Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / drivers / firmware / dmi_scan.c
blobf59163cb7cba85e1c35181c63c2af5b5cb691c8e
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
7 #include <linux/dmi.h>
8 #include <linux/efi.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
11 #include <asm/dmi.h>
12 #include <asm/unaligned.h>
14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START
15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
16 #endif
18 struct kobject *dmi_kobj;
19 EXPORT_SYMBOL_GPL(dmi_kobj);
22 * DMI stands for "Desktop Management Interface". It is part
23 * of and an antecedent to, SMBIOS, which stands for System
24 * Management BIOS. See further: http://www.dmtf.org/standards
26 static const char dmi_empty_string[] = "";
28 static u32 dmi_ver __initdata;
29 static u32 dmi_len;
30 static u16 dmi_num;
31 static u8 smbios_entry_point[32];
32 static int smbios_entry_point_size;
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
37 static struct dmi_memdev_info {
38 const char *device;
39 const char *bank;
40 u64 size; /* bytes */
41 u16 handle;
42 u8 type; /* DDR2, DDR3, DDR4 etc */
43 } *dmi_memdev;
44 static int dmi_memdev_nr;
46 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
48 const u8 *bp = ((u8 *) dm) + dm->length;
49 const u8 *nsp;
51 if (s) {
52 while (--s > 0 && *bp)
53 bp += strlen(bp) + 1;
55 /* Strings containing only spaces are considered empty */
56 nsp = bp;
57 while (*nsp == ' ')
58 nsp++;
59 if (*nsp != '\0')
60 return bp;
63 return dmi_empty_string;
66 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
68 const char *bp = dmi_string_nosave(dm, s);
69 char *str;
70 size_t len;
72 if (bp == dmi_empty_string)
73 return dmi_empty_string;
75 len = strlen(bp) + 1;
76 str = dmi_alloc(len);
77 if (str != NULL)
78 strcpy(str, bp);
80 return str;
84 * We have to be cautious here. We have seen BIOSes with DMI pointers
85 * pointing to completely the wrong place for example
87 static void dmi_decode_table(u8 *buf,
88 void (*decode)(const struct dmi_header *, void *),
89 void *private_data)
91 u8 *data = buf;
92 int i = 0;
95 * Stop when we have seen all the items the table claimed to have
96 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
97 * >= 3.0 only) OR we run off the end of the table (should never
98 * happen but sometimes does on bogus implementations.)
100 while ((!dmi_num || i < dmi_num) &&
101 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
102 const struct dmi_header *dm = (const struct dmi_header *)data;
105 * We want to know the total length (formatted area and
106 * strings) before decoding to make sure we won't run off the
107 * table in dmi_decode or dmi_string
109 data += dm->length;
110 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
111 data++;
112 if (data - buf < dmi_len - 1)
113 decode(dm, private_data);
115 data += 2;
116 i++;
119 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
120 * For tables behind a 64-bit entry point, we have no item
121 * count and no exact table length, so stop on end-of-table
122 * marker. For tables behind a 32-bit entry point, we have
123 * seen OEM structures behind the end-of-table marker on
124 * some systems, so don't trust it.
126 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
127 break;
130 /* Trim DMI table length if needed */
131 if (dmi_len > data - buf)
132 dmi_len = data - buf;
135 static phys_addr_t dmi_base;
137 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
138 void *))
140 u8 *buf;
141 u32 orig_dmi_len = dmi_len;
143 buf = dmi_early_remap(dmi_base, orig_dmi_len);
144 if (buf == NULL)
145 return -ENOMEM;
147 dmi_decode_table(buf, decode, NULL);
149 add_device_randomness(buf, dmi_len);
151 dmi_early_unmap(buf, orig_dmi_len);
152 return 0;
155 static int __init dmi_checksum(const u8 *buf, u8 len)
157 u8 sum = 0;
158 int a;
160 for (a = 0; a < len; a++)
161 sum += buf[a];
163 return sum == 0;
166 static const char *dmi_ident[DMI_STRING_MAX];
167 static LIST_HEAD(dmi_devices);
168 int dmi_available;
171 * Save a DMI string
173 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
174 int string)
176 const char *d = (const char *) dm;
177 const char *p;
179 if (dmi_ident[slot] || dm->length <= string)
180 return;
182 p = dmi_string(dm, d[string]);
183 if (p == NULL)
184 return;
186 dmi_ident[slot] = p;
189 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
190 int index)
192 const u8 *d;
193 char *s;
194 int is_ff = 1, is_00 = 1, i;
196 if (dmi_ident[slot] || dm->length < index + 16)
197 return;
199 d = (u8 *) dm + index;
200 for (i = 0; i < 16 && (is_ff || is_00); i++) {
201 if (d[i] != 0x00)
202 is_00 = 0;
203 if (d[i] != 0xFF)
204 is_ff = 0;
207 if (is_ff || is_00)
208 return;
210 s = dmi_alloc(16*2+4+1);
211 if (!s)
212 return;
215 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
216 * the UUID are supposed to be little-endian encoded. The specification
217 * says that this is the defacto standard.
