __read_mostly
;
305 static bool acpi_ppc
;
308 static struct global_params global
;
310 static DEFINE_MUTEX(intel_pstate_driver_lock
);
311 static DEFINE_MUTEX(intel_pstate_limits_lock
);
315 static bool intel_pstate_acpi_pm_profile_server(void)
317 if (acpi_gbl_FADT
.preferred_profile
== PM_ENTERPRISE_SERVER
||
318 acpi_gbl_FADT
.preferred_profile
== PM_PERFORMANCE_SERVER
)
324 static bool intel_pstate_get_ppc_enable_status(void)
326 if (intel_pstate_acpi_pm_profile_server())
332 #ifdef CONFIG_ACPI_CPPC_LIB
334 /* The work item is needed to avoid CPU hotplug locking issues */
335 static void intel_pstste_sched_itmt_work_fn(struct work_struct
*work
)
337 sched_set_itmt_support();
340 static DECLARE_WORK(sched_itmt_work
, intel_pstste_sched_itmt_work_fn
);
342 static void intel_pstate_set_itmt_prio(int cpu
)
344 struct cppc_perf_caps cppc_perf
;
345 static u32 max_highest_perf
= 0, min_highest_perf
= U32_MAX
;
348 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
353 * The priorities can be set regardless of whether or not
354 * sched_set_itmt_support(true) has been called and it is valid to
355 * update them at any time after it has been called.
357 sched_set_itmt_core_prio(cppc_perf
.highest_perf
, cpu
);
359 if (max_highest_perf
<= min_highest_perf
) {
360 if (cppc_perf
.highest_perf
> max_highest_perf
)
361 max_highest_perf
= cppc_perf
.highest_perf
;
363 if (cppc_perf
.highest_perf
< min_highest_perf
)
364 min_highest_perf
= cppc_perf
.highest_perf
;
366 if (max_highest_perf
> min_highest_perf
) {
368 * This code can be run during CPU online under the
369 * CPU hotplug locks, so sched_set_itmt_support()
370 * cannot be called from here. Queue up a work item
373 schedule_work(&sched_itmt_work
);
378 static int intel_pstate_get_cppc_guranteed(int cpu
)
380 struct cppc_perf_caps cppc_perf
;
383 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
387 if (cppc_perf
.guaranteed_perf
)
388 return cppc_perf
.guaranteed_perf
;
390 return cppc_perf
.nominal_perf
;
393 #else /* CONFIG_ACPI_CPPC_LIB */
394 static void intel_pstate_set_itmt_prio(int cpu
)
397 #endif /* CONFIG_ACPI_CPPC_LIB */
399 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
406 intel_pstate_set_itmt_prio(policy
->cpu
);
410 if (!intel_pstate_get_ppc_enable_status())
413 cpu
= all_cpu_data
[policy
->cpu
];
415 ret
= acpi_processor_register_performance(&cpu
->acpi_perf_data
,
421 * Check if the control value in _PSS is for PERF_CTL MSR, which should
422 * guarantee that the states returned by it map to the states in our
425 if (cpu
->acpi_perf_data
.control_register
.space_id
!=
426 ACPI_ADR_SPACE_FIXED_HARDWARE
)
430 * If there is only one entry _PSS, simply ignore _PSS and continue as
431 * usual without taking _PSS into account
433 if (cpu
->acpi_perf_data
.state_count
< 2)
436 pr_debug("CPU%u - ACPI _PSS perf data\n", policy
->cpu
);
437 for (i
= 0; i
< cpu
->acpi_perf_data
.state_count
; i
++) {
438 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
439 (i
== cpu
->acpi_perf_data
.state
? '*' : ' '), i
,
440 (u32
) cpu
->acpi_perf_data
.states
[i
].core_frequency
,
441 (u32
) cpu
->acpi_perf_data
.states
[i
].power
,
442 (u32
) cpu
->acpi_perf_data
.states
[i
].control
);
446 * The _PSS table doesn't contain whole turbo frequency range.
447 * This just contains +1 MHZ above the max non turbo frequency,
448 * with control value corresponding to max turbo ratio. But
449 * when cpufreq set policy is called, it will call with this
450 * max frequency, which will cause a reduced performance as
451 * this driver uses real max turbo frequency as the max
452 * frequency. So correct this frequency in _PSS table to
453 * correct max turbo frequency based on the turbo state.
454 * Also need to convert to MHz as _PSS freq is in MHz.
456 if (!global
.turbo_disabled
)
457 cpu
->acpi_perf_data
.states
[0].core_frequency
=
458 policy
->cpuinfo
.max_freq
/ 1000;
459 cpu
->valid_pss_table
= true;
460 pr_debug("_PPC limits will be enforced\n");
465 cpu
->valid_pss_table
= false;
466 acpi_processor_unregister_performance(policy
->cpu
);
469 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
473 cpu
= all_cpu_data
[policy
->cpu
];
474 if (!cpu
->valid_pss_table
)
477 acpi_processor_unregister_performance(policy
->cpu
);
479 #else /* CONFIG_ACPI */
480 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
484 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
488 static inline bool intel_pstate_acpi_pm_profile_server(void)
492 #endif /* CONFIG_ACPI */
494 #ifndef CONFIG_ACPI_CPPC_LIB
495 static int intel_pstate_get_cppc_guranteed(int cpu
)
499 #endif /* CONFIG_ACPI_CPPC_LIB */
501 static inline void update_turbo_state(void)
506 cpu
= all_cpu_data
[0];
507 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
508 global
.turbo_disabled
=
509 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
510 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
513 static int min_perf_pct_min(void)
515 struct cpudata
*cpu
= all_cpu_data
[0];
516 int turbo_pstate
= cpu
->pstate
.turbo_pstate
;
518 return turbo_pstate
?
519 (cpu
->pstate
.min_pstate
* 100 / turbo_pstate
) : 0;
522 static s16
intel_pstate_get_epb(struct cpudata
*cpu_data
)
527 if (!boot_cpu_has(X86_FEATURE_EPB
))
530 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
534 return (s16
)(epb
& 0x0f);
537 static s16
intel_pstate_get_epp(struct cpudata
*cpu_data
, u64 hwp_req_data
)
541 if (boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
543 * When hwp_req_data is 0, means that caller didn't read
544 * MSR_HWP_REQUEST, so need to read and get EPP.
