1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
12 #include <asm/unaligned.h>
14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START
15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
18 struct kobject
*dmi_kobj
;
19 EXPORT_SYMBOL_GPL(dmi_kobj
);
22 * DMI stands for "Desktop Management Interface". It is part
23 * of and an antecedent to, SMBIOS, which stands for System
24 * Management BIOS. See further: http://www.dmtf.org/standards
26 static const char dmi_empty_string
[] = "";
28 static u32 dmi_ver __initdata
;
31 static u8 smbios_entry_point
[32];
32 static int smbios_entry_point_size
;
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string
[128] __initdata
;
37 static struct dmi_memdev_info
{
42 u8 type
; /* DDR2, DDR3, DDR4 etc */
44 static int dmi_memdev_nr
;
46 static const char * __init
dmi_string_nosave(const struct dmi_header
*dm
, u8 s
)
48 const u8
*bp
= ((u8
*) dm
) + dm
->length
;
52 while (--s
> 0 && *bp
)
55 /* Strings containing only spaces are considered empty */
63 return dmi_empty_string
;
66 static const char * __init
dmi_string(const struct dmi_header
*dm
, u8 s
)
68 const char *bp
= dmi_string_nosave(dm
, s
);
72 if (bp
== dmi_empty_string
)
73 return dmi_empty_string
;
84 * We have to be cautious here. We have seen BIOSes with DMI pointers
85 * pointing to completely the wrong place for example
87 static void dmi_decode_table(u8
*buf
,
88 void (*decode
)(const struct dmi_header
*, void *),
95 * Stop when we have seen all the items the table claimed to have
96 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
97 * >= 3.0 only) OR we run off the end of the table (should never
98 * happen but sometimes does on bogus implementations.)
100 while ((!dmi_num
|| i
< dmi_num
) &&
101 (data
- buf
+ sizeof(struct dmi_header
)) <= dmi_len
) {
102 const struct dmi_header
*dm
= (const struct dmi_header
*)data
;
105 * We want to know the total length (formatted area and
106 * strings) before decoding to make sure we won't run off the
107 * table in dmi_decode or dmi_string
110 while ((data
- buf
< dmi_len
- 1) && (data
[0] || data
[1]))
112 if (data
- buf
< dmi_len
- 1)
113 decode(dm
, private_data
);
119 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
120 * For tables behind a 64-bit entry point, we have no item
121 * count and no exact table length, so stop on end-of-table
122 * marker. For tables behind a 32-bit entry point, we have
123 * seen OEM structures behind the end-of-table marker on
124 * some systems, so don't trust it.
126 if (!dmi_num
&& dm
->type
== DMI_ENTRY_END_OF_TABLE
)
130 /* Trim DMI table length if needed */
131 if (dmi_len
> data
- buf
)
132 dmi_len
= data
- buf
;
135 static phys_addr_t dmi_base
;
137 static int __init
dmi_walk_early(void (*decode
)(const struct dmi_header
*,
141 u32 orig_dmi_len
= dmi_len
;
143 buf
= dmi_early_remap(dmi_base
, orig_dmi_len
);
147 dmi_decode_table(buf
, decode
, NULL
);
149 add_device_randomness(buf
, dmi_len
);
151 dmi_early_unmap(buf
, orig_dmi_len
);
155 static int __init
dmi_checksum(const u8
*buf
, u8 len
)
160 for (a
= 0; a
< len
; a
++)
166 static const char *dmi_ident
[DMI_STRING_MAX
];
167 static LIST_HEAD(dmi_devices
);
173 static void __init
dmi_save_ident(const struct dmi_header
*dm
, int slot
,
176 const char *d
= (const char *) dm
;
179 if (dmi_ident
[slot
] || dm
->length
<= string
)
182 p
= dmi_string(dm
, d
[string
]);
189 static void __init
dmi_save_uuid(const struct dmi_header
*dm
, int slot
,
194 int is_ff
= 1, is_00
= 1, i
;
196 if (dmi_ident
[slot
] || dm
->length
< index
+ 16)
199 d
= (u8
*) dm
+ index
;
200 for (i
= 0; i
< 16 && (is_ff
|| is_00
); i
++) {
210 s
= dmi_alloc(16*2+4+1);
215 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
216 * the UUID are supposed to be little-endian encoded. The specification
217 * says that this is the defacto standard.