219 if (dmi_ver >= 0x020600)
220 sprintf(s, "%pUl", d);
221 else
222 sprintf(s, "%pUb", d);
224 dmi_ident[slot] = s;
227 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
228 int index)
230 const u8 *d;
231 char *s;
233 if (dmi_ident[slot] || dm->length <= index)
234 return;
236 s = dmi_alloc(4);
237 if (!s)
238 return;
240 d = (u8 *) dm + index;
241 sprintf(s, "%u", *d & 0x7F);
242 dmi_ident[slot] = s;
245 static void __init dmi_save_one_device(int type, const char *name)
247 struct dmi_device *dev;
249 /* No duplicate device */
250 if (dmi_find_device(type, name, NULL))
251 return;
253 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
254 if (!dev)
255 return;
257 dev->type = type;
258 strcpy((char *)(dev + 1), name);
259 dev->name = (char *)(dev + 1);
260 dev->device_data = NULL;
261 list_add(&dev->list, &dmi_devices);
264 static void __init dmi_save_devices(const struct dmi_header *dm)
266 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
268 for (i = 0; i < count; i++) {
269 const char *d = (char *)(dm + 1) + (i * 2);
271 /* Skip disabled device */
272 if ((*d & 0x80) == 0)
273 continue;
275 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
279 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
281 int i, count;
282 struct dmi_device *dev;
284 if (dm->length < 0x05)
285 return;
287 count = *(u8 *)(dm + 1);
288 for (i = 1; i <= count; i++) {
289 const char *devname = dmi_string(dm, i);
291 if (devname == dmi_empty_string)
292 continue;
294 dev = dmi_alloc(sizeof(*dev));
295 if (!dev)
296 break;
298 dev->type = DMI_DEV_TYPE_OEM_STRING;
299 dev->name = devname;
300 dev->device_data = NULL;
302 list_add(&dev->list, &dmi_devices);
306 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
308 struct dmi_device *dev;
309 void *data;
311 data = dmi_alloc(dm->length);
312 if (data == NULL)
313 return;
315 memcpy(data, dm, dm->length);
317 dev = dmi_alloc(sizeof(*dev));
318 if (!dev)
319 return;
321 dev->type = DMI_DEV_TYPE_IPMI;
322 dev->name = "IPMI controller";
323 dev->device_data = data;
325 list_add_tail(&dev->list, &dmi_devices);
328 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
329 int devfn, const char *name, int type)
331 struct dmi_dev_onboard *dev;
333 /* Ignore invalid values */
334 if (type == DMI_DEV_TYPE_DEV_SLOT &&
335 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
336 return;
338 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
339 if (!dev)
340 return;
342 dev->instance = instance;
343 dev->segment = segment;
344 dev->bus = bus;
345 dev->devfn = devfn;
347 strcpy((char *)&dev[1], name);
348 dev->dev.type = type;
349 dev->dev.name = (char *)&dev[1];
350 dev->dev.device_data = dev;
352 list_add(&dev->dev.list, &dmi_devices);
355 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
357 const char *name;
358 const u8 *d = (u8 *)dm;
360 if (dm->length < 0x0B)
361 return;
363 /* Skip disabled device */
364 if ((d[0x5] & 0x80) == 0)
365 return;
367 name = dmi_string_nosave(dm, d[0x4]);
368 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
369 DMI_DEV_TYPE_DEV_ONBOARD);
370 dmi_save_one_device(d[0x5] & 0x7f, name);
373 static void __init dmi_save_system_slot(const struct dmi_header *dm)
375 const u8 *d = (u8 *)dm;
377 /* Need SMBIOS 2.6+ structure */
378 if (dm->length < 0x11)
379 return;
380 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
381 d[0x10], dmi_string_nosave(dm, d[0x4]),
382 DMI_DEV_TYPE_DEV_SLOT);
385 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
387 if (dm->type != DMI_ENTRY_MEM_DEVICE)
388 return;
389 dmi_memdev_nr++;
392 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
394 const char *d = (const char *)dm;
395 static int nr;
396 u64 bytes;
397 u16 size;
399 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
400 return;
401 if (nr >= dmi_memdev_nr) {
402 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
403 return;
405 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
406 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
407 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