547 epp
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
,
552 epp
= (hwp_req_data
>> 24) & 0xff;
554 /* When there is no EPP present, HWP uses EPB settings */
555 epp
= intel_pstate_get_epb(cpu_data
);
561 static int intel_pstate_set_epb(int cpu
, s16 pref
)
566 if (!boot_cpu_has(X86_FEATURE_EPB
))
569 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
573 epb
= (epb
& ~0x0f) | pref
;
574 wrmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, epb
);
580 * EPP/EPB display strings corresponding to EPP index in the
581 * energy_perf_strings[]
583 *-------------------------------------
586 * 2 balance_performance
590 static const char * const energy_perf_strings
[] = {
593 "balance_performance",
598 static const unsigned int epp_values
[] = {
600 HWP_EPP_BALANCE_PERFORMANCE
,
601 HWP_EPP_BALANCE_POWERSAVE
,
605 static int intel_pstate_get_energy_pref_index(struct cpudata
*cpu_data
)
610 epp
= intel_pstate_get_epp(cpu_data
, 0);
614 if (boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
615 if (epp
== HWP_EPP_PERFORMANCE
)
617 if (epp
<= HWP_EPP_BALANCE_PERFORMANCE
)
619 if (epp
<= HWP_EPP_BALANCE_POWERSAVE
)
623 } else if (boot_cpu_has(X86_FEATURE_EPB
)) {
626 * 0x00-0x03 : Performance
627 * 0x04-0x07 : Balance performance
628 * 0x08-0x0B : Balance power
630 * The EPB is a 4 bit value, but our ranges restrict the
631 * value which can be set. Here only using top two bits
634 index
= (epp
>> 2) + 1;
640 static int intel_pstate_set_energy_pref_index(struct cpudata
*cpu_data
,
647 epp
= cpu_data
->epp_default
;
649 mutex_lock(&intel_pstate_limits_lock
);
651 if (boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
654 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, &value
);
658 value
&= ~GENMASK_ULL(31, 24);
661 epp
= epp_values
[pref_index
- 1];
663 value
|= (u64
)epp
<< 24;
664 ret
= wrmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, value
);
667 epp
= (pref_index
- 1) << 2;
668 ret
= intel_pstate_set_epb(cpu_data
->cpu
, epp
);
671 mutex_unlock(&intel_pstate_limits_lock
);
676 static ssize_t
show_energy_performance_available_preferences(
677 struct cpufreq_policy
*policy
, char *buf
)
682 while (energy_perf_strings
[i
] != NULL
)
683 ret
+= sprintf(&buf
[ret
], "%s ", energy_perf_strings
[i
++]);
685 ret
+= sprintf(&buf
[ret
], "\n");
690 cpufreq_freq_attr_ro(energy_performance_available_preferences
);
692 static ssize_t
store_energy_performance_preference(
693 struct cpufreq_policy
*policy
, const char *buf
, size_t count
)
695 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
696 char str_preference
[21];
699 ret
= sscanf(buf
, "%20s", str_preference
);
703 ret
= match_string(energy_perf_strings
, -1, str_preference
);
707 intel_pstate_set_energy_pref_index(cpu_data
, ret
);
711 static ssize_t
show_energy_performance_preference(
712 struct cpufreq_policy
*policy
, char *buf
)
714 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
717 preference
= intel_pstate_get_energy_pref_index(cpu_data
);
721 return sprintf(buf
, "%s\n", energy_perf_strings
[preference
]);
724 cpufreq_freq_attr_rw(energy_performance_preference
);
726 static ssize_t
show_base_frequency(struct cpufreq_policy
*policy
, char *buf
)
732 ratio
= intel_pstate_get_cppc_guranteed(policy
->cpu
);
734 rdmsrl_on_cpu(policy
->cpu
, MSR_HWP_CAPABILITIES
, &cap
);
735 ratio
= HWP_GUARANTEED_PERF(cap
);
738 cpu
= all_cpu_data
[policy
->cpu
];
740 return sprintf(buf
, "%d\n", ratio
* cpu
->pstate
.scaling
);
743 cpufreq_freq_attr_ro(base_frequency
);
745 static struct freq_attr
*hwp_cpufreq_attrs
[] = {
746 &energy_performance_preference
,
747 &energy_performance_available_preferences
,
752 static void intel_pstate_get_hwp_max(unsigned int cpu
, int *phy_max
,
757 rdmsrl_on_cpu(cpu
, MSR_HWP_CAPABILITIES
, &cap
);
758 WRITE_ONCE(all_cpu_data
[cpu
]->hwp_cap_cached
, cap
);
760 *current_max
= HWP_GUARANTEED_PERF(cap
);
762 *current_max
= HWP_HIGHEST_PERF(cap
);
764 *phy_max
= HWP_HIGHEST_PERF(cap
);
767 static void intel_pstate_hwp_set(unsigned int cpu
)
769 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
774 max
= cpu_data
->max_perf_ratio
;
775 min
= cpu_data
->min_perf_ratio
;
777 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
)
780 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
782 value
&= ~HWP_MIN_PERF(~0L);
783 value
|= HWP_MIN_PERF(min
);
785 value
&= ~HWP_MAX_PERF(~0L);
786 value
|= HWP_MAX_PERF(max
);
788 if (cpu_data
->epp_policy
== cpu_data
->policy
)
791 cpu_data
->epp_policy
= cpu_data
->policy
;
793 if (cpu_data
->epp_saved
>= 0) {
794 epp
= cpu_data
->epp_saved
;
795 cpu_data
->epp_saved
= -EINVAL
;
799 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
800 epp
= intel_pstate_get_epp(cpu_data
, value
);
801 cpu_data
->epp_powersave
= epp
;
802 /* If EPP read was failed, then don't try to write */
808 /* skip setting EPP, when saved value is invalid */
809 if (cpu_data
->epp_powersave
< 0)
813 * No need to restore EPP when it is not zero. This
815 * - Policy is not changed
816 * - user has manually changed
817 * - Error reading EPB
819 epp
= intel_pstate_get_epp(cpu_data
, value
);
823 epp
= cpu_data
->epp_powersave
;
826 if (boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
827 value
&= ~GENMASK_ULL(31, 24);
828 value
|= (u64
)epp
<< 24;
830 intel_pstate_set_epb(cpu
, epp
);
833 WRITE_ONCE(cpu_data
->hwp_req_cached
, value
);
834 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
837 static void intel_pstate_hwp_force_min_perf(int cpu
)
842 value
= all_cpu_data
[cpu
]->hwp_req_cached
;
843 value
&= ~GENMASK_ULL(31, 0);
844 min_perf
= HWP_LOWEST_PERF(all_cpu_data
[cpu
]->hwp_cap_cached
);
846 /* Set hwp_max = hwp_min */
847 value
|= HWP_MAX_PERF(min_perf
);
848 value
|= HWP_MIN_PERF(min_perf
);
851 if (boot_cpu_has(X86_FEATURE_HWP_EPP
))
852 value
|= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE
);
854 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
857 static int intel_pstate_hwp_save_state(struct cpufreq_policy
*policy
)
859 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
864 cpu_data
->epp_saved
= intel_pstate_get_epp(cpu_data
, 0);
869 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
);
871 static int intel_pstate_resume(struct cpufreq_policy
*policy
)
876 mutex_lock(&intel_pstate_limits_lock
);
878 if (policy
->cpu
== 0)
879 intel_pstate_hwp_enable(all_cpu_data
[policy
->cpu
]);
881 all_cpu_data
[policy
->cpu
]->epp_policy
= 0;
882 intel_pstate_hwp_set(policy
->cpu
);
884 mutex_unlock(&intel_pstate_limits_lock
);
889 static void intel_pstate_update_policies(void)
893 for_each_possible_cpu(cpu
)
894 cpufreq_update_policy(cpu
);
897 static void intel_pstate_update_max_freq(unsigned int cpu
)
899 struct cpufreq_policy
*policy
= cpufreq_cpu_acquire(cpu
);
900 struct cpudata
*cpudata
;
905 cpudata
= all_cpu_data
[cpu
];
906 policy
->cpuinfo
.max_freq
= global
.turbo_disabled_mf
?
907 cpudata
->pstate
.max_freq
: cpudata
->pstate
.turbo_freq
;
909 refresh_frequency_limits(policy
);
911 cpufreq_cpu_release(policy
);
914 static void intel_pstate_update_limits(unsigned int cpu
)
916 mutex_lock(&intel_pstate_driver_lock
);
918 update_turbo_state();
920 * If turbo has been turned on or off globally, policy limits for
921 * all CPUs need to be updated to reflect that.