219 if (dmi_ver
>= 0x020600)
220 sprintf(s
, "%pUl", d
);
222 sprintf(s
, "%pUb", d
);
227 static void __init
dmi_save_type(const struct dmi_header
*dm
, int slot
,
233 if (dmi_ident
[slot
] || dm
->length
<= index
)
240 d
= (u8
*) dm
+ index
;
241 sprintf(s
, "%u", *d
& 0x7F);
245 static void __init
dmi_save_one_device(int type
, const char *name
)
247 struct dmi_device
*dev
;
249 /* No duplicate device */
250 if (dmi_find_device(type
, name
, NULL
))
253 dev
= dmi_alloc(sizeof(*dev
) + strlen(name
) + 1);
258 strcpy((char *)(dev
+ 1), name
);
259 dev
->name
= (char *)(dev
+ 1);
260 dev
->device_data
= NULL
;
261 list_add(&dev
->list
, &dmi_devices
);
264 static void __init
dmi_save_devices(const struct dmi_header
*dm
)
266 int i
, count
= (dm
->length
- sizeof(struct dmi_header
)) / 2;
268 for (i
= 0; i
< count
; i
++) {
269 const char *d
= (char *)(dm
+ 1) + (i
* 2);
271 /* Skip disabled device */
272 if ((*d
& 0x80) == 0)
275 dmi_save_one_device(*d
& 0x7f, dmi_string_nosave(dm
, *(d
+ 1)));
279 static void __init
dmi_save_oem_strings_devices(const struct dmi_header
*dm
)
282 struct dmi_device
*dev
;
284 if (dm
->length
< 0x05)
287 count
= *(u8
*)(dm
+ 1);
288 for (i
= 1; i
<= count
; i
++) {
289 const char *devname
= dmi_string(dm
, i
);
291 if (devname
== dmi_empty_string
)
294 dev
= dmi_alloc(sizeof(*dev
));
298 dev
->type
= DMI_DEV_TYPE_OEM_STRING
;
300 dev
->device_data
= NULL
;
302 list_add(&dev
->list
, &dmi_devices
);
306 static void __init
dmi_save_ipmi_device(const struct dmi_header
*dm
)
308 struct dmi_device
*dev
;
311 data
= dmi_alloc(dm
->length
);
315 memcpy(data
, dm
, dm
->length
);
317 dev
= dmi_alloc(sizeof(*dev
));
321 dev
->type
= DMI_DEV_TYPE_IPMI
;
322 dev
->name
= "IPMI controller";
323 dev
->device_data
= data
;
325 list_add_tail(&dev
->list
, &dmi_devices
);
328 static void __init
dmi_save_dev_pciaddr(int instance
, int segment
, int bus
,
329 int devfn
, const char *name
, int type
)
331 struct dmi_dev_onboard
*dev
;
333 /* Ignore invalid values */
334 if (type
== DMI_DEV_TYPE_DEV_SLOT
&&
335 segment
== 0xFFFF && bus
== 0xFF && devfn
== 0xFF)
338 dev
= dmi_alloc(sizeof(*dev
) + strlen(name
) + 1);
342 dev
->instance
= instance
;
343 dev
->segment
= segment
;
347 strcpy((char *)&dev
[1], name
);
348 dev
->dev
.type
= type
;
349 dev
->dev
.name
= (char *)&dev
[1];
350 dev
->dev
.device_data
= dev
;
352 list_add(&dev
->dev
.list
, &dmi_devices
);
355 static void __init
dmi_save_extended_devices(const struct dmi_header
*dm
)
358 const u8
*d
= (u8
*)dm
;
360 if (dm
->length
< 0x0B)
363 /* Skip disabled device */
364 if ((d
[0x5] & 0x80) == 0)
367 name
= dmi_string_nosave(dm
, d
[0x4]);
368 dmi_save_dev_pciaddr(d
[0x6], *(u16
*)(d
+ 0x7), d
[0x9], d
[0xA], name
,
369 DMI_DEV_TYPE_DEV_ONBOARD
);
370 dmi_save_one_device(d
[0x5] & 0x7f, name
);
373 static void __init