408 dmi_memdev[nr].type = d[0x12];
410 size = get_unaligned((u16 *)&d[0xC]);
411 if (size == 0)
412 bytes = 0;
413 else if (size == 0xffff)
414 bytes = ~0ull;
415 else if (size & 0x8000)
416 bytes = (u64)(size & 0x7fff) << 10;
417 else if (size != 0x7fff || dm->length < 0x20)
418 bytes = (u64)size << 20;
419 else
420 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
422 dmi_memdev[nr].size = bytes;
423 nr++;
426 static void __init dmi_memdev_walk(void)
428 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
429 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
430 if (dmi_memdev)
431 dmi_walk_early(save_mem_devices);
436 * Process a DMI table entry. Right now all we care about are the BIOS
437 * and machine entries. For 2.5 we should pull the smbus controller info
438 * out of here.
440 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
442 switch (dm->type) {
443 case 0: /* BIOS Information */
444 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
445 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
446 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
447 break;
448 case 1: /* System Information */
449 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
450 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
451 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
452 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
453 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
454 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
455 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
456 break;
457 case 2: /* Base Board Information */
458 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
459 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
460 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
461 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
462 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
463 break;
464 case 3: /* Chassis Information */
465 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
466 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
467 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
468 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
469 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
470 break;
471 case 9: /* System Slots */
472 dmi_save_system_slot(dm);
473 break;
474 case 10: /* Onboard Devices Information */
475 dmi_save_devices(dm);
476 break;
477 case 11: /* OEM Strings */
478 dmi_save_oem_strings_devices(dm);
479 break;
480 case 38: /* IPMI Device Information */
481 dmi_save_ipmi_device(dm);
482 break;
483 case 41: /* Onboard Devices Extended Information */
484 dmi_save_extended_devices(dm);
488 static int __init print_filtered(char *buf, size_t len, const char *info)
490 int c = 0;
491 const char *p;
493 if (!info)
494 return c;
496 for (p = info; *p; p++)
497 if (isprint(*p))
498 c += scnprintf(buf + c, len - c, "%c", *p);
499 else
500 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
501 return c;
504 static void __init dmi_format_ids(char *buf, size_t len)
506 int c = 0;
507 const char *board; /* Board Name is optional */
509 c += print_filtered(buf + c, len - c,
510 dmi_get_system_info(DMI_SYS_VENDOR));
511 c += scnprintf(buf + c, len - c, " ");
512 c += print_filtered(buf + c, len - c,
513 dmi_get_system_info(DMI_PRODUCT_NAME));
515 board = dmi_get_system_info(DMI_BOARD_NAME);
516 if (board) {
517 c += scnprintf(buf + c, len - c, "/");
518 c += print_filtered(buf + c, len - c, board);
520 c += scnprintf(buf + c, len - c, ", BIOS ");
521 c += print_filtered(buf + c, len - c,
522 dmi_get_system_info(DMI_BIOS_VERSION));
523 c += scnprintf(buf + c, len - c, " ");
524 c += print_filtered(buf + c, len - c,
525 dmi_get_system_info(DMI_BIOS_DATE));
529 * Check for DMI/SMBIOS headers in the system firmware image. Any
530 * SMBIOS header must start 16 bytes before the DMI header, so take a
531 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
532 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
533 * takes precedence) and return 0. Otherwise return 1.