923 if (global
.turbo_disabled_mf
!= global
.turbo_disabled
) {
924 global
.turbo_disabled_mf
= global
.turbo_disabled
;
925 arch_set_max_freq_ratio(global
.turbo_disabled
);
926 for_each_possible_cpu(cpu
)
927 intel_pstate_update_max_freq(cpu
);
929 cpufreq_update_policy(cpu
);
932 mutex_unlock(&intel_pstate_driver_lock
);
935 /************************** sysfs begin ************************/
936 #define show_one(file_name, object) \
937 static ssize_t show_##file_name \
938 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
940 return sprintf(buf, "%u\n", global.object); \
943 static ssize_t
intel_pstate_show_status(char *buf
);
944 static int intel_pstate_update_status(const char *buf
, size_t size
);
946 static ssize_t
show_status(struct kobject
*kobj
,
947 struct kobj_attribute
*attr
, char *buf
)
951 mutex_lock(&intel_pstate_driver_lock
);
952 ret
= intel_pstate_show_status(buf
);
953 mutex_unlock(&intel_pstate_driver_lock
);
958 static ssize_t
store_status(struct kobject
*a
, struct kobj_attribute
*b
,
959 const char *buf
, size_t count
)
961 char *p
= memchr(buf
, '\n', count
);
964 mutex_lock(&intel_pstate_driver_lock
);
965 ret
= intel_pstate_update_status(buf
, p
? p
- buf
: count
);
966 mutex_unlock(&intel_pstate_driver_lock
);
968 return ret
< 0 ? ret
: count
;
971 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
972 struct kobj_attribute
*attr
, char *buf
)
975 int total
, no_turbo
, turbo_pct
;
978 mutex_lock(&intel_pstate_driver_lock
);
980 if (!intel_pstate_driver
) {
981 mutex_unlock(&intel_pstate_driver_lock
);
985 cpu
= all_cpu_data
[0];
987 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
988 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
989 turbo_fp
= div_fp(no_turbo
, total
);
990 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
992 mutex_unlock(&intel_pstate_driver_lock
);
994 return sprintf(buf
, "%u\n", turbo_pct
);
997 static ssize_t
show_num_pstates(struct kobject
*kobj
,
998 struct kobj_attribute
*attr
, char *buf
)
1000 struct cpudata
*cpu
;
1003 mutex_lock(&intel_pstate_driver_lock
);
1005 if (!intel_pstate_driver
) {
1006 mutex_unlock(&intel_pstate_driver_lock
);
1010 cpu
= all_cpu_data
[0];
1011 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
1013 mutex_unlock(&intel_pstate_driver_lock
);
1015 return sprintf(buf
, "%u\n", total
);
1018 static ssize_t
show_no_turbo(struct kobject
*kobj
,
1019 struct kobj_attribute
*attr
, char *buf
)
1023 mutex_lock(&intel_pstate_driver_lock
);
1025 if (!intel_pstate_driver
) {
1026 mutex_unlock(&intel_pstate_driver_lock
);
1030 update_turbo_state();
1031 if (global
.turbo_disabled
)
1032 ret
= sprintf(buf
, "%u\n", global
.turbo_disabled
);
1034 ret
= sprintf(buf
, "%u\n", global
.no_turbo
);
1036 mutex_unlock(&intel_pstate_driver_lock
);
1041 static ssize_t
store_no_turbo(struct kobject
*a
, struct kobj_attribute
*b
,
1042 const char *buf
, size_t count
)
1047 ret
= sscanf(buf
, "%u", &input
);
1051 mutex_lock(&intel_pstate_driver_lock
);
1053 if (!intel_pstate_driver
) {
1054 mutex_unlock(&intel_pstate_driver_lock
);
1058 mutex_lock(&intel_pstate_limits_lock
);
1060 update_turbo_state();
1061 if (global
.turbo_disabled
) {
1062 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1063 mutex_unlock(&intel_pstate_limits_lock
);
1064 mutex_unlock(&intel_pstate_driver_lock
);
1068 global
.no_turbo
= clamp_t(int, input
, 0, 1);
1070 if (global
.no_turbo
) {
1071 struct cpudata
*cpu
= all_cpu_data
[0];
1072 int pct
= cpu
->pstate
.max_pstate
* 100 / cpu
->pstate
.turbo_pstate
;
1074 /* Squash the global minimum into the permitted range. */
1075 if (global
.min_perf_pct
> pct
)
1076 global
.min_perf_pct
= pct
;
1079 mutex_unlock(&intel_pstate_limits_lock
);
1081 intel_pstate_update_policies();
1083 mutex_unlock(&intel_pstate_driver_lock
);
1088 static struct cpufreq_driver intel_pstate
;
1090 static void update_qos_request(enum freq_qos_req_type type
)
1092 int max_state
, turbo_max
, freq
, i
, perf_pct
;
1093 struct freq_qos_request
*req
;
1094 struct cpufreq_policy
*policy
;
1096 for_each_possible_cpu(i
) {
1097 struct cpudata
*cpu
= all_cpu_data
[i
];
1099 policy
= cpufreq_cpu_get(i
);
1103 req
= policy
->driver_data
;
1104 cpufreq_cpu_put(policy
);
1110 intel_pstate_get_hwp_max(i
, &turbo_max
, &max_state
);
1112 turbo_max
= cpu
->pstate
.turbo_pstate
;
1114 if (type
== FREQ_QOS_MIN
) {
1115 perf_pct
= global
.min_perf_pct
;
1118 perf_pct
= global
.max_perf_pct
;
1121 freq
= DIV_ROUND_UP(turbo_max
* perf_pct
, 100);
1122 freq
*= cpu
->pstate
.scaling
;
1124 if (freq_qos_update_request(req
, freq
) < 0)
1125 pr_warn("Failed to update freq constraint: CPU%d\n", i
);
1129 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct kobj_attribute
*b
,
1130 const char *buf
, size_t count
)
1135 ret
= sscanf(buf
, "%u", &input
);
1139 mutex_lock(&intel_pstate_driver_lock
);
1141 if (!intel_pstate_driver
) {
1142 mutex_unlock(&intel_pstate_driver_lock
);
1146 mutex_lock(&intel_pstate_limits_lock
);
1148 global
.max_perf_pct
= clamp_t(int, input
, global
.min_perf_pct
, 100);
1150 mutex_unlock(&intel_pstate_limits_lock
);
1152 if (intel_pstate_driver
== &intel_pstate
)
1153 intel_pstate_update_policies();
1155 update_qos_request(FREQ_QOS_MAX
);
1157 mutex_unlock(&intel_pstate_driver_lock
);
1162 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct kobj_attribute
*b
,
1163 const char *buf
, size_t count
)
1168 ret
= sscanf(buf
, "%u", &input
);
1172 mutex_lock(&intel_pstate_driver_lock
);
1174 if (!intel_pstate_driver
) {
1175 mutex_unlock(&intel_pstate_driver_lock
);
1179 mutex_lock(&intel_pstate_limits_lock
);
1181 global
.min_perf_pct
= clamp_t(int, input
,
1182 min_perf_pct_min(), global
.max_perf_pct
);
1184 mutex_unlock(&intel_pstate_limits_lock
);
1186 if (intel_pstate_driver
== &intel_pstate
)
1187 intel_pstate_update_policies();
1189 update_qos_request(FREQ_QOS_MIN
);
1191 mutex_unlock(&intel_pstate_driver_lock
);
1196 static ssize_t
show_hwp_dynamic_boost(struct kobject
*kobj
,
1197 struct kobj_attribute
*attr
, char *buf
)
1199 return sprintf(buf
, "%u\n", hwp_boost
);
1202 static ssize_t
store_hwp_dynamic_boost(struct kobject
*a
,
1203 struct kobj_attribute
*b
,
1204 const char *buf
, size_t count
)
1209 ret
= kstrtouint(buf
, 10, &input
);
1213 mutex_lock(&intel_pstate_driver_lock
);
1214 hwp_boost
= !!input
;
1215 intel_pstate_update_policies();
1216 mutex_unlock(&intel_pstate_driver_lock
);
1221 show_one(max_perf_pct
, max_perf_pct
);
1222 show_one(min_perf_pct
, min_perf_pct
);
1224 define_one_global_rw(status
);
1225 define_one_global_rw(no_turbo
);
1226 define_one_global_rw(max_perf_pct
);
1227 define_one_global_rw(min_perf_pct
);
1228 define_one_global_ro(turbo_pct
);
1229 define_one_global_ro(num_pstates
);
1230 define_one_global_rw(hwp_dynamic_boost
);
1232 static struct attribute
*intel_pstate_attributes
[] = {
1240 static const struct attribute_group intel_pstate_attr_group
= {
1241 .attrs
= intel_pstate_attributes
,
1244 static void __init
intel_pstate_sysfs_expose_params(void)
1246 struct kobject
*intel_pstate_kobject
;
1249 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
1250 &cpu_subsys
.dev_root
->kobj
);
1251 if (WARN_ON(!intel_pstate_kobject
))
1254 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
1259 * If per cpu limits are enforced there are no global limits, so
1260 * return without creating max/min_perf_pct attributes
1265 rc
= sysfs_create_file(intel_pstate_kobject
, &max_perf_pct
.attr
);
1268 rc
= sysfs_create_file(intel_pstate_kobject
, &min_perf_pct
.attr
);
1272 rc
= sysfs_create_file(intel_pstate_kobject
,
1273 &hwp_dynamic_boost
.attr
);
1277 /************************** sysfs end ************************/
1279 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
1281 /* First disable HWP notification interrupt as we don't process them */
1282 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY
))
1283 wrmsrl_on_cpu(cpudata
->cpu
, MSR_HWP_INTERRUPT
, 0x00);
1285 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
1286 cpudata
->epp_policy
= 0;
1287 if (cpudata
->epp_default
== -EINVAL
)
1288 cpudata
->epp_default
= intel_pstate_get_epp(cpudata
, 0);
1291 #define MSR_IA32_POWER_CTL_BIT_EE 19
1293 /* Disable energy efficiency optimization */
1294 static void intel_pstate_disable_ee(int cpu
)
1299 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, &power_ctl
);
1303 if (!(power_ctl
& BIT(MSR_IA32_POWER_CTL_BIT_EE
))) {
1304 pr_info("Disabling energy efficiency optimization\n");
1305 power_ctl
|= BIT(MSR_IA32_POWER_CTL_BIT_EE
);
1306 wrmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, power_ctl