dmi_save_system_slot(const struct dmi_header
*dm
)
375 const u8
*d
= (u8
*)dm
;
377 /* Need SMBIOS 2.6+ structure */
378 if (dm
->length
< 0x11)
380 dmi_save_dev_pciaddr(*(u16
*)(d
+ 0x9), *(u16
*)(d
+ 0xD), d
[0xF],
381 d
[0x10], dmi_string_nosave(dm
, d
[0x4]),
382 DMI_DEV_TYPE_DEV_SLOT
);
385 static void __init
count_mem_devices(const struct dmi_header
*dm
, void *v
)
387 if (dm
->type
!= DMI_ENTRY_MEM_DEVICE
)
392 static void __init
save_mem_devices(const struct dmi_header
*dm
, void *v
)
394 const char *d
= (const char *)dm
;
399 if (dm
->type
!= DMI_ENTRY_MEM_DEVICE
|| dm
->length
< 0x13)
401 if (nr
>= dmi_memdev_nr
) {
402 pr_warn(FW_BUG
"Too many DIMM entries in SMBIOS table\n");
405 dmi_memdev
[nr
].handle
= get_unaligned(&dm
->handle
);
406 dmi_memdev
[nr
].device
= dmi_string(dm
, d
[0x10]);
407 dmi_memdev
[nr
].bank
= dmi_string(dm
, d
[0x11]);
408 dmi_memdev
[nr
].type
= d
[0x12];
410 size
= get_unaligned((u16
*)&d
[0xC]);
413 else if (size
== 0xffff)
415 else if (size
& 0x8000)
416 bytes
= (u64
)(size
& 0x7fff) << 10;
417 else if (size
!= 0x7fff || dm
->length
< 0x20)
418 bytes
= (u64
)size
<< 20;
420 bytes
= (u64
)get_unaligned((u32
*)&d
[0x1C]) << 20;
422 dmi_memdev
[nr
].size
= bytes
;
426 static void __init
dmi_memdev_walk(void)
428 if (dmi_walk_early(count_mem_devices
) == 0 && dmi_memdev_nr
) {
429 dmi_memdev
= dmi_alloc(sizeof(*dmi_memdev
) * dmi_memdev_nr
);
431 dmi_walk_early(save_mem_devices
);
436 * Process a DMI table entry. Right now all we care about are the BIOS
437 * and machine entries. For 2.5 we should pull the smbus controller info
440 static void __init
dmi_decode(const struct dmi_header
*dm
, void *dummy
)
443 case 0: /* BIOS Information */
444 dmi_save_ident(dm
, DMI_BIOS_VENDOR
, 4);
445 dmi_save_ident(dm
, DMI_BIOS_VERSION
, 5);
446 dmi_save_ident(dm
, DMI_BIOS_DATE
, 8);
448 case 1: /* System Information */
449 dmi_save_ident(dm
, DMI_SYS_VENDOR
, 4);
450 dmi_save_ident(dm
, DMI_PRODUCT_NAME
, 5);
451 dmi_save_ident(dm
, DMI_PRODUCT_VERSION
, 6);
452 dmi_save_ident(dm
, DMI_PRODUCT_SERIAL
, 7);
453 dmi_save_uuid(dm
, DMI_PRODUCT_UUID
, 8);
454 dmi_save_ident(dm
, DMI_PRODUCT_SKU
, 25);
455 dmi_save_ident(dm
, DMI_PRODUCT_FAMILY
, 26);
457 case 2: /* Base Board Information */
458 dmi_save_ident(dm
, DMI_BOARD_VENDOR
, 4);
459 dmi_save_ident(dm
, DMI_BOARD_NAME
, 5);
460 dmi_save_ident(dm
, DMI_BOARD_VERSION
, 6);
461 dmi_save_ident(dm
, DMI_BOARD_SERIAL
, 7);
462 dmi_save_ident(dm
, DMI_BOARD_ASSET_TAG
, 8);
464 case 3: /* Chassis Information */
465 dmi_save_ident(dm
, DMI_CHASSIS_VENDOR
, 4);
466 dmi_save_type(dm
, DMI_CHASSIS_TYPE
, 5);
467 dmi_save_ident(dm
, DMI_CHASSIS_VERSION
, 6);
468 dmi_save_ident(dm
, DMI_CHASSIS_SERIAL
, 7);
469 dmi_save_ident(dm
, DMI_CHASSIS_ASSET_TAG
, 8);
471 case 9: /* System Slots */