535 static int __init dmi_present(const u8 *buf)
537 u32 smbios_ver;
539 if (memcmp(buf, "_SM_", 4) == 0 &&
540 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
541 smbios_ver = get_unaligned_be16(buf + 6);
542 smbios_entry_point_size = buf[5];
543 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
545 /* Some BIOS report weird SMBIOS version, fix that up */
546 switch (smbios_ver) {
547 case 0x021F:
548 case 0x0221:
549 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
550 smbios_ver & 0xFF, 3);
551 smbios_ver = 0x0203;
552 break;
553 case 0x0233:
554 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
555 smbios_ver = 0x0206;
556 break;
558 } else {
559 smbios_ver = 0;
562 buf += 16;
564 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
565 if (smbios_ver)
566 dmi_ver = smbios_ver;
567 else
568 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
569 dmi_ver <<= 8;
570 dmi_num = get_unaligned_le16(buf + 12);
571 dmi_len = get_unaligned_le16(buf + 6);
572 dmi_base = get_unaligned_le32(buf + 8);
574 if (dmi_walk_early(dmi_decode) == 0) {
575 if (smbios_ver) {
576 pr_info("SMBIOS %d.%d present.\n",
577 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
578 } else {
579 smbios_entry_point_size = 15;
580 memcpy(smbios_entry_point, buf,
581 smbios_entry_point_size);
582 pr_info("Legacy DMI %d.%d present.\n",
583 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
585 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
586 pr_info("DMI: %s\n", dmi_ids_string);
587 return 0;
591 return 1;
595 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
596 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
598 static int __init dmi_smbios3_present(const u8 *buf)
600 if (memcmp(buf, "_SM3_", 5) == 0 &&
601 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
602 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
603 dmi_num = 0; /* No longer specified */
604 dmi_len = get_unaligned_le32(buf + 12);
605 dmi_base = get_unaligned_le64(buf + 16);
606 smbios_entry_point_size = buf[6];
607 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
609 if (dmi_walk_early(dmi_decode) == 0) {
610 pr_info("SMBIOS %d.%d.%d present.\n",
611 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
612 dmi_ver & 0xFF);
613 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
614 pr_info("DMI: %s\n", dmi_ids_string);
615 return 0;
618 return 1;
621 static void __init dmi_scan_machine(void)
623 char __iomem *p, *q;
624 char buf[32];
626 if (efi_enabled(EFI_CONFIG_TABLES)) {
628 * According to the DMTF SMBIOS reference spec v3.0.0, it is
629 * allowed to define both the 64-bit entry point (smbios3) and
630 * the 32-bit entry point (smbios), in which case they should
631 * either both point to the same SMBIOS structure table, or the
632 * table pointed to by the 64-bit entry point should contain a
633 * superset of the table contents pointed to by the 32-bit entry
634 * point (section 5.2)
635 * This implies that the 64-bit entry point should have
636 * precedence if it is defined and supported by the OS. If we
637 * have the 64-bit entry point, but fail to decode it, fall
638 * back to the legacy one (if available)
640 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
641 p = dmi_early_remap(efi.smbios3, 32);
642 if (p == NULL)
643 goto error;
644 memcpy_fromio(buf, p, 32);
645 dmi_early_unmap(p, 32);
647 if (!dmi_smbios3_present(buf)) {
648 dmi_available = 1;
649 return;
652 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
653 goto error;
655 /* This is called as a core_initcall() because it isn't
656 * needed during early boot. This also means we can
657 * iounmap the space when we're done with it.
659 p = dmi_early_remap(efi.smbios, 32);
660 if (p == NULL)
661 goto error;
662 memcpy_fromio(buf, p, 32);
663 dmi_early_unmap(p, 32);
665 if (!dmi_present(buf)) {
666 dmi_available = 1;
667 return;
669 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
670 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
671 if (p == NULL)
672 goto error;
675 * Same logic as above, look for a 64-bit entry point
676 * first, and if not found, fall back to 32-bit entry point.
678 memcpy_fromio(buf, p, 16);
679 for (q = p + 16; q < p + 0x10000; q += 16) {
680 memcpy_fromio(buf + 16, q, 16);
681 if (!dmi_smbios3_present(buf)) {
682 dmi_available = 1;
683 dmi_early_unmap(p, 0x10000);
684 return;
686 memcpy(buf, buf + 16, 16);
690 * Iterate over all possible DMI header addresses q.