);
1310 static int atom_get_min_pstate(void)
1314 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1315 return (value
>> 8) & 0x7F;
1318 static int atom_get_max_pstate(void)
1322 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1323 return (value
>> 16) & 0x7F;
1326 static int atom_get_turbo_pstate(void)
1330 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS
, value
);
1331 return value
& 0x7F;
1334 static u64
atom_get_val(struct cpudata
*cpudata
, int pstate
)
1340 val
= (u64
)pstate
<< 8;
1341 if (global
.no_turbo
&& !global
.turbo_disabled
)
1342 val
|= (u64
)1 << 32;
1344 vid_fp
= cpudata
->vid
.min
+ mul_fp(
1345 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
1346 cpudata
->vid
.ratio
);
1348 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
1349 vid
= ceiling_fp(vid_fp
);
1351 if (pstate
> cpudata
->pstate
.max_pstate
)
1352 vid
= cpudata
->vid
.turbo
;
1357 static int silvermont_get_scaling(void)
1361 /* Defined in Table 35-6 from SDM (Sept 2015) */
1362 static int silvermont_freq_table
[] = {
1363 83300, 100000, 133300, 116700, 80000};
1365 rdmsrl(MSR_FSB_FREQ
, value
);
1369 return silvermont_freq_table
[i
];
1372 static int airmont_get_scaling(void)
1376 /* Defined in Table 35-10 from SDM (Sept 2015) */
1377 static int airmont_freq_table
[] = {
1378 83300, 100000, 133300, 116700, 80000,
1379 93300, 90000, 88900, 87500};
1381 rdmsrl(MSR_FSB_FREQ
, value
);
1385 return airmont_freq_table
[i
];
1388 static void atom_get_vid(struct cpudata
*cpudata
)
1392 rdmsrl(MSR_ATOM_CORE_VIDS
, value
);
1393 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
1394 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
1395 cpudata
->vid
.ratio
= div_fp(
1396 cpudata
->vid
.max
- cpudata
->vid
.min
,
1397 int_tofp(cpudata
->pstate
.max_pstate
-
1398 cpudata
->pstate
.min_pstate
));
1400 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS
, value
);
1401 cpudata
->vid
.turbo
= value
& 0x7f;
1404 static int core_get_min_pstate(void)
1408 rdmsrl(MSR_PLATFORM_INFO
, value
);
1409 return (value
>> 40) & 0xFF;
1412 static int core_get_max_pstate_physical(void)
1416 rdmsrl(MSR_PLATFORM_INFO
, value
);
1417 return (value
>> 8) & 0xFF;
1420 static int core_get_tdp_ratio(u64 plat_info
)
1422 /* Check how many TDP levels present */
1423 if (plat_info
& 0x600000000) {
1429 /* Get the TDP level (0, 1, 2) to get ratios */
1430 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
1434 /* TDP MSR are continuous starting at 0x648 */
1435 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ (tdp_ctrl
& 0x03);
1436 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
1440 /* For level 1 and 2, bits[23:16] contain the ratio */
1441 if (tdp_ctrl
& 0x03)
1444 tdp_ratio
&= 0xff; /* ratios are only 8 bits long */
1445 pr_debug("tdp_ratio %x\n", (int)tdp_ratio
);
1447 return (int)tdp_ratio
;
1453 static int core_get_max_pstate(void)
1461 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
1462 max_pstate
= (plat_info
>> 8) & 0xFF;
1464 tdp_ratio
= core_get_tdp_ratio(plat_info
);
1469 /* Turbo activation ratio is not used on HWP platforms */
1473 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
1477 /* Do some sanity checking for safety */
1478 tar_levels
= tar
& 0xff;
1479 if (tdp_ratio
- 1 == tar_levels
) {
1480 max_pstate
= tar_levels
;
1481 pr_debug("max_pstate=TAC %x\n", max_pstate
);
1488 static int core_get_turbo_pstate(void)
1493 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1494 nont
= core_get_max_pstate();
1495 ret
= (value
) & 255;
1501 static inline int core_get_scaling(void)
1506 static u64
core_get_val(struct cpudata
*cpudata
, int pstate
)
1510 val
= (u64
)pstate
<< 8;
1511 if (global
.no_turbo
&& !global
.turbo_disabled
)
1512 val
|= (u64
)1 << 32;
1517 static int knl_get_aperf_mperf_shift(void)
1522 static int knl_get_turbo_pstate(void)
1527 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1528 nont
= core_get_max_pstate();
1529 ret
= (((value
) >> 8) & 0xFF);
1535 static void intel_pstate_set_pstate(struct cpudata
*cpu
, int pstate
)
1537 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1538 cpu
->pstate
.current_pstate
= pstate
;
1540 * Generally, there is no guarantee that this code will always run on
1541 * the CPU being updated, so force the register update to run on the
1544 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
1545 pstate_funcs
.get_val(cpu
, pstate
));
1548 static void intel_pstate_set_min_pstate(struct cpudata
*cpu
)
1550 intel_pstate_set_pstate(cpu
, cpu
->pstate
.min_pstate
);
1553 static void intel_pstate_max_within_limits(struct cpudata
*cpu
)
1555 int pstate
= max(cpu
->pstate
.min_pstate
, cpu
->max_perf_ratio
);
1557 update_turbo_state();
1558 intel_pstate_set_pstate(cpu
, pstate
);
1561 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
1563 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
1564 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
1565 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
1566 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
1567 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
1568 cpu
->pstate
.max_freq
= cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
;
1570 if (hwp_active
&& !hwp_mode_bdw
) {
1571 unsigned int phy_max
, current_max
;
1573 intel_pstate_get_hwp_max(cpu
->cpu
, &phy_max
, ¤t_max
);
1574 cpu
->pstate
.turbo_freq
= phy_max
* cpu
->pstate
.scaling
;
1576 cpu
->pstate
.turbo_freq
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1579 if (pstate_funcs
.get_aperf_mperf_shift
)
1580 cpu
->aperf_mperf_shift
= pstate_funcs
.get_aperf_mperf_shift();
1582 if (pstate_funcs
.get_vid
)
1583 pstate_funcs
.get_vid(cpu
);
1585 intel_pstate_set_min_pstate(cpu
);
1589 * Long hold time will keep high perf limits for long time,
1590 * which negatively impacts perf/watt for some workloads,
1591 * like specpower. 3ms is based on experiements on some
1594 static int hwp_boost_hold_time_ns
= 3 * NSEC_PER_MSEC
;
1596 static inline void intel_pstate_hwp_boost_up(struct cpudata
*cpu
)
1598 u64 hwp_req
= READ_ONCE(cpu
->hwp_req_cached
);
1599 u32 max_limit
= (hwp_req
& 0xff00) >> 8;
1600 u32 min_limit
= (hwp_req
& 0xff);
1604 * Cases to consider (User changes via sysfs or boot time):
1605 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1607 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1608 * Should result in one level boost only for P0.
1609 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1610 * Should result in two level boost:
1611 * (min + p1)/2 and P1.
1612 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1613 * Should result in three level boost:
1614 * (min + p1)/2, P1 and P0.
1617 /* If max and min are equal or already at max, nothing to boost */
1618 if (max_limit
== min_limit
|| cpu
->hwp_boost_min
>= max_limit
)
1621 if (!cpu
->hwp_boost_min
)
1622 cpu
->hwp_boost_min
= min_limit
;
1624 /* level at half way mark between min and guranteed */
1625 boost_level1
= (HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
) + min_limit
) >> 1;
1627 if (cpu
->hwp_boost_min
< boost_level1
)
1628 cpu
->hwp_boost_min
= boost_level1
;
1629 else if (cpu
->hwp_boost_min
< HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
))
1630 cpu
->hwp_boost_min
= HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
);
1631 else if (cpu
->hwp_boost_min
== HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
) &&
1632 max_limit
!= HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
))
1633 cpu
->hwp_boost_min
= max_limit
;
1637 hwp_req
= (hwp_req
& ~GENMASK_ULL(7, 0)) | cpu
->hwp_boost_min
;
1638 wrmsrl(MSR_HWP_REQUEST
, hwp_req
);
1639 cpu
->last_update
= cpu
->sample
.time
;
1642 static inline void intel_pstate_hwp_boost_down(struct cpudata
*cpu
)
1644 if (cpu
->hwp_boost_min
) {
1647 /* Check if we are idle for hold time to boost down */
1648 expired
= time_after64(cpu
->sample
.time
, cpu
->last_update
+
1649 hwp_boost_hold_time_ns
);
1651 wrmsrl(MSR_HWP_REQUEST
, cpu
->hwp_req_cached
);
1652 cpu
->hwp_boost_min
= 0;
1655 cpu
->last_update
= cpu
->sample
.time
;
1658 static inline void intel_pstate_update_util_hwp_local(struct cpudata
*cpu
,
1661 cpu
->sample
.time
= time
;
1663 if (cpu
->sched_flags
& SCHED_CPUFREQ_IOWAIT
) {
1666 cpu
->sched_flags
= 0;
1668 * Set iowait_boost flag and update time. Since IO WAIT flag
1669 * is set all the time, we can't just conclude that there is
1670 * some IO bound activity is scheduled on this CPU with just
1671 * one occurrence. If we receive at least two in two
1672 * consecutive ticks, then we treat as boost candidate.