472 dmi_save_system_slot(dm
);
474 case 10: /* Onboard Devices Information */
475 dmi_save_devices(dm
);
477 case 11: /* OEM Strings */
478 dmi_save_oem_strings_devices(dm
);
480 case 38: /* IPMI Device Information */
481 dmi_save_ipmi_device(dm
);
483 case 41: /* Onboard Devices Extended Information */
484 dmi_save_extended_devices(dm
);
488 static int __init
print_filtered(char *buf
, size_t len
, const char *info
)
496 for (p
= info
; *p
; p
++)
498 c
+= scnprintf(buf
+ c
, len
- c
, "%c", *p
);
500 c
+= scnprintf(buf
+ c
, len
- c
, "\\x%02x", *p
& 0xff);
504 static void __init
dmi_format_ids(char *buf
, size_t len
)
507 const char *board
; /* Board Name is optional */
509 c
+= print_filtered(buf
+ c
, len
- c
,
510 dmi_get_system_info(DMI_SYS_VENDOR
));
511 c
+= scnprintf(buf
+ c
, len
- c
, " ");
512 c
+= print_filtered(buf
+ c
, len
- c
,
513 dmi_get_system_info(DMI_PRODUCT_NAME
));
515 board
= dmi_get_system_info(DMI_BOARD_NAME
);
517 c
+= scnprintf(buf
+ c
, len
- c
, "/");
518 c
+= print_filtered(buf
+ c
, len
- c
, board
);
520 c
+= scnprintf(buf
+ c
, len
- c
, ", BIOS ");
521 c
+= print_filtered(buf
+ c
, len
- c
,
522 dmi_get_system_info(DMI_BIOS_VERSION
));
523 c
+= scnprintf(buf
+ c
, len
- c
, " ");
524 c
+= print_filtered(buf
+ c
, len
- c
,
525 dmi_get_system_info(DMI_BIOS_DATE
));
529 * Check for DMI/SMBIOS headers in the system firmware image. Any
530 * SMBIOS header must start 16 bytes before the DMI header, so take a
531 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
532 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
533 * takes precedence) and return 0. Otherwise return 1.
535 static int __init
dmi_present(const u8
*buf
)
539 if (memcmp(buf
, "_SM_", 4) == 0 &&
540 buf
[5] < 32 && dmi_checksum(buf
, buf
[5])) {
541 smbios_ver
= get_unaligned_be16(buf
+ 6);
542 smbios_entry_point_size
= buf
[5];
543 memcpy(smbios_entry_point
, buf
, smbios_entry_point_size
);
545 /* Some BIOS report weird SMBIOS version, fix that up */
546 switch (smbios_ver
) {
549 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
550 smbios_ver
& 0xFF, 3);
554 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
564 if (memcmp(buf
, "_DMI_", 5) == 0 && dmi_checksum(buf
, 15)) {
566 dmi_ver
= smbios_ver
;
568 dmi_ver
= (buf
[14] & 0xF0) << 4 | (buf
[14] & 0x0F);
570 dmi_num
= get_unaligned_le16(buf
+ 12);
571 dmi_len
= get_unaligned_le16(buf
+ 6);
572 dmi_base
= get_unaligned_le32(buf
+ 8);
574 if (dmi_walk_early(dmi_decode
) == 0) {
576 pr_info("SMBIOS %d.%d present.\n",
577 dmi_ver
>> 16, (dmi_ver
>> 8) & 0xFF);
579 smbios_entry_point_size
= 15;
580 memcpy(smbios_entry_point
, buf
,
581 smbios_entry_point_size
);
582 pr_info("Legacy DMI %d.%d present.\n",
583 dmi_ver
>> 16, (dmi_ver
>> 8) & 0xFF);
585 dmi_format_ids(dmi_ids_string
, sizeof(dmi_ids_string
));
586 pr_info("DMI: %s\n", dmi_ids_string