691 * Maintain the 32 bytes around q in buf. On the
692 * first iteration, substitute zero for the
693 * out-of-range bytes so there is no chance of falsely
694 * detecting an SMBIOS header.
696 memset(buf, 0, 16);
697 for (q = p; q < p + 0x10000; q += 16) {
698 memcpy_fromio(buf + 16, q, 16);
699 if (!dmi_present(buf)) {
700 dmi_available = 1;
701 dmi_early_unmap(p, 0x10000);
702 return;
704 memcpy(buf, buf + 16, 16);
706 dmi_early_unmap(p, 0x10000);
708 error:
709 pr_info("DMI not present or invalid.\n");
712 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
713 struct bin_attribute *attr, char *buf,
714 loff_t pos, size_t count)
716 memcpy(buf, attr->private + pos, count);
717 return count;
720 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
721 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
723 static int __init dmi_init(void)
725 struct kobject *tables_kobj;
726 u8 *dmi_table;
727 int ret = -ENOMEM;
729 if (!dmi_available)
730 return 0;
733 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
734 * even after farther error, as it can be used by other modules like
735 * dmi-sysfs.
737 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
738 if (!dmi_kobj)
739 goto err;
741 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
742 if (!tables_kobj)
743 goto err;
745 dmi_table = dmi_remap(dmi_base, dmi_len);
746 if (!dmi_table)
747 goto err_tables;
749 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
750 bin_attr_smbios_entry_point.private = smbios_entry_point;
751 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
752 if (ret)
753 goto err_unmap;
755 bin_attr_DMI.size = dmi_len;
756 bin_attr_DMI.private = dmi_table;
757 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
758 if (!ret)
759 return 0;
761 sysfs_remove_bin_file(tables_kobj,
762 &bin_attr_smbios_entry_point);
763 err_unmap:
764 dmi_unmap(dmi_table);
765 err_tables:
766 kobject_del(tables_kobj);
767 kobject_put(tables_kobj);
768 err:
769 pr_err("dmi: Firmware registration failed.\n");
771 return ret;
773 subsys_initcall(dmi_init);
776 * dmi_setup - scan and setup DMI system information
778 * Scan the DMI system information. This setups DMI identifiers
779 * (dmi_system_id) for printing it out on task dumps and prepares
780 * DIMM entry information (dmi_memdev_info) from the SMBIOS table
781 * for using this when reporting memory errors.
783 void __init dmi_setup(void)
785 dmi_scan_machine();
786 if (!dmi_available)
787 return;
789 dmi_memdev_walk();
790 dump_stack_set_arch_desc("%s", dmi_ids_string);
794 * dmi_matches - check if dmi_system_id structure matches system DMI data
795 * @dmi: pointer to the dmi_system_id structure to check
797 static bool dmi_matches(const struct dmi_system_id *dmi)
799 int i;
801 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
802 int s = dmi->matches[i].slot;
803 if (s == DMI_NONE)
804 break;
805 if (s == DMI_OEM_STRING) {
806 /* DMI_OEM_STRING must be exact match */
807 const struct dmi_device *valid;
809 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
810 dmi->matches[i].substr, NULL);
811 if (valid)
812 continue;
813 } else if (dmi_ident[s]) {
814 if (dmi->matches[i].exact_match) {
815 if (!strcmp(dmi_ident[s],
816 dmi->matches[i].substr))
817 continue;
818 } else {
819 if (strstr(dmi_ident[s],
820 dmi->matches[i].substr))
821 continue;
825 /* No match */
826 return false;
828 return true;
832 * dmi_is_end_of_table - check for end-of-table marker
833 * @dmi: pointer to the dmi_system_id structure to check
835 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
837 return dmi->matches[0].slot == DMI_NONE;
841 * dmi_check_system - check system DMI data
842 * @list: array of dmi_system_id structures to match against
843 * All non-null elements of the list must match
844 * their slot's (field index's) data (i.e., each
845 * list string must be a substring of the specified
846 * DMI slot's string data) to be considered a
847 * successful match.
849 * Walk the blacklist table running matching functions until someone
850 * returns non zero or we hit the end. Callback function is called for
851 * each successful match. Returns the number of matches.
853 * dmi_setup must be called before this function is called.