1674 if (time_before64(time
, cpu
->last_io_update
+ 2 * TICK_NSEC
))
1677 cpu
->last_io_update
= time
;
1680 intel_pstate_hwp_boost_up(cpu
);
1683 intel_pstate_hwp_boost_down(cpu
);
1687 static inline void intel_pstate_update_util_hwp(struct update_util_data
*data
,
1688 u64 time
, unsigned int flags
)
1690 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1692 cpu
->sched_flags
|= flags
;
1694 if (smp_processor_id() == cpu
->cpu
)
1695 intel_pstate_update_util_hwp_local(cpu
, time
);
1698 static inline void intel_pstate_calc_avg_perf(struct cpudata
*cpu
)
1700 struct sample
*sample
= &cpu
->sample
;
1702 sample
->core_avg_perf
= div_ext_fp(sample
->aperf
, sample
->mperf
);
1705 static inline bool intel_pstate_sample(struct cpudata
*cpu
, u64 time
)
1708 unsigned long flags
;
1711 local_irq_save(flags
);
1712 rdmsrl(MSR_IA32_APERF
, aperf
);
1713 rdmsrl(MSR_IA32_MPERF
, mperf
);
1715 if (cpu
->prev_mperf
== mperf
|| cpu
->prev_tsc
== tsc
) {
1716 local_irq_restore(flags
);
1719 local_irq_restore(flags
);
1721 cpu
->last_sample_time
= cpu
->sample
.time
;
1722 cpu
->sample
.time
= time
;
1723 cpu
->sample
.aperf
= aperf
;
1724 cpu
->sample
.mperf
= mperf
;
1725 cpu
->sample
.tsc
= tsc
;
1726 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
1727 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
1728 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
1730 cpu
->prev_aperf
= aperf
;
1731 cpu
->prev_mperf
= mperf
;
1732 cpu
->prev_tsc
= tsc
;
1734 * First time this function is invoked in a given cycle, all of the
1735 * previous sample data fields are equal to zero or stale and they must
1736 * be populated with meaningful numbers for things to work, so assume
1737 * that sample.time will always be reset before setting the utilization
1738 * update hook and make the caller skip the sample then.
1740 if (cpu
->last_sample_time
) {
1741 intel_pstate_calc_avg_perf(cpu
);
1747 static inline int32_t get_avg_frequency(struct cpudata
*cpu
)
1749 return mul_ext_fp(cpu
->sample
.core_avg_perf
, cpu_khz
);
1752 static inline int32_t get_avg_pstate(struct cpudata
*cpu
)
1754 return mul_ext_fp(cpu
->pstate
.max_pstate_physical
,
1755 cpu
->sample
.core_avg_perf
);
1758 static inline int32_t get_target_pstate(struct cpudata
*cpu
)
1760 struct sample
*sample
= &cpu
->sample
;
1762 int target
, avg_pstate
;
1764 busy_frac
= div_fp(sample
->mperf
<< cpu
->aperf_mperf_shift
,
1767 if (busy_frac
< cpu
->iowait_boost
)
1768 busy_frac
= cpu
->iowait_boost
;
1770 sample
->busy_scaled
= busy_frac
* 100;
1772 target
= global
.no_turbo
|| global
.turbo_disabled
?
1773 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1774 target
+= target
>> 2;
1775 target
= mul_fp(target
, busy_frac
);
1776 if (target
< cpu
->pstate
.min_pstate
)
1777 target
= cpu
->pstate
.min_pstate
;
1780 * If the average P-state during the previous cycle was higher than the
1781 * current target, add 50% of the difference to the target to reduce
1782 * possible performance oscillations and offset possible performance
1783 * loss related to moving the workload from one CPU to another within
1786 avg_pstate
= get_avg_pstate(cpu
);
1787 if (avg_pstate
> target
)
1788 target
+= (avg_pstate
- target
) >> 1;
1793 static int intel_pstate_prepare_request(struct cpudata
*cpu
, int pstate
)
1795 int min_pstate
= max(cpu
->pstate
.min_pstate
, cpu
->min_perf_ratio
);
1796 int max_pstate
= max(min_pstate
, cpu
->max_perf_ratio
);
1798 return clamp_t(int, pstate
, min_pstate
, max_pstate
);
1801 static void intel_pstate_update_pstate(struct cpudata
*cpu
, int pstate
)
1803 if (pstate
== cpu
->pstate
.current_pstate
)
1806 cpu
->pstate
.current_pstate
= pstate
;
1807 wrmsrl(MSR_IA32_PERF_CTL
, pstate_funcs
.get_val(cpu
, pstate
));
1810 static void intel_pstate_adjust_pstate(struct cpudata
*cpu
)
1812 int from
= cpu
->pstate
.current_pstate
;
1813 struct sample
*sample
;
1816 update_turbo_state();
1818 target_pstate
= get_target_pstate(cpu
);
1819 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
1820 trace_cpu_frequency(target_pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1821 intel_pstate_update_pstate(cpu
, target_pstate
);
1823 sample
= &cpu
->sample
;
1824 trace_pstate_sample(mul_ext_fp(100, sample
->core_avg_perf
),
1825 fp_toint(sample
->busy_scaled
),
1827 cpu
->pstate
.current_pstate
,
1831 get_avg_frequency(cpu
),
1832 fp_toint(cpu
->iowait_boost
* 100));
1835 static void intel_pstate_update_util(struct update_util_data
*data
, u64 time
,
1838 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1841 /* Don't allow remote callbacks */
1842 if (smp_processor_id() != cpu
->cpu
)
1845 delta_ns
= time
- cpu
->last_update
;
1846 if (flags
& SCHED_CPUFREQ_IOWAIT
) {
1847 /* Start over if the CPU may have been idle. */
1848 if (delta_ns
> TICK_NSEC
) {
1849 cpu
->iowait_boost
= ONE_EIGHTH_FP
;
1850 } else if (cpu
->iowait_boost
>= ONE_EIGHTH_FP
) {
1851 cpu
->iowait_boost
<<= 1;
1852 if (cpu
->iowait_boost
> int_tofp(1))
1853 cpu
->iowait_boost
= int_tofp(1);
1855 cpu
->iowait_boost
= ONE_EIGHTH_FP
;
1857 } else if (cpu
->iowait_boost
) {
1858 /* Clear iowait_boost if the CPU may have been idle. */
1859 if (delta_ns
> TICK_NSEC
)
1860 cpu
->iowait_boost
= 0;
1862 cpu
->iowait_boost
>>= 1;
1864 cpu
->last_update
= time
;
1865 delta_ns
= time
- cpu
->sample
.time
;
1866 if ((s64
)delta_ns
< INTEL_PSTATE_SAMPLING_INTERVAL
)
1869 if (intel_pstate_sample(cpu
, time
))
1870 intel_pstate_adjust_pstate(cpu
);
1873 static struct pstate_funcs core_funcs
= {
1874 .get_max
= core_get_max_pstate
,
1875 .get_max_physical
= core_get_max_pstate_physical
,
1876 .get_min
= core_get_min_pstate
,
1877 .get_turbo
= core_get_turbo_pstate
,
1878 .get_scaling
= core_get_scaling
,
1879 .get_val
= core_get_val
,
1882 static const struct pstate_funcs silvermont_funcs
= {
1883 .get_max
= atom_get_max_pstate
,
1884 .get_max_physical
= atom_get_max_pstate
,
1885 .get_min
= atom_get_min_pstate
,
1886 .get_turbo
= atom_get_turbo_pstate
,
1887 .get_val
= atom_get_val
,
1888 .get_scaling
= silvermont_get_scaling
,
1889 .get_vid
= atom_get_vid
,
1892 static const struct pstate_funcs airmont_funcs
= {
1893 .get_max
= atom_get_max_pstate
,
1894 .get_max_physical
= atom_get_max_pstate
,
1895 .get_min
= atom_get_min_pstate
,
1896 .get_turbo
= atom_get_turbo_pstate
,
1897 .get_val
= atom_get_val
,
1898 .get_scaling
= airmont_get_scaling
,
1899 .get_vid