);
595 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
596 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
598 static int __init
dmi_smbios3_present(const u8
*buf
)
600 if (memcmp(buf
, "_SM3_", 5) == 0 &&
601 buf
[6] < 32 && dmi_checksum(buf
, buf
[6])) {
602 dmi_ver
= get_unaligned_be32(buf
+ 6) & 0xFFFFFF;
603 dmi_num
= 0; /* No longer specified */
604 dmi_len
= get_unaligned_le32(buf
+ 12);
605 dmi_base
= get_unaligned_le64(buf
+ 16);
606 smbios_entry_point_size
= buf
[6];
607 memcpy(smbios_entry_point
, buf
, smbios_entry_point_size
);
609 if (dmi_walk_early(dmi_decode
) == 0) {
610 pr_info("SMBIOS %d.%d.%d present.\n",
611 dmi_ver
>> 16, (dmi_ver
>> 8) & 0xFF,
613 dmi_format_ids(dmi_ids_string
, sizeof(dmi_ids_string
));
614 pr_info("DMI: %s\n", dmi_ids_string
);
621 static void __init
dmi_scan_machine(void)
626 if (efi_enabled(EFI_CONFIG_TABLES
)) {
628 * According to the DMTF SMBIOS reference spec v3.0.0, it is
629 * allowed to define both the 64-bit entry point (smbios3) and
630 * the 32-bit entry point (smbios), in which case they should
631 * either both point to the same SMBIOS structure table, or the
632 * table pointed to by the 64-bit entry point should contain a
633 * superset of the table contents pointed to by the 32-bit entry
634 * point (section 5.2)
635 * This implies that the 64-bit entry point should have
636 * precedence if it is defined and supported by the OS. If we
637 * have the 64-bit entry point, but fail to decode it, fall
638 * back to the legacy one (if available)
640 if (efi
.smbios3
!= EFI_INVALID_TABLE_ADDR
) {
641 p
= dmi_early_remap(efi
.smbios3
, 32);
644 memcpy_fromio(buf
, p
, 32);
645 dmi_early_unmap(p
, 32);
647 if (!dmi_smbios3_present(buf
)) {
652 if (efi
.smbios
== EFI_INVALID_TABLE_ADDR
)
655 /* This is called as a core_initcall() because it isn't
656 * needed during early boot. This also means we can
657 * iounmap the space when we're done with it.
659 p
= dmi_early_remap(efi
.smbios
, 32);
662 memcpy_fromio(buf
, p
, 32);
663 dmi_early_unmap(p
, 32);
665 if (!dmi_present(buf
)) {
669 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK
)) {
670 p
= dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START
, 0x10000);
675 * Same logic as above, look for a 64-bit entry point
676 * first, and if not found, fall back to 32-bit entry point.
678 memcpy_fromio(buf
, p
, 16);
679 for (q
= p
+ 16; q
< p
+ 0x10000; q
+= 16) {
680 memcpy_fromio(buf
+ 16, q
, 16);
681 if (!dmi_smbios3_present(buf
)) {
683 dmi_early_unmap(p
, 0x10000);
686 memcpy(buf
, buf
+ 16, 16);
690 * Iterate over all possible DMI header addresses q.
691 * Maintain the 32 bytes around q in buf. On the
692 * first iteration, substitute zero for the
693 * out-of-range bytes so there is no chance of falsely
694 * detecting an SMBIOS header.