855 int dmi_check_system(const struct dmi_system_id *list)
857 int count = 0;
858 const struct dmi_system_id *d;
860 for (d = list; !dmi_is_end_of_table(d); d++)
861 if (dmi_matches(d)) {
862 count++;
863 if (d->callback && d->callback(d))
864 break;
867 return count;
869 EXPORT_SYMBOL(dmi_check_system);
872 * dmi_first_match - find dmi_system_id structure matching system DMI data
873 * @list: array of dmi_system_id structures to match against
874 * All non-null elements of the list must match
875 * their slot's (field index's) data (i.e., each
876 * list string must be a substring of the specified
877 * DMI slot's string data) to be considered a
878 * successful match.
880 * Walk the blacklist table until the first match is found. Return the
881 * pointer to the matching entry or NULL if there's no match.
883 * dmi_setup must be called before this function is called.
885 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
887 const struct dmi_system_id *d;
889 for (d = list; !dmi_is_end_of_table(d); d++)
890 if (dmi_matches(d))
891 return d;
893 return NULL;
895 EXPORT_SYMBOL(dmi_first_match);
898 * dmi_get_system_info - return DMI data value
899 * @field: data index (see enum dmi_field)
901 * Returns one DMI data value, can be used to perform
902 * complex DMI data checks.
904 const char *dmi_get_system_info(int field)
906 return dmi_ident[field];
908 EXPORT_SYMBOL(dmi_get_system_info);
911 * dmi_name_in_serial - Check if string is in the DMI product serial information
912 * @str: string to check for
914 int dmi_name_in_serial(const char *str)
916 int f = DMI_PRODUCT_SERIAL;
917 if (dmi_ident[f] && strstr(dmi_ident[f], str))
918 return 1;
919 return 0;
923 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
924 * @str: Case sensitive Name
926 int dmi_name_in_vendors(const char *str)
928 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
929 int i;
930 for (i = 0; fields[i] != DMI_NONE; i++) {
931 int f = fields[i];
932 if (dmi_ident[f] && strstr(dmi_ident[f], str))
933 return 1;
935 return 0;
937 EXPORT_SYMBOL(dmi_name_in_vendors);
940 * dmi_find_device - find onboard device by type/name
941 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
942 * @name: device name string or %NULL to match all
943 * @from: previous device found in search, or %NULL for new search.
945 * Iterates through the list of known onboard devices. If a device is
946 * found with a matching @type and @name, a pointer to its device
947 * structure is returned. Otherwise, %NULL is returned.
948 * A new search is initiated by passing %NULL as the @from argument.
949 * If @from is not %NULL, searches continue from next device.
951 const struct dmi_device *dmi_find_device(int type, const char *name,
952 const struct dmi_device *from)
954 const struct list_head *head = from ? &from->list : &dmi_devices;
955 struct list_head *d;
957 for (d = head->next; d != &dmi_devices; d = d->next) {
958 const struct dmi_device *dev =
959 list_entry(d, struct dmi_device, list);
961 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
962 ((name == NULL) || (strcmp(dev->name, name) == 0)))
963 return dev;
966 return NULL;
968 EXPORT_SYMBOL(dmi_find_device);
971 * dmi_get_date - parse a DMI date
972 * @field: data index (see enum dmi_field)
973 * @yearp: optional out parameter for the year
974 * @monthp: optional out parameter for the month
975 * @dayp: optional out parameter for the day
977 * The date field is assumed to be in the form resembling
978 * [mm[/dd]]/yy[yy] and the result is stored in the out
979 * parameters any or all of which can be omitted.
981 * If the field doesn't exist, all out parameters are set to zero
982 * and false is returned. Otherwise, true is returned with any
983 * invalid part of date set to zero.
985 * On return, year, month and day are guaranteed to be in the
986 * range of [0,9999], [0,12] and [0,31] respectively.
988 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
990 int year = 0, month = 0, day = 0;
991 bool exists;
992 const char *s, *y;
993 char *e;
995 s = dmi_get_system_info(field);
996 exists = s;
997 if (!exists)
998 goto out;
1001 * Determine year first. We assume the date string resembles
1002 * mm/dd/yy[yy] but the original code extracted only the year
1003 * from the end. Keep the behavior in the spirit of no
1004 * surprises.