= atom_get_vid
,
1902 static const struct pstate_funcs knl_funcs
= {
1903 .get_max
= core_get_max_pstate
,
1904 .get_max_physical
= core_get_max_pstate_physical
,
1905 .get_min
= core_get_min_pstate
,
1906 .get_turbo
= knl_get_turbo_pstate
,
1907 .get_aperf_mperf_shift
= knl_get_aperf_mperf_shift
,
1908 .get_scaling
= core_get_scaling
,
1909 .get_val
= core_get_val
,
1912 #define X86_MATCH(model, policy) \
1913 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
1914 X86_FEATURE_APERFMPERF, &policy)
1916 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
1917 X86_MATCH(SANDYBRIDGE
, core_funcs
),
1918 X86_MATCH(SANDYBRIDGE_X
, core_funcs
),
1919 X86_MATCH(ATOM_SILVERMONT
, silvermont_funcs
),
1920 X86_MATCH(IVYBRIDGE
, core_funcs
),
1921 X86_MATCH(HASWELL
, core_funcs
),
1922 X86_MATCH(BROADWELL
, core_funcs
),
1923 X86_MATCH(IVYBRIDGE_X
, core_funcs
),
1924 X86_MATCH(HASWELL_X
, core_funcs
),
1925 X86_MATCH(HASWELL_L
, core_funcs
),
1926 X86_MATCH(HASWELL_G
, core_funcs
),
1927 X86_MATCH(BROADWELL_G
, core_funcs
),
1928 X86_MATCH(ATOM_AIRMONT
, airmont_funcs
),
1929 X86_MATCH(SKYLAKE_L
, core_funcs
),
1930 X86_MATCH(BROADWELL_X
, core_funcs
),
1931 X86_MATCH(SKYLAKE
, core_funcs
),
1932 X86_MATCH(BROADWELL_D
, core_funcs
),
1933 X86_MATCH(XEON_PHI_KNL
, knl_funcs
),
1934 X86_MATCH(XEON_PHI_KNM
, knl_funcs
),
1935 X86_MATCH(ATOM_GOLDMONT
, core_funcs
),
1936 X86_MATCH(ATOM_GOLDMONT_PLUS
, core_funcs
),
1937 X86_MATCH(SKYLAKE_X
, core_funcs
),
1940 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
1942 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] __initconst
= {
1943 X86_MATCH(BROADWELL_D
, core_funcs
),
1944 X86_MATCH(BROADWELL_X
, core_funcs
),
1945 X86_MATCH(SKYLAKE_X
, core_funcs
),
1949 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids
[] = {
1950 X86_MATCH(KABYLAKE
, core_funcs
),
1954 static const struct x86_cpu_id intel_pstate_hwp_boost_ids
[] = {
1955 X86_MATCH(SKYLAKE_X
, core_funcs
),
1956 X86_MATCH(SKYLAKE
, core_funcs
),
1960 static int intel_pstate_init_cpu(unsigned int cpunum
)
1962 struct cpudata
*cpu
;
1964 cpu
= all_cpu_data
[cpunum
];
1967 cpu
= kzalloc(sizeof(*cpu
), GFP_KERNEL
);
1971 all_cpu_data
[cpunum
] = cpu
;
1973 cpu
->epp_default
= -EINVAL
;
1974 cpu
->epp_powersave
= -EINVAL
;
1975 cpu
->epp_saved
= -EINVAL
;
1978 cpu
= all_cpu_data
[cpunum
];
1983 const struct x86_cpu_id
*id
;
1985 id
= x86_match_cpu(intel_pstate_cpu_ee_disable_ids
);
1987 intel_pstate_disable_ee(cpunum
);
1989 intel_pstate_hwp_enable(cpu
);
1991 id
= x86_match_cpu(intel_pstate_hwp_boost_ids
);
1992 if (id
&& intel_pstate_acpi_pm_profile_server())
1996 intel_pstate_get_cpu_pstates(cpu
);
1998 pr_debug("controlling: cpu %d\n", cpunum
);
2003 static void intel_pstate_set_update_util_hook(unsigned int cpu_num
)
2005 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
2007 if (hwp_active
&& !hwp_boost
)
2010 if (cpu
->update_util_set
)
2013 /* Prevent intel_pstate_update_util() from using stale data. */
2014 cpu
->sample
.time
= 0;
2015 cpufreq_add_update_util_hook(cpu_num
, &cpu
->update_util
,
2017 intel_pstate_update_util_hwp
:
2018 intel_pstate_update_util
));
2019 cpu
->update_util_set
= true;
2022 static void intel_pstate_clear_update_util_hook(unsigned int cpu
)
2024 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
2026 if (!cpu_data
->update_util_set
)
2029 cpufreq_remove_update_util_hook(cpu
);
2030 cpu_data
->update_util_set
= false;
2034 static int intel_pstate_get_max_freq(struct cpudata
*cpu
)
2036 return global
.turbo_disabled
|| global
.no_turbo
?
2037 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
2040 static void intel_pstate_update_perf_limits(struct cpudata
*cpu
,
2041 unsigned int policy_min
,
2042 unsigned int policy_max
)
2044 int max_freq
= intel_pstate_get_max_freq(cpu
);
2045 int32_t max_policy_perf
, min_policy_perf
;
2046 int max_state
, turbo_max
;
2049 * HWP needs some special consideration, because on BDX the
2050 * HWP_REQUEST uses abstract value to represent performance
2051 * rather than pure ratios.
2054 intel_pstate_get_hwp_max(cpu
->cpu
, &turbo_max
, &max_state
);
2056 max_state
= global
.no_turbo
|| global
.turbo_disabled
?
2057 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
2058 turbo_max
= cpu
->pstate
.turbo_pstate
;
2061 max_policy_perf
= max_state
* policy_max
/ max_freq
;
2062 if (policy_max
== policy_min
) {
2063 min_policy_perf
= max_policy_perf
;
2065 min_policy_perf
= max_state
* policy_min
/ max_freq
;
2066 min_policy_perf
= clamp_t(int32_t, min_policy_perf
,
2067 0, max_policy_perf
);
2070 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2071 cpu
->cpu
, max_state
, min_policy_perf
, max_policy_perf
);
2073 /* Normalize user input to [min_perf, max_perf] */
2074 if (per_cpu_limits
) {
2075 cpu
->min_perf_ratio
= min_policy_perf
;
2076 cpu
->max_perf_ratio
= max_policy_perf
;
2078 int32_t global_min
, global_max
;
2080 /* Global limits are in percent of the maximum turbo P-state. */
2081 global_max
= DIV_ROUND_UP(turbo_max
* global
.max_perf_pct
, 100);
2082 global_min
= DIV_ROUND_UP(turbo_max
* global
.min_perf_pct
, 100);
2083 global_min
= clamp_t(int32_t, global_min
, 0, global_max
);
2085 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu
->cpu
,
2086 global_min
, global_max
);
2088 cpu
->min_perf_ratio
= max(min_policy_perf
, global_min
);
2089 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
, max_policy_perf
);
2090 cpu
->max_perf_ratio
= min(max_policy_perf
, global_max
);
2091 cpu
->max_perf_ratio
= max(min_policy_perf
, cpu
->max_perf_ratio
);
2093 /* Make sure min_perf <= max_perf */
2094 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
,
2095 cpu
->max_perf_ratio
);
2098 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu
->cpu
,
2099 cpu
->max_perf_ratio
,
2100 cpu
->min_perf_ratio
);
2103 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
2105 struct cpudata
*cpu
;
2107 if (!policy
->cpuinfo
.max_freq
)
2110 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2111 policy
->cpuinfo
.max_freq
, policy
->max
);
2113 cpu
= all_cpu_data
[policy
->cpu
];
2114 cpu
->policy
= policy
->policy
;
2116 mutex_lock(&intel_pstate_limits_lock
);
2118 intel_pstate_update_perf_limits(cpu
, policy
->min
, policy
->max
);
2120 if (cpu
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
2122 * NOHZ_FULL CPUs need this as the governor callback may not
2123 * be invoked on them.