697 for (q
= p
; q
< p
+ 0x10000; q
+= 16) {
698 memcpy_fromio(buf
+ 16, q
, 16);
699 if (!dmi_present(buf
)) {
701 dmi_early_unmap(p
, 0x10000);
704 memcpy(buf
, buf
+ 16, 16);
706 dmi_early_unmap(p
, 0x10000);
709 pr_info("DMI not present or invalid.\n");
712 static ssize_t
raw_table_read(struct file
*file
, struct kobject
*kobj
,
713 struct bin_attribute
*attr
, char *buf
,
714 loff_t pos
, size_t count
)
716 memcpy(buf
, attr
->private + pos
, count
);
720 static BIN_ATTR(smbios_entry_point
, S_IRUSR
, raw_table_read
, NULL
, 0);
721 static BIN_ATTR(DMI
, S_IRUSR
, raw_table_read
, NULL
, 0);
723 static int __init
dmi_init(void)
725 struct kobject
*tables_kobj
;
733 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
734 * even after farther error, as it can be used by other modules like
737 dmi_kobj
= kobject_create_and_add("dmi", firmware_kobj
);
741 tables_kobj
= kobject_create_and_add("tables", dmi_kobj
);
745 dmi_table
= dmi_remap(dmi_base
, dmi_len
);
749 bin_attr_smbios_entry_point
.size
= smbios_entry_point_size
;
750 bin_attr_smbios_entry_point
.private = smbios_entry_point
;
751 ret
= sysfs_create_bin_file(tables_kobj
, &bin_attr_smbios_entry_point
);
755 bin_attr_DMI
.size
= dmi_len
;
756 bin_attr_DMI
.private = dmi_table
;
757 ret
= sysfs_create_bin_file(tables_kobj
, &bin_attr_DMI
);
761 sysfs_remove_bin_file(tables_kobj
,
762 &bin_attr_smbios_entry_point
);
764 dmi_unmap(dmi_table
);
766 kobject_del(tables_kobj
);
767 kobject_put(tables_kobj
);
769 pr_err("dmi: Firmware registration failed.\n");
773 subsys_initcall(dmi_init
);
776 * dmi_setup - scan and setup DMI system information
778 * Scan the DMI system information. This setups DMI identifiers
779 * (dmi_system_id) for printing it out on task dumps and prepares
780 * DIMM entry information (dmi_memdev_info) from the SMBIOS table
781 * for using this when reporting memory errors.
783 void __init
dmi_setup(void)
790 dump_stack_set_arch_desc("%s", dmi_ids_string
);
794 * dmi_matches - check if dmi_system_id structure matches system DMI data
795 * @dmi: pointer to the dmi_system_id structure to check
797 static bool dmi_matches(const struct dmi_system_id
*dmi
)
801 for (i
= 0; i
< ARRAY_SIZE(dmi
->matches
); i
++) {
802 int s
= dmi
->matches
[i
].slot
;
805 if (s
== DMI_OEM_STRING
) {
806 /* DMI_OEM_STRING must be exact match */
807 const struct dmi_device
*valid
;
809 valid
= dmi_find_device(DMI_DEV_TYPE_OEM_STRING
,
810 dmi
->matches
[i
].substr
, NULL
);
813 } else if (dmi_ident
[s
]) {
814 if (dmi
->matches
[i
].exact_match
) {
815 if (!strcmp(dmi_ident
[s
],
816 dmi
->matches
[i
].substr
))
819 if (strstr(dmi_ident
[s
],
820 dmi
->matches
[i
].substr
))
832 * dmi_is_end_of_table - check for end-of-table marker
833 * @dmi: pointer to the dmi_system_id structure to check
835 static bool dmi_is_end_of_table(const struct dmi_system_id
*dmi
)
837 return dmi
->matches
[0].slot
== DMI_NONE
;
841 * dmi_check_system - check system DMI data
842 * @list: array of dmi_system_id structures to match against
843 * All non-null elements of the list must match
844 * their slot's (field index's) data (i.e., each
845 * list string must be a substring of the specified
846 * DMI slot's string data) to be considered a
849 * Walk the blacklist table running matching functions until someone
850 * returns non zero or we hit the end. Callback function is called for
851 * each successful match. Returns the number of matches.
853 * dmi_setup must be called before this function is called.