1006 y = strrchr(s, '/');
1007 if (!y)
1008 goto out;
1010 y++;
1011 year = simple_strtoul(y, &e, 10);
1012 if (y != e && year < 100) { /* 2-digit year */
1013 year += 1900;
1014 if (year < 1996) /* no dates < spec 1.0 */
1015 year += 100;
1017 if (year > 9999) /* year should fit in %04d */
1018 year = 0;
1020 /* parse the mm and dd */
1021 month = simple_strtoul(s, &e, 10);
1022 if (s == e || *e != '/' || !month || month > 12) {
1023 month = 0;
1024 goto out;
1027 s = e + 1;
1028 day = simple_strtoul(s, &e, 10);
1029 if (s == y || s == e || *e != '/' || day > 31)
1030 day = 0;
1031 out:
1032 if (yearp)
1033 *yearp = year;
1034 if (monthp)
1035 *monthp = month;
1036 if (dayp)
1037 *dayp = day;
1038 return exists;
1040 EXPORT_SYMBOL(dmi_get_date);
1043 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1045 * Returns year on success, -ENXIO if DMI is not selected,
1046 * or a different negative error code if DMI field is not present
1047 * or not parseable.
1049 int dmi_get_bios_year(void)
1051 bool exists;
1052 int year;
1054 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1055 if (!exists)
1056 return -ENODATA;
1058 return year ? year : -ERANGE;
1060 EXPORT_SYMBOL(dmi_get_bios_year);
1063 * dmi_walk - Walk the DMI table and get called back for every record
1064 * @decode: Callback function
1065 * @private_data: Private data to be passed to the callback function
1067 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1068 * or a different negative error code if DMI walking fails.
1070 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1071 void *private_data)
1073 u8 *buf;
1075 if (!dmi_available)
1076 return -ENXIO;
1078 buf = dmi_remap(dmi_base, dmi_len);
1079 if (buf == NULL)
1080 return -ENOMEM;
1082 dmi_decode_table(buf, decode, private_data);
1084 dmi_unmap(buf);
1085 return 0;
1087 EXPORT_SYMBOL_GPL(dmi_walk);
1090 * dmi_match - compare a string to the dmi field (if exists)
1091 * @f: DMI field identifier
1092 * @str: string to compare the DMI field to
1094 * Returns true if the requested field equals to the str (including NULL).
1096 bool dmi_match(enum dmi_field f, const char *str)
1098 const char *info = dmi_get_system_info(f);
1100 if (info == NULL || str == NULL)
1101 return info == str;
1103 return !strcmp(info, str);
1105 EXPORT_SYMBOL_GPL(dmi_match);
1107 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1109 int n;
1111 if (dmi_memdev == NULL)
1112 return;
1114 for (n = 0; n < dmi_memdev_nr; n++) {
1115 if (handle == dmi_memdev[n].handle) {
1116 *bank = dmi_memdev[n].bank;
1117 *device = dmi_memdev[n].device;
1118 break;
1122 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1124 u64 dmi_memdev_size(u16 handle)
1126 int n;
1128 if (dmi_memdev) {
1129 for (n = 0; n < dmi_memdev_nr; n++) {
1130 if (handle == dmi_memdev[n].handle)
1131 return dmi_memdev[n].size;
1134 return ~0ull;
1136 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1139 * dmi_memdev_type - get the memory type
1140 * @handle: DMI structure handle
1142 * Return the DMI memory type of the module in the slot associated with the
1143 * given DMI handle, or 0x0 if no such DMI handle exists.
1145 u8 dmi_memdev_type(u16 handle)
1147 int n;
1149 if (dmi_memdev) {
1150 for (n = 0; n < dmi_memdev_nr; n++) {
1151 if (handle == dmi_memdev[n].handle)
1152 return dmi_memdev[n].type;
1155 return 0x0; /* Not a valid value */
1157 EXPORT_SYMBOL_GPL(dmi_memdev_type);
1160 * dmi_memdev_handle - get the DMI handle of a memory slot
1161 * @slot: slot number
1163 * Return the DMI handle associated with a given memory slot, or %0xFFFF
1164 * if there is no such slot.
1166 u16 dmi_memdev_handle(int slot)
1168 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1169 return dmi_memdev[slot].handle;
1171 return 0xffff; /* Not a valid value */
1173 EXPORT_SYMBOL_GPL(dmi_memdev_handle);