2125 intel_pstate_clear_update_util_hook(policy
->cpu
);
2126 intel_pstate_max_within_limits(cpu
);
2128 intel_pstate_set_update_util_hook(policy
->cpu
);
2133 * When hwp_boost was active before and dynamically it
2134 * was turned off, in that case we need to clear the
2138 intel_pstate_clear_update_util_hook(policy
->cpu
);
2139 intel_pstate_hwp_set(policy
->cpu
);
2142 mutex_unlock(&intel_pstate_limits_lock
);
2147 static void intel_pstate_adjust_policy_max(struct cpudata
*cpu
,
2148 struct cpufreq_policy_data
*policy
)
2151 cpu
->pstate
.max_pstate_physical
> cpu
->pstate
.max_pstate
&&
2152 policy
->max
< policy
->cpuinfo
.max_freq
&&
2153 policy
->max
> cpu
->pstate
.max_freq
) {
2154 pr_debug("policy->max > max non turbo frequency\n");
2155 policy
->max
= policy
->cpuinfo
.max_freq
;
2159 static void intel_pstate_verify_cpu_policy(struct cpudata
*cpu
,
2160 struct cpufreq_policy_data
*policy
)
2162 update_turbo_state();
2163 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
,
2164 intel_pstate_get_max_freq(cpu
));
2166 intel_pstate_adjust_policy_max(cpu
, policy
);
2169 static int intel_pstate_verify_policy(struct cpufreq_policy_data
*policy
)
2171 intel_pstate_verify_cpu_policy(all_cpu_data
[policy
->cpu
], policy
);
2176 static void intel_cpufreq_stop_cpu(struct cpufreq_policy
*policy
)
2178 intel_pstate_set_min_pstate(all_cpu_data
[policy
->cpu
]);
2181 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
2183 pr_debug("CPU %d exiting\n", policy
->cpu
);
2185 intel_pstate_clear_update_util_hook(policy
->cpu
);
2187 intel_pstate_hwp_save_state(policy
);
2188 intel_pstate_hwp_force_min_perf(policy
->cpu
);
2190 intel_cpufreq_stop_cpu(policy
);
2194 static int intel_pstate_cpu_exit(struct cpufreq_policy
*policy
)
2196 intel_pstate_exit_perf_limits(policy
);
2198 policy
->fast_switch_possible
= false;
2203 static int __intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2205 struct cpudata
*cpu
;
2208 rc
= intel_pstate_init_cpu(policy
->cpu
);
2212 cpu
= all_cpu_data
[policy
->cpu
];
2214 cpu
->max_perf_ratio
= 0xFF;
2215 cpu
->min_perf_ratio
= 0;
2217 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2218 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
2220 /* cpuinfo and default policy values */
2221 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2222 update_turbo_state();
2223 global
.turbo_disabled_mf
= global
.turbo_disabled
;
2224 policy
->cpuinfo
.max_freq
= global
.turbo_disabled
?
2225 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
2226 policy
->cpuinfo
.max_freq
*= cpu
->pstate
.scaling
;
2229 unsigned int max_freq
;
2231 max_freq
= global
.turbo_disabled
?
2232 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
2233 if (max_freq
< policy
->cpuinfo
.max_freq
)
2234 policy
->cpuinfo
.max_freq
= max_freq
;
2237 intel_pstate_init_acpi_perf_limits(policy
);
2239 policy
->fast_switch_possible
= true;
2244 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2246 int ret
= __intel_pstate_cpu_init(policy
);
2252 * Set the policy to powersave to provide a valid fallback value in case
2253 * the default cpufreq governor is neither powersave nor performance.
2255 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
2260 static struct cpufreq_driver intel_pstate
= {
2261 .flags
= CPUFREQ_CONST_LOOPS
,
2262 .verify
= intel_pstate_verify_policy
,
2263 .setpolicy
= intel_pstate_set_policy
,
2264 .suspend
= intel_pstate_hwp_save_state
,
2265 .resume
= intel_pstate_resume
,
2266 .init
= intel_pstate_cpu_init
,
2267 .exit
= intel_pstate_cpu_exit
,
2268 .stop_cpu
= intel_pstate_stop_cpu
,
2269 .update_limits
= intel_pstate_update_limits
,
2270 .name
= "intel_pstate",
2273 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data
*policy
)
2275 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2277 intel_pstate_verify_cpu_policy(cpu
, policy
);
2278 intel_pstate_update_perf_limits(cpu
, policy
->min
, policy
->max
);
2283 /* Use of trace in passive mode:
2285 * In passive mode the trace core_busy field (also known as the
2286 * performance field, and lablelled as such on the graphs; also known as
2287 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2288 * driver call was via the normal or fast switch path. Various graphs
2289 * output from the intel_pstate_tracer.py utility that include core_busy
2290 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2291 * so we use 10 to indicate the the normal path through the driver, and
2292 * 90 to indicate the fast switch path through the driver.
2293 * The scaled_busy field is not used, and is set to 0.
2296 #define INTEL_PSTATE_TRACE_TARGET 10
2297 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2299 static void intel_cpufreq_trace(struct cpudata
*cpu
, unsigned int trace_type
, int old_pstate
)
2301 struct sample
*sample
;
2303 if (!trace_pstate_sample_enabled())
2306 if (!intel_pstate_sample(cpu
, ktime_get()))
2309 sample
= &cpu
->sample
;
2310 trace_pstate_sample(trace_type
,
2313 cpu
->pstate
.current_pstate
,
2317 get_avg_frequency(cpu
),
2318 fp_toint(cpu
->iowait_boost
* 100));
2321 static int intel_cpufreq_target(struct cpufreq_policy
*policy
,
2322 unsigned int target_freq
,
2323 unsigned int relation
)
2325 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2326 struct cpufreq_freqs freqs
;
2327 int target_pstate
, old_pstate
;
2329 update_turbo_state();
2331 freqs
.old
= policy
->cur
;
2332 freqs
.new = target_freq
;
2334 cpufreq_freq_transition_begin(policy
, &freqs
);
2336 case CPUFREQ_RELATION_L
:
2337 target_pstate
= DIV_ROUND_UP(freqs
.new, cpu
->pstate
.scaling
);
2339 case CPUFREQ_RELATION_H
:
2340 target_pstate
= freqs
.new / cpu
->pstate
.scaling
;
2343 target_pstate
= DIV_ROUND_CLOSEST(freqs
.new, cpu
->pstate
.scaling
);
2346 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2347 old_pstate
= cpu
->pstate
.current_pstate
;
2348 if (target_pstate
!= cpu
->pstate
.current_pstate
) {
2349 cpu
->pstate
.current_pstate
= target_pstate
;
2350 wrmsrl_on_cpu(policy
->cpu
, MSR_IA32_PERF_CTL
,
2351 pstate_funcs
.get_val(cpu
, target_pstate
));
2353 freqs
.new = target_pstate
* cpu
->pstate
.scaling
;
2354 intel_cpufreq_trace(cpu
, INTEL_PSTATE_TRACE_TARGET
, old_pstate
);
2355 cpufreq_freq_transition_end(policy
, &freqs
, false);
2360 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy
*policy
,
2361 unsigned int target_freq
)
2363 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2364 int target_pstate
, old_pstate
;
2366 update_turbo_state();
2368 target_pstate
= DIV_ROUND_UP(target_freq
, cpu
->pstate
.scaling
);
2369 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2370 old_pstate
= cpu
->pstate
.current_pstate
;
2371 intel_pstate_update_pstate(cpu
, target_pstate
);
2372 intel_cpufreq_trace(cpu
, INTEL_PSTATE_TRACE_FAST_SWITCH
, old_pstate
);
2373 return target_pstate
* cpu
->pstate
.scaling
;
2376 static int intel_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
2378 int max_state
, turbo_max
, min_freq
, max_freq
, ret
;
2379 struct freq_qos_request
*req
;
2380 struct cpudata
*cpu
;
2383 dev
= get_cpu_device(policy
->cpu
);
2387 ret
= __intel_pstate_cpu_init(policy
);
2391 policy
->cpuinfo
.transition_latency
= INTEL_CPUFREQ_TRANSITION_LATENCY
;
2392 policy
->transition_delay_us
= INTEL_CPUFREQ_TRANSITION_DELAY
;
2393 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2394 policy
->cur
= policy
->cpuinfo
.min_freq
;
2396 req
= kcalloc(2, sizeof(*req
), GFP_KERNEL
);
2402 cpu
= all_cpu_data
[policy
->cpu
];
2405 intel_pstate_get_hwp_max(policy
->cpu
, &turbo_max
, &max_state
);
2407 turbo_max
= cpu
->pstate
.turbo_pstate
;
2409 min_freq
= DIV_ROUND_UP(turbo_max
* global
.min_perf_pct
, 100);
2410 min_freq
*= cpu
->pstate
.scaling
;
2411 max_freq
= DIV_ROUND_UP(turbo_max
* global
.max_perf_pct
, 100);
2412 max_freq
*= cpu
->pstate
.scaling
;
2414 ret
= freq_qos_add_request(&policy
->constraints
, req
, FREQ_QOS_MIN
,
2417 dev_err(dev
, "Failed to add min-freq constraint (%d)\n", ret
);
2421 ret
= freq_qos_add_request(&policy
->constraints
, req
+ 1, FREQ_QOS_MAX
,
2424 dev_err(dev
, "Failed to add max-freq constraint (%d)\n", ret
);
2425 goto remove_min_req
;
2428 policy
->driver_data
= req
;
2433 freq_qos_remove_request(req
);
2437 intel_pstate_exit_perf_limits(policy
);
2442 static int intel_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
2444 struct freq_qos_request
*req
;
2446 req
= policy
->driver_data
;
2448 freq_qos_remove_request(req
+ 1);
2449 freq_qos_remove_request(req
);
2452 return intel_pstate_cpu_exit(policy
);
2455 static struct cpufreq_driver intel_cpufreq
= {
2456 .flags
= CPUFREQ_CONST_LOOPS
,
2457 .verify
= intel_cpufreq_verify_policy
,
2458 .target
= intel_cpufreq_target
,
2459 .fast_switch
= intel_cpufreq_fast_switch
,
2460 .init
= intel_cpufreq_cpu_init
,
2461 .exit
= intel_cpufreq_cpu_exit
,
2462 .stop_cpu
= intel_cpufreq_stop_cpu
,
2463 .update_limits
= intel_pstate_update_limits
,
2464 .name
= "intel_cpufreq",
2467 static struct cpufreq_driver
*default_driver
= &intel_pstate
;
2469 static void intel_pstate_driver_cleanup(void)
2474 for_each_online_cpu(cpu
) {
2475 if (all_cpu_data
[cpu
]) {
2476 if (intel_pstate_driver
== &intel_pstate
)
2477 intel_pstate_clear_update_util_hook(cpu
);
2479 kfree(all_cpu_data
[cpu
]);
2480 all_cpu_data
[cpu
] = NULL
;
2484 intel_pstate_driver
= NULL
;
2487 static int intel_pstate_register_driver(struct cpufreq_driver
*driver
)
2491 memset(&global
, 0, sizeof(global
));
2492 global
.max_perf_pct
= 100;
2494 intel_pstate_driver
= driver
;
2495 ret
= cpufreq_register_driver(intel_pstate_driver
);
2497 intel_pstate_driver_cleanup();
2501 global
.min_perf_pct
= min_perf_pct_min();
2506 static int intel_pstate_unregister_driver(void)
2511 cpufreq_unregister_driver(intel_pstate_driver
);
2512 intel_pstate_driver_cleanup();
2517 static ssize_t
intel_pstate_show_status(char *buf
)
2519 if (!intel_pstate_driver
)
2520 return sprintf(buf
, "off\n");
2522 return sprintf(buf
, "%s\n", intel_pstate_driver
== &intel_pstate
?
2523 "active" : "passive");
2526 static int intel_pstate_update_status(const char *buf
, size_t size
)
2530 if (size
== 3 && !strncmp(buf
, "off", size
))
2531 return intel_pstate_driver
?
2532 intel_pstate_unregister_driver() : -EINVAL
;
2534 if (size
== 6 && !strncmp(buf
, "active", size
)) {
2535 if (intel_pstate_driver
) {
2536 if (intel_pstate_driver
== &intel_pstate
)
2539 ret
= intel_pstate_unregister_driver();
2544 return intel_pstate_register_driver(&intel_pstate
);
2547 if (size
== 7 && !strncmp(buf
, "passive", size
)) {
2548 if (intel_pstate_driver
) {
2549 if (intel_pstate_driver
== &intel_cpufreq
)
2552 ret
= intel_pstate_unregister_driver();
2557 return intel_pstate_register_driver(&intel_cpufreq
);
2563 static int no_load __initdata
;
2564 static int no_hwp __initdata
;
2565 static int hwp_only __initdata
;
2566 static unsigned int force_load __initdata
;
2568 static int __init
intel_pstate_msrs_not_valid(void)
2570 if (!pstate_funcs
.get_max() ||
2571 !pstate_funcs
.get_min() ||
2572 !pstate_funcs
.get_turbo())
2578 static void __init
copy_cpu_funcs(struct pstate_funcs
*funcs
)
2580 pstate_funcs
.get_max
= funcs
->get_max
;
2581 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
2582 pstate_funcs
.get_min
= funcs
->get_min
;
2583 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
2584 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
2585 pstate_funcs
.get_val
= funcs
->get_val
;
2586 pstate_funcs
.get_vid
= funcs
->get_vid
;
2587 pstate_funcs
.get_aperf_mperf_shift
= funcs
->get_aperf_mperf_shift
;
2592 static bool __init
intel_pstate_no_acpi_pss(void)
2596 for_each_possible_cpu(i
) {
2598 union acpi_object
*pss
;
2599 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
2600 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2605 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
2606 if (ACPI_FAILURE(status
))
2609 pss
= buffer
.pointer
;
2610 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
2618 pr_debug("ACPI _PSS not found\n");
2622 static bool __init
intel_pstate_no_acpi_pcch(void)
2627 status
= acpi_get_handle(NULL
, "\\_SB", &handle
);
2628 if (ACPI_FAILURE(status
))
2631 if (acpi_has_method(handle
, "PCCH"))
2635 pr_debug("ACPI PCCH not found\n");
2639 static bool __init
intel_pstate_has_acpi_ppc(void)
2643 for_each_possible_cpu(i
) {
2644 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2648 if (acpi_has_method(pr
->handle
, "_PPC"))
2651 pr_debug("ACPI _PPC not found\n");
2660 /* Hardware vendor-specific info that has its own power management modes */
2661 static struct acpi_platform_list plat_info
[] __initdata
= {
2662 {"HP ", "ProLiant", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PSS
},
2663 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2664 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2665 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2666 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2667 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2668 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2669 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2670 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2671 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2672 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2673 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2674 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2675 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2676 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2680 static bool __init
intel_pstate_platform_pwr_mgmt_exists(void)
2682 const struct x86_cpu_id
*id
;
2686 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
2688 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
2689 if (misc_pwr
& (1 << 8)) {
2690 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2695 idx
= acpi_match_platform_list(plat_info
);
2699 switch (plat_info
[idx
].data
) {
2701 if (!intel_pstate_no_acpi_pss())
2704 return intel_pstate_no_acpi_pcch();
2706 return intel_pstate_has_acpi_ppc() && !force_load
;
2712 static void intel_pstate_request_control_from_smm(void)
2715 * It may be unsafe to request P-states control from SMM if _PPC support
2716 * has not been enabled.
2719 acpi_processor_pstate_control();
2721 #else /* CONFIG_ACPI not enabled */
2722 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2723 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2724 static inline void intel_pstate_request_control_from_smm(void) {}
2725 #endif /* CONFIG_ACPI */
2727 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2729 #define X86_MATCH_HWP(model, hwp_mode) \
2730 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2731 X86_FEATURE_HWP, hwp_mode)
2733 static const struct x86_cpu_id hwp_support_ids
[] __initconst
= {
2734 X86_MATCH_HWP(BROADWELL_X
, INTEL_PSTATE_HWP_BROADWELL
),
2735 X86_MATCH_HWP(BROADWELL_D
, INTEL_PSTATE_HWP_BROADWELL
),
2736 X86_MATCH_HWP(ANY
, 0),
2740 static int __init
intel_pstate_init(void)
2742 const struct x86_cpu_id
*id
;
2745 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
2751 id
= x86_match_cpu(hwp_support_ids
);
2753 copy_cpu_funcs(&core_funcs
);
2756 hwp_mode_bdw
= id
->driver_data
;
2757 intel_pstate
.attr
= hwp_cpufreq_attrs
;
2758 goto hwp_cpu_matched
;
2761 id
= x86_match_cpu(intel_pstate_cpu_ids
);
2763 pr_info("CPU model not supported\n");
2767 copy_cpu_funcs((struct pstate_funcs
*)id
->driver_data
);
2770 if (intel_pstate_msrs_not_valid()) {
2771 pr_info("Invalid MSRs\n");
2777 * The Intel pstate driver will be ignored if the platform
2778 * firmware has its own power management modes.
2780 if (intel_pstate_platform_pwr_mgmt_exists()) {
2781 pr_info("P-states controlled by the platform\n");
2785 if (!hwp_active
&& hwp_only
)
2788 pr_info("Intel P-state driver initializing\n");
2790 all_cpu_data
= vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2794 intel_pstate_request_control_from_smm();
2796 intel_pstate_sysfs_expose_params();
2798 mutex_lock(&intel_pstate_driver_lock
);
2799 rc
= intel_pstate_register_driver(default_driver
);
2800 mutex_unlock(&intel_pstate_driver_lock
);
2805 pr_info("HWP enabled\n");
2809 device_initcall(intel_pstate_init
);
2811 static int __init
intel_pstate_setup(char *str
)
2816 if (!strcmp(str
, "disable")) {
2818 } else if (!strcmp(str
, "passive")) {
2819 pr_info("Passive mode enabled\n");
2820 default_driver
= &intel_cpufreq
;
2823 if (!strcmp(str
, "no_hwp")) {
2824 pr_info("HWP disabled\n");
2827 if (!strcmp(str
, "force"))
2829 if (!strcmp(str
, "hwp_only"))
2831 if (!strcmp(str
, "per_cpu_perf_limits"))
2832 per_cpu_limits
= true;
2835 if (!strcmp(str
, "support_acpi_ppc"))
2841 early_param("intel_pstate", intel_pstate_setup
);
2843 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2844 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2845 MODULE_LICENSE("GPL");