855 int dmi_check_system(const struct dmi_system_id
*list
)
858 const struct dmi_system_id
*d
;
860 for (d
= list
; !dmi_is_end_of_table(d
); d
++)
861 if (dmi_matches(d
)) {
863 if (d
->callback
&& d
->callback(d
))
869 EXPORT_SYMBOL(dmi_check_system
);
872 * dmi_first_match - find dmi_system_id structure matching system DMI data
873 * @list: array of dmi_system_id structures to match against
874 * All non-null elements of the list must match
875 * their slot's (field index's) data (i.e., each
876 * list string must be a substring of the specified
877 * DMI slot's string data) to be considered a
880 * Walk the blacklist table until the first match is found. Return the
881 * pointer to the matching entry or NULL if there's no match.
883 * dmi_setup must be called before this function is called.
885 const struct dmi_system_id
*dmi_first_match(const struct dmi_system_id
*list
)
887 const struct dmi_system_id
*d
;
889 for (d
= list
; !dmi_is_end_of_table(d
); d
++)
895 EXPORT_SYMBOL(dmi_first_match
);
898 * dmi_get_system_info - return DMI data value
899 * @field: data index (see enum dmi_field)
901 * Returns one DMI data value, can be used to perform
902 * complex DMI data checks.
904 const char *dmi_get_system_info(int field
)
906 return dmi_ident
[field
];
908 EXPORT_SYMBOL(dmi_get_system_info
);
911 * dmi_name_in_serial - Check if string is in the DMI product serial information
912 * @str: string to check for
914 int dmi_name_in_serial(const char *str
)
916 int f
= DMI_PRODUCT_SERIAL
;
917 if (dmi_ident
[f
] && strstr(dmi_ident
[f
], str
))
923 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
924 * @str: Case sensitive Name
926 int dmi_name_in_vendors(const char *str
)
928 static int fields
[] = { DMI_SYS_VENDOR
, DMI_BOARD_VENDOR
, DMI_NONE
};
930 for (i
= 0; fields
[i
] != DMI_NONE
; i
++) {
932 if (dmi_ident
[f
] && strstr(dmi_ident
[f
], str
))
937 EXPORT_SYMBOL(dmi_name_in_vendors
);
940 * dmi_find_device - find onboard device by type/name
941 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
942 * @name: device name string or %NULL to match all
943 * @from: previous device found in search, or %NULL for new search.
945 * Iterates through the list of known onboard devices. If a device is
946 * found with a matching @type and @name, a pointer to its device
947 * structure is returned. Otherwise, %NULL is returned.
948 * A new search is initiated by passing %NULL as the @from argument.
949 * If @from is not %NULL, searches continue from next device.
951 const struct dmi_device
*dmi_find_device(int type
, const char *name
,
952 const struct dmi_device
*from
)
954 const struct list_head
*head
= from
? &from
->list
: &dmi_devices
;
957 for (d
= head
->next
; d
!= &dmi_devices
; d
= d
->next
) {
958 const struct dmi_device
*dev
=
959 list_entry(d
, struct dmi_device
, list
);
961 if (((type
== DMI_DEV_TYPE_ANY
) || (dev
->type
== type
)) &&
962 ((name
== NULL
) || (strcmp(dev
->name
, name
) == 0)))
968 EXPORT_SYMBOL(dmi_find_device
);
971 * dmi_get_date - parse a DMI date
972 * @field: data index (see enum dmi_field)
973 * @yearp: optional out parameter for the year
974 * @monthp: optional out parameter for the month
975 * @dayp: optional out parameter for the day
977 * The date field is assumed to be in the form resembling
978 * [mm[/dd]]/yy[yy] and the result is stored in the out
979 * parameters any or all of which can be omitted.
981 * If the field doesn't exist, all out parameters are set to zero
982 * and false is returned. Otherwise, true is returned with any
983 * invalid part of date set to zero.
985 * On return, year, month and day are guaranteed to be in the
986 * range of [0,9999], [0,12] and [0,31] respectively.
988 bool dmi_get_date(int field
, int *yearp
, int *monthp
, int *dayp
)
990 int year
= 0, month
= 0, day
= 0;
995 s
= dmi_get_system_info(field
);
1001 * Determine year first. We assume the date string resembles
1002 * mm/dd/yy[yy] but the original code extracted only the year
1003 * from the end. Keep the behavior in the spirit of no
1006 y
= strrchr(s
, '/');
1011 year
= simple_strtoul(y
, &e
, 10);
1012 if (y
!= e
&& year
< 100) { /* 2-digit year */
1014 if (year
< 1996) /* no dates < spec 1.0 */
1017 if (year
> 9999) /* year should fit in %04d */
1020 /* parse the mm and dd */
1021 month
= simple_strtoul(s
, &e
, 10);
1022 if (s
== e
|| *e
!= '/' || !month
|| month
> 12) {
1028 day
= simple_strtoul(s
, &e
, 10);
1029 if (s
== y
|| s
== e
|| *e
!= '/' || day
> 31)
1040 EXPORT_SYMBOL(dmi_get_date
);
1043 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1045 * Returns year on success, -ENXIO if DMI is not selected,
1046 * or a different negative error code if DMI field is not present
1049 int dmi_get_bios_year(void)
1054 exists
= dmi_get_date(DMI_BIOS_DATE
, &year
, NULL
, NULL
);
1058 return year
? year
: -ERANGE
;
1060 EXPORT_SYMBOL(dmi_get_bios_year
);
1063 * dmi_walk - Walk the DMI table and get called back for every record
1064 * @decode: Callback function
1065 * @private_data: Private data to be passed to the callback function
1067 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1068 * or a different negative error code if DMI walking fails.
1070 int dmi_walk(void (*decode
)(const struct dmi_header
*, void *),
1078 buf
= dmi_remap(dmi_base
, dmi_len
);
1082 dmi_decode_table(buf
, decode
, private_data
);
1087 EXPORT_SYMBOL_GPL(dmi_walk
);
1090 * dmi_match - compare a string to the dmi field (if exists)
1091 * @f: DMI field identifier
1092 * @str: string to compare the DMI field to
1094 * Returns true if the requested field equals to the str (including NULL).
1096 bool dmi_match(enum dmi_field f
, const char *str
)
1098 const char *info
= dmi_get_system_info(f
);
1100 if (info
== NULL
|| str
== NULL
)
1103 return !strcmp(info
, str
);
1105 EXPORT_SYMBOL_GPL(dmi_match
);
1107 void dmi_memdev_name(u16 handle
, const char **bank
, const char **device
)
1111 if (dmi_memdev
== NULL
)
1114 for (n
= 0; n
< dmi_memdev_nr
; n
++) {
1115 if (handle
== dmi_memdev
[n
].handle
) {
1116 *bank
= dmi_memdev
[n
].bank
;
1117 *device
= dmi_memdev
[n
].device
;
1122 EXPORT_SYMBOL_GPL(dmi_memdev_name
);
1124 u64
dmi_memdev_size(u16 handle
)
1129 for (n
= 0; n
< dmi_memdev_nr
; n
++) {
1130 if (handle
== dmi_memdev
[n
].handle
)
1131 return dmi_memdev
[n
].size
;
1136 EXPORT_SYMBOL_GPL(dmi_memdev_size
);
1139 * dmi_memdev_type - get the memory type
1140 * @handle: DMI structure handle
1142 * Return the DMI memory type of the module in the slot associated with the
1143 * given DMI handle, or 0x0 if no such DMI handle exists.
1145 u8
dmi_memdev_type(u16 handle
)
1150 for (n
= 0; n
< dmi_memdev_nr
; n
++) {
1151 if (handle
== dmi_memdev
[n
].handle
)
1152 return dmi_memdev
[n
].type
;
1155 return 0x0; /* Not a valid value */
1157 EXPORT_SYMBOL_GPL(dmi_memdev_type
);
1160 * dmi_memdev_handle - get the DMI handle of a memory slot
1161 * @slot: slot number
1163 * Return the DMI handle associated with a given memory slot, or %0xFFFF
1164 * if there is no such slot.
1166 u16
dmi_memdev_handle(int slot
)
1168 if (dmi_memdev
&& slot
>= 0 && slot
< dmi_memdev_nr
)
1169 return dmi_memdev
[slot
].handle
;
1171 return 0xffff; /* Not a valid value */
1173 EXPORT_SYMBOL_GPL(dmi_memdev_handle